Non-classical logics

Lecture 11: Modal logics (Part 4)

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Until now

History and Motivation
Syntax
Semantics
Entailment (local, global)
The deduction theorem (for local entailment)
Correspondence Theory; First-order definability
Theorem proving in modal logics

- Inference system
- Tableau calculi

Until now

History and Motivation

Syntax

Semantics
Entailment (local, global)
The deduction theorem (for local entailment)
Correspondence Theory; First-order definability
Theorem proving in modal logics

- Inference system
- Tableau calculi
- Resolution TODAY

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$$
\begin{array}{rllll}
\operatorname{val}_{\mathcal{K}}(\perp)(s) & =0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\top)(s) & =1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \leftrightarrow & I(P)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}(F)(s)=0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\square F)(s)=1 & \leftrightarrow & \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1 & \leftrightarrow & \exists s^{\prime}\left(R\left(s, s^{\prime}\right)\right. \text { and val } \\
\mathcal{K}(F)\left(s^{\prime}\right)=1 & \text { for all } s
\end{array}
$$

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$\operatorname{val}_{\mathcal{K}}(\perp)(s)$	$=$	0	for all s
$\operatorname{val}_{\mathcal{K}}(\top)(s)$	$=$	1	for all s
$\operatorname{val}_{\mathcal{K}}(P)(s)=1$	\leftrightarrow	$I(P)(s)=1$	for all s
$\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1$	\leftrightarrow	$\operatorname{val}_{\mathcal{K}}(F)(s)=0$	for all s
$\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1$	\leftrightarrow	$\operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1$	for all s
$\operatorname{val}_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1$	\leftrightarrow	$\operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1$	for all s
$\operatorname{val}_{\mathcal{K}}(\square F)(s)=1$	\leftrightarrow	$\forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right.$	for all s
$\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1$	\leftrightarrow	$\exists s^{\prime}\left(R\left(s, s^{\prime}\right)\right.$ and val $\mathcal{K}(F)\left(s^{\prime}\right)=1$	for all s

Translation: $\quad P \in \Pi \quad \mapsto \quad P / 1$ unary predicate
F formula $\mapsto \quad P_{F} / 1$ unary predicate
R acc.rel $\mapsto \quad R / 2$ binary predicate

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$$
\begin{array}{rlll}
\operatorname{val}_{\mathcal{K}}(\perp)(s) & = & 0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\top)(s) & = & 1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \leftrightarrow & I(P)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}(F)(s)=0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\square F)(s)=1 & \leftrightarrow & \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1 & \leftrightarrow & \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \text { and val } \mathcal{K}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s
\end{array}
$$

Translation:

$$
\begin{array}{llrl}
P \in \Pi & \mapsto P / 1 \text { unary predicate } & \forall s\left(P_{\neg F}(s) \leftrightarrow \neg P_{F}(s)\right) \\
F \text { formula } & \mapsto P / 1 \text { unary predicate } & \forall s\left(P_{F_{1} \wedge F_{2}}(s) \leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
R \text { acc.rel } & \mapsto R / 2 \text { binary predicate } & \forall s\left(P_{F_{1} \vee F_{2}(s)}\left(P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)\right. \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) & \forall s\left(P_{\square F}(s) \leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F}\left(s^{\prime}\right)\right)\right) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s) & \forall s\left(P_{\diamond F}(s) \leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F}\left(s^{\prime}\right)\right)\right)
\end{array}
$$

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$$
\begin{array}{rlll}
\operatorname{val}_{\mathcal{K}}(\perp)(s) & = & 0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\top)(s) & = & 1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \leftrightarrow & I(P)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}(F)(s)=0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\text { val }_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\square F)(s)=1 & \leftrightarrow & \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1 & \leftrightarrow & \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \text { and val } \mathcal{K}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s
\end{array}
$$

Translation: Given F modal formula:

$$
\begin{array}{ll}
P \in \Pi & \mapsto P / 1 \text { unary predicate } \\
F^{\prime} \text { subformula of } \mathrm{F} & \mapsto P_{F} / 1 \text { unary predicate } \\
R \text { acc.rel } & \mapsto R / 2 \text { binary predicate } \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s)
\end{array}
$$

$$
\begin{aligned}
\forall s\left(P_{\neg F^{\prime}}(s)\right. & \left.\leftrightarrow \neg P_{F^{\prime}}(s)\right) \\
\forall s\left(P_{F_{1} \wedge F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s\left(P_{F_{1} \vee F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s\left(P_{\square F^{\prime}}(s)\right. & \left.\leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s\left(P_{\diamond F^{\prime}}(s)\right. & \left.\leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{aligned}
$$

where the index formulae range over all subfromulae of F.

Translation to classical logic

Translation: Given F modal formula:

$$
\begin{array}{ll}
P \in \Pi & \mapsto P / 1 \text { unary predicate } \\
F^{\prime} \text { subformula of } F & \mapsto P F^{\prime} / 1 \text { unary predicate } \\
R \text { acc.rel } & \mapsto R / 2 \text { binary predicate } \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s)
\end{array}
$$

$$
\begin{aligned}
\forall s\left(P_{\neg F^{\prime}}(s)\right. & \left.\leftrightarrow \neg P_{F^{\prime}}(s)\right) \\
\forall s\left(P_{F_{1} \wedge F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s\left(P_{F_{1} \vee F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s\left(P_{\square F^{\prime}}(s)\right. & \left.\leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s\left(P_{\diamond F^{\prime}}(s)\right. & \left.\leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{aligned}
$$

where the index formulae range over all subformulae of F.

Rename (F)

Theorem.

F is K-satisfiable iff $\exists x P_{F}(x) \wedge$ Rename (F) is satisfiable in first-order logic.

Translation to classical logic

Example

To prove that $F:=\square(P \wedge Q) \rightarrow \square P \wedge \square Q$ is K-valid

The following are equivalent:
(1) F is valid
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge$ Rename $(\neg F)$ is unsatisfiable

Translation to classical logic

Example

The following are equivalent:
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge \operatorname{Rename}(\neg F)$ is unsatisfiable

$$
\begin{array}{ll}
\exists x & P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))}(x) \\
\forall x & \left(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q)}(x) \leftrightarrow P_{\square(P \wedge Q)}(x) \wedge P_{\neg(\square P \wedge \square Q)}(x)\right) \\
\forall x & \left(P_{\neg(\square P \wedge \square Q)}(x) \leftrightarrow \neg P_{\square P \wedge \square Q}(x)\right) \\
\forall x & \left(P_{\square P \wedge \square Q}(x) \leftrightarrow P_{\square P}(x) \wedge P_{\square Q}(x)\right) \\
\forall x & \left(P_{\square P}(x) \leftrightarrow \forall y(R(x, y) \rightarrow P(y))\right) \\
\forall x & \left(P_{\square Q}(x) \leftrightarrow \forall y(R(x, y) \rightarrow Q(y))\right) \\
\forall x & \left(P_{\square(P \wedge Q)}(x) \leftrightarrow \forall y\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right)\right) \\
\forall x & \left(P_{P \wedge Q}(x) \leftrightarrow P(x) \wedge Q(x)\right)
\end{array}
$$

Translation to classical logic

Example

The following are equivalent:
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge \operatorname{Rename}(\neg F)$ is unsatisfiable

Prenex normal form

```
\(\exists x \quad P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))}(x)\)
\(\forall x \quad\left(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q)}(x) \leftrightarrow P_{\square(P \wedge Q)}(x) \wedge P_{\neg(\square P \wedge \square Q)}(x)\right)\)
\(\forall x \quad\left(P_{\neg(\square P \wedge \square Q)}(x) \leftrightarrow \neg P_{\square P \wedge \square Q}(x)\right)\)
\(\forall x \quad\left(P_{\square P \wedge \square Q}(x) \leftrightarrow P_{\square P}(x) \wedge P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square} P(x) \rightarrow(R(x, y) \rightarrow P(y))\right)\)
\(\left.\forall x \exists y \quad(R(x, y) \rightarrow P(y)) \rightarrow P_{\square P}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square Q}(x) \rightarrow(R(x, y) \rightarrow Q(y))\right)\)
\(\left.\forall x \exists y \quad(R(x, y) \rightarrow Q(y)) \rightarrow P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square(P \wedge Q)}(x) \rightarrow\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right)\right)\)
\(\forall x \exists y \quad\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right) \rightarrow P_{\square(P \wedge Q)}(x)\)
\(\forall x \quad\left(P_{P \wedge Q}(x) \leftrightarrow P(x) \wedge Q(x)\right)\)
```


Translation to classical logic

Example

The following are equivalent:
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge \operatorname{Rename}(\neg F)$ is unsatisfiable

Skolemization

```
            \(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))}(c)\)
\(\forall x \quad\left(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q)}(x) \leftrightarrow P_{\square(P \wedge Q)}(x) \wedge P_{\neg(\square P \wedge \square Q)}(x)\right)\)
\(\forall x \quad\left(P_{\neg(\square P \wedge \square Q)}(x) \leftrightarrow \neg P_{\square} P \wedge \square Q(x)\right)\)
\(\forall x \quad\left(P_{\square P \wedge \square Q}(x) \leftrightarrow P_{\square P}(x) \wedge P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square} P(x) \rightarrow(R(x, y) \rightarrow P(y))\right)\)
\(\forall x \quad\left(R\left(x, f_{1}(x) \rightarrow P\left(f_{1}(x)\right)\right) \rightarrow P_{\square P}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square Q}(x) \rightarrow(R(x, y) \rightarrow Q(y))\right)\)
\(\left.\forall x \quad\left(R\left(x, f_{2}(x)\right) \rightarrow Q\left(f_{2}(x)\right)\right) \rightarrow P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square(P \wedge Q)}(x) \rightarrow\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right)\right)\)
\(\forall x \quad\left(R\left(x, f_{3}(x)\right) \rightarrow P_{P \wedge Q}\left(f_{3}(x)\right)\right) \rightarrow P_{\square(P \wedge Q)}(x)\)
\(\forall x \quad\left(P_{P \wedge Q}(x) \leftrightarrow P(x) \wedge Q(x)\right)\)
```

CNF translation, Resolution Exploit polarity!!!

Another example

Task: Check if there exists a Kripke model such that $F=\diamond(Q \rightarrow \diamond Q)$ holds at some state in this Kripke model.
$P_{F}(c)$
$\forall x\left(P_{F}(x) \leftrightarrow \exists y\left(R(x, y) \wedge P_{Q \rightarrow \diamond Q}(y)\right)\right)$
$\forall x\left(P_{Q \rightarrow \diamond Q}(x) \leftrightarrow\left(Q(x) \rightarrow P_{\diamond Q}(x)\right)\right)$
$\forall x\left(P_{\diamond Q}(x) \leftrightarrow \exists y(R(x, y) \wedge Q(y))\right)$

Another example

Task: Check if there exists a Kripke model such that $F=\diamond(Q \rightarrow \diamond Q)$ holds at some state in this Kripke model.
$P_{F}, P_{Q \rightarrow \diamond Q}, P_{\diamond Q}$: positive polarity!
$P_{F}(c)$
$\forall x\left(P_{F}(x) \rightarrow \exists y\left(R(x, y) \wedge P_{Q \rightarrow \diamond Q}(y)\right)\right)$
$\forall x\left(\left(P_{Q \rightarrow \diamond Q}(x) \rightarrow\left(Q(x) \rightarrow P_{\diamond Q}(x)\right)\right)\right.$
$\forall x\left(P_{\diamond Q}(x) \rightarrow \exists y(R(x, y) \wedge Q(y))\right)$

Another example

Task: Check if there exists a Kripke model such that $F=\diamond(Q \rightarrow \diamond Q)$ holds at some state in this Kripke model.

Prenex, Skolemization
$P_{F}(c)$
$\forall x\left(P_{F}(x) \rightarrow\left(R(x, f(x)) \wedge P_{Q \rightarrow \diamond Q}(f(x))\right)\right)$
$\forall x\left(P_{Q \rightarrow \diamond Q}(x) \rightarrow\left(Q(x) \rightarrow P_{\diamond Q}(x)\right)\right.$
$\forall x\left(P_{\diamond Q} \rightarrow(R(x, g(x)) \wedge Q(g(x)))\right)$

Another example

Task: Check if there exists a Kripke model such that $F=\diamond(Q \rightarrow \diamond Q)$ holds at some state in this Kripke model.

CNF

$P_{F}(c)$
$\neg P_{F}(x) \vee R(x, f(x))$
$\left.\neg P_{F}(x) \vee P_{Q \rightarrow \diamond Q}(f(x))\right)$
$\neg P_{Q \rightarrow \diamond Q}(x) \vee \neg Q(x) \vee P_{\diamond Q}(x)$
$\neg P_{\diamond Q}(x) \vee R(x, g(x))$
$\left.\left.\neg P_{\diamond Q}(x) \vee Q(g(x))\right)\right)$

Resolution

Resolution for General Clauses

General binary resolution Res:

$$
\begin{aligned}
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) \quad \text { [resolution] } \\
\frac{C \vee A \vee B}{(C \vee A) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) \quad \text { [factorization] }
\end{aligned}
$$

Resolution for General Clauses

For inferences with more than one premise, we assume that the variables in the premises are (bijectively) renamed such that they become different to any variable in the other premises.
We do not formalize this. Which names one uses for variables is otherwise irrelevant.

Ordered resolution with selection

A selection function is a mapping

$$
S: C \mapsto \text { set of occurrences of negative literals in } C
$$

Example of selection with selected literals indicated as X :

$$
\neg A \vee \neg A \vee B \quad \quad \neg B_{0} \vee \neg B_{1} \vee A
$$

Let \succ be a total and well-founded ordering on ground atoms. Then \succ can be extended to a total and well-founded ordering on ground literals and clauses

A literal L (possibly with variables) is called [strictly] maximal in a clause C if and only if there exists a ground substitution σ such that for all L^{\prime} in C : $L \sigma \succeq L^{\prime} \sigma$ $\left[L \sigma \succ L^{\prime} \sigma\right.$].

Resolution Calculus Reš

Let \succ be an atom ordering and S a selection function.

$$
\frac{C \vee A \quad \neg B \vee D}{(C \vee D) \sigma} \quad \text { [ordered resolution with selection] }
$$

if $\sigma=\operatorname{mgu}(A, B)$ and
(i) $A \sigma$ strictly maximal wrt. $C \sigma$;
(ii) nothing is selected in C by S;
(iii) either $\neg B$ is selected, or else nothing is selected in $\neg B \vee D$ and $\neg B \sigma$ is maximal in $D \sigma$.

Resolution Calculus Reš

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma} \quad \text { [ordered factoring] }
$$

if $\sigma=\operatorname{mgu}(A, B)$ and $A \sigma$ is maximal in $C \sigma$ and nothing is selected in C.

Soundness and Refutational Completeness

Theorem:
Let \succ be an atom ordering and S a selection function such that $\operatorname{Res}_{S}^{\succ}(N) \subseteq N$. Then

$$
N \vDash \perp \Leftrightarrow \perp \in N
$$

Ordered resolution for modal logics

It has been proved that ordered resolution (possibly with selection) can be used as a decision procedure for the propositional modal logic K and also for many extensions of K.

Goal: Define ordering/selection function such that few inferences can take place, and such that the size of terms/length of clauses cannot grow in the resolvents.

Decidability of modal logics

Decidability of modal logics

- Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least $f(\operatorname{size}(F))$ elements, where f is a concrete function.

Generate all models with $1,2,3, \ldots, f(\operatorname{size}(F))$ elements.

Decidability of modal logics

- Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least $f(\operatorname{size}(F))$ elements, where f is a concrete function.

Generate all models with $1,2,3, \ldots, f(\operatorname{size}(F))$ elements.

- Alternative approaches:
- Show that terminating sound and complete tableau calculi exist
- Show that ordered resolution (+ additional refinements) terminates on the type of first-order formulae which are generated starting from a modal formula.

Decidability

Direct approach

Idea:

We show that if a formula A has n subformulae, then
$\vdash_{K} A$ iff, A is valid in all frames having at most 2^{n} elements.
or alternatively, that the following are equivalent:
(1) There exists a Kripke structure $\mathcal{K}=(S, R, I)$ and $s \in S$ such that $(\mathcal{K}, s) \models A$.
(2) There exists a Kripke structure $\mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right)$ and $s^{\prime} \in S^{\prime}$ s.t.:

- $\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A$
- S^{\prime} consists of at most 2^{n} states.

Decidability

Idea:

We show that if a formula A has n subformulae, then
$\vdash_{K} A$ iff A is valid in all frames having at most 2^{n} elements.
or alternatively, that the following are equivalent:
(1) There exists a Kripke structure $\mathcal{K}=(S, R, I)$ and $s \in S$ such that $(\mathcal{K}, s) \models A$.
(2) There exists a Kripke structure $\mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right)$ and $s^{\prime} \in S^{\prime}$ such that:

- $\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A$
- S^{\prime} consists of at most 2^{n} states.

Goal: Construct the finite Kripke structure \mathcal{K}^{\prime} starting from \mathcal{K}.

Decidability

Filtrations

Fix a model $\mathcal{K}=(S, R, I)$ and a set $\Gamma \subseteq F_{m} a_{\Sigma}$ that is closed under subformulae, i.e. $B \in \Gamma$ implies Subformulae $(B) \subseteq \Gamma$.

For each $s \in S$, define

$$
\Gamma_{s}=\{B \in \Gamma \mid(\mathcal{K}, s) \models B\}
$$

and put $s \sim_{\Gamma} t$ iff $\Gamma_{s}=\Gamma_{t}$,

Decidability

Filtrations

Fix a model $\mathcal{K}=(S, R, I)$ and a set $\Gamma \subseteq F m a_{\Sigma}$ that is closed under subformulae, i.e. $B \in \Gamma$ implies Subformulae $(B) \subseteq \Gamma$.

For each $s \in S$, define

$$
\Gamma_{s}=\{B \in \Gamma \mid(\mathcal{K}, s) \models B\}
$$

and put $s \sim_{\Gamma} t$ iff $\Gamma_{s}=\Gamma_{t}$,

Then $s \sim_{\Gamma} t \quad$ iff \quad for all $B \in \Gamma,(\mathcal{K}, s) \models B$ iff $(\mathcal{K}, t) \models B$.

Fact: \sim_{Γ} is an equivalence relation on S.

Decidability

Let $[s]=\left\{t \mid s \sim_{\Gamma} t\right\}$ be the \sim_{Γ}-equivalence class of s.
Let $S_{\Gamma}:=\{[s] \mid s \in S\}$ be the set of all such equivalence classes.

Lemma. If Γ is finite, then S_{Γ} is finite and has at most 2^{n} elements, where n is the number of elements of Γ.

Proof. Let $f: S_{\Gamma} \rightarrow \mathcal{P}(\Gamma)$ be defined by $f([s])=\Gamma_{s}=\{B \in \Gamma \mid(\mathcal{K}, s) \models B\}$.
Since $[s]=[t]$ iff $s \sim_{\Gamma} t$ iff $\Gamma_{s}=\Gamma_{t}, f$ is well-defined and one-to-one.
Hence S_{Γ} has no more elements than there are subsets of Γ.
But if Γ has n elements, then it has 2^{n} subsets, so S_{Γ} has at most 2^{n} elements.

Decidability

Goal: $(\mathcal{K}, s) \models A \quad \mapsto \quad\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A, \mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right), \quad\left|S^{\prime}\right| \leq 2^{n}$.
Step 1: Determine S^{\prime} :
$S^{\prime}:=S_{\Gamma}$, where $\Gamma=$ Subformulae(S)

Decidability

Goal: $(\mathcal{K}, s) \models A \quad \mapsto \quad\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A, \mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right), \quad\left|S^{\prime}\right| \leq 2^{n}$.
Step 1: Determine S^{\prime} :
$S^{\prime}:=S_{\Gamma}$, where $\Gamma=$ Subformulae (S)

Step 2: Determine I^{\prime} :
Let $\Pi^{\prime}=\Pi \cap \Gamma$ the set of all atomic formulae occurring in Γ.
Define $I^{\prime}: \Pi^{\prime} \times S^{\prime} \rightarrow\{0,1\}$ by $I^{\prime}(P,[s])=I(P, s)$
Remark: I^{\prime} well defined (if $s \sim_{\Gamma} t$ and $P \in \Gamma$ then $I(P, s)=I(P, t)$).

Decidability

Goal: $(\mathcal{K}, s) \models A \quad \mapsto \quad\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A, \mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right), \quad\left|S^{\prime}\right| \leq 2^{n}$.
Step 1: Determine S^{\prime} :
$S^{\prime}:=S_{\Gamma}$, where $\Gamma=$ Subformulae (S)

Step 2: Determine I^{\prime} :
Let $\Pi^{\prime}=\Pi \cap \Gamma$ the set of all atomic formulae occurring in Γ.
Define $I^{\prime}: \Pi^{\prime} \times S^{\prime} \rightarrow\{0,1\}$ by $I^{\prime}(P,[s])=I(P, s)$
Remark: I^{\prime} well defined (if $s \sim_{\Gamma} t$ and $P \in \Gamma$ then $I(P, s)=I(P, t)$).

Step 3: Determine $R^{\prime} \subseteq S^{\prime} \times S^{\prime}$.
Define e.g. $([s],[t]) \in R^{\prime}$ iff $\exists s^{\prime} \in[s], \exists t^{\prime} \in[t]:\left(s^{\prime}, t^{\prime}\right) \in R$

Decidability

Goal: $(\mathcal{K}, s) \models A \quad \mapsto \quad\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A, \mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right), \quad\left|S^{\prime}\right| \leq 2^{n}$.

Step 1: $S^{\prime}:=S_{\Gamma}$, where $\Gamma=$ Subformulae (S)
Step 2: $I^{\prime}:(\Pi \cap \Gamma) \times S^{\prime} \rightarrow\{0,1\}$ def. by $I^{\prime}(P,[s])=I(P, s)$
Step 3: R^{\prime} def. e.g. by: $([s],[t]) \in R^{\prime}$ iff $\exists s^{\prime} \in[s], \exists t^{\prime} \in[t]:\left(s^{\prime}, t^{\prime}\right) \in R$

Remark: R^{\prime} has the following properties:
(F1) if $(s, t) \in R$ then $([s],[t]) \in R^{\prime}$
(F2) if $([s],[t]) \in R^{\prime}$ then for all B, if $\square B \in \Gamma$ and $(\mathcal{K}, s) \models \square B$, then $(\mathcal{K}, t) \models B$.

Proof: (F2) Assume $([s],[t]) \in R^{\prime}$. Then $\left(s^{\prime}, t^{\prime}\right) \in R$ for $s^{\prime} \in[s], t^{\prime} \in[t]$.
Hence if $(\mathcal{K}, s) \models \square B$ then $\left(\mathcal{K}, s^{\prime}\right) \models \square B$, so $\left(\mathcal{K}, t^{\prime}\right) \models B$, i.e. $(\mathcal{K}, t) \models B$.

Decidability

Goal: $(\mathcal{K}, s) \models A \quad \mapsto \quad\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A, \mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right), \quad\left|S^{\prime}\right| \leq 2^{n}$.

Step 1: $S^{\prime}:=S_{\Gamma}$, where $\Gamma=$ Subformulae (S)
Step 2: $I^{\prime}=I_{\Gamma}:(\Pi \cap \Gamma) \times S^{\prime} \rightarrow\{0,1\}$ def. by $I_{\Gamma}(P,[s])=I(P, s)$
Step 3: $R^{\prime}=\left\{([s],[t]) \mid \exists s^{\prime} \sim_{\Gamma} s, \exists t^{\prime} \sim_{\Gamma}\right.$ ts.t. $\left.\left(s^{\prime}, t^{\prime}\right) \in R\right\}$

Remark: R^{\prime} has the following properties:
(F1) if $(s, t) \in R$ then $([s],[t]) \in R^{\prime}$
(F2) if $([s],[t]) \in R^{\prime}$ then for all B, if $\square B \in \Gamma$ and $(\mathcal{K}, s) \models \square B$, then $(\mathcal{K}, t) \models B$.

Any Kripke structure $\mathcal{K}^{\prime}=\left(S_{\Gamma}, R^{\prime}, I_{\Gamma}\right)$ in which R^{\prime} satisfies (F) and $(\mathrm{F} 2)$ is called a Γ-filtration of \mathcal{K}.

Decidability

Examples of filtrations

- The smallest filtration.
$([s],[t]) \in R^{\prime}$ iff $\exists s^{\prime} \sim_{\Gamma} s, \exists t^{\prime} \sim_{\Gamma} t\left(s^{\prime}, t^{\prime}\right) \in R$.
- The largest filtration. $([s],[t]) \in R$ iff for all $B, \square B \in \Gamma,(\mathcal{K}, s) \models \square B$ implies $(\mathcal{K}, t) \models B$.
- The transitive filtration.
$([s],[t]) \in R^{\prime}$ iff for all $B, \square B \in \Gamma,(\mathcal{K}, s) \models \square B$ implies $(\mathcal{K}, t) \models \square B \wedge B$.

When defining \mathcal{K}^{\prime} we can choose also the second or third definition of R^{\prime}.

Decidability

Filtration Lemma.
Let Γ be a set of modal formulae closed under subformulae.
Let $\mathcal{K}=(S, R, I)$ be a Kripke structure and let $\mathcal{K}^{\prime}=\left(S_{\Gamma}, R^{\prime}, I_{\Gamma}\right)$ be a Γ-filtration of \mathcal{K}.

If $B \in \Gamma$, then for any $s \in S$,

$$
(\mathcal{K}, s) \models B \quad \text { iff } \quad\left(\mathcal{K}^{\prime},[s]\right) \models B
$$

Proof. The case $B=P \in \Pi \cap \Gamma$ is given by the definition of I^{\prime}
The inductive case for the connectives $\{\wedge, \vee, \neg\}$ is straightforward.
The inductive case for \square uses (FI) and (F2).
Note that the closure of Γ under subformulae is needed in order to be able to apply the induction hypothesis.

Decidability

Theorem. Let A be a formula with n subformulae.
Then $\vdash_{K} A$ iff A is valid in all frames having at most 2^{n} elements.

Proof. Suppose $\nvdash k A$. Then there is a model $\mathcal{K}=(S, R, I)$ and a state $s \in S$ at which A is false. Let $\Gamma=\operatorname{Subformulae}(A)$.

Then Γ is closed under subformulae, so we can construct 「-filtrations $\mathcal{K}^{\prime}=\left(S_{\Gamma}, R^{\prime}, I_{\Gamma}\right)$ as above. By the Filtration Lemma, A is false at [s] in any such model, and hence not valid in the frame (S_{Γ}, R^{\prime}).

We previously showed that the desired bound on the size of S_{Γ} is 2^{n}.

Decidability

A logic \mathcal{L} characterized by a set \mathcal{F} of frames* has the finite frame property if it is determined by its finite frames, i.e.,
if $\vdash_{\mathcal{L}} A$, then there is a finite frame $F \in \mathcal{F}$ s.t. $\mathcal{F} \not \models A$

We showed that the smallest normal logic K has the finite frame property, and a computable bound was given on the size of the invalidating frame for a given non-theorem.

* We can choose \mathcal{F} to be the class of all frames in which all theorems of \mathcal{L} are valid.

Decidability

This implies that the property of K-theoremhood is decidable, i.e. that there is an algorithm for determining, for each formula A, whether or not $\vdash_{K} A$:

If A has n subformulae, we simply check to see whether or not A is valid in all frames of size at most 2^{n}.

- Since a finite set has finitely many binary relations ($2^{m^{2}}$ relations on an m-element set), there are only finitely many frames of size at most 2^{n}.
- Moreover, to determine whether A is valid on a finite frame F, we need only look at models $I: \Pi \cap \operatorname{Subformulae}(A) \rightarrow\{0,1\}$ on F.

But there are only finitely many such models on F. Thus the whole checking procedure for validity of A in frames of size at most 2^{n} can be completed in a finite amount of time.

Other modal systems

System	Description
T	$K+\square A \rightarrow A$
D	$K+\square A \rightarrow \diamond A$
B	$T+\neg A \rightarrow \square \neg \square A$
$S 4$	$T+\square A \rightarrow \square \square A$
$S 5$	$T+\neg \square A \rightarrow \square \neg \square A$
$S 4.2$	$S 4+\diamond \square A \rightarrow \square \diamond A$
$S 4.3$	$S 4+\square(\square(A \rightarrow B)) \vee \square(\square(B \rightarrow A))$
C	$K+\frac{A \rightarrow B}{\square(A \rightarrow B)}$ instead of (G).

Other modal systems

We say that \mathcal{L} (with characterizing class of frames \mathcal{F} has the strong finite frame property if there is a computable function g such that
if $\forall_{\mathcal{L}} A$, then there is a finite frame $F \in \mathcal{F}$ that

- invalidates A and
- has at most $g(n)$ elements, where n is the number of subformulae of A.

In adapting the above decidability argument to \mathcal{L}, in addition to deciding whether or not a given finite frame F validates A, we also have to decide whether or not $F \in \mathcal{F}$.

If \mathcal{L} is finitely axiomatisable, meaning that $\mathcal{L}=K S_{\mid} \ldots S_{n}$ for some finite number of schemata, then \mathcal{F} is the class of all frames in which the axioms schemata S_{1}, \ldots, S_{n} hold.

Then the property " $F \in \mathcal{F}$ " is decidable: it suffices to determine whether each S_{j} is valid in F.

Other modal systems

We say that \mathcal{L} (with characterizing class of frames \mathcal{F} has the strong finite frame property if there is a computable function g such that
if $\forall_{\mathcal{L}} A$, then there is a finite frame $F \in \mathcal{F}$ that

- invalidates A and
- has at most $g(n)$ elements, where n is the number of subformulae of A.

Theorem. Every finitely axiomatisable propositional modal logic with the strong finite frame property is decidable.

Other modal systems

We say that \mathcal{L} (with characterizing class of frames \mathcal{F} has the strong finite frame property if there is a computable function g such that
if $\forall_{\mathcal{L}} A$, then there is a finite frame $F \in \mathcal{F}$ that

- invalidates A and
- has at most $g(n)$ elements, where n is the number of subformulae of A.

Theorem. Every finitely axiomatisable logic with the strong finite frame property is decidable.

In fact it can be shown that any finitely axiomatisable logic with the finite frame property is decidable.

Other modal systems

Remark: For many of the logics we have considered thus far, validity of S_{j} is equivalent to some first-order property of R, which can be algorithmically decided for finite F.

Examples

Axiom	Property of R
$\square A \rightarrow A$	reflexive
$A \rightarrow \square \diamond A$	symmetric
$\square A \rightarrow \square \square A$	transitive

Consequence: The extension of K with each of the axioms above is decidable.
Proof It is sufficient to show that if Γ-filtrations are as defined in this lecture:

- for any reflexive frame its Γ-filtration is again reflexive
- for any symmetric frame its Γ-filtration is again symmetric

Transitivity is not always preserved by the minimal Γ-filtration of R (which was the one we used when defining the finite model \mathcal{K}^{\prime}); instead we can use the transitive filtration.

Decidability of modal logics

- Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least $f(\operatorname{size}(F))$ elements, where f is a concrete function.

Generate all models with $1,2,3, \ldots, f(\operatorname{size}(F))$ elements.

- Alternative approaches:
- Show that terminating sound and complete tableau calculi exist
- Show that ordered resolution (+ additional refinements) terminates on the type of first-order formulae which are generated starting from a modal formula.

Decidability of modal logics

- Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least $f(\operatorname{size}(F))$ elements, where f is a concrete function.

Generate all models with $1,2,3, \ldots, f(\operatorname{size}(F))$ elements.

- Alternative approaches:
- Show that terminating sound and complete tableau calculi exist
- Show that ordered resolution (+ additional refinements) terminates on the type of first-order formulae which are generated starting from a modal formula.

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$$
\begin{array}{rlll}
\operatorname{val}_{\mathcal{K}}(\perp)(s) & = & 0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\top)(s) & = & 1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \leftrightarrow & I(P)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}(F)(s)=0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\square F)(s)=1 & \leftrightarrow & \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1 & \leftrightarrow & \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \text { and val } \mathcal{K}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s
\end{array}
$$

Translation:

$$
\begin{array}{llrl}
P \in \Pi & \mapsto P / 1 \text { unary predicate } & \forall s\left(P_{\neg F}(s) \leftrightarrow \neg P_{F}(s)\right) \\
F \text { formula } & \mapsto P / 1 \text { unary predicate } & \forall s\left(P_{F_{1} \wedge F_{2}}(s) \leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
R \text { acc.rel } & \mapsto R / 2 \text { binary predicate } & \forall s\left(P_{F_{1} \vee F_{2}(s)}\left(s P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)\right. \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) & \forall s\left(P_{\square F}(s) \leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F}\left(s^{\prime}\right)\right)\right) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s) & \forall s\left(P_{\diamond F}(s) \leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F}\left(s^{\prime}\right)\right)\right)
\end{array}
$$

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$$
\begin{array}{rlll}
\operatorname{val}_{\mathcal{K}}(\perp)(s) & = & 0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\top)(s) & = & 1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \leftrightarrow & I(P)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}(F)(s)=0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\text { val }_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\square F)(s)=1 & \leftrightarrow & \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1 & \leftrightarrow & \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \text { and val } \mathcal{K}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s
\end{array}
$$

Translation: Given F modal formula:

$$
\begin{array}{ll}
P \in \Pi & \mapsto P / 1 \text { unary predicate } \\
F^{\prime} \text { subformula of } F & \mapsto P / 1 \text { unary predicate } \\
R \text { acc.rel } & \mapsto R / 2 \text { binary predicate } \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s)
\end{array}
$$

$$
\begin{aligned}
\forall s\left(P_{\neg F^{\prime}}(s)\right. & \left.\leftrightarrow \neg P_{F^{\prime}}(s)\right) \\
\forall s\left(P_{F_{1} \wedge F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s\left(P_{F_{1} \vee F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s\left(P_{\square F^{\prime}}(s)\right. & \left.\leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s\left(P_{\diamond F^{\prime}}(s)\right. & \left.\leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{aligned}
$$

where the index formulae range over all subfromulae of F.

Translation to classical logic

Translation: Given F modal formula:

$$
\begin{array}{ll}
P \in \Pi & \mapsto P / 1 \text { unary predicate } \\
F^{\prime} \text { subformula of } F & \mapsto P F^{\prime} / 1 \text { unary predicate } \\
R \text { acc.rel } & \mapsto R / 2 \text { binary predicate } \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s)
\end{array}
$$

$$
\begin{aligned}
\forall s\left(P_{\neg F^{\prime}}(s)\right. & \left.\leftrightarrow \neg P_{F^{\prime}}(s)\right) \\
\forall s\left(P_{F_{1} \wedge F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s\left(P_{F_{1} \vee F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s\left(P_{\square F^{\prime}}(s)\right. & \left.\leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s\left(P_{\diamond F^{\prime}}(s)\right. & \left.\leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{aligned}
$$

where the index formulae range over all subformulae of F.

Rename (F)

Theorem.

F is K-satisfiable iff $\exists x P_{F}(x) \wedge$ Rename (F) is satisfiable in first-order logic.

We now analyze the FO formula obtained

$$
\begin{array}{ll}
\exists x & \neg P_{F}(x) \\
\forall s & \left(P_{\neg F^{\prime}}(s) \leftrightarrow \neg P_{F^{\prime}}(s)\right) \\
\forall s & \left(P_{F_{1} \wedge F_{2}}(s) \leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s & \left(P_{F_{1} \vee F_{2}}(s) \leftrightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s & \left(P_{\square F^{\prime}}(s) \leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s & \left(P_{\diamond F^{\prime}}(s) \leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{array}
$$

index formulae range over all subformulae of F.

We now analyze the FO formula obtained

$\exists x$	$\neg P_{F}(x)$
$\forall s$	$\left(P_{\neg F^{\prime}}(s) \leftarrow \neg P_{F^{\prime}}(s)\right)$
$\forall s$	$\left(P_{\neg F^{\prime}}(s) \rightarrow \neg P_{F^{\prime}}(s)\right)$
$\forall s$	$\left(P_{F_{1} \wedge F_{2}}(s) \leftarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)$
$\forall s$	$\left(P_{F_{1} \wedge F_{2}}(s) \rightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)$
$\forall s$	$\left(P_{F_{1} \vee F_{2}}(s) \leftarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)$
$\forall s$	$\left(P_{F_{1} \vee F_{2}}(s) \rightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)$
$\forall s$	$\left(P_{\square F^{\prime}}(s) \leftarrow s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$
$\forall s$	$\left(P_{\square F^{\prime}}(s) \rightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$
$\forall s$	$\left(P_{\diamond F^{\prime}}(s) \leftarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$
$\forall s$	$\left(P_{\diamond F^{\prime}}(s) \rightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$

index formulae range over all subformulae of F.

We now analyze the FO formula obtained

$$
\begin{array}{lrll}
\exists x & \neg P_{F}(x) & \\
& \\
\forall s & \left(P_{\neg F^{\prime}}(s)\right. & \vee & \left.P_{F^{\prime}}(s)\right) \\
\forall s & \left(\neg P_{\neg F^{\prime}}(s)\right. & \vee & \left.\neg P_{F^{\prime}}(s)\right) \\
\forall s & \left(P_{F_{1} \wedge F_{2}}(s)\right. & \vee & \left.\neg\left(P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)\right) \\
\forall s & \left(\neg P_{F_{1} \wedge F_{2}}(s)\right. & \vee & \left.P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s & \left(P_{F_{1} \vee F_{2}}(s)\right. & \vee & \left.\neg\left(P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)\right) \\
\forall s & \left(\neg P_{F_{1} \vee F_{2}}(s)\right. & \vee & \left.P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s & \left(P_{\square F^{\prime}}(s)\right. & \vee & \left.\neg\left(\forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)\right) \\
\forall s & \left(\neg P_{\square F^{\prime}}(s)\right. & \vee & \left.\forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s & \left(P_{\diamond F^{\prime}}(s)\right. & \vee & \left.\neg\left(\exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)\right) \\
\forall s & \left(\neg P_{\diamond F^{\prime}}(s)\right. & \vee & \left.\exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{array}
$$

index formulae range over all subformulae of F.

We now analyze the FO formula obtained

$$
\begin{array}{lcll}
\exists x & \neg P_{F}(x) & \\
& \\
\forall s & \left(P_{\neg F^{\prime}}(s)\right. & \vee & \left.P_{F^{\prime}}(s)\right) \\
\forall s & \left(\neg P_{\neg F^{\prime}}(s)\right. & \vee & \left.\neg P_{F^{\prime}}(s)\right) \\
\forall s & \left(P_{F_{1} \wedge F_{2}}(s)\right. & \vee & \left.\neg\left(P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)\right) \\
\forall s & \left(\neg P_{F_{1} \wedge F_{2}}(s) \vee\right. & \left.P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s & \left(P_{F_{1} \vee F_{2}}(s)\right. & \vee & \left.\neg\left(P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)\right) \\
\forall s & \left(\neg P_{F_{1} \vee F_{2}}(s) \vee\right. & \left.P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s & \left(P_{\square F^{\prime}}(s)\right. & \vee & \left.\exists s^{\prime} \neg\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s & \left(\neg P_{\square F^{\prime}}(s)\right. & \vee & \left.\forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s & \left(P_{\diamond F^{\prime}}(s)\right. & \vee & \left.\forall s^{\prime} \neg\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s & \left(\neg P_{\diamond F^{\prime}}(s)\right. & \vee & \left.\exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{array}
$$

index formulae range over all subformulae of F.

We now analyze the FO formula obtained

$\exists x$ 位		
$\forall s$	$\left(P_{\neg F^{\prime}}(s) \vee\right.$	$\left.P_{F^{\prime}}(s)\right)$
$\forall s$	$\left(\neg P_{\neg F}(s) \vee\right.$	$\left.\neg P_{F^{\prime}}(s)\right)$
$\forall s$	$\left(P_{F_{1} \wedge F_{2}}(s) \vee\right.$	$\left.\neg\left(P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)\right)$
$\forall s$	$\left(\neg P_{F_{1} \wedge F_{2}}(s) \vee\right.$	$\left.\left(P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)\right)$
$\forall s$ $\forall s$	$\xrightarrow\left[\left(P_{F_{1} \vee F_{2}}(s) \vee\right]{ }\right.$	$\left.\neg\left(P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)\right)$
$\forall s$	$\left(\neg P_{F_{1} \vee F_{2}}(s) \vee\right.$	$\left.P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)$
$\forall s \exists s^{\prime}$	$\left(P_{\square F^{\prime}}(s) V\right.$	$\neg\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)$)
$\forall s \forall s^{\prime}$	$\left(\neg P_{\square F^{\prime}}(s) \vee\right.$	$\left.\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$
$\forall s \forall s^{\prime}$	$\left(P_{\diamond F^{\prime}}(s) \vee\right.$	$\left.\neg\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$
$\forall s \exists s^{\prime}$	$\left(\neg P_{\diamond F^{\prime}}(s) \vee\right.$	$\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)$)

index formulae range over all subformulae of F.

Skolemization

$$
\neg P_{F}(c)
$$

$\forall s$	$\left(P_{\neg F^{\prime}}(s)\right.$	\vee	$\left.P_{F^{\prime}}(s)\right)$
$\forall s$	$\left(\neg P_{\neg F^{\prime}}(s)\right.$	\vee	$\left.\neg P_{F^{\prime}}(s)\right)$
$\forall s$	$\left(P_{F_{1} \wedge F_{2}}(s)\right.$	\vee	$\left.\neg\left(P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)\right)$
$\forall s$	$\left(\neg P_{F_{1} \wedge F_{2}}(s) \vee\right.$	$\left.\vee\left(P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)\right)$	
$\forall s$	$\left(P_{F_{1} \vee F_{2}}(s) \vee\right.$	$\left.\neg\left(P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)\right)$	
$\forall s$	$\left(\neg P_{F_{1} \vee F_{2}}(s) \vee\right.$	$\left.P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)$	
$\forall s$	$\left(P_{\square F^{\prime}}(s)\right.$	\vee	$\left.\neg\left(R\left(s, f_{i}(s)\right) \rightarrow P_{F^{\prime}}\left(f_{i}(s)\right)\right)\right)$
$\forall s$	$\left(\neg P_{\square F^{\prime}}(s) \vee\right.$	$\left.\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$	
$\left.\forall s \forall s^{\prime}\right)$	$\left(P_{\diamond F^{\prime}}(s) \vee\right.$	$\left.\neg\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$	
$\forall s \forall s^{\prime}$	$\left(\neg P_{\diamond F^{\prime}}(s) \vee\right.$	$\left.\left(R\left(s, f_{j}(s)\right) \wedge P_{F^{\prime}}\left(f_{j}(s)\right)\right)\right)$	

index formulae range over all subformulae of F.

Translation to CNF

$$
\neg P_{F}(c)
$$

$\forall s$	$\left(P_{\neg F^{\prime}}(s) \vee\right.$	$\left.P_{F^{\prime}}(s)\right)$	
$\forall s$	$\left(\neg P_{\neg F^{\prime}}(s)\right.$	\vee	$\left.\neg P_{F^{\prime}}(s)\right)$
$\forall s$	$\left(P_{F_{1} \wedge F_{2}}(s) \vee\right.$	$\left.\neg P_{F_{1}}(s) \vee \neg P_{F_{2}}(s)\right)$	
$\forall s$	$\left(\neg P_{F_{1} \wedge F_{2}}(s) \vee\right.$	$\left.\left(P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right)\right)$	
$\forall s$	$\left(P_{F_{1} \vee F_{2}}(s) \vee\right.$	$\left.\left(\neg P_{F_{1}}(s) \wedge \neg P_{F_{2}}(s)\right)\right)$	
$\forall s$	$\left(\neg P_{F_{1} \vee F_{2}}(s) \vee\right.$	$\left.P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)$	
$\forall s$	$\left(P_{\square F^{\prime}}(s)\right.$	\vee	$\left.\left(R\left(s, f_{i}(s)\right) \wedge \neg P_{F^{\prime}}\left(f_{i}(s)\right)\right)\right)$
$\forall s \forall s^{\prime}$	$\left(\neg P_{\square F^{\prime}}(s) \vee\right.$	$\left.\neg R\left(s, s^{\prime}\right) \vee P_{F^{\prime}}\left(s^{\prime}\right)\right)$	
$\forall s \forall s^{\prime}$	$\left(P_{\diamond F^{\prime}}(s) \vee \vee\right.$	$\left.\left.\neg R\left(s, s^{\prime}\right) \vee \neg P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)$	
$\forall s$	$\left(\neg P_{\diamond F^{\prime}}(s) \vee\right.$	$\left.\left(R\left(s, f_{j}(s)\right) \wedge P_{F^{\prime}}\left(f_{j}(s)\right)\right)\right)$	

index formulae range over all subformulae of F.

Translation to CNF

$$
\neg P_{F}(c)
$$

$$
\begin{array}{lrll}
\forall s & \left(P_{\neg F^{\prime}}(s)\right. & \vee & \left.P_{F^{\prime}}(s)\right) \\
\forall s & \left(\neg P_{\neg F^{\prime}}(s)\right. & \vee & \left.\neg P_{F^{\prime}}(s)\right) \\
\forall s & \left(P_{F_{1} \wedge F_{2}}(s)\right. & \vee & \left.\neg P_{F_{1}}(s) \vee \neg P_{F_{2}}(s)\right) \\
\forall s & \left(\neg P_{F_{1} \wedge F_{2}}(s)\right. & \vee & \left.P_{F_{1}}(s)\right) \\
\forall s & \left(\neg P_{F_{1} \wedge F_{2}}(s)\right. & \vee & \left.P_{F_{2}}(s)\right) \\
\forall s & \left(P_{F_{1} \vee F_{2}}(s)\right. & \vee & \left.\neg P_{F_{1}}(s)\right) \\
\forall s & \left(P_{F_{1} \vee F_{2}(s)} \vee \vee\right. & \left.\left.\neg P_{F_{2}}(s)\right)\right) \\
\forall s & \left(\neg P_{F_{1} \vee F_{2}}(s)\right. & \vee & \left.P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s & \left(P_{\square F^{\prime}}(s)\right. & \vee & R\left(s, f_{i}(s)\right) \\
\forall s & \left(P_{\square F^{\prime}}(s)\right. & \vee & \left.\left.\neg P_{F^{\prime}}\left(f_{i}(s)\right)\right)\right) \\
\forall s \forall s^{\prime} & \left(\neg P_{\square F^{\prime}}(s)\right. & \vee & \left.\neg R\left(s, s^{\prime}\right) \vee P_{F^{\prime}}\left(s^{\prime}\right)\right) \\
\forall s \forall s^{\prime} & \left(P_{\diamond F^{\prime}}(s)\right. & \vee & \left.\left.\neg R\left(s, s^{\prime}\right) \vee \neg P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s & \left(\neg P_{\diamond F^{\prime}}(s)\right. & \vee & R\left(s, f_{j}(s)\right) \\
\forall s & \left(\neg P_{\diamond F^{\prime}}(s)\right. & \vee & \left.\left.P_{F^{\prime}}\left(f_{j}(s)\right)\right)\right)
\end{array}
$$

index formulae range over all subformulae of F.

Ordered resolution as a decision procedure

Let $\Sigma=(\Omega, \Pi)$, where $\Omega=\left\{c_{1} / 0, \ldots, c_{k} / 0, f_{1} / 1, \ldots, f_{l} / 1\right\}$, and $\Pi=\left\{p_{1} / 1, \ldots, p_{n} / 1, R / 2\right\}$. Let X be a set of variables.

We define an ordering and a selection function as follows.

Ordered resolution as a decision procedure

Ordering:

Given:

- \succ ordering which is total and well founded on ground terms and for all terms u, t, if t occurs as a subterm in u then $u \succ t$.
- \succ_{P} total order on the predicate symbols s.t. $R \succ_{P} p_{i}$ for every i.

An ordering on literals (also denoted by \succ) is defined as follows.
Let c be the complexity measure defined for every ground literal L by $c_{L}=\left(\max _{L}, \operatorname{pred}_{L}, p_{L}\right)$ where:

- $\max _{L}$ is the maximal term occurring in L;
- pred_{L} is the predicate symbol occurring in L; and
- p_{L} is 1 if L is negative and 0 if L is positive.

Ordered resolution as a decision procedure

Ordering: (ctd.)

Let $c_{L}=\left(\max _{L}, \operatorname{pred}_{L}, p_{L}\right)$ where:

- $\max _{L}$ is the maximal term occurring in L;
- pred_{L} is the predicate symbol occurring in L; and
- p_{L} is 1 if L is negative and 0 if L is positive.

The complexity measure c induces a well-founded ordering \succ_{c} on ground literals, defined by $L \succ_{c} L^{\prime}$ if and only if $c_{L}>c_{L^{\prime}}$ in the lexicographic combination of $\succ_{\text {, }} \succ_{P}$, and $>$ (where $1>0$).

Let \succ be a total and well-founded extension of \succ_{c}.
Example: Assume $R \succ_{P} P_{1} \succ_{P} P_{2}$ and $d \succ c$

$L:$	$\neg P_{1}(f(f(d))) \succ P_{1}(f(f(d))) \succ \neg P_{2}(f(f(d))) \succ R(c, f(d)) \succ \neg R(c, d) \succ R(c, c) \quad$ becau
$c_{L}:$	$\left(f(f(d)), P_{1}, 1\right)>\left(f(f(d)), P_{1}, 0\right)>\left(f(f(d)), P_{2}, 1\right)>(f(d), R, 0)>(d, R, 1)>(c, R, 0)$

Ordered resolution as a decision procedure

Selection function:
Let S be the selection function that selects all occurrences of negative literals starting with the predicate R.

Ordered resolution as a decision procedure

Notation: If t, t_{1}, \ldots, t_{n} are terms, we use the following notations.

- Any clause clause of form $(\neg) p_{i_{1}}(t) \vee \cdots \vee(\neg) p_{i_{k}}(t)$ is of type $\mathcal{P}(t)$
- Any clause clause of form $C_{1} \vee \cdots \vee C_{n}$, where C_{i} is of type $\mathcal{P}\left(t_{i}\right)$ is of type $\mathcal{P}\left(t_{1}, \ldots, t_{n}\right)$.

Ordered resolution as a decision procedure

Notation: If t, t_{1}, \ldots, t_{n} are terms, we use the following notations.

- Any clause clause of form $(\neg) p_{i_{1}}(t) \vee \cdots \vee(\neg) p_{i_{k}}(t)$ is of type $\mathcal{P}(t)$
- Any clause clause of form $C_{1} \vee \cdots \vee C_{n}$, where C_{i} is of type $\mathcal{P}\left(t_{i}\right)$ is of type $\mathcal{P}\left(t_{1}, \ldots, t_{n}\right)$.

Consider the following sets of clauses:
$\mathcal{G} \quad$ all clauses of type $\mathcal{P}(c)$ where c is a constant.
$\mathcal{V} \quad$ all clauses of type $\mathcal{P}(x)$ for some variable x.
$\mathcal{V}(f) \quad$ clauses of type $\mathcal{P}(x, f(x))$, for some variable x (where $f / 1 \in \Omega$).
$\mathcal{R}^{+} \quad$ all clauses of the form $\mathcal{P}(x) \vee R(x, f(x))$ for some variable x.
$\mathcal{R}^{-} \quad$ all clauses of the form $\mathcal{P}(x) \vee \mathcal{P}(y) \vee \neg R(x, y)$ for some variables x, y.

Translation to CNF

$\neg P_{F}(c)$			$\mathcal{P}(c)$
$\forall s$	$\left(P_{\neg F^{\prime}}(s) \vee\right.$	$\left.P_{F^{\prime}}(s)\right)$	$\mathcal{V}(s)$
$\forall s$	$\left(\neg P_{\neg F^{\prime}}(s) \vee\right.$	$\left.\neg P_{F^{\prime}}(s)\right)$	$\mathcal{V}(s)$
$\forall s$	$\left(P_{F_{1} \wedge F_{2}}(s) \vee\right.$	$\left.\neg P_{F_{1}}(s) \vee \neg P_{F_{2}}(s)\right)$	$\mathcal{V}(s)$
$\forall s$	$\left(\neg P_{F_{1} \wedge F_{2}}(s) \vee\right.$	$\left.P_{F_{1}}(s)\right)$	$\mathcal{V}(s)$
$\forall s$	$\left(\neg P_{F_{1} \wedge F_{2}}(s) \vee\right.$	$\left.P_{F_{2}}(s)\right)$	$\mathcal{V}(s)$
$\forall s$	$\left(P_{F_{1} \vee F_{2}}(s) \vee\right.$	$\left.\neg P_{F_{1}}(s)\right)$	$\mathcal{V}(s)$
$\forall s$	$\left(P_{F_{1} \vee F_{2}}(s) \vee\right.$	$\left.\neg P_{F_{2}}(s)\right)$)	$\mathcal{V}(s)$
$\forall s$	$\left(\neg P_{F_{1} \vee F_{2}}(s) \vee\right.$	$\left.P_{F_{1}}(s) \vee P_{F_{2}}(s)\right)$	$\mathcal{V}(s)$
$\forall s$	$\left(P_{\square F^{\prime}}(s) \vee\right.$	$R\left(s, f_{i}(s)\right)$	\mathcal{R}^{+}
$\forall s$	$\left(P_{\square F^{\prime}}(s) \vee\right.$	$\left.\neg P_{F^{\prime}}\left(f_{i}(s)\right)\right)$)	$\mathcal{V}\left(f_{i}\right)$
$\forall s \forall s^{\prime}$	$\left(\neg P_{\square F^{\prime}}(s) \vee\right.$	$\left.\neg R\left(s, s^{\prime}\right) \vee P_{F^{\prime}}\left(s^{\prime}\right)\right)$	\mathcal{R}^{-}
$\forall s \forall s^{\prime}$	$\left(P_{\diamond F^{\prime}}(s) \vee\right.$	$\left.\neg R\left(s, s^{\prime}\right) \vee \neg P_{F^{\prime}}\left(s^{\prime}\right)\right)$)	\mathcal{R}^{-}
$\forall s$	$\left(\neg P_{\diamond F^{\prime}}(s) \vee\right.$	$R\left(s, f_{j}(s)\right)$	\mathcal{R}^{+}
$\forall s$	$\left(\neg P_{\diamond F^{\prime}}(s) \vee\right.$	$P_{F^{\prime}}\left(f_{j}(s)\right)$)	$\mathcal{V}\left(f_{i}\right)$

index formulae range over all subformulae of F.

Ordered resolution as a decision procedure

To be proved:
(1) The set $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+} \cup \mathcal{R}^{-}$is finite
(2) $\mathcal{G} \cup \mathcal{V}$ is closed under $\operatorname{Res}_{S}^{\succ}$.
(3) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f)$ is closed under $\operatorname{Res}_{S}^{\succ}$.
(4) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+}$is closed under $\operatorname{Res}_{S}^{\succ}$.
(5) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+} \cup \mathcal{R}^{-}$is closed under $\operatorname{Res}_{S}^{\succ}$.

Ordered resolution as a decision procedure

We assume that no literals occur several times (eager factoring)
Theorem The set $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+} \cup \mathcal{R}^{-}$is finite

Proof: (1) $\mathcal{P}(c)$ contains at most $3^{|\operatorname{Subformulae}(F)|}$ clauses, so if there are m constants then \mathcal{G} contains at most $m 3^{|\operatorname{Subformulae}(F)|}$ clauses.

Similarly it can be checked that \mathcal{V} contains (up to remaming of variables) $3^{\mid S u b f o r m u l a e(F)}$ clauses.

All literals of clauses in $\mathcal{P}(x, f(x))$ have argument x or $f(x)$. We have therefore $2|\operatorname{Subformulae}(F)|$ literals, hence $3^{2|\operatorname{Subformulae}(F)|}$ clauses.

The number of clauses in \mathcal{R}^{+}is the same as the number of clauses in $\mathcal{P}(x)$. The number of clauses in \mathcal{R}^{-}is $|\mathcal{P}(x)|^{2}$.

Ordered resolution as a decision procedure

Theorem

(2) $\mathcal{G} \cup \mathcal{V}$ is closed under $\operatorname{Res}_{S}^{\succ}$.
(3) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f)$ is closed under $\operatorname{Res}_{S}^{\succ}$.
(4) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+}$is closed under $\operatorname{Res}_{S}^{\succ}$.
(5) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+} \cup \mathcal{R}^{-}$is closed under $\operatorname{Res}_{S}^{\succ}$.

Proof.
(2) The resolvent of two clauses in \mathcal{G} is in \mathcal{G}; the resolvent of two clauses in \mathcal{V} is in \mathcal{V}; The resolvent of a clause in \mathcal{G} and one in \mathcal{V} is in \mathcal{G}.
(3) No inference is possible between clauses in \mathcal{G} and clauses in $\mathcal{V}(f)$. The resolvent of a clause in \mathcal{V} and one in $\mathcal{V}(f)$ is in \mathcal{V} or in $\mathcal{V}(f)$.

The resolvent of two clauses in $\mathcal{V}(f)$ is in \mathcal{V} or $\mathcal{V}(f)$. No inference is possible between clauses in $\mathcal{V}(f)$ and $\mathcal{V}(g)$ if $f \neq g$ (atoms in maximal literals not unifiable)

Ordered resolution as a decision procedure

Theorem

(2) $\mathcal{G} \cup \mathcal{V}$ is closed under $\operatorname{Res}_{S}^{\succ}$.
(3) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f)$ is closed under $\operatorname{Res}_{S}^{\succ}$.
(4) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+}$is closed under $\operatorname{Res}_{S}^{\succ}$.
(5) $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+} \cup \mathcal{R}^{-}$is closed under $\operatorname{Res}_{S}^{\succ}$.

Proof.
(4) No inferences are possible between two clauses in \mathcal{R}^{+}(in every clause the maximal literal is a positive R-literal and nothing is selected). No inferences are possible between a clause in \mathcal{R}^{+}and a clause in $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f)$.
(5) The resolvent of a clause in \mathcal{R}^{+}and one in \mathcal{R}^{-}is a clause in $\mathcal{V} \cup \bigcup_{f} \mathcal{V}(f)$. No inferences are possible between a clause in $\mathcal{R}^{+} \cup \mathcal{R}^{-}$and a clause in $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f)$.

Ordered resolution as a decision procedure

Theorem. Res ${ }_{S}^{\succ}$ checks satisfiability of sets of clauses in $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup$ $\mathcal{R}^{+} \cup \mathcal{R}^{-}$in exponential time.

Proof (Idea)
Let N be a set of clauses which is a subset of $\mathcal{G} \cup \mathcal{V} \cup \bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+} \cup \mathcal{R}^{-}$. All clauses which can be derived from N using $\operatorname{Res}_{S}^{\succ}$ are in $\mathcal{G} \cup \mathcal{V} \cup$ $\bigcup_{f} \mathcal{V}(f) \cup \mathcal{R}^{+} \cup \mathcal{R}^{-}$.

The size of this set is exponential in the size of $|\operatorname{Subformulae}(F)|$. This means that at most an exponential number of inferences are needed to generate all clauses in this set.

Until now

Modal logic

Syntax

Semantics
Kripke models
global and local entailment; deduction theorem
Correspondence theory
First-order definability
Theorem proving in modal logics
Decidability

Now: Description logics

Description Logics

subfield of Knowledge Representation which is a subfield of AI.

- Description- comes from concept description (formal expression which determines a set of individuals with common properties)
- Logics - comes from the fact that the semantics of concept description can be defined using logic (a fragment of first-order logic)

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Formal description in first-order logic
Unary predicates: Teaching-Assistant, Undergrad, Professor
$\forall x \quad$ Teaching-Assistant $(x) \rightarrow \neg$ Undergrad $(x) \vee$ Professor (x)

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Formal description in first-order logic
Unary predicates: Teaching-Assistant, Undergrad, Professor
$\forall x \quad$ Teaching-Assistant $(x) \rightarrow \neg$ Undergrad $(x) \vee$ Professor (x)
More concise description
Concept names: Teaching-Assistant, Undergrad, Professor
Teaching-Assistant $\sqsubseteq \neg$ Undergrad \sqcup Professor

Why description logics?

If predicate logic is directly used without some kind of restriction, then

- the structure of the knowledge/information is lost;
- the expressive power is too high for having good computational properties and efficient procedures.

Example

Teaching-Assistant $\sqsubseteq \neg$ Undergrad \sqcup Professor
$\forall x \quad$ Teaching-Assistant $(x) \rightarrow \neg$ Undergrad $(x) \vee \operatorname{Professor}(x)$

A necessary condition in order to be a teaching assistant is to be either not undergraduated or a professor.

Example

Teaching-Assistant $\sqsubseteq \neg$ Undergrad \sqcup Professor
$\forall x \quad$ Teaching-Assistant $(x) \rightarrow \neg$ Undergrad $(x) \vee \operatorname{Professor}(x)$
A necessary condition in order to be a teaching assistant is to be either not undergraduated or a professor.

When the left-hand side is an atomic concept, the " \sqsubseteq " symbol introduces a primitive definition - giving only necessary conditions.

Teaching-Assistant $\doteq \neg$ Undergrad \sqcup Professor
$\forall x \quad$ Teaching-Assistant $(x) \leftrightarrow \neg$ Undergrad $(x) \vee$ Professor (x)
The " \equiv " symbol introduces a real definition - with necessary and sufficient conditions. In general, we can have complex concept expressions at the left-hand side as well.

The description logic ALC: Syntax

Concepts:

- primitive concepts N_{C}
- complex concepts (built using constructors $\neg, \sqcap, \sqcup, \exists R, \forall R, \top, \perp$)

Roles:
N_{R}

The description logic ALC: Syntax

Concepts:

- primitive concepts N_{C}
- complex concepts (built using constructors $\neg, \sqcap, \sqcup, \exists R, \forall R, \top, \perp$)

Roles: $\quad N_{R}$
Concepts:

$$
\begin{array}{rlr}
C:= & \top & \\
& \mid \perp & \\
& \mid A & \\
& \mid C_{1} \sqcap C_{2} & \\
& \mid C_{2} \sqcup C_{2} & \\
& \mid \neg C & \\
& \mid \forall R . C & \\
& \mid \exists R . C &
\end{array}
$$

The description logic ALC: Semantics

Interpretations: $\mathcal{I}=\left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}\right) \quad \bullet C \in N_{C} \mapsto C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$

- $R \in N_{R} \mapsto R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

We can also interpret "individuals" (as elements of $\Delta^{\mathcal{I}}$).

The description logic ALC

Syntax	Semantics	Name		
A	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	primitive concept		
R	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$	primitive role		
\top	$\Delta^{\mathcal{I}}$	top		
\perp	\emptyset	bottom		
$\neg C$	$\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}}$	complement		
$C \sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$	conjunction		
$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$	disjunction		
$\forall R . C$	$\{x \mid \forall y$	$\left.R^{\mathcal{I}}(x, y) \rightarrow y \in C^{\mathcal{I}}\right\}$		
$\exists R . C$	$\{x \mid \exists y$	$\left.R^{\mathcal{I}}(x, y) \wedge y \in C^{\mathcal{I}}\right\}$		(universal quantification
:---				

The description logic ALC: Semantics

- Conjunction is interpreted as intersection of sets of individuals.
- Disjunction is interpreted as union of sets of individuals.
- Negation is interpreted as complement of sets of individuals.

For every interpretation \mathcal{I} :

- $(\neg(C \sqcap D))^{\mathcal{I}}=(\neg C \sqcup \neg D)^{\mathcal{I}}$
- $(\neg(C \sqcup D))^{\mathcal{I}}=(\neg C \sqcap \neg D)^{\mathcal{I}}$
- $(\neg(\forall R . C))^{\mathcal{I}}=(\exists R . \neg C)^{\mathcal{I}}$
- $(\neg(\exists R . C))^{\mathcal{I}}=(\forall R . \neg C)^{\mathcal{I}}$

