
Non-classical logics

Lecture 11: Modal logics (Part 4)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

History and Motivation

Syntax

Semantics

Entailment (local, global)

The deduction theorem (for local entailment)

Correspondence Theory; First-order definability

Theorem proving in modal logics

• Inference system

• Tableau calculi

2

Until now

History and Motivation

Syntax

Semantics

Entailment (local, global)

The deduction theorem (for local entailment)

Correspondence Theory; First-order definability

Theorem proving in modal logics

• Inference system

• Tableau calculi

• Resolution TODAY

3

Translation for classical logic

K = (S ,R, I) Kripke model

valK(⊥)(s) = 0 for all s

valK(⊤)(s) = 1 for all s

valK(P)(s) = 1 ↔ I (P)(s) = 1 for all s

valK(¬F)(s) = 1 ↔ valK(F)(s) = 0 for all s

valK(F1 ∧ F2)(s) = 1 ↔ valK(F1)(s) ∧ valK(F1)(s) = 1 for all s

valK(F1 ∨ F2)(s) = 1 ↔ valK(F1)(s) ∨ valK(F1)(s) = 1 for all s

valK(✷F)(s) = 1 ↔ ∀s′(R(s, s′)→ valK(F)(s′) = 1 for all s

valK(✸F)(s) = 1 ↔ ∃s′(R(s, s′) and valK(F)(s′) = 1 for all s

4

Translation for classical logic

K = (S ,R, I) Kripke model

valK(⊥)(s) = 0 for all s

valK(⊤)(s) = 1 for all s

valK(P)(s) = 1 ↔ I (P)(s) = 1 for all s

valK(¬F)(s) = 1 ↔ valK(F)(s) = 0 for all s

valK(F1 ∧ F2)(s) = 1 ↔ valK(F1)(s) ∧ valK(F1)(s) = 1 for all s

valK(F1 ∨ F2)(s) = 1 ↔ valK(F1)(s) ∨ valK(F1)(s) = 1 for all s

valK(✷F)(s) = 1 ↔ ∀s′(R(s, s′) → valK(F)(s′) = 1 for all s

valK(✸F)(s) = 1 ↔ ∃s′(R(s, s′) and valK(F)(s′) = 1 for all s

Translation : P ∈ Π 7→ P/1 unary predicate

F formula 7→ PF /1 unary predicate

R acc.rel 7→ R/2 binary predicate

5

Translation for classical logic

K = (S ,R, I) Kripke model

valK(⊥)(s) = 0 for all s

valK(⊤)(s) = 1 for all s

valK(P)(s) = 1 ↔ I (P)(s) = 1 for all s

valK(¬F)(s) = 1 ↔ valK(F)(s) = 0 for all s

valK(F1 ∧ F2)(s) = 1 ↔ valK(F1)(s) ∧ valK(F1)(s) = 1 for all s

valK(F1 ∨ F2)(s) = 1 ↔ valK(F1)(s) ∨ valK(F1)(s) = 1 for all s

valK(✷F)(s) = 1 ↔ ∀s′(R(s, s′) → valK(F)(s′) = 1 for all s

valK(✸F)(s) = 1 ↔ ∃s′(R(s, s′) and valK(F)(s′) = 1 for all s

Translation:

P ∈ Π 7→ P/1 unary predicate

F formula 7→ PF /1 unary predicate

R acc.rel 7→ R/2 binary predicate

valK(P)(s) = 1 7→ P(s)

valK(P)(s) = 0 7→ ¬P(s)

∀s(P¬F (s) ↔ ¬PF (s))

∀s(PF1∧F2
(s) ↔ PF1

(s) ∧ PF2
(s))

∀s(PF1∨F2
(s) ↔ PF1

(s) ∨ PF2
(s))

∀s(P
✷F (s) ↔ ∀s′(R(s, s′) → PF (s′)))

∀s(P
✸F (s) ↔ ∃s′(R(s, s′) ∧ PF (s′)))

6

Translation for classical logic

K = (S ,R, I) Kripke model

valK(⊥)(s) = 0 for all s

valK(⊤)(s) = 1 for all s

valK(P)(s) = 1 ↔ I (P)(s) = 1 for all s

valK(¬F)(s) = 1 ↔ valK(F)(s) = 0 for all s

valK(F1 ∧ F2)(s) = 1 ↔ valK(F1)(s) ∧ valK(F1)(s) = 1 for all s

valK(F1 ∨ F2)(s) = 1 ↔ valK(F1)(s) ∨ valK(F1)(s) = 1 for all s

valK(✷F)(s) = 1 ↔ ∀s′(R(s, s′) → valK(F)(s′) = 1 for all s

valK(✸F)(s) = 1 ↔ ∃s′(R(s, s′) and valK(F)(s′) = 1 for all s

Translation: Given F modal formula:

P ∈ Π 7→ P/1 unary predicate

F′ subformula of F 7→ PF /1 unary predicate

R acc.rel 7→ R/2 binary predicate

valK(P)(s) = 1 7→ P(s)

valK(P)(s) = 0 7→ ¬P(s)

∀s(P
¬F′

(s) ↔ ¬P
F′

(s))

∀s(PF1∧F2
(s) ↔ PF1

(s) ∧ PF2
(s))

∀s(PF1∨F2
(s) ↔ PF1

(s) ∨ PF2
(s))

∀s(P
✷F′

(s) ↔ ∀s′(R(s, s′) → P
F′

(s′)))

∀s(P
✸F′

(s) ↔ ∃s′(R(s, s′) ∧ P
F′

(s′)))

where the index formulae range over all subfromulae of F .

7

Translation to classical logic

Translation: Given F modal formula:

P ∈ Π 7→ P/1 unary predicate

F′ subformula of F 7→ P
F′

/1 unary predicate

R acc.rel 7→ R/2 binary predicate

valK(P)(s) = 1 7→ P(s)

valK(P)(s) = 0 7→ ¬P(s)

∀s(P
¬F′

(s) ↔ ¬P
F′

(s))

∀s(PF1∧F2
(s) ↔ PF1

(s) ∧ PF2
(s))

∀s(PF1∨F2
(s) ↔ PF1

(s) ∨ PF2
(s))

∀s(P
✷F′

(s) ↔ ∀s′(R(s, s′) → P
F′

(s′)))

∀s(P
✸F′

(s) ↔ ∃s′(R(s, s′) ∧ P
F′

(s′)))

where the index formulae range over all subformulae of F .

︸ ︷︷ ︸

Rename(F)

Theorem.

F is K -satisfiable iff ∃xPF (x) ∧ Rename(F) is satisfiable in first-order logic.

8

Translation to classical logic

Example

To prove that F := ✷(P ∧ Q) → ✷P ∧ ✷Q is K -valid

The following are equivalent:

(1) F is valid

(2) ¬F := ✷(P ∧ Q) ∧ ¬(✷P ∧ ✷Q)) is unsatisfiable

(3) ∃xP¬F (x) ∧ Rename(¬F) is unsatisfiable

9

Translation to classical logic

Example

The following are equivalent:

(2) ¬F := ✷(P ∧ Q) ∧ ¬(✷P ∧ ✷Q)) is unsatisfiable

(3) ∃xP¬F (x) ∧ Rename(¬F) is unsatisfiable

∃x P
✷(P∧Q)∧¬(✷P∧✷Q))(x)

∀x (P
✷(P∧Q)∧¬(✷P∧✷Q)(x) ↔ P

✷(P∧Q)(x) ∧ P
¬(✷P∧✷Q)(x))

∀x (P
¬(✷P∧✷Q)(x) ↔ ¬P

✷P∧✷Q (x))

∀x (P
✷P∧✷Q (x) ↔ P

✷P (x) ∧ P
✷Q (x))

∀x (P
✷P (x) ↔ ∀y(R(x , y) → P(y)))

∀x (P
✷Q (x) ↔ ∀y(R(x , y) → Q(y)))

∀x (P
✷(P∧Q)(x) ↔ ∀y(R(x , y) → PP∧Q (y)))

∀x (PP∧Q (x) ↔ P(x) ∧ Q(x))

10

Translation to classical logic

Example

The following are equivalent:

(2) ¬F := ✷(P ∧ Q) ∧ ¬(✷P ∧ ✷Q)) is unsatisfiable

(3) ∃xP¬F (x) ∧ Rename(¬F) is unsatisfiable

Prenex normal form

∃x P
✷(P∧Q)∧¬(✷P∧✷Q))(x)

∀x (P
✷(P∧Q)∧¬(✷P∧✷Q)(x) ↔ P

✷(P∧Q)(x) ∧ P
¬(✷P∧✷Q)(x))

∀x (P
¬(✷P∧✷Q)(x) ↔ ¬P

✷P∧✷Q (x))

∀x (P
✷P∧✷Q (x) ↔ P

✷P (x) ∧ P
✷Q (x))

∀x∀y (P
✷P (x) → (R(x , y) → P(y)))

∀x∃y (R(x , y) → P(y)) → P
✷P (x))

∀x∀y (P
✷Q (x) → (R(x , y) → Q(y)))

∀x∃y (R(x , y) → Q(y)) → P
✷Q (x))

∀x∀y (P
✷(P∧Q)(x) → (R(x , y) → PP∧Q (y)))

∀x∃y (R(x , y) → PP∧Q (y)) → P
✷(P∧Q)(x)

∀x (PP∧Q (x) ↔ P(x) ∧ Q(x))

11

Translation to classical logic

Example

The following are equivalent:

(2) ¬F := ✷(P ∧ Q) ∧ ¬(✷P ∧ ✷Q)) is unsatisfiable

(3) ∃xP¬F (x) ∧ Rename(¬F) is unsatisfiable

Skolemization

P
✷(P∧Q)∧¬(✷P∧✷Q))(c)

∀x (P
✷(P∧Q)∧¬(✷P∧✷Q)(x) ↔ P

✷(P∧Q)(x) ∧ P
¬(✷P∧✷Q)(x))

∀x (P
¬(✷P∧✷Q)(x) ↔ ¬P

✷P∧✷Q (x))

∀x (P
✷P∧✷Q (x) ↔ P

✷P (x) ∧ P
✷Q (x))

∀x∀y (P
✷P (x) → (R(x , y) → P(y)))

∀x (R(x , f1(x) → P(f1(x))) → P
✷P (x))

∀x∀y (P
✷Q (x) → (R(x , y) → Q(y)))

∀x (R(x , f2(x)) → Q(f2(x))) → P
✷Q (x))

∀x∀y (P
✷(P∧Q)(x) → (R(x , y) → PP∧Q (y)))

∀x (R(x , f3(x)) → PP∧Q (f3(x))) → P
✷(P∧Q)(x)

∀x (PP∧Q (x) ↔ P(x) ∧ Q(x))

CNF translation, Resolution Exploit polarity!!!

12

Another example

Task: Check if there exists a Kripke model such that F = ✸(Q → ✸Q) holds at some

state in this Kripke model.

PF (c)

∀x(PF (x)↔ ∃y(R(x , y) ∧ PQ→✸Q (y)))

∀x(PQ→✸Q(x)↔ (Q(x)→ P✸Q (x)))

∀x(P✸Q (x)↔ ∃y(R(x , y) ∧ Q(y)))

13

Another example

Task: Check if there exists a Kripke model such that F = ✸(Q → ✸Q) holds at some

state in this Kripke model.

PF , PQ→✸Q ,P✸Q : positive polarity!

PF (c)

∀x(PF (x)→∃y(R(x , y) ∧ PQ→✸Q (y)))

∀x((PQ→✸Q(x)→(Q(x)→ P✸Q (x)))

∀x(P✸Q (x)→∃y(R(x , y) ∧ Q(y)))

14

Another example

Task: Check if there exists a Kripke model such that F = ✸(Q → ✸Q) holds at some

state in this Kripke model.

Prenex, Skolemization

PF (c)

∀x(PF (x)→(R(x , f (x)) ∧ PQ→✸Q(f (x))))

∀x(PQ→✸Q(x)→(Q(x)→ P✸Q (x))

∀x(P✸Q→(R(x , g(x)) ∧ Q(g(x))))

15

Another example

Task: Check if there exists a Kripke model such that F = ✸(Q → ✸Q) holds at some

state in this Kripke model.

CNF

PF (c)

¬PF (x) ∨ R(x , f (x))

¬PF (x) ∨ PQ→✸Q(f (x)))

¬PQ→✸Q (x) ∨ ¬Q(x) ∨ P✸Q (x)

¬P✸Q (x) ∨ R(x , g(x))

¬P✸Q (x) ∨ Q(g(x))))

16

Resolution

Resolution for General Clauses

General binary resolution Res:

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

17

Resolution for General Clauses

For inferences with more than one premise, we assume that the variables in

the premises are (bijectively) renamed such that they become different to

any variable in the other premises.

We do not formalize this. Which names one uses for variables is otherwise

irrelevant.

18

Ordered resolution with selection

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B ¬B0 ∨ ¬B1 ∨ A

Let ≻ be a total and well-founded ordering on ground atoms. Then ≻ can be extended

to a total and well-founded ordering on ground literals and clauses

A literal L (possibly with variables) is called [strictly] maximal in a clause C if and

only if there exists a ground substitution σ such that for all L′ in C : Lσ � L′
σ

[Lσ ≻ L′
σ].

19

Resolution Calculus Res
≻
S

Let ≻ be an atom ordering and S a selection function.

C ∨ A ¬B ∨ D

(C ∨ D)σ
[ordered resolution with selection]

if σ = mgu(A,B) and

(i) Aσ strictly maximal wrt. Cσ;

(ii) nothing is selected in C by S ;

(iii) either ¬B is selected,

or else nothing is selected in ¬B ∨ D and ¬Bσ is maximal in Dσ.

20

Resolution Calculus Res
≻
S

C ∨ A ∨ B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A,B) and Aσ is maximal in Cσ and nothing is selected in C .

21

Soundness and Refutational Completeness

Theorem:

Let ≻ be an atom ordering and S a selection function such that

Res≻
S
(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N

22

Ordered resolution for modal logics

It has been proved that ordered resolution (possibly with selection) can be

used as a decision procedure for the propositional modal logic K and also

for many extensions of K .

Goal: Define ordering/selection function such that few inferences can take

place, and such that the size of terms/length of clauses cannot grow in the

resolvents.

23

Decidability of modal logics

24

Decidability of modal logics

• Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least f (size(F))

elements, where f is a concrete function.

Generate all models with 1, 2, 3, . . . , f (size(F)) elements.

25

Decidability of modal logics

• Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least f (size(F))

elements, where f is a concrete function.

Generate all models with 1, 2, 3, . . . , f (size(F)) elements.

• Alternative approaches:

– Show that terminating sound and complete tableau calculi exist

– Show that ordered resolution (+ additional refinements) terminates

on the type of first-order formulae which are generated starting

from a modal formula.

26

Decidability

Direct approach

Idea:

We show that if a formula A has n subformulae, then

⊢K A iff, A is valid in all frames having at most 2n elements.

or alternatively, that the following are equivalent:

(1) There exists a Kripke structure K = (S ,R, I) and s ∈ S such that

(K, s) |= A.

(2) There exists a Kripke structure K′ = (S′,R′, I ′) and s′ ∈ S′ s.t.:

• (K′, s′) |= A

• S′ consists of at most 2n states.

27

Decidability

Idea:

We show that if a formula A has n subformulae, then

⊢K A iff A is valid in all frames having at most 2n elements.

or alternatively, that the following are equivalent:

(1) There exists a Kripke structure K = (S ,R, I) and s ∈ S such that

(K, s) |= A.

(2) There exists a Kripke structure K′ = (S′,R′, I ′) and s′ ∈ S′ such

that:

• (K′, s′) |= A

• S′ consists of at most 2n states.

Goal: Construct the finite Kripke structure K′ starting from K.

28

Decidability

Filtrations

Fix a model K = (S ,R, I) and a set Γ ⊆ FmaΣ that is closed under

subformulae, i.e. B ∈ Γ implies Subformulae(B) ⊆ Γ.

For each s ∈ S , define

Γs = {B ∈ Γ | (K, s) |= B}

and put s ∼Γ t iff Γs = Γt ,

29

Decidability

Filtrations

Fix a model K = (S ,R, I) and a set Γ ⊆ FmaΣ that is closed under

subformulae, i.e. B ∈ Γ implies Subformulae(B) ⊆ Γ.

For each s ∈ S , define

Γs = {B ∈ Γ | (K, s) |= B}

and put s ∼Γ t iff Γs = Γt ,

Then s ∼Γ t iff for all B ∈ Γ, (K, s) |= B iff (K, t) |= B.

Fact: ∼Γ is an equivalence relation on S .

30

Decidability

Let [s] = {t | s ∼Γ t} be the ∼Γ-equivalence class of s.

Let SΓ := {[s] | s ∈ S} be the set of all such equivalence classes.

Lemma. If Γ is finite, then SΓ is finite and has at most 2n elements, where

n is the number of elements of Γ.

Proof. Let f : SΓ → P(Γ) be defined by f ([s])=Γs={B∈Γ | (K, s) |= B}.

Since [s] = [t] iff s ∼Γ t iff Γs = Γt , f is well-defined and one-to-one.

Hence SΓ has no more elements than there are subsets of Γ.

But if Γ has n elements, then it has 2n subsets, so SΓ has at most 2n

elements.

31

Decidability

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′), |S′| ≤ 2n.

Step 1: Determine S′:

S′ := SΓ, where Γ = Subformulae(S)

32

Decidability

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′), |S′| ≤ 2n.

Step 1: Determine S′:

S′ := SΓ, where Γ = Subformulae(S)

Step 2: Determine I ′:

Let Π′ = Π ∩ Γ the set of all atomic formulae occurring in Γ.

Define I ′ : Π′ × S′ → {0, 1} by I ′(P, [s]) = I (P, s)

Remark: I ′ well defined (if s ∼Γ t and P ∈ Γ then I (P, s) = I (P, t)).

33

Decidability

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′), |S′| ≤ 2n.

Step 1: Determine S′:

S′ := SΓ, where Γ = Subformulae(S)

Step 2: Determine I ′:

Let Π′ = Π ∩ Γ the set of all atomic formulae occurring in Γ.

Define I ′ : Π′ × S′ → {0, 1} by I ′(P, [s]) = I (P, s)

Remark: I ′ well defined (if s ∼Γ t and P ∈ Γ then I (P, s) = I (P, t)).

Step 3: Determine R′ ⊆ S′ × S′.

Define e.g. ([s], [t]) ∈ R′ iff ∃s′ ∈ [s], ∃t′ ∈ [t]: (s′, t′) ∈ R

34

Decidability

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′), |S′| ≤ 2n.

Step 1: S′ := SΓ, where Γ = Subformulae(S)

Step 2: I ′ : (Π ∩ Γ)× S′ → {0, 1} def. by I ′(P, [s]) = I (P, s)

Step 3: R′ def. e.g. by: ([s], [t]) ∈ R′ iff ∃s′ ∈ [s],∃t′ ∈ [t]: (s′, t′) ∈ R

Remark: R′ has the following properties:

(F1) if (s, t) ∈ R then ([s], [t]) ∈ R′

(F2) if ([s], [t]) ∈ R′ then for all B, if ✷B ∈ Γ and (K, s) |= ✷B, then (K, t) |= B.

Proof: (F2) Assume ([s], [t]) ∈ R′. Then (s′, t′) ∈ R for s′ ∈ [s], t′ ∈ [t].

Hence if (K, s) |= ✷B then (K, s′) |= ✷B, so (K, t′) |= B, i.e. (K, t) |= B.

35

Decidability

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′), |S′| ≤ 2n.

Step 1: S′ := SΓ, where Γ = Subformulae(S)

Step 2: I ′ = IΓ : (Π ∩ Γ)× S′ → {0, 1} def. by IΓ(P, [s]) = I (P, s)

Step 3: R′ = {([s], [t]) | ∃s′ ∼Γ s, ∃t′ ∼Γ ts.t. (s′, t′) ∈ R}

Remark: R′ has the following properties:

(F1) if (s, t) ∈ R then ([s], [t]) ∈ R′

(F2) if ([s], [t]) ∈ R′ then for all B, if ✷B ∈ Γ and (K, s) |= ✷B, then (K, t) |= B.

Any Kripke structure K′ = (SΓ,R
′, IΓ) in which R′ satisfies (Fl) and (F2) is called a

Γ-filtration of K.

36

Decidability

Examples of filtrations

• The smallest filtration.

([s], [t]) ∈ R′ iff ∃s′ ∼Γ s, ∃t′ ∼Γ t(s′, t′) ∈ R.

• The largest filtration.

([s], [t]) ∈ R iff for all B,✷B ∈ Γ, (K, s) |= ✷B implies (K, t) |= B.

• The transitive filtration.

([s], [t]) ∈ R′ iff for all B,✷B ∈ Γ, (K, s) |= ✷B implies (K, t) |= ✷B ∧ B.

When defining K′ we can choose also the second or third definition of R′.

37

Decidability

Filtration Lemma.

Let Γ be a set of modal formulae closed under subformulae.

Let K = (S ,R, I) be a Kripke structure and let K′ = (SΓ,R
′, IΓ) be a

Γ-filtration of K.

If B ∈ Γ, then for any s ∈ S ,

(K, s) |= B iff (K′, [s]) |= B

Proof. The case B = P ∈ Π ∩ Γ is given by the definition of I ′

The inductive case for the connectives {∧,∨,¬} is straightforward.

The inductive case for ✷ uses (Fl) and (F2).

Note that the closure of Γ under subformulae is needed in order to be able

to apply the induction hypothesis.

38

Decidability

Theorem. Let A be a formula with n subformulae.

Then ⊢K A iff A is valid in all frames having at most 2n elements.

Proof. Suppose 6⊢K A. Then there is a model K = (S ,R, I) and a state

s ∈ S at which A is false. Let Γ = Subformulae(A).

Then Γ is closed under subformulae, so we can construct Γ-filtrations

K′ = (SΓ,R
′, IΓ) as above. By the Filtration Lemma, A is false at [s] in

any such model, and hence not valid in the frame (SΓ,R
′).

We previously showed that the desired bound on the size of SΓ is 2n.

39

Decidability

A logic L characterized by a set F of frames∗ has the finite frame property

if it is determined by its finite frames, i.e.,

if 6⊢L A, then there is a finite frame F ∈ F s.t. F 6|= A

We showed that the smallest normal logic K has the finite frame property,

and a computable bound was given on the size of the invalidating frame for

a given non-theorem.

∗ We can choose F to be the class of all frames in which all theorems of L are valid.

40

Decidability

This implies that the property of K -theoremhood is decidable, i.e.

that there is an algorithm for determining, for each formula A, whether or

not ⊢K A:

If A has n subformulae, we simply check to see whether or not A is valid in

all frames of size at most 2n.

• Since a finite set has finitely many binary relations (2m
2
relations on

an m-element set), there are only finitely many frames of size at most

2n.

• Moreover, to determine whether A is valid on a finite frame F , we

need only look at models I : Π ∩ Subformulae(A) → {0, 1} on F .

But there are only finitely many such models on F . Thus the whole

checking procedure for validity of A in frames of size at most 2n can be

completed in a finite amount of time.

41

Other modal systems

System Description

T K + ✷A → A

D K + ✷A → ✸A

B T + ¬A → ✷¬✷A

S4 T + ✷A → ✷✷A

S5 T + ¬✷A → ✷¬✷A

S4.2 S4 + ⋄✷A → ✷✸A

S4.3 S4 + ✷(✷(A → B)) ∨ ✷(✷(B → A))

C K + A→B
✷(A→B)

instead of (G).

42

Other modal systems

We say that L (with characterizing class of frames F has the strong finite

frame property if there is a computable function g such that

if 6⊢L A, then there is a finite frame F ∈ F that

- invalidates A and

- has at most g(n) elements, where n is the number of subformulae of A.

In adapting the above decidability argument to L, in addition to deciding

whether or not a given finite frame F validates A, we also have to decide

whether or not F ∈ F .

If L is finitely axiomatisable, meaning that L = KSl ...Sn for some finite

number of schemata, then F is the class of all frames in which the axioms

schemata S1, . . . , Sn hold.

Then the property ”F ∈ F” is decidable: it suffices to determine whether

each Sj is valid in F .

43

Other modal systems

We say that L (with characterizing class of frames F has the strong finite

frame property if there is a computable function g such that

if 6⊢L A, then there is a finite frame F ∈ F that

- invalidates A and

- has at most g(n) elements, where n is the number of subformulae of A.

Theorem. Every finitely axiomatisable propositional modal logic with the

strong finite frame property is decidable.

44

Other modal systems

We say that L (with characterizing class of frames F has the strong finite

frame property if there is a computable function g such that

if 6⊢L A, then there is a finite frame F ∈ F that

- invalidates A and

- has at most g(n) elements, where n is the number of subformulae of A.

Theorem. Every finitely axiomatisable logic with the strong finite frame

property is decidable.

In fact it can be shown that any finitely axiomatisable logic with the finite

frame property is decidable.

45

Other modal systems

Remark: For many of the logics we have considered thus far, validity of Sj is equivalent

to some first-order property of R, which can be algorithmically decided for finite F .

Examples

Axiom Property of R

✷A→ A reflexive

A→ ✷✸A symmetric

✷A→ ✷✷A transitive

Consequence: The extension of K with each of the axioms above is decidable.

Proof It is sufficient to show that if Γ-filtrations are as defined in this lecture:

- for any reflexive frame its Γ-filtration is again reflexive

- for any symmetric frame its Γ-filtration is again symmetric

Transitivity is not always preserved by the minimal Γ-filtration of R (which was the

one we used when defining the finite model K′); instead we can use the transitive

filtration.

46

Decidability of modal logics

• Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least f (size(F))

elements, where f is a concrete function.

Generate all models with 1, 2, 3, . . . , f (size(F)) elements.

• Alternative approaches:

– Show that terminating sound and complete tableau calculi exist

– Show that ordered resolution (+ additional refinements) terminates

on the type of first-order formulae which are generated starting

from a modal formula.

47

Decidability of modal logics

• Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least f (size(F))

elements, where f is a concrete function.

Generate all models with 1, 2, 3, . . . , f (size(F)) elements.

• Alternative approaches:

– Show that terminating sound and complete tableau calculi exist

– Show that ordered resolution (+ additional refinements) terminates

on the type of first-order formulae which are generated starting

from a modal formula.

48

Translation for classical logic

K = (S ,R, I) Kripke model

valK(⊥)(s) = 0 for all s

valK(⊤)(s) = 1 for all s

valK(P)(s) = 1 ↔ I (P)(s) = 1 for all s

valK(¬F)(s) = 1 ↔ valK(F)(s) = 0 for all s

valK(F1 ∧ F2)(s) = 1 ↔ valK(F1)(s) ∧ valK(F1)(s) = 1 for all s

valK(F1 ∨ F2)(s) = 1 ↔ valK(F1)(s) ∨ valK(F1)(s) = 1 for all s

valK(✷F)(s) = 1 ↔ ∀s′(R(s, s′) → valK(F)(s′) = 1 for all s

valK(✸F)(s) = 1 ↔ ∃s′(R(s, s′) and valK(F)(s′) = 1 for all s

Translation:

P ∈ Π 7→ P/1 unary predicate

F formula 7→ PF /1 unary predicate

R acc.rel 7→ R/2 binary predicate

valK(P)(s) = 1 7→ P(s)

valK(P)(s) = 0 7→ ¬P(s)

∀s(P¬F (s) ↔ ¬PF (s))

∀s(PF1∧F2
(s) ↔ PF1

(s) ∧ PF2
(s))

∀s(PF1∨F2
(s) ↔ PF1

(s) ∨ PF2
(s))

∀s(P
✷F (s) ↔ ∀s′(R(s, s′) → PF (s′)))

∀s(P
✸F (s) ↔ ∃s′(R(s, s′) ∧ PF (s′)))

49

Translation for classical logic

K = (S ,R, I) Kripke model

valK(⊥)(s) = 0 for all s

valK(⊤)(s) = 1 for all s

valK(P)(s) = 1 ↔ I (P)(s) = 1 for all s

valK(¬F)(s) = 1 ↔ valK(F)(s) = 0 for all s

valK(F1 ∧ F2)(s) = 1 ↔ valK(F1)(s) ∧ valK(F1)(s) = 1 for all s

valK(F1 ∨ F2)(s) = 1 ↔ valK(F1)(s) ∨ valK(F1)(s) = 1 for all s

valK(✷F)(s) = 1 ↔ ∀s′(R(s, s′) → valK(F)(s′) = 1 for all s

valK(✸F)(s) = 1 ↔ ∃s′(R(s, s′) and valK(F)(s′) = 1 for all s

Translation: Given F modal formula:

P ∈ Π 7→ P/1 unary predicate

F′ subformula of F 7→ PF /1 unary predicate

R acc.rel 7→ R/2 binary predicate

valK(P)(s) = 1 7→ P(s)

valK(P)(s) = 0 7→ ¬P(s)

∀s(P
¬F′

(s) ↔ ¬P
F′

(s))

∀s(PF1∧F2
(s) ↔ PF1

(s) ∧ PF2
(s))

∀s(PF1∨F2
(s) ↔ PF1

(s) ∨ PF2
(s))

∀s(P
✷F′

(s) ↔ ∀s′(R(s, s′) → P
F′

(s′)))

∀s(P
✸F′

(s) ↔ ∃s′(R(s, s′) ∧ P
F′

(s′)))

where the index formulae range over all subfromulae of F .

50

Translation to classical logic

Translation: Given F modal formula:

P ∈ Π 7→ P/1 unary predicate

F′ subformula of F 7→ P
F′

/1 unary predicate

R acc.rel 7→ R/2 binary predicate

valK(P)(s) = 1 7→ P(s)

valK(P)(s) = 0 7→ ¬P(s)

∀s(P
¬F′

(s) ↔ ¬P
F′

(s))

∀s(PF1∧F2
(s) ↔ PF1

(s) ∧ PF2
(s))

∀s(PF1∨F2
(s) ↔ PF1

(s) ∨ PF2
(s))

∀s(P
✷F′

(s) ↔ ∀s′(R(s, s′) → P
F′

(s′)))

∀s(P
✸F′

(s) ↔ ∃s′(R(s, s′) ∧ P
F′

(s′)))

where the index formulae range over all subformulae of F .

︸ ︷︷ ︸

Rename(F)

Theorem.

F is K -satisfiable iff ∃xPF (x) ∧ Rename(F) is satisfiable in first-order logic.

51

We now analyze the FO formula obtained

∃x ¬PF (x)

∀s (P¬F′ (s) ↔ ¬PF′ (s))

∀s (PF1∧F2
(s) ↔ PF1

(s) ∧ PF2
(s))

∀s (PF1∨F2
(s) ↔ PF1

(s) ∨ PF2
(s))

∀s (P
✷F′ (s) ↔ ∀s′(R(s, s′)→ PF′ (s

′)))

∀s (P
✸F′ (s) ↔ ∃s′(R(s, s′) ∧ PF′ (s

′)))

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

52

We now analyze the FO formula obtained

∃x ¬PF (x)

∀s (P¬F′ (s) ← ¬PF′ (s))
∀s (P¬F′ (s) → ¬PF′ (s))

∀s (PF1∧F2
(s) ← PF1

(s) ∧ PF2
(s))

∀s (PF1∧F2
(s) → PF1

(s) ∧ PF2
(s))

∀s (PF1∨F2
(s) ← PF1

(s) ∨ PF2
(s))

∀s (PF1∨F2
(s) → PF1

(s) ∨ PF2
(s))

∀s (P
✷F′ (s) ← ∀s′(R(s, s′)→ PF′ (s

′)))
∀s (P

✷F′ (s) → ∀s′(R(s, s′)→ PF′ (s
′)))

∀s (P
✸F′ (s) ← ∃s′(R(s, s′) ∧ PF′ (s

′)))
∀s (P

✸F′ (s) → ∃s′(R(s, s′) ∧ PF′ (s
′)))

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

53

We now analyze the FO formula obtained

∃x ¬PF (x)

∀s (P¬F′ (s) ∨ PF′ (s))
∀s (¬P¬F′ (s) ∨ ¬PF′ (s))

∀s (PF1∧F2
(s) ∨ ¬(PF1

(s) ∧ PF2
(s)))

∀s (¬PF1∧F2
(s) ∨ PF1

(s) ∧ PF2
(s))

∀s (PF1∨F2
(s) ∨ ¬(PF1

(s) ∨ PF2
(s)))

∀s (¬PF1∨F2
(s) ∨ PF1

(s) ∨ PF2
(s))

∀s (P
✷F′ (s) ∨ ¬(∀s

′(R(s, s′)→ PF′ (s
′))))

∀s (¬P
✷F′ (s) ∨ ∀s

′(R(s, s′)→ PF′ (s
′)))

∀s (P
✸F′ (s) ∨ ¬(∃s

′(R(s, s′) ∧ PF′ (s
′))))

∀s (¬P
✸F′ (s) ∨ ∃s

′(R(s, s′) ∧ PF′ (s
′)))

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

54

We now analyze the FO formula obtained

∃x ¬PF (x)

∀s (P¬F′ (s) ∨ PF′ (s))
∀s (¬P¬F′ (s) ∨ ¬PF′ (s))

∀s (PF1∧F2
(s) ∨ ¬(PF1

(s) ∧ PF2
(s)))

∀s (¬PF1∧F2
(s) ∨ PF1

(s) ∧ PF2
(s))

∀s (PF1∨F2
(s) ∨ ¬(PF1

(s) ∨ PF2
(s)))

∀s (¬PF1∨F2
(s) ∨ PF1

(s) ∨ PF2
(s))

∀s (P
✷F′ (s) ∨ ∃s

′¬(R(s, s′)→ PF′ (s
′)))

∀s (¬P
✷F′ (s) ∨ ∀s

′(R(s, s′)→ PF′ (s
′)))

∀s (P
✸F′ (s) ∨ ∀s

′¬(R(s, s′) ∧ PF′ (s
′)))

∀s (¬P
✸F′ (s) ∨ ∃s

′(R(s, s′) ∧ PF′ (s
′)))

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

55

We now analyze the FO formula obtained

∃x ¬PF (x)

∀s (P¬F′ (s) ∨ PF′ (s))
∀s (¬P¬F′ (s) ∨ ¬PF′ (s))

∀s (PF1∧F2
(s) ∨ ¬(PF1

(s) ∧ PF2
(s)))

∀s (¬PF1∧F2
(s) ∨ (PF1

(s) ∧ PF2
(s)))

∀s (PF1∨F2
(s) ∨ ¬(PF1

(s) ∨ PF2
(s)))

∀s (¬PF1∨F2
(s) ∨ PF1

(s) ∨ PF2
(s))

∀s∃s′ (P
✷F′ (s) ∨ ¬(R(s, s′)→ PF′ (s

′)))
∀s∀s′ (¬P

✷F′ (s) ∨ (R(s, s′)→ PF′ (s
′)))

∀s∀s′ (P
✸F′ (s) ∨ ¬(R(s, s′) ∧ PF′ (s

′)))
∀s∃s′ (¬P

✸F′ (s) ∨ (R(s, s′) ∧ PF′ (s
′)))

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

56

Skolemization

¬PF (c)

∀s (P¬F′ (s) ∨ PF′ (s))
∀s (¬P¬F′ (s) ∨ ¬PF′ (s))

∀s (PF1∧F2
(s) ∨ ¬(PF1

(s) ∧ PF2
(s)))

∀s (¬PF1∧F2
(s) ∨ (PF1

(s) ∧ PF2
(s)))

∀s (PF1∨F2
(s) ∨ ¬(PF1

(s) ∨ PF2
(s)))

∀s (¬PF1∨F2
(s) ∨ PF1

(s) ∨ PF2
(s))

∀s (P
✷F′ (s) ∨ ¬(R(s, fi (s))→ PF′ (fi (s))))

∀s∀s′ (¬P
✷F′ (s) ∨ (R(s, s′)→ PF′ (s

′)))

∀s∀s′ (P
✸F′ (s) ∨ ¬(R(s, s′) ∧ PF′ (s

′)))
∀s (¬P

✸F′ (s) ∨ (R(s, fj (s)) ∧ PF′ (fj (s))))

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

57

Translation to CNF

¬PF (c)

∀s (P¬F′ (s) ∨ PF′ (s))
∀s (¬P¬F′ (s) ∨ ¬PF′ (s))

∀s (PF1∧F2
(s) ∨ ¬PF1

(s) ∨ ¬PF2
(s))

∀s (¬PF1∧F2
(s) ∨ (PF1

(s) ∧ PF2
(s)))

∀s (PF1∨F2
(s) ∨ (¬PF1

(s) ∧ ¬PF2
(s)))

∀s (¬PF1∨F2
(s) ∨ PF1

(s) ∨ PF2
(s))

∀s (P
✷F′ (s) ∨ (R(s, fi (s)) ∧ ¬PF′ (fi (s))))

∀s∀s′ (¬P
✷F′ (s) ∨ ¬R(s, s′) ∨ PF′ (s

′))

∀s∀s′ (P
✸F′ (s) ∨ ¬R(s, s′) ∨ ¬PF′ (s

′)))
∀s (¬P

✸F′ (s) ∨ (R(s, fj (s)) ∧ PF′ (fj (s))))

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

58

Translation to CNF

¬PF (c)

∀s (P¬F′ (s) ∨ PF′ (s))
∀s (¬P¬F′ (s) ∨ ¬PF′ (s))

∀s (PF1∧F2
(s) ∨ ¬PF1

(s) ∨ ¬PF2
(s))

∀s (¬PF1∧F2
(s) ∨ PF1

(s))
∀s (¬PF1∧F2

(s) ∨ PF2
(s))

∀s (PF1∨F2
(s) ∨ ¬PF1

(s))
∀s (PF1∨F2

(s) ∨ ¬PF2
(s)))

∀s (¬PF1∨F2
(s) ∨ PF1

(s) ∨ PF2
(s))

∀s (P
✷F′ (s) ∨ R(s, fi (s))

∀s (P
✷F′ (s) ∨ ¬PF′ (fi (s))))

∀s∀s′ (¬P
✷F′ (s) ∨ ¬R(s, s′) ∨ PF′ (s

′))

∀s∀s′ (P
✸F′ (s) ∨ ¬R(s, s′) ∨ ¬PF′ (s

′)))
∀s (¬P

✸F′ (s) ∨ R(s, fj (s))

∀s (¬P
✸F′ (s) ∨ PF′ (fj (s))))

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

59

Ordered resolution as a decision procedure

Let Σ = (Ω,Π), where Ω = {c1/0, . . . , ck/0, f1/1, . . . , fl/1}, and

Π = {p1/1, . . . , pn/1,R/2}. Let X be a set of variables.

We define an ordering and a selection function as follows.

60

Ordered resolution as a decision procedure

Ordering:

Given:

• ≻ ordering which is total and well founded on ground terms and for all

terms u, t, if t occurs as a subterm in u then u ≻ t.

• ≻P total order on the predicate symbols s.t. R ≻P pi for every i .

An ordering on literals (also denoted by ≻) is defined as follows.

Let c be the complexity measure defined for every ground literal L by

cL = (maxL, predL, pL) where:

• maxL is the maximal term occurring in L;

• predL is the predicate symbol occurring in L; and

• pL is 1 if L is negative and 0 if L is positive.

61

Ordered resolution as a decision procedure

Ordering: (ctd.)

Let cL = (maxL, predL, pL) where:

• maxL is the maximal term occurring in L;

• predL is the predicate symbol occurring in L; and

• pL is 1 if L is negative and 0 if L is positive.

The complexity measure c induces a well-founded ordering ≻c on ground

literals, defined by L ≻c L′ if and only if cL > cL′ in the lexicographic

combination of ≻, ≻P , and > (where 1 > 0).

Let ≻ be a total and well-founded extension of ≻c .

Example: Assume R ≻P P1 ≻P P2 and d ≻ c

L: ¬P1(f (f (d))) ≻ P1(f (f (d))) ≻ ¬P2(f (f (d))) ≻ R(c, f (d))≻¬R(c, d)≻R(c, c) because

cL: (f (f (d)),P1, 1)>(f (f (d)),P1, 0)>(f (f (d)),P2, 1)>(f (d),R, 0)> (d ,R, 1)>(c,R, 0)

62

Ordered resolution as a decision procedure

Selection function:

Let S be the selection function that selects all occurrences of negative

literals starting with the predicate R.

63

Ordered resolution as a decision procedure

Notation: If t, t1, . . . , tn are terms, we use the following notations.

• Any clause clause of form (¬)pi1 (t) ∨ · · · ∨ (¬)pik (t) is of type P(t)

• Any clause clause of form C1 ∨ · · · ∨ Cn, where Ci is of type P(ti) is

of type P(t1, . . . , tn).

64

Ordered resolution as a decision procedure

Notation: If t, t1, . . . , tn are terms, we use the following notations.

• Any clause clause of form (¬)pi1 (t) ∨ · · · ∨ (¬)pik (t) is of type P(t)

• Any clause clause of form C1 ∨ · · · ∨ Cn, where Ci is of type P(ti) is

of type P(t1, . . . , tn).

Consider the following sets of clauses:

G all clauses of type P(c) where c is a constant.

V all clauses of type P(x) for some variable x .

V(f) clauses of type P(x , f (x)), for some variable x (where f /1 ∈ Ω).

R+ all clauses of the form P(x) ∨ R(x , f (x)) for some variable x .

R− all clauses of the form P(x) ∨ P(y) ∨ ¬R(x , y) for some variables x , y .

65

Translation to CNF

¬PF (c) P(c)

∀s (P¬F′ (s) ∨ PF′ (s)) V(s)
∀s (¬P¬F′ (s) ∨ ¬PF′ (s)) V(s)

∀s (PF1∧F2
(s) ∨ ¬PF1

(s) ∨ ¬PF2
(s)) V(s)

∀s (¬PF1∧F2
(s) ∨ PF1

(s)) V(s)
∀s (¬PF1∧F2

(s) ∨ PF2
(s)) V(s)

∀s (PF1∨F2
(s) ∨ ¬PF1

(s)) V(s)
∀s (PF1∨F2

(s) ∨ ¬PF2
(s))) V(s)

∀s (¬PF1∨F2
(s) ∨ PF1

(s) ∨ PF2
(s)) V(s)

∀s (P
✷F′ (s) ∨ R(s, fi (s)) R+

∀s (P
✷F′ (s) ∨ ¬PF′ (fi (s)))) V(fi)

∀s∀s′ (¬P
✷F′ (s) ∨ ¬R(s, s′) ∨ PF′ (s

′)) R−

∀s∀s′ (P
✸F′ (s) ∨ ¬R(s, s′) ∨ ¬PF′ (s

′))) R−

∀s (¬P
✸F′ (s) ∨ R(s, fj (s)) R+

∀s (¬P
✸F′ (s) ∨ PF′ (fj (s)))) V(fi)

index formulae range over all subformulae of F .
︸ ︷︷ ︸

Rename(F)

66

Ordered resolution as a decision procedure

To be proved:

(1) The set G ∪ V ∪
⋃

f V(f) ∪R+ ∪R− is finite

(2) G ∪ V is closed under Res≻
S
.

(3) G ∪ V ∪
⋃

f V(f) is closed under Res≻
S
.

(4) G ∪ V ∪
⋃

f V(f) ∪R+ is closed under Res≻
S
.

(5) G ∪ V ∪
⋃

f V(f) ∪R+ ∪R− is closed under Res≻
S
.

67

Ordered resolution as a decision procedure

We assume that no literals occur several times (eager factoring)

Theorem The set G ∪ V ∪
⋃

f V(f) ∪R+ ∪R− is finite

Proof: (1) P(c) contains at most 3|Subformulae(F)| clauses, so if there are m

constants then G contains at most m3|Subformulae(F)| clauses.

Similarly it can be checked that V contains (up to remaming of variables)

3|Subformulae(F) clauses.

All literals of clauses in P(x , f (x)) have argument x or f (x). We have

therefore 2|Subformulae(F)| literals, hence 32|Subformulae(F)| clauses.

The number of clauses in R+ is the same as the number of clauses in P(x).

The number of clauses in R− is |P(x)|2.

68

Ordered resolution as a decision procedure

Theorem

(2) G ∪ V is closed under Res≻
S
.

(3) G ∪ V ∪
⋃

f V(f) is closed under Res≻
S
.

(4) G ∪ V ∪
⋃

f V(f) ∪R+ is closed under Res≻
S
.

(5) G ∪ V ∪
⋃

f V(f) ∪R+ ∪R− is closed under Res≻
S
.

Proof.

(2) The resolvent of two clauses in G is in G; the resolvent of two clauses in V is in

V; The resolvent of a clause in G and one in V is in G.

(3) No inference is possible between clauses in G and clauses in V(f). The resolvent

of a clause in V and one in V(f) is in V or in V(f).

The resolvent of two clauses in V(f) is in V or V(f). No inference is possible between

clauses in V(f) and V(g) if f 6= g (atoms in maximal literals not unifiable)

69

Ordered resolution as a decision procedure

Theorem

(2) G ∪ V is closed under Res≻
S
.

(3) G ∪ V ∪
⋃

f V(f) is closed under Res≻
S
.

(4) G ∪ V ∪
⋃

f V(f) ∪R+ is closed under Res≻
S
.

(5) G ∪ V ∪
⋃

f V(f) ∪R+ ∪R− is closed under Res≻
S
.

Proof.

(4) No inferences are possible between two clauses in R+ (in every clause the maximal

literal is a positive R-literal and nothing is selected). No inferences are possible

between a clause in R+ and a clause in G ∪ V ∪
⋃

f V(f).

(5) The resolvent of a clause in R+ and one in R− is a clause in V ∪
⋃

f V(f). No

inferences are possible between a clause inR+ ∪R− and a clause in G ∪ V ∪
⋃

f V(f).

70

Ordered resolution as a decision procedure

Theorem. Res≻
S

checks satisfiability of sets of clauses in G ∪ V ∪
⋃

f V(f) ∪

R+ ∪R− in exponential time.

Proof (Idea)

Let N be a set of clauses which is a subset of G ∪ V ∪
⋃

f V(f) ∪R+ ∪R−.

All clauses which can be derived from N using Res≻
S

are in G ∪ V ∪
⋃

f V(f) ∪R+ ∪R−.

The size of this set is exponential in the size of |Subformulae(F)|. This

means that at most an exponential number of inferences are needed to

generate all clauses in this set.

71

Until now

Modal logic

Syntax

Semantics

Kripke models

global and local entailment; deduction theorem

Correspondence theory

First-order definability

Theorem proving in modal logics

Decidability

Now: Description logics

72

Description Logics

subfield of Knowledge Representation which is a subfield of AI.

• Description– comes from concept description (formal expression which

determines a set of individuals with common properties)

• Logics – comes from the fact that the semantics of concept description

can be defined using logic (a fragment of first-order logic)

73

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

74

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Formal description in first-order logic

Unary predicates: Teaching-Assistant, Undergrad, Professor

∀x Teaching-Assistant(x) → ¬Undergrad(x) ∨ Professor(x)

75

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Formal description in first-order logic

Unary predicates: Teaching-Assistant, Undergrad, Professor

∀x Teaching-Assistant(x) → ¬Undergrad(x) ∨ Professor(x)

More concise description

Concept names: Teaching-Assistant, Undergrad, Professor

Teaching-Assistant ⊑ ¬Undergrad ⊔ Professor

76

Why description logics?

If predicate logic is directly used without some kind of restriction, then

• the structure of the knowledge/information is lost;

• the expressive power is too high for having good computational

properties and efficient procedures.

77

Example

Teaching-Assistant ⊑ ¬Undergrad ⊔ Professor

∀x Teaching-Assistant(x) → ¬Undergrad(x) ∨ Professor(x)

A necessary condition in order to be a teaching assistant is to be either not

undergraduated or a professor.

78

Example

Teaching-Assistant ⊑ ¬Undergrad ⊔ Professor

∀x Teaching-Assistant(x) → ¬Undergrad(x) ∨ Professor(x)

A necessary condition in order to be a teaching assistant is to be either not

undergraduated or a professor.

When the left-hand side is an atomic concept, the “⊑” symbol introduces a primitive

definition – giving only necessary conditions.

Teaching-Assistant
.
= ¬Undergrad ⊔ Professor

∀x Teaching-Assistant(x) ↔ ¬Undergrad(x) ∨ Professor(x)

The “
.
=” symbol introduces a real definition – with necessary and sufficient conditions.

In general, we can have complex concept expressions at the left-hand side as well.

79

The description logic ALC: Syntax

Concepts: • primitive concepts NC

• complex concepts (built using constructors ¬,⊓,⊔, ∃R, ∀R,⊤,⊥)

Roles: NR

80

The description logic ALC: Syntax

Concepts: • primitive concepts NC

• complex concepts (built using constructors ¬,⊓,⊔, ∃R, ∀R,⊤,⊥)

Roles: NR

Concepts:

C := ⊤

|⊥

|A primitive concept

|C1 ⊓ C2

|C2 ⊔ C2

|¬C

|∀R.C

|∃R.C

81

The description logic ALC: Semantics

Interpretations: I = (∆I , ·I) • C ∈ NC 7→ CI ⊆ ∆I

• R ∈ NR 7→ RI ⊆ ∆I ×∆I

We can also interpret “individuals” (as elements of ∆I).

82

The description logic ALC

Syntax Semantics Name

A AI ⊆ ∆I primitive concept

R RI ⊆ ∆I ×∆I primitive role

⊤ ∆I top

⊥ ∅ bottom

¬C ∆I \ CI complement

C ⊓ D CI ∩ DI conjunction

C ⊔ D CI ∪ DI disjunction

∀R.C {x | ∀y RI(x , y) → y ∈ CI} universal quantification

(universal role restriction)

∃R.C {x | ∃y RI(x , y) ∧ y ∈ CI} existential quantification

(existential role restriction)

83

The description logic ALC: Semantics

• Conjunction is interpreted as intersection of sets of individuals.

• Disjunction is interpreted as union of sets of individuals.

• Negation is interpreted as complement of sets of individuals.

For every interpretation I:

• (¬(C ⊓ D))I = (¬C ⊔ ¬D)I

• (¬(C ⊔ D))I = (¬C ⊓ ¬D)I

• (¬(∀R.C))I = (∃R.¬C)I

• (¬(∃R.C))I = (∀R.¬C)I

84

