
Non-classical logics

Lecture 12: Modal logics (Part 5)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1



Until now

Modal logic

Syntax

Semantics

Kripke models

global and local entailment; deduction theorem

Correspondence theory

First-order definability

Theorem proving in modal logics

Decidability

Now: Description logics

2



Description Logics

subfield of Knowledge Representation which is a subfield of AI.

• Description– comes from concept description (formal expression which

determines a set of individuals with common properties)

• Logics – comes from the fact that the semantics of concept description

can be defined using logic (a fragment of first-order logic)

3



The description logic ALC: Syntax

Concepts: • primitive concepts NC

• complex concepts (built using constructors ¬,⊓,⊔, ∃R, ∀R,⊤,⊥)

Roles: NR

4



The description logic ALC: Syntax

Concepts: • primitive concepts NC

• complex concepts (built using constructors ¬,⊓,⊔, ∃R, ∀R,⊤,⊥)

Roles: NR

Concepts:

C := ⊤

|⊥

|A primitive concept

|C1 ⊓ C2

|C2 ⊔ C2

|¬C

|∀R.C

|∃R.C

5



The description logic ALC: Semantics

Interpretations: I = (∆I , ·I) • C ∈ NC 7→ CI ⊆ ∆I

• R ∈ NR 7→ RI ⊆ ∆I ×∆I

We can also interpret “individuals” (as elements of ∆I).

6



The description logic ALC

Syntax Semantics Name

A AI ⊆ ∆I primitive concept

R RI ⊆ ∆I ×∆I primitive role

⊤ ∆I top

⊥ ∅ bottom

¬C ∆I \ CI complement

C ⊓ D CI ∩ DI conjunction

C ⊔ D CI ∪ DI disjunction

∀R.C {x | ∀y RI(x , y) → y ∈ CI} universal quantification

(universal role restriction)

∃R.C {x | ∃y RI(x , y) ∧ y ∈ CI} existential quantification

(existential role restriction)

7



The description logic ALC: Semantics

• Conjunction is interpreted as intersection of sets of individuals.

• Disjunction is interpreted as union of sets of individuals.

• Negation is interpreted as complement of sets of individuals.

For every interpretation I:

• (¬(C ⊓ D))I = (¬C ⊔ ¬D)I

• (¬(C ⊔ D))I = (¬C ⊓ ¬D)I

• (¬(∀R.C))I = (∃R.¬C)I

• (¬(∃R.C))I = (∀R.¬C)I

8



Knowledge Bases

• Terminological Axioms (TBox): C ⊑ D , C
.
= D

– Student
.
= Person ⊓ ∃NAME.String ⊓

∃ADDRESS.String ⊓

∃ENROLLED.Course
– Student ⊑ ∃ENROLLED.Course

– ∃TEACHES.Course ⊑ ¬Undergrad ⊔ Professor

• Membership statements (ABox): C(a),R(a, b)

– Student(john)

– ENROLLED(john, cs415)

– (Student ⊔ Professor)(paul)

9



Semantics

We consider the descriptive semantics, based on classical logics.

• An interpretation I satisfies the statement C ⊑ D if CI ⊆ DI .

• An interpretation I satisfies the statement C
.
= D if CI = DI .

An interpretation I is a model for a TBox T if I satisfies all the statements

in T .

10



ABox

A set A of assertions (membership or relationship statements)

is called an ABox.

If I = (DI , ·I) is an interpretation,

• C(a) is satisfied by I if aI ∈ CI .

• R(a, b) is satisfied by I if (aI , bI) ∈ RI .

An interpretation I is said to be a model of the ABox A if every assertion

of A is satisfied by I.

The ABox A is said to be satisfiable if it admits a model.

11



Semantics

An interpretation I = (DI , ·I) is said to be a model of a knowledge base

(T ,A) if every axiom of the knowledge base is satisfied by I.

A knowledge base (T ,A) is said to be satisfiable if it admits a model.

12



Logical Implication

(T ,A) |= ϕ if every model of (T ,A) is a model of ϕ

Example 1:

• TBox: T

– Student
.
= Person ⊓ ∃NAME.String ⊓

∃ADDRESS.String ⊓

∃ENROLLED.Course
– Student ⊑ ∃ENROLLED.Course

– ∃TEACHES.Course ⊑ ¬Undergrad ⊔ Professor

• ABox: A = ∅

(T ,A)
?

|= Student ⊑ Person

13



Logical Implication

(T ,A) |= ϕ if every model of (T ,A) is a model of ϕ

Example 2:

TBox: T

∃TEACHES.Course ⊑ ¬Undergrad ⊔ Professor

ABox: A

TEACHES(john, cs415), Course(cs415),

Undergrad(john)

(T ,A) |= Professor(john)

14



Logical Implication

TBox: T

∃TEACHES.Course ⊑

¬Undergrad ⊔ Professor

ABox: A

TEACHES(john, cs415), Course(cs415),

Undergrad(john)

(T ,A)
?

|= Professor(john)

(T ,A)
?

|= ¬Professor(john)

15



Reasoning Problems

• Concept Satisfiability

(T ,A) 6|= C ≡ ⊥ Example: Student ⊓ ¬Person

the problem of checking whether C is satisfiable w.r.t. Σ, i.e. whether there exists a

model I of Σ such that CI 6= ∅

• Subsumption

(T ,A) |= C ⊑ D Example: Student ⊑ Person

the problem of checking whether C is subsumed by D w.r.t. Σ, i.e. whether CI ⊆ DI

in every model I of (T ,A)

• Satisfiability

(T ,A) 6|= false

the problem of checking whether (T ,A) is satisfiable, i.e. whether it has a model

• Instance Checking

(T ,A) |= C(a) Example: Professor(john)

the problem of checking whether the assertion C(a) is satisfied in every model of (T ,A)

16



Reduction to concept satisfiability

• Concept Satisfiability

(T ,A) 6|= C ≡ ⊥ ↔

T ∪A ∪ {C(x)} has a model

• Subsumption

(T ,A) |= C ⊑ D ↔

(T ,A) |= C ⊓ ¬D ≡ ⊥ ↔

(T ,A) ∪ {(C ⊓ ¬D)(x)} has no models

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

AAAAA
AAAAA
AAAAA
AAAAA
AAAAA

C

D

¬D

• Instance Checking

(T ,A) |= C(a) ↔

(T ,A) ∪ {¬C(a)} has no models

17



Other reasoning problems

Classification

• Given a concept C and a TBox T , for all concepts D of T determine

whether D subsumes C , or D is subsumed by C .

• Intuitively, this amounts to finding the “right place” for C in the

taxonomy implicitly present in T .

• Classification is the task of inserting new concepts in a taxonomy. It is

sorting in partial orders.

18



Goal

• Prove decidability of description logic

• Give efficient decision procedures

19



Goal

• Prove decidability of description logic

• Give efficient decision procedures

ALC: Express it as a multi-modal logic

20



ALC as a multi-modal logic

We translate every concept C of ALC into a formula FC in a many-modal

logic which contains modal operators

✷R ,✸R for every role R

21



ALC as a multi-modal logic

We translate every concept C of ALC into a formula in a many-modal logic

which contains modal operators

✷R ,✸R for every role R

In the translation we replace every primitive concept symbol with a

propositional variable.

C 7→ FC := C if C is a primitive concept

22



ALC as a multi-modal logic

We translate every concept C of ALC into a formula in a many-modal logic

which contains modal operators

✷R ,✸R for every role R

In the translation we replace every primitive concept symbol with a

propositional variable.

C 7→ FC := C if C is a primitive concept

C1 ⊓ C2 7→ FC1⊓C2
:= FC1

∧ FC2

C1 ⊔ C2 7→ FC1⊔C2
:= FC1

∨ FC2

¬C 7→ F¬C := ¬FC

∀R.C 7→ F∀R.C := ✷RFC

∃R.C 7→ F∃R.C := ✸RFC

23



ALC as a multi-modal logic

An interpretation I = (∆I , ·I) where

CI ⊆ ∆I

RI ⊆ ∆I ×∆I

clearly corresponds to a (multi-modal) Kripke structure

K = (S , {ρR}R∈NR
, I ) where

• S = ∆I

• ρR = RI

• I : Π× S → {0, 1} (where Π = NC ) is defined by:

I (C , x) = 1 iff x ∈ CI

24



ALC as a multi-modal logic

Lemma. For every ALC concept C and every interpretation I we have:

CI = {d ∈ ∆I | (K, d) |= FC}.

Proof: Structural induction

If C ∈ NC the result follows from the way the valuation of K is defined.

For the induction step we here only consider the case C = ∀R.C1

Induction hypothesis (IH): property holds for C1.

{d ∈ ∆I | (K, d) |= FC} = {d ∈ ∆I | (K, d) |= F∀R.C1
} =

{d ∈ ∆I | (K, d) |= ✷RFC1
} =

{d ∈ ∆I | for all e with R(d , e) we have (K, e) |= FC1
}

IH
=

{d ∈ ∆I | for all e with R(d , e) we have e ∈ CI
1 } = (∀R.C1)I = CI

25



ALC as a multi-modal logic

Lemma There exists an interpretation I and a d ∈ ∆I such that d ∈ CI

iff FC is satisfiable in the multi-modal logic.

Proof Immediate consequence of the previous lemma.

26



ALC as a multi-modal logic

Lemma C1 ⊑ C2 iff FC1⊓¬C2
is unsatisfiable in the multi-modal logic.

Proof. C1 ⊑ C2 iff for all I and all d ∈ ∆I we have: d 6∈ (C1 ⊓ ¬C2)
I

From the first lemma, this happens iff (K, d) 6|= FC1
∧ ¬FC2

for all I and

all d ∈ ∆I .

This is the same as saying that FC1⊓¬C2
is unsatisfiable.

27



Reasoning procedures

• Terminating, efficient and complete algorithms for deciding satisfiability

– and all the other reasoning services – are available.

• Algorithms are based on tableaux-calculi techniques or resolution.

28



Description logics

Two directions of research:

• Extensions in order to increase expressivity

• Restrict language in order to identify “tractable” description logics

29



Description logics

Two directions of research:

• Extensions in order to increase expressivity

SHIQ

• Restrict language in order to identify “tractable” description logics

EL

30



Some extensions of ALC

SHIQ:

Syntax:

NC primitive concept symbols

N0
R set of atomic role symbols

N0
t ⊆ N0

R
set of transitive role symbols

The set NR of role symbols contains all atomic roles and for every role

R ∈ N0
R also its inverse role R−.

31



Some extensions of ALC

SHIQ:

Role hierarchy:

A role hierarchy is a finite set H of formulae of the form

R1 ⊑ R2

for R1,R2 ∈ NR .

All following definitions assume that a role hierarchy is given (and fixed)

32



SHIQ concept descriptions: Syntax

C := A if A is a primitive concept

|⊤

|¬C

|C1 ⊓ C2

|C2 ⊔ C2

|∃R.C

|∀R.C

| ≤ nR.C where n ∈ N,R simple role

| ≥ nR.C where n ∈ N,R simple role

R is a simple role if R 6∈ N0
t and R does not contain any transitive sub-role.

33



SHIQ concept descriptions: Syntax

C := A if A is a primitive concept

|⊤

|¬C

|C1 ⊓ C2

|C2 ⊔ C2

|∃R.C

|∀R.C

| ≤ nR.C where n ∈ N,R simple role

| ≥ nR.C where n ∈ N,R simple role

R is a simple role if R 6∈ N0
t and R does not contain any transitive sub-role.

Abbreviations: ≥ nR :=≥ nR.⊤ ≤ nR :=≥ nR.⊤

34



Cardinality Restriction

Role quantification cannot express that a woman has at least 3

(or at most 5) children.

Cardinality restrictions can express conditions on the number of fillers:

• Busy−Woman
.
= Woman ⊓ (≥ 3CHILD)

• Woman−with−at−most5children
.
= Woman ⊓ (≤ 5CHILD)

(≥ 1R) ⇐⇒ (∃R)

35



Interpretations for SHIQ

Interpretations: I = (DI , ·I) • C ∈ NC 7→ CI ⊆ DI

• R ∈ NR 7→ RI ⊆ DI × DI

such that:

• for all R ∈ N0
t , R

I is a transitive relation

• for all R ∈ N0
R , (R

−1)I is the inverse of RI

• for all R1 ⊑ R2 ∈ H we have RI
1 ⊆ RI

2

36



SHIQ constructors: Semantics

Constructor Syntax Semantics

concept name A AI ⊆ DI

top ⊤ DI

bottom ⊥ ∅

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

negation ¬C DI \ CI

universal ∀R.C {x | ∀y(RI(x , y) → y ∈ CI)}

existential ∃R.C {x | ∃y(RI(x , y) ∧ y ∈ CI}

cardinality ≥ nR {x | #{y | RI(x , y)} ≥ n}

≤ nR {x | #{y | RI(x , y)} ≤ n}

qual. cardinality ≥ nR.C {x | #{y | RI(x , y) ∧ y ∈ CI} ≥ n}

≤ nR.C {x | #{y | RI(x , y) ∧ y ∈ CI} ≤ n}

37



Decidability

Theorem. The satisfiability and subsumption problem for SHIQ are

decidable

Proof: cf. Horrocks et al.

38



Undecidability

Theorem. If in the definition of SHIQ we do not impose the restriction

about simple roles, the satisfiability problem becomes undecidable

(even if we only allow for cardinality restrictions of the form ≤ nR.⊤ and

≥ nR.⊤).

Proof: cf. Horrocks et al.

39



Reasoning procedures

• For decidable description logic it is important to have efficient

reasoning procedures which are sound, complete and termination.

• Literature: tableau calculi

Goals:

• Completeness is important for the usability of description logics in real

applications.

• Efficiency: Algorithms need to be efficient for both average and real

knowledge bases, even if the problem in the corresponding logic is in

PSPACE or EXPTIME.

40



A tractable DL

Tractable description logic: EL, EL+ and extensions [Baader’03–]

used e.g. in medical ontologies (SNOMED)

41



EL: Generalities

Concepts: • primitive concepts NC

• complex concepts (built using concept constructors ⊓, ∃r)

Roles: NR

Interpretations: I = (DI , ·I) • C ∈ NC 7→ CI ⊆ DI

• r ∈ NR 7→ rI ⊆ DI × DI

Constructor name Syntax Semantics

conjunction C1 ⊓ C2 CI
1 ∩ CI

2

existential restriction ∃r .C {x | ∃y((x , y) ∈ rI and y ∈ CI)}

42



EL: Generalities

Concepts: • primitive concepts NC

• complex concepts (built using concept constructors ⊓, ∃r)

Roles: NR

Interpretations: I = (DI , ·I) • C ∈ NC 7→ CI ⊆ DI

• r ∈ NR 7→ rI ⊆ DI × DI

Problem:

Given: TBox (set T of concept inclusions Ci ⊑ Di )

concepts C , D

Task: test whether C ⊑T D, i.e. whether for all I = (DI , ·I)

if CI
i ⊆ DI

i ∀Ci ⊑ Di ∈ T then CI ⊆ DI

43



EL : Example

Primitive concepts: protein, process, substance

Roles: catalyzes, produces

Terminology: enzyme = protein ⊓ ∃catalyzes.reaction

(TBox) catalyzer = ∃catalyzes.process

reaction = process ⊓ ∃produces.substance

Query: enzyme ⊑ catalyzer?

44



EL
+: generalities

Concepts: • primitive concepts NC

• complex concepts (built using concept constructors ⊓, ∃r)

Roles: NR

Interpretations: I = (DI , ·I) • C ∈ NC 7→ CI ⊆ DI

• r ∈ NR 7→ rI ⊆ DI × DI

Problem:

Given: CBox C = (T ,RI ), where T set of concept inclusions Ci ⊑ Di ;
RI set of role inclusions r ◦ s ⊑ t or r ⊑ t

concepts C , D

Task: test whether C ⊑C D, i.e. whether for all I = (DI , ·I)

if CI
i ⊆ DI

i ∀Ci ⊑ Di ∈ T and
rI◦sI⊆tI ∀r ◦ s ⊑ t ∈ RI then CI ⊆ DI

45



EL
+: Example

Primitive concepts: protein, process, substance

Roles: catalyzes, produces, helps-producing

Terminology: enzyme = protein ⊓ ∃catalyzes.reaction

(TBox) reaction = process ⊓ ∃produces.substance

Role inclusions: catalyzes ◦ produces ⊑ helps-producing

Query: enzyme ⊑ protein ⊓ ∃helps-producing.substance ?

46



Complexity

T -Box subsumption for EL decidable in PTIME

C -Box subsumption for EL+ decidable in PTIME

Methods:

Reductions to checking satisfiability of clauses in propositional logic.

47



EL: Hierarchical reasoning

Primitive concepts: protein, process, substance

Roles: catalyzes, produces

Terminology: enzyme = protein ⊓ ∃catalyzes.reaction

(TBox) catalyzer = ∃catalyzes.process

reaction = process ⊓ ∃produces.substance

Query: enzyme ⊑ catalyzer?

SLat ∪ Mon |=enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance)

⇒ enzyme ⊑ catalyzer

Mon : ∀C ,D(C ⊑ D → catalyze-some(C) ⊑ catalyze-some(D))

∀C ,D(C ⊑ D → produces-some(C) ⊑ produces-some(D))

48



EL: Hierarchical reasoning

SLat ∪ Mon ∧

enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance) ∧

enzyme 6⊑ catalyzer
︸ ︷︷ ︸

G

|= ⊥

G ∧ Mon

enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance) ∧

enzyme 6⊑ catalyzer

∀C ,D(C ⊑ D → catalyze-some(C) ⊑ catalyze-some(D))

∀C ,D(C ⊑ D → produces-some(C) ⊑ produces-some(D))

49



EL: Hierarchical reasoning

SLat ∪ Mon ∧

enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance) ∧

enzyme 6≤ catalyzer
︸ ︷︷ ︸

G

|= ⊥

Solution 1: Use DPLL(SLat + UIF )

G ∧ Mon[G ]

enzyme = protein ⊓ catalyzes-some(reaction)

catalyzer = catalyzes-some(process)

reaction = process ⊓ produces-some(substance)

enzyme 6≤ catalyzer

reaction ⊲ process → catalyzes-some(reaction) ⊲ catalyzes-some(process), ⊲∈ {≤,≥, =}

50



EL: Hierarchical reasoning

SLat ∪ Mon ∧

enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance) ∧

enzyme 6≤ catalyzer
︸ ︷︷ ︸

G

|= ⊥

Solution 2: Hierarchical reasoning

Base theory (SLat) Extension

enzyme = protein ⊓ c1 c1 = catalyzes-some(reaction)

catalyzer = c2 c2 = catalyzes-some(process)

reaction = process ⊓ c3 c3 = produces-some(substance)

enzyme 6≤ catalyzer

reaction ⊲ process → c1 ⊲ c2 ⊲∈ {≤,≥, =}

Test satisfiability using any prover for SLat (e.g. reduction to SAT)

51



EL: Hierarchical reasoning

Idea in the translation to SAT:

Base theory 7→ SAT (FOL)

enzyme = protein ⊓ c1 ∀x enzyme(x) ↔ protein(x) ∧ c1(x)

catalyzer = c2 ∀x catalyzer(x) ↔ c2(x)

reaction = process ⊓ c3 ∀x reaction(x) ↔ process(x) ∧ c3(x)

enzyme 6⊑ catalyzer enzyme(c) ∧ ¬catalyzer(c)

reaction ⊑ process → c1 ⊑ c2 (∀x(reaction(x) → process(x))) → (∀x(c1(x) → c2(x)))

. . .

⇓

(reaction(d) → process(d)) → (∀x(c1(x) → c2(x)))

⇓

Clause normal form: no function symbols of arity ≥ 1; Horn except for last class of

clauses (a small amount of case distinction 7→ no increase in compl.)

By Herbrand’s theorem the set of clauses is satisfiable iff its set of instances is.

Size of instantiated set: polynomial. Satisfiability of Horn clauses: in PTIME.

52



Dynamic Logic

53



Motivation

A Simple Programming Language

Logical basis

Typed first-order predicate logic

(Types, variables, terms, formulas, . . . )

Assumption for examples

The signature contains a type Nat and appropriate symbols:

• function symbols 0, s, +, ∗

(terms s(0), s(s(0)), . . . written as 1,2, . . .)

• predicate symbols
.
=,≤,<,≥,>

NOTE: This is a “convenient assumption” not a definition

54



Motivation

Programs

• Assignments: X := t X : variable, t:term

• Test: if B then a else b fi

B: quant.-free formula, a, b: programs

• Loop: while B do a od

B: quantifier-free formula, a: program

• Composition: a; b a, b programs

WHILE is computationally complete

55



Motivation

WHILE: Examples

Compute the square of X and store it in Y

Y := X ∗ X

If X is positive then add one else subtract one

if X > 0 then X := X + 1 else X := X − 1 fi

56



Motivation

WHILE: Example - Square of a Number

Compute the square of X (the complicated way)

Making use of: n2 = 1 + 3 + 5 + · · ·+ (2 ∗ n − 1)

I := 0;

Y := 0;

while I < X do

Y :=Y +2*I+1;

I := I+1

od

57



Motivation

WHILE: Operational Semantics

Given

A (fixed) first-order structure A interpreting the function and predicate

symbols in the signature

State

s = (A, β) where β is a variable assignment (i.e. function interpreting the

variables )

58



Motivation

State update

s[e/X ] = (A,β[X 7→ e])

with β[X 7→ e](Y ) =







e if Y = X

β(Y ) otherwise

59



Motivation

Define the relation R(α) as follows (we write s[α]s′ instead of sR(α)s′):

• s[X := t]s′ iff s′ = s[s(t)/X ]

• s[if B then α else β fi]s′ iff s |= B and s[α]s′ or s |= ¬B and s[β]s′.

• s[while B do α od]s′ iff there are states s = s0, . . . , st = s′ s.t.

si |= B for 0 ≤ i ≤ t − 1 and st |= ¬B and s0[α]s1, s1[α]s2, . . . , st−1[α]st

• s[α;β]s′ iff there is a state s′′ such that s[α]s′′ and s′′[β]s′

If α is a deterministic program, [α] is a partial function

60



Motivation

A Different Approach to WHILE

Programs

• X := t (atomic program)

• α;β (sequential composition)

• α ∪ β (non-deterministic choice)

• α∗ (non-deterministic iteration, n times for some n ≥ 0)

• F? (test)

remains in initial state if F is true,

does not terminate if F is false

61



Motivation

Restriction to deterministic programs

Non-deterministic program constructors may only be used in

if B then α else β fi ≡ (B?;α) ∪ ((¬B)?; β)

while B do α od ≡ (B?;α)∗; (¬B)?

62



Motivation

Expressing Program Properties

Logic for expressing properties

Full first-order logic (usually with arithmetic)

Partial correctness assertion (Hoare formula)

{P}α{Q}

Meaning:

If α is started in a state satisfying P and terminates, then its final state

satisfies Q

Formally:

{P}α{Q} is valid iff for all states s, s′, if s |= P and s[α]s′, then s′ |= Q

63



Examples

{X > 0}X := X + 1{X > 1}

{even(X )}X := X + 2{even(X )}

where even(X ) ≡ ∃Z(X = 2 ∗ Z)

{true}αsquare{Y = X ∗ X}

64



Examples

{X > 0}X := X + 1{X > 1}

{even(X )}X := X + 2{even(X )}

where even(X ) ≡ ∃Z(X = 2 ∗ Z)

{true}αsquare{Y = X ∗ X}

Verification: Use annotation of programs with “invariants”

65



Dynamic Logic

The idea of dynamic logic

• Annotated programs use formulas within programs

• Dynamic Logic uses programs within formulas

• Instead of “assert F” after program segment α, write: [α]F

7→ multi-modal logic

66



Dynamic Logic

Dynamic logic is a language for specifying programming languages.

The original work on dynamic logic is by Vaughan Pratt (1976) and by

David Harel (1979).

67



Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a multi-modal logic with structured

modalities.

For each program α, there is:

– a box-modality [α] and

– a diamond modality 〈α〉.

PDL was developed from first-order dynamic logic by Fischer-Ladner (1979)

and has become popular recently.

Here we consider regular PDL.

68



Propositional Dynamic Logic

Syntax

Prog set of programs

Prog0 ⊆ Prog: set of atomic programs

Π: set of propositional variables

The set of formulae FmaPDL
Prog,Π of (regular) propositional dynamic logic and

the set of programs P0 are defined by simultaneous induction as follows:

69



PDL: Syntax
Formulae:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| p p ∈ Π0 (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| [α]F if α ∈ Prog

| 〈α〉 F if α ∈ Prog

Programs:

α, β, γ ::= α0 α0 ∈ Prog0 (atomic program)

| F? F formula (test)

| α; β (sequential composition)

| α ∪ β (non-deterministic choice)

| α∗ (non-deterministic repetition)

70



Semantics

A PDL structure K = (S ,R(), I ) is a multimodal Kripke structure with an

accessibility relation for each atomic program. That is it consists of:

• a non-empty set S of states

• an interpretation R() : Prog0 → P(S × S) of atomic programs that

assigns a transition relation R(α) ⊆ S × S to each atomic program α

• an interpretation I : Π× S → {0, 1}

71



PDL: Semantics

The interpretation of PDL relative to a PDL structure K = (S ,R(), I )

is defined by extending R() to Prog and extensing I to FmaPDL
Prop0

by the

following simultaneously inductive definition:

72



Interpretation of formulae/programs

valK(p, s) = I (p, s)

valK(¬F , s) = ¬BoolvalK(F , s)

valK(F ∧ G , s) = valK(F , s) ∧Bool valK(G , s)

valK(F ∨ G , s) = valK(F , s) ∨Bool valK(G , s)

valK([α]F , s) = 1 iff for all t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

valK(〈α〉 F , s) = 1 iff for some t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

R([F?]) = {(s, s) | valK(F , s) = 1}

(F? has the same meaning as: if F then skip else do not terminate

R(α ∪ β) = R(α) ∪ R(β)

R(α; β) = {(s, t) | there exists u ∈ S s.t.(s, u) ∈ R(α) and (u, t) ∈ R(β)}

R(α∗) = {(s, t) | there exists n ≥ 0 and there exist u0, . . . , un ∈ S with

s = u0, y = un, (u0, u1), . . . , (un−1, un) ∈ R(α)}

73



Interpretation of formulae/programs

• (K, s) satisfies F (notation (K, s) |= F ) iff valK(F , s) = 1.

• F is valid in K (notation K |= F ) iff (K, s) |= F for all s ∈ S .

• F is valid (notation |= F ) iff K |= F for all PDL-structures K.

74



Axiom system for PDL

Comp : [α;β]A ↔ [α][β]A,

Alt : [α ∪ β]A ↔ [α]A ∧ [β]A,

Mix : [α∗]A → A ∧ [α][α∗]A,

Ind : [α∗](A → [α]A) → (A → [α∗]A),

Test : [A?]B ↔ (A → B).

We will show that PDL is determined by PDL structures, and has the finite

model property.

75



Soundness and Completeness of PDL

Proof similar to the proof in the case of the modal system K (with small

differences)

Theorem. If the formula F is provable in the inference system for PDL then

F is valid in all PDL structures.

Proof: The axioms are valid in every PDL structure. Easy computation

(examples on the blackboard).

76


