### **Non-classical logics**

Lecture 12: Modal logics (Part 5)

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

# Until now

**Modal logic** 

Syntax

**Semantics** 

Kripke models

global and local entailment; deduction theorem

**Correspondence theory** 

**First-order definability** 

Theorem proving in modal logics

Decidability

**Now:** Description logics

subfield of Knowledge Representation which is a subfield of AI.

- **Description** comes from concept description (formal expression which determines a set of individuals with common properties)
- Logics comes from the fact that the semantics of concept description can be defined using logic (a fragment of first-order logic)

# The description logic ALC: Syntax

### **Concepts:** • primitive concepts $N_C$

• complex concepts (built using constructors  $\neg$ ,  $\Box$ ,  $\sqcup$ ,  $\exists R$ ,  $\forall R$ ,  $\top$ ,  $\bot$ )

**Roles:**  $N_R$ 

## The description logic ALC: Syntax

| Concepts: | • primitive concepts $N_C$ |
|-----------|----------------------------|
|-----------|----------------------------|

• complex concepts (built using constructors  $\neg$ ,  $\Box$ ,  $\sqcup$ ,  $\exists R$ ,  $\forall R$ ,  $\top$ ,  $\bot$ )

**Roles:**  $N_R$ 

#### **Concepts:**

 $C := \top$   $|\bot$   $|A \qquad \text{primitive concept}$   $|C_1 \sqcap C_2$   $|C_2 \sqcup C_2$   $|\neg C$   $|\forall R.C$   $|\exists R.C$ 

### The description logic ALC: Semantics

Interpretations:  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ •  $C \in N_C \mapsto C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ •  $R \in N_R \mapsto R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ 

We can also interpret "individuals" (as elements of  $\Delta^{\mathcal{I}}$ ).

# The description logic ALC

| Syntax        | Semantics                                                                                            | Name                           |
|---------------|------------------------------------------------------------------------------------------------------|--------------------------------|
| A             | $\mathcal{A}^\mathcal{I} \subseteq \Delta^\mathcal{I}$                                               | primitive concept              |
| R             | $\mathcal{R}^\mathcal{I} \subseteq \Delta^\mathcal{I} 	imes \Delta^\mathcal{I}$                      | primitive role                 |
| Т             | $\Delta^{\mathcal{I}}$                                                                               | top                            |
|               | Ø                                                                                                    | bottom                         |
| $\neg C$      | $\Delta^\mathcal{I} \setminus \mathcal{C}^\mathcal{I}$                                               | complement                     |
| $C \sqcap D$  | $\mathcal{C}^\mathcal{I} \cap \mathcal{D}^\mathcal{I}$                                               | conjunction                    |
| $C \sqcup D$  | $\mathcal{C}^\mathcal{I} \cup \mathcal{D}^\mathcal{I}$                                               | disjunction                    |
| $\forall R.C$ | $\{x \mid \forall y \; \; R^{\mathcal{I}}(x, y) \rightarrow y \in C^{\mathcal{I}}\}$                 | universal quantification       |
|               |                                                                                                      | (universal role restriction)   |
| $\exists R.C$ | $\{x \mid \exists y \; \; \mathcal{R}^{\mathcal{I}}(x,y) \; \land y \in \mathcal{C}^{\mathcal{I}}\}$ | existential quantification     |
|               |                                                                                                      | (existential role restriction) |
|               |                                                                                                      |                                |

### The description logic ALC: Semantics

- **Conjunction** is interpreted as *intersection* of sets of individuals.
- **Disjunction** is interpreted as *union* of sets of individuals.
- **Negation** is interpreted as *complement* of sets of individuals.

For every interpretation  $\mathcal{I}$ :

- $(\neg (C \sqcap D))^{\mathcal{I}} = (\neg C \sqcup \neg D)^{\mathcal{I}}$
- $(\neg (C \sqcup D))^{\mathcal{I}} = (\neg C \sqcap \neg D)^{\mathcal{I}}$
- $(\neg(\forall R.C))^{\mathcal{I}} = (\exists R.\neg C)^{\mathcal{I}}$
- $(\neg(\exists R.C))^{\mathcal{I}} = (\forall R.\neg C)^{\mathcal{I}}$

# **Knowledge Bases**

- Terminological Axioms (TBox):  $C \sqsubseteq D$ ,  $C \doteq D$ 
  - Student = Person □ ∃NAME.String □
     ∃ADDRESS.String □
     ∃ENROLLED.Course
     Student □ ∃ENROLLED.Course
  - $\exists \texttt{TEACHES}.\texttt{Course} \sqsubseteq \neg \texttt{Undergrad} \sqcup \texttt{Professor}$
- Membership statements (ABox): C(a), R(a, b)
  - Student(john)
  - ENROLLED(john, cs415)
  - (Student ⊔ Professor)(paul)

# **Semantics**

We consider the descriptive semantics, based on classical logics.

- An interpretation  $\mathcal{I}$  satisfies the statement  $C \sqsubseteq D$  if  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ .
- An interpretation  $\mathcal{I}$  satisfies the statement  $C \doteq D$  if  $C^{\mathcal{I}} = D^{\mathcal{I}}$ .

An interpretation  $\mathcal{I}$  is a *model* for a TBox  $\mathcal{T}$  if  $\mathcal{I}$  satisfies all the statements in  $\mathcal{T}$ .

A set A of assertions (membership or relationship statements) is called an ABox.

If  $\mathcal{I} = (D^{\mathcal{I}}, \cdot_{\mathcal{I}})$  is an interpretation,

- C(a) is satisfied by  $\mathcal{I}$  if  $a^{\mathcal{I}} \in C^{\mathcal{I}}$ .
- R(a, b) is satisfied by  $\mathcal{I}$  if  $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$ .

An interpretation  $\mathcal{I}$  is said to be a *model* of the ABox  $\mathcal{A}$  if every assertion of  $\mathcal{A}$  is satisfied by  $\mathcal{I}$ .

The ABox  $\mathcal{A}$  is said to be *satisfiable* if it admits a model.

## **Semantics**

An interpretation  $\mathcal{I} = (D^{\mathcal{I}}, \cdot_{\mathcal{I}})$  is said to be a *model* of a knowledge base  $(\mathcal{T}, \mathcal{A})$  if every axiom of the knowledge base is satisfied by  $\mathcal{I}$ .

A knowledge base  $(\mathcal{T}, \mathcal{A})$  is said to be *satisfiable* if it admits a model.

 $(\mathcal{T}, \mathcal{A}) \models \varphi$  if every model of  $(\mathcal{T}, \mathcal{A})$  is a model of  $\varphi$ 

Example 1:

- TBox:  $\mathcal{T}$ 
  - Student  $\doteq$  Person  $\sqcap \exists$ NAME.String  $\sqcap$

 $\exists \text{ADDRESS.String} \sqcap$ 

∃ENROLLED.Course

- Student  $\sqsubseteq \exists ENROLLED.Course$
- $\exists \texttt{TEACHES}.\texttt{Course} \sqsubseteq \neg \texttt{Undergrad} \sqcup \texttt{Professor}$

• ABox:  $\mathcal{A} = \emptyset$ 

 $(\mathcal{T},\mathcal{A}) \stackrel{?}{\models} \mathtt{Student} \sqsubseteq \mathtt{Person}$ 

 $(\mathcal{T}, \mathcal{A}) \models \varphi$  if every model of  $(\mathcal{T}, \mathcal{A})$  is a model of  $\varphi$ 

### Example 2:

```
TBox: \mathcal{T}

\exists \texttt{TEACHES}.\texttt{Course} \sqsubseteq \neg \texttt{Undergrad} \sqcup \texttt{Professor}
```

```
ABox: A
TEACHES(john, cs415), Course(cs415),
Undergrad(john)
```

```
(\mathcal{T}, \mathcal{A}) \models \texttt{Professor(john)}
```

```
TBox: \mathcal{T}

\existsTEACHES.Course \sqsubseteq

\negUndergrad \sqcup Professor
```

```
ABox: A
TEACHES(john, cs415), Course(cs415),
Undergrad(john)
```

```
(\mathcal{T}, \mathcal{A}) \stackrel{?}{\models} \texttt{Professor(john)}
(\mathcal{T}, \mathcal{A}) \stackrel{?}{\models} \neg \texttt{Professor(john)}
```

## **Reasoning Problems**

### • Concept Satisfiability

 $(\mathcal{T}, \mathcal{A}) \not\models C \equiv \bot$  Example: Student  $\sqcap \neg$ Person

the problem of checking whether C is satisfiable w.r.t.  $\Sigma$ , i.e. whether there exists a model  $\mathcal{I}$  of  $\Sigma$  such that  $C^{\mathcal{I}} \neq \emptyset$ 

#### • Subsumption

 $(\mathcal{T}, \mathcal{A}) \models C \sqsubseteq D$  Example: Student  $\sqsubseteq$  Person

the problem of checking whether C is subsumed by D w.r.t.  $\Sigma$ , i.e. whether  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  in every model  $\mathcal{I}$  of  $(\mathcal{T}, \mathcal{A})$ 

• Satisfiability

 $(\mathcal{T}, \mathcal{A}) \not\models \mathsf{false}$ 

the problem of checking whether  $(\mathcal{T}, \mathcal{A})$  is satisfiable, i.e. whether it has a model

#### • Instance Checking

 $(\mathcal{T}, \mathcal{A}) \models C(a)$  Example: Professor(john)

the problem of checking whether the assertion C(a) is satisfied in every model of  $(\mathcal{T}, \mathcal{A})$ 

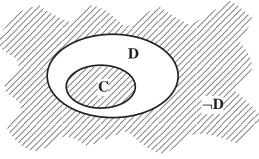
### **Reduction to concept satisfiability**

• Concept Satisfiability

 $(\mathcal{T}, \mathcal{A}) \not\models \mathcal{C} \equiv \bot \quad \leftrightarrow$  $\mathcal{T} \cup \mathcal{A} \cup \{\mathcal{C}(x)\}$  has a model

• Subsumption

$$(\mathcal{T}, \mathcal{A}) \models C \sqsubseteq D \quad \leftrightarrow$$
  
 $(\mathcal{T}, \mathcal{A}) \models C \sqcap \neg D \equiv \bot \quad \leftrightarrow$   
 $(\mathcal{T}, \mathcal{A}) \cup \{(C \sqcap \neg D)(x)\}$  has no models



• Instance Checking  $(\mathcal{T}, \mathcal{A}) \models C(a) \iff$ 

 $(\mathcal{T},\mathcal{A})\cup\{
eg C(a)\}$  has no models

## **Other reasoning problems**

#### Classification

- Given a concept C and a TBox T, for all concepts D of T determine whether D subsumes C, or D is subsumed by C.
- Intuitively, this amounts to finding the "right place" for C in the taxonomy implicitly present in T.
- *Classification* is the task of inserting new concepts in a taxonomy. It is *sorting* in partial orders.

# Goal

- Prove decidability of description logic
- Give efficient decision procedures

### Goal

- Prove decidability of description logic
- Give efficient decision procedures

 $\mathcal{ALC}$ : Express it as a multi-modal logic

We translate every concept C of ALC into a formula  $F_C$  in a many-modal logic which contains modal operators

 $\Box_R, \diamondsuit_R$  for every role *R* 

We translate every concept C of ALC into a formula in a many-modal logic which contains modal operators

 $\Box_R, \diamondsuit_R$  for every role *R* 

In the translation we replace every primitive concept symbol with a propositional variable.

$$C \mapsto F_C := C$$
 if C is a primitive concept

We translate every concept C of ALC into a formula in a many-modal logic which contains modal operators

 $\Box_R$ ,  $\diamondsuit_R$  for every role *R* 

In the translation we replace every primitive concept symbol with a propositional variable.

| С                | $\mapsto$ | $F_C := C$                                    | if $C$ is a primitive concept |
|------------------|-----------|-----------------------------------------------|-------------------------------|
| $C_1 \sqcap C_2$ | $\mapsto$ | $F_{C_1 \sqcap C_2} := F_{C_1} \land F_{C_2}$ |                               |
| $C_1 \sqcup C_2$ | $\mapsto$ | $F_{C_1\sqcup C_2}:=F_{C_1}\vee F_{C_2}$      |                               |
| $\neg C$         | $\mapsto$ | $F_{\neg C} := \neg F_C$                      |                               |
| $\forall R.C$    | $\mapsto$ | $F_{\forall R.C} := \Box_R F_C$               |                               |
| $\exists R.C$    | $\mapsto$ | $F_{\exists R.C} := \Diamond_R F_C$           |                               |

An interpretation  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$  where

$$\mathcal{C}^\mathcal{I} \subseteq \Delta^\mathcal{I}$$
 $\mathcal{R}^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$ 

clearly corresponds to a (multi-modal) Kripke structure  $\mathcal{K} = (S, \{\rho_R\}_{R \in N_R}, I)$  where

- $S = \Delta^{\mathcal{I}}$
- $\rho_R = R^{\mathcal{I}}$
- $I : \Pi \times S \rightarrow \{0, 1\}$  (where  $\Pi = N_C$ ) is defined by: I(C, x) = 1 iff  $x \in C^{\mathcal{I}}$

**Lemma.** For every ALC concept C and every interpretation  $\mathcal{I}$  we have:

$$C^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid (\mathcal{K}, d) \models F_C \}.$$

**Proof**: Structural induction

If  $C \in N_C$  the result follows from the way the valuation of  $\mathcal{K}$  is defined.

For the induction step we here only consider the case  $C = \forall R.C_1$ Induction hypothesis (IH): property holds for  $C_1$ .

$$\{ d \in \Delta^{\mathcal{I}} \mid (\mathcal{K}, d) \models F_C \} = \{ d \in \Delta^{\mathcal{I}} \mid (\mathcal{K}, d) \models F_{\forall R.C_1} \} = \{ d \in \Delta^{\mathcal{I}} \mid (\mathcal{K}, d) \models \Box_R F_{C_1} \} = \{ d \in \Delta^{\mathcal{I}} \mid \text{ for all } e \text{ with } R(d, e) \text{ we have } (\mathcal{K}, e) \models F_{C_1} \} \stackrel{IH}{=} \{ d \in \Delta^{\mathcal{I}} \mid \text{ for all } e \text{ with } R(d, e) \text{ we have } e \in C_1^{\mathcal{I}} \} = (\forall R.C_1)^{\mathcal{I}} = C^{\mathcal{I}}$$

Lemma There exists an interpretation  $\mathcal{I}$  and a  $d \in \Delta^{\mathcal{I}}$  such that  $d \in C^{\mathcal{I}}$  iff  $F_C$  is satisfiable in the multi-modal logic.

Proof Immediate consequence of the previous lemma.

Lemma  $C_1 \sqsubseteq C_2$  iff  $F_{C_1 \sqcap \neg C_2}$  is unsatisfiable in the multi-modal logic.

Proof.  $C_1 \sqsubseteq C_2$  iff for all  $\mathcal{I}$  and all  $d \in \Delta^{\mathcal{I}}$  we have:  $d \notin (C_1 \sqcap \neg C_2)^{\mathcal{I}}$ From the first lemma, this happens iff  $(\mathcal{K}, d) \not\models F_{C_1} \land \neg F_{C_2}$  for all  $\mathcal{I}$  and all  $d \in \Delta^{\mathcal{I}}$ .

This is the same as saying that  $F_{C_1 \square \neg C_2}$  is unsatisfiable.

### **Reasoning procedures**

- Terminating, efficient and complete algorithms for deciding satisfiability

   and all the other reasoning services are available.
- Algorithms are based on tableaux-calculi techniques or resolution.

# **Description logics**

Two directions of research:

- Extensions in order to increase expressivity
- Restrict language in order to identify "tractable" description logics

# **Description logics**

Two directions of research:

- Extensions in order to increase expressivity SHIQ
- Restrict language in order to identify "tractable" description logics
  - $\mathcal{EL}$

# Some extensions of ALC

### SHIQ:

### Syntax:

 $N_C$  primitive concept symbols

 $N_R^0$  set of atomic role symbols

 $N_t^0 \subseteq N_R^0$  set of transitive role symbols

The set  $N_R$  of role symbols contains all atomic roles and for every role  $R \in N_R^0$  also its inverse role  $R^-$ .

# Some extensions of ALC

SHIQ:

**Role hierarchy:** 

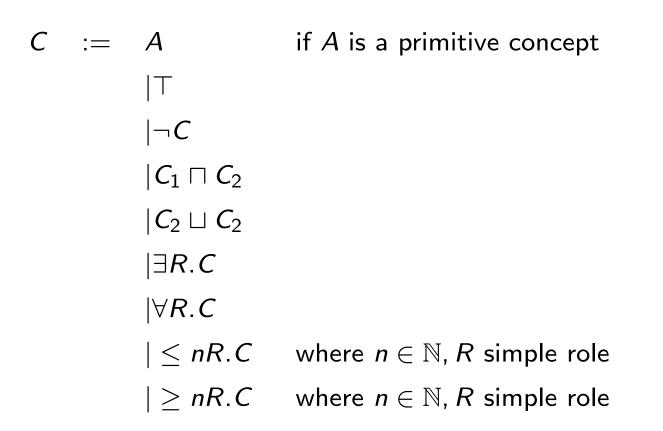
A role hierarchy is a finite set  ${\mathcal H}$  of formulae of the form

 $R_1 \sqsubseteq R_2$ 

for  $R_1$ ,  $R_2 \in N_R$ .

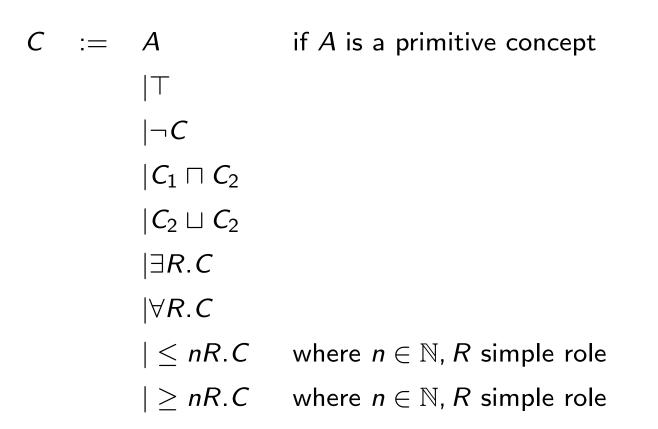
All following definitions assume that a role hierarchy is given (and fixed)

## SHIQ concept descriptions: Syntax



R is a simple role if  $R \not\in N_t^0$  and R does not contain any transitive sub-role.

### SHIQ concept descriptions: Syntax



*R* is a simple role if  $R \notin N_t^0$  and *R* does not contain any transitive sub-role. **Abbreviations:**  $\geq nR := \geq nR.\top \leq nR := \geq nR.\top$  Role quantification cannot express that a woman has *at least 3* (or *at most 5*) children.

Cardinality restrictions can express conditions on the number of fillers:

- Busy-Woman  $\doteq$  Woman  $\sqcap$  ( $\geq$  3CHILD)
- Woman-with-at-most5children  $\doteq$  Woman  $\sqcap$  ( $\leq$  5CHILD)

$$(\geq 1R) \iff (\exists R)$$

Interpretations: 
$$\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
•  $C \in N_C \mapsto C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ •  $R \in N_R \mapsto R^{\mathcal{I}} \subseteq D^{\mathcal{I}} \times D^{\mathcal{I}}$ 

such that:

- ullet for all  $R\in N^0_t$ ,  $R^{\mathcal{I}}$  is a transitive relation
- ullet for all  $R\in N^0_R$ ,  $(R^{-1})^{\mathcal{I}}$  is the inverse of  $R^{\mathcal{I}}$
- for all  $R_1 \sqsubseteq R_2 \in \mathcal{H}$  we have  $R_1^\mathcal{I} \subseteq R_2^\mathcal{I}$

| Constructor       | Syntax        | Semantics                                                                          |
|-------------------|---------------|------------------------------------------------------------------------------------|
| concept name      | A             | $A^{\mathcal{I}} \subseteq D^{\mathcal{I}}$                                        |
| top               | Т             | $D^{\mathcal{I}}$                                                                  |
| bottom            | $\perp$       | Ø                                                                                  |
| conjunction       | $C \sqcap D$  | $\mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}}$                         |
| disjunction       | $C \sqcup D$  | $\mathcal{C}^\mathcal{I} \cup \mathcal{D}^\mathcal{I}$                             |
| negation          | $\neg C$      | $D^\mathcal{I} \setminus C^\mathcal{I}$                                            |
| universal         | $\forall R.C$ | $\{x \mid \forall y (R^{\mathcal{I}}(x, y) \to y \in C^{\mathcal{I}})\}$           |
| existential       | $\exists R.C$ | $\{x \mid \exists y (R^{\mathcal{I}}(x, y) \land y \in C^{\mathcal{I}}\}$          |
| cardinality       | $\geq$ nR     | $\{x \mid \#\{y \mid R^{\mathcal{I}}(x, y)\} \geq n\}$                             |
|                   | $\leq nR$     | $\{x \mid \#\{y \mid R^{\mathcal{I}}(x, y)\} \leq n\}$                             |
| qual. cardinality | $\geq nR.C$   | $\{x \mid \#\{y \mid R^{\mathcal{I}}(x, y) \land y \in C^{\mathcal{I}}\} \geq n\}$ |
|                   | $\leq nR.C$   | $\{x \mid \#\{y \mid R^{\mathcal{I}}(x, y) \land y \in C^{\mathcal{I}}\} \leq n\}$ |

**Theorem.** The satisfiability and subsumption problem for SHIQ are decidable

**Proof:** cf. Horrocks et al.

**Theorem.** If in the definition of SHIQ we do not impose the restriction about simple roles, the satisfiability problem becomes undecidable

(even if we only allow for cardinality restrictions of the form  $\leq nR.\top$  and  $\geq nR.\top$ ).

Proof: cf. Horrocks et al.

### **Reasoning procedures**

- For decidable description logic it is important to have efficient reasoning procedures which are sound, complete and termination.
- Literature: tableau calculi

#### **Goals:**

- Completeness is important for the usability of description logics in real applications.
- Efficiency: Algorithms need to be efficient for both average and real knowledge bases, even if the problem in the corresponding logic is in PSPACE or EXPTIME.

Tractable description logic:  $\mathcal{EL}, \mathcal{EL}^+$  and extensions [Baader'03–] used e.g. in medical ontologies (SNOMED)

## $\mathcal{EL}$ : Generalities

**Concepts:** • primitive concepts  $N_C$ 

• complex concepts (built using concept constructors  $\Box, \exists r$ )

**Roles:**  $N_R$ 

 $I_R$ 

Interpretations:
$$\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
• $C \in N_C \mapsto C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ • $r \in N_R \mapsto r^{\mathcal{I}} \subseteq D^{\mathcal{I}} \times D^{\mathcal{I}}$ 

| Constructor name        | Syntax           | Semantics                                                                            |
|-------------------------|------------------|--------------------------------------------------------------------------------------|
| conjunction             | $C_1 \sqcap C_2$ | $\mathcal{C}_1^\mathcal{I} \cap \mathcal{C}_2^\mathcal{I}$                           |
| existential restriction | ∃r.C             | $\{x \mid \exists y((x,y) \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}})\}$ |

## **EL:** Generalities

**Concepts:** • primitive concepts  $N_C$ 

• complex concepts (built using concept constructors  $\Box, \exists r$ )

**Roles:**  $N_R$ 

Interpretations: $\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$ • $C \in N_C \mapsto C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ • $r \in N_R \mapsto r^{\mathcal{I}} \subseteq D^{\mathcal{I}} \times D^{\mathcal{I}}$ 

Problem:Given: TBox (set  $\mathcal{T}$  of concept inclusions  $C_i \sqsubseteq D_i$ )<br/>concepts C, DTask: test whether  $C \sqsubseteq_{\mathcal{T}} D$ , i.e. whether for all  $\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$ <br/>if  $C_i^{\mathcal{I}} \subseteq D_i^{\mathcal{I}} \quad \forall C_i \sqsubseteq D_i \in \mathcal{T}$  then  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ 

| Primitive concepts: | protein, process, substance                            |
|---------------------|--------------------------------------------------------|
| Roles:              | catalyzes, produces                                    |
| Terminology:        | $enzyme = protein \sqcap \exists catalyzes.reaction$   |
| (TBox)              | $catalyzer = \exists catalyzes.process$                |
|                     | reaction = process $\sqcap \exists produces.substance$ |
| Query:              | enzyme 🔄 catalyzer?                                    |

# $\mathcal{EL}^+$ : generalities

**Concepts:** • primitive concepts  $N_C$ 

• complex concepts (built using concept constructors  $\Box, \exists r$ )

**Roles:**  $N_R$ 

Interpretations:
$$\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
• $C \in N_C \mapsto C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ • $r \in N_R \mapsto r^{\mathcal{I}} \subseteq D^{\mathcal{I}} \times D^{\mathcal{I}}$ 

#### **Problem:**

Given: CBox C = (T, RI), where T set of concept inclusions  $C_i \sqsubseteq D_i$ ; RI set of role inclusions  $r \circ s \sqsubseteq t$  or  $r \sqsubseteq t$ concepts C, DTask: test whether  $C \sqsubseteq_C D$ , i.e. whether for all  $\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$ if  $C_i^{\mathcal{I}} \subseteq D_i^{\mathcal{I}} \quad \forall C_i \sqsubseteq D_i \in T$  and  $r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq t^{\mathcal{I}} \quad \forall r \circ s \sqsubseteq t \in RI$  then  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ 

| Primitive concepts:    | protein, process, substance                                                                                    |  |
|------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Roles:                 | catalyzes, produces, helps-producing                                                                           |  |
| Terminology:<br>(TBox) | enzyme = protein $\sqcap \exists catalyzes.reaction$<br>reaction = process $\sqcap \exists produces.substance$ |  |
| Role inclusions:       | catalyzes <pre>o</pre> produces <pre>L</pre> helps-producing                                                   |  |
| Query:                 | enzyme $\sqsubseteq$ protein $\sqcap \exists$ helps-producing.substance ?                                      |  |

# Complexity

 $T\text{-}\mathsf{Box}$  subsumption for  $\mathcal{EL}$  decidable in PTIME

C-Box subsumption for  $\mathcal{EL}^+$  decidable in PTIME

#### Methods:

Reductions to checking satisfiability of clauses in propositional logic.

| Primitive concepts: | protein, process, substance                            |  |
|---------------------|--------------------------------------------------------|--|
| Roles:              | catalyzes, produces                                    |  |
| Terminology:        | $enzyme = protein \sqcap \exists catalyzes.reaction$   |  |
| (TBox)              | $catalyzer = \exists catalyzes.process$                |  |
|                     | reaction = process $\sqcap \exists produces.substance$ |  |
| Query:              | enzyme 드 catalyzer?                                    |  |

 $\begin{aligned} \mathsf{SLat} \cup \mathsf{Mon} \models \mathsf{enzyme} &= \mathsf{protein} \sqcap \mathsf{catalyzes}\displayses \mathsf{some}(\mathsf{reaction}) \land \\ \mathsf{catalyzer} &= \mathsf{catalyze}\displayses \mathsf{some}(\mathsf{process}) \land \\ \mathsf{reaction} &= \mathsf{process} \sqcap \mathsf{produces}\displayses \mathsf{some}(\mathsf{substance}) \\ &\Rightarrow \mathsf{enzyme} \sqsubseteq \mathsf{catalyzer} \end{aligned}$ 

| $SLat \cup Mon \ \land$ | $\begin{array}{l} enzyme = protein \sqcap catalyzes-some(reaction) \land \\ catalyzer = catalyze-some(process) \land \\ reaction = process \sqcap produces-some(substance) \land \\ enzyme \not\sqsubseteq catalyzer \end{array}$ | Þ | $\perp$ |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|
|                         | G                                                                                                                                                                                                                                 |   |         |

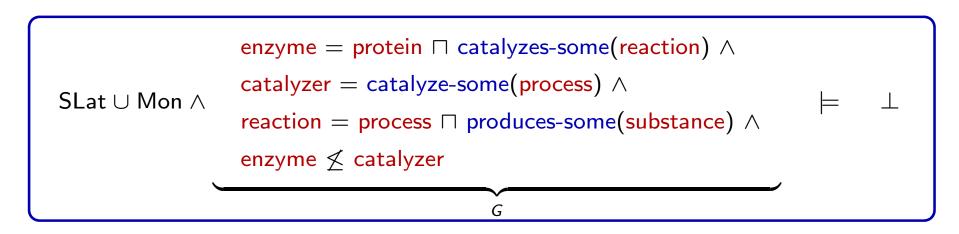
#### $G \wedge \mathsf{Mon}$

enzyme = protein  $\sqcap$  catalyzes-some(reaction)  $\land$ catalyzer = catalyze-some(process)  $\land$ reaction = process  $\sqcap$  produces-some(substance)  $\land$ enzyme  $\nvdash$  catalyzer  $\forall C, D(C \sqsubseteq D \rightarrow \text{catalyze-some}(C) \sqsubseteq \text{catalyze-some}(D))$  $\forall C, D(C \sqsubseteq D \rightarrow \text{produces-some}(C) \sqsubseteq \text{produces-some}(D))$ 

| $SLat \cup Mon \ \land$ | $\begin{array}{l} enzyme = protein \sqcap catalyzes-some(reaction) \land \\ catalyzer = catalyze-some(process) \land \\ reaction = process \sqcap produces-some(substance) \land \\ enzyme \not\leq catalyzer \end{array}$ | Þ | $\perp$ |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|
|                         | G                                                                                                                                                                                                                          |   |         |

#### **Solution 1:** Use *DPLL*(SLat + *UIF*)

| $G \wedge Mon[G]$                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $enzyme = protein \sqcap catalyzes-some(reaction)$                                                                                                                                                            |
| catalyzer = catalyzes-some(process)                                                                                                                                                                           |
| reaction = process $\sqcap$ produces-some(substance)                                                                                                                                                          |
| enzyme ≰ catalyzer                                                                                                                                                                                            |
| $  \textbf{reaction} \triangleright \textbf{process} \rightarrow \textbf{catalyzes-some}(\textbf{reaction}) \triangleright \textbf{catalyzes-some}(\textbf{process}), \ \triangleright \in \{\leq, \geq, =\}$ |



#### Solution 2: Hierarchical reasoning

| Base theory (SLat)                                                                                           | Extension                        |
|--------------------------------------------------------------------------------------------------------------|----------------------------------|
| $enzyme = protein \sqcap c_1$                                                                                | $c_1 = catalyzes-some(reaction)$ |
| catalyzer = $c_2$                                                                                            | $c_2 = catalyzes-some(process)$  |
| reaction = process $\sqcap c_3$                                                                              | $c_3 = produces-some(substance)$ |
| enzyme ≰ catalyzer                                                                                           |                                  |
| reaction $\triangleright$ process $\rightarrow c_1 \triangleright c_2  \triangleright \in \{\leq, \geq, =\}$ |                                  |

Test satisfiability using any prover for SLat (e.g. reduction to SAT)

# $\mathcal{EL}$ : Hierarchical reasoning

Idea in the translation to SAT:

| Base theory $\mapsto$                                                                           | SAT (FOL)                                                                                              |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| $enzyme = protein \sqcap c_1$                                                                   | $\forall x \; enzyme(x) \leftrightarrow protein(x) \land c_1(x)$                                       |  |
| catalyzer = $c_2$                                                                               | $\forall x \text{ catalyzer}(x) \leftrightarrow c_2(x)$                                                |  |
| reaction = process $\sqcap c_3$                                                                 | $\forall x \; \operatorname{reaction}(x) \leftrightarrow \operatorname{process}(x) \wedge c_3(x)$      |  |
| enzyme 🗹 catalyzer                                                                              | $enzyme(c) \land \neg catalyzer(c)$                                                                    |  |
| reaction $\sqsubseteq$ process $\rightarrow c_1 \sqsubseteq c_2$                                | $(\forall x (reaction(x) \rightarrow process(x))) \rightarrow (\forall x (c_1(x) \rightarrow c_2(x)))$ |  |
|                                                                                                 |                                                                                                        |  |
| $\Downarrow$                                                                                    |                                                                                                        |  |
| $(\operatorname{reaction}(d) \to \operatorname{process}(d)) \to (\forall x(c_1(x) \to c_2(x)))$ |                                                                                                        |  |

∜

Clause normal form: no function symbols of arity  $\geq$  1; Horn except for last class of clauses (a small amount of case distinction  $\mapsto$  no increase in compl.)

By Herbrand's theorem the set of clauses is satisfiable iff its set of instances is. Size of instantiated set: polynomial. Satisfiability of Horn clauses: in PTIME.



### **A Simple Programming Language**

Logical basis

Typed first-order predicate logic (Types, variables, terms, formulas, . . . )

#### Assumption for examples

The signature contains a type Nat and appropriate symbols:

- function symbols 0, s, +, \*
   (terms s(0), s(s(0)), . . . written as 1,2, . . .)
- predicate symbols  $\doteq$ ,  $\leq$ , <,  $\geq$ , >

NOTE: This is a "convenient assumption" not a definition

#### Programs

- Assignments: X := t X: variable, t:term
- Test: if B then a else b fi
   B: quant.-free formula, a, b: programs
- Loop: while *B* do a od
  - B: quantifier-free formula, a: program
- Composition: *a*; *b a*, *b* programs

WHILE is computationally complete

#### **WHILE: Examples**

Compute the square of X and store it in Y

Y := X \* X

If X is positive then add one else subtract one

if X > 0 then X := X + 1 else X := X - 1 fi

#### WHILE: Example - Square of a Number

```
Compute the square of X (the complicated way)

Making use of: n^2 = 1 + 3 + 5 + \dots + (2 * n - 1)

I := 0;

Y := 0;

while I < X do

Y := Y + 2*I+1;

I := I+1
```

od

#### **WHILE: Operational Semantics**

Given

A (fixed) first-order structure  ${\cal A}$  interpreting the function and predicate symbols in the signature

#### State

 $s=(\mathcal{A},\beta)$  where  $\beta$  is a variable assignment (i.e. function interpreting the variables )

### State update

$$s[e/X] = (\mathcal{A}, \beta[X \mapsto e])$$
  
with  $\beta[X \mapsto e](Y) = \begin{cases} e & \text{if } Y = X \\ \beta(Y) & \text{otherwise} \end{cases}$ 

Define the relation  $R(\alpha)$  as follows (we write  $s[\alpha]s'$  instead of  $sR(\alpha)s'$ ):

• 
$$s[X := t]s'$$
 iff  $s' = s[s(t)/X]$ 

- $s[\text{if } B \text{ then } \alpha \text{ else } \beta \text{ fi}]s' \text{ iff } s \models B \text{ and } s[\alpha]s' \text{ or } s \models \neg B \text{ and } s[\beta]s'.$
- $s[\text{while } B \text{ do } \alpha \text{ od}]s'$  iff there are states  $s = s_0, \ldots, s_t = s'$  s.t.  $s_i \models B \text{ for } 0 \le i \le t-1 \text{ and } s_t \models \neg B \text{ and } s_0[\alpha]s_1, s_1[\alpha]s_2, \ldots, s_{t-1}[\alpha]s_t$
- $s[\alpha;\beta]s'$  iff there is a state s'' such that  $s[\alpha]s''$  and  $s''[\beta]s'$

If  $\alpha$  is a deterministic program,  $[\alpha]$  is a partial function

### **A Different Approach to WHILE**

### Programs

- X := t (atomic program)
- $\alpha; \beta$  (sequential composition)
- $\alpha \cup \beta$  (non-deterministic choice)
- $\alpha^*$  (non-deterministic iteration, *n* times for some  $n \ge 0$ )
- F? (test) remains in initial state if F is true, does not terminate if F is false

#### **Restriction to deterministic programs**

Non-deterministic program constructors may only be used in

if B then  $\alpha$  else  $\beta$  fi  $\equiv (B?; \alpha) \cup ((\neg B)?; \beta)$ 

while *B* do  $\alpha$  od  $\equiv (B?; \alpha)^*; (\neg B)?$ 

#### **Expressing Program Properties**

```
Logic for expressing properties
```

Full first-order logic (usually with arithmetic)

Partial correctness assertion (Hoare formula)

 $\{P\}\alpha\{Q\}$ 

Meaning:

If  $\alpha$  is started in a state satisfying P and terminates, then its final state satisfies Q

Formally:  $\{P\}\alpha\{Q\}$  is valid iff for all states s, s', if  $s \models P$  and  $s[\alpha]s'$ , then  $s' \models Q$ 

### **Examples**

$$\{X > 0\}X := X + 1\{X > 1\}$$

$$\{\operatorname{even}(X)\}X := X + 2\{\operatorname{even}(X)\}$$
  
where even(X)  $\equiv \exists Z(X = 2 * Z)$ 

$$\{true\}\alpha_{square}\{Y = X * X\}$$

### **Examples**

$$\{X > 0\}X := X + 1\{X > 1\}$$

$$\{\operatorname{even}(X)\}X := X + 2\{\operatorname{even}(X)\}$$
  
where  $\operatorname{even}(X) \equiv \exists Z(X = 2 * Z)$ 

$$\{true\}\alpha_{square}\{Y = X * X\}$$

Verification: Use annotation of programs with "invariants"

# **Dynamic Logic**

The idea of dynamic logic

- Annotated programs use formulas within programs
- Dynamic Logic uses programs within formulas
- Instead of "assert F" after program segment  $\alpha$ , write:  $[\alpha]F$

 $\mapsto$  multi-modal logic

# **Dynamic Logic**

Dynamic logic is a language for specifying programming languages.

The original work on dynamic logic is by Vaughan Pratt (1976) and by David Harel (1979).

Propositional dynamic logic (PDL) is a multi-modal logic with structured modalities.

For each program  $\alpha$ , there is:

- a box-modality  $[\alpha]$  and
- a diamond modality  $\langle \alpha \rangle$ .

PDL was developed from first-order dynamic logic by Fischer-Ladner (1979) and has become popular recently.

Here we consider regular PDL.

# **Propositional Dynamic Logic**

#### Syntax

Prog set of programs

 $\mathsf{Prog}_0 \subseteq \mathsf{Prog}$ : set of atomic programs

 $\Pi$ : set of propositional variables

The set of formulae  $\text{Fma}_{\text{Prog},\Pi}^{PDL}$  of (regular) propositional dynamic logic and the set of programs  $P_0$  are defined by simultaneous induction as follows:

# **PDL: Syntax**

#### Formulae:

| F, G, H | ::= | $\perp$                       | (falsum)                      |
|---------|-----|-------------------------------|-------------------------------|
|         |     | Т                             | (verum)                       |
|         |     | p                             | $p\in \Pi_0$ (atomic formula) |
|         |     | $\neg F$                      | (negation)                    |
|         |     | $(F \wedge G)$                | (conjunction)                 |
|         |     | $(F \lor G)$                  | (disjunction)                 |
|         |     | $(F \rightarrow G)$           | (implication)                 |
|         |     | $(F \leftrightarrow G)$       | (equivalence)                 |
|         |     | $[\alpha]F$                   | $if\; \alpha \in Prog$        |
|         |     | $\left< lpha \right> {\it F}$ | $if\; \alpha \in Prog$        |

#### **Programs:**

| $lpha$ , $eta$ , $\gamma$ | ::= | $lpha_{0}$        | $\alpha_{0} \in Prog_{0}$ (atomic program) |
|---------------------------|-----|-------------------|--------------------------------------------|
|                           |     | F?                | F formula (test)                           |
|                           |     | lpha; $eta$       | (sequential composition)                   |
|                           |     | $\alpha\cup\beta$ | (non-deterministic choice)                 |
|                           |     | $lpha^*$          | (non-deterministic repetition)             |

## **Semantics**

A PDL structure  $\mathcal{K} = (S, R(), I)$  is a multimodal Kripke structure with an accessibility relation for each atomic program. That is it consists of:

- a non-empty set *S* of states
- an interpretation R():  $\operatorname{Prog}_0 \to \mathcal{P}(S \times S)$  of atomic programs that assigns a transition relation  $R(\alpha) \subseteq S \times S$  to each atomic program  $\alpha$
- an interpretation  $I : \Pi \times S \rightarrow \{0, 1\}$

The interpretation of PDL relative to a PDL structure  $\mathcal{K} = (S, R(), I)$  is defined by extending R() to Prog and extensing I to  $\operatorname{Fma}_{\operatorname{Prop}_0}^{PDL}$  by the following simultaneously inductive definition:

### **Interpretation of formulae/programs**

| $val_\mathcal{K}(p, s)$                                              | =   | I(p, s)                                                                                                      |
|----------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------|
| $val_\mathcal{K}( eg F, s)$                                          | =   | $\neg_{Bool} val_{\mathcal{K}}(F, s)$                                                                        |
| $\mathit{val}_\mathcal{K}(\mathit{F} \wedge \mathit{G}, \mathit{s})$ | =   | $\mathit{val}_\mathcal{K}(F, s) \wedge_{Bool} \mathit{val}_\mathcal{K}(G, s)$                                |
| $\mathit{val}_\mathcal{K}(F ee G, s)$                                | =   | $val_\mathcal{K}(F, s) ee_{Bool} val_\mathcal{K}(G, s)$                                                      |
| val $_{\mathcal{K}}([lpha]{\sf F},{\sf s})=1$                        | iff | for all $t\in S$ with $(s,t)\in R(lpha)$ , $\mathit{val}_\mathcal{K}(F,t)=1$                                 |
| val $_{\mathcal{K}}(\langle lpha  angle$ F, s $)=1$                  | iff | for some $t\in S$ with $(s,t)\in R(lpha)$ , $\mathit{val}_\mathcal{K}(F,t)=1$                                |
| R([F?])                                                              | =   | $\{(s,s)\mid val_\mathcal{K}(F,s)=1\}$                                                                       |
|                                                                      |     | ( $F$ ? has the same meaning as: if $F$ then skip else do not termina                                        |
| ${\sf R}(lpha\cupeta)$                                               | =   | ${\sf R}(lpha)\cup{\sf R}(eta)$                                                                              |
| R(lpha;eta)                                                          | =   | $\{(s,t) \mid \text{ there exists } u \in S \ s.t.(s,u) \in R(lpha) \text{ and } (u,t) \in R(eta)\}$         |
| $R(lpha^*)$                                                          | =   | $\{(s, t) \mid \text{ there exists } n \geq 0 \text{ and there exist } u_0, \ldots, u_n \in S \text{ with }$ |
|                                                                      |     | $s = u_0, y = u_n, (u_0, u_1), \dots, (u_{n-1}, u_n) \in R(\alpha)$                                          |
|                                                                      |     |                                                                                                              |

### **Interpretation of formulae/programs**

- $(\mathcal{K}, s)$  satisfies F (notation  $(\mathcal{K}, s) \models F$ ) iff  $val_{\mathcal{K}}(F, s) = 1$ .
- F is valid in  $\mathcal{K}$  (notation  $\mathcal{K} \models F$ ) iff  $(\mathcal{K}, s) \models F$  for all  $s \in S$ .
- *F* is valid (notation  $\models$  *F*) iff  $\mathcal{K} \models$  *F* for all PDL-structures  $\mathcal{K}$ .

# Axiom system for PDL

| Comp : | $[lpha;eta] A \leftrightarrow [lpha] [eta] A$ ,                                |
|--------|--------------------------------------------------------------------------------|
| Alt :  | $[lpha\cupeta]	extsf{A}\leftrightarrow [lpha]	extsf{A}\wedge [eta]	extsf{A}$ , |
| Mix :  | $[lpha^*] A 	o A \wedge [lpha] [lpha^*] A$ ,                                   |
| Ind :  | $[lpha^*](A ightarrow [lpha]A) ightarrow (A ightarrow [lpha^*]A)$ ,            |
| Test : | $[A?]B \leftrightarrow (A  ightarrow B).$                                      |

We will show that PDL is determined by PDL structures, and has the finite model property.

### Soundness and Completeness of PDL

Proof similar to the proof in the case of the modal system K (with small differences)

**Theorem.** If the formula F is provable in the inference system for PDL then F is valid in all PDL structures.

**Proof**: The axioms are valid in every PDL structure. Easy computation (examples on the blackboard).