Automated theorem proving by resolution in non-classical logics
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Abstract

We present several classes of non-classical logics (many of which are practically relevant in knowledge
representation) which can be translated into tractable and relatively simple fragments of classical
logic. In this context, refinements of resolution can be often used successfully for automated theorem
proving, and in many cases yield optimal decision procedures.

1 Introduction

The main goal of this paper is to present several situations in which non-classical logics can be translated
into tractable and simple fragments of classical logic, and resolution can be used successfully for automated
theorem proving.

The paper starts with a presentation of various non-classical logics, ranging from many-valued logics to
description logics. It is known that checking validity of formulae in non-classical logics having an algebraic
semantics often can be reduced to checking whether corresponding word problems hold in the class of
algebraic models. We show that similar phenomena occur also in several description logics: checking
subsumption with respect to TBoxes can be often reduced to checking whether suitably defined uniform
word problems hold in classes of Boolean algebras, distributive lattices or semilattices with operators.

We then focus on methods based on translations to classical logic, which allow the use of (refinements
of) resolution for automated theorem proving in various non-classical logics. We first show that vari-
ous versions of many-valued resolution for finitely-valued logics can be reconstructed by using general
saturation-based techniques for first-order theories of transitive relations [GSS00]. We then consider
other non-classical logics which are not finitely valued, but for which nevertheless such embeddings into
classical logics are possible. We present, for instance, a translation to clause form for prenex first-order
Godel logics [BFCO01] which allow to use saturation-based techniques for dense total orderings, and then
focus on propositional logics based on distributive lattices with operators (possibly many-sorted). We
show that resolution-based decision procedures with optimal complexity can be obtained in many cases
by using refinements of resolution such as ordered resolution with selection, or ordered chaining with
selection.

2 Preliminaries

For basic notions of universal algebra we refer e.g. to [BS81]. We also assume known standard notions,
such as partially-ordered set, (bounded) lattice, and distributive lattice, as well as (prime) filters in
lattices. For definitions and more details we refer to [DP90].

Let ¥ be a signature and a : ¥ — N an arity function. A Y-algebra is a structure A = (A, {o4}sex),
where A is a non-empty set and for every o € ¥, o4 : A%?) — A. Given a set X, the term algebra over
Y in the variables X will be denoted Tx(X). An equation is an expression of the form ¢; = t5 where
t1,t2 € Tx(X); an implication is an expression of the form 8; A -+ A B, = «, where 81, ..., 8m,a are
equations. A conditional equation (or quasi-equation) is an expression which is either an equation or an
implication. A ¥-algebra A = (A, {o4},ex) satisfies an equation ¢, = t5 if ¢; and t2 become equal for
every substitution of elements in A for the variables. A satisfies an implication vy = (ty = t{ A--- Aty =
tl.) = t =t (notation: A |= =) if for every substitution v of elements in A for the variables in v such
that v(t;) = v(t}) for all i = 1,...,m, v(t) = v(t').

An equational class is the class of all algebras that satisfy a set of equations. A quasi-variety is the
class of all algebras that satisfy a class of quasi-equations.
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Bounded lattices with additional operators occur often as algebraic models of non-classical logics. The
additional operations are usually interpretations of logical connectives such as the modal connectives for
necessity (O) or possibility (<), or various types of negation (~) or implication (—). The operators that
correspond to these connectives often commute with part of the lattice structure, i.e. satisfy equations
such as, for instance:

D() =1, DB(zAy)=0(z)AD(y), (1)
©(0)=0, OzVvy)=20(x) Vo), (2)
~=1,  ~@Vy)=~zA~y, 3)
~1=0, ~(x ANy) =~z V ~y, (4)
O0=2=1 (@Vy=2)=@E=>2)Ay=2), ()
(z=1)=1, x=>WA2)=(@=>y)A(z=>2). (6)

We want to make the class of algebras we consider broad enough to encompass operations which satisfy
equations such as (1)—(6), but also operations between different lattices, such as Galois connections, i.e.
pairs (f,g) of maps f : L1 = Lo, g : Ly — L, with the property that

f0)=0,f(zvy)=fz)V fly), 9(1)=19(=Ay)=g(z)Agy), (7
fl@) <yiff x < g(y) for all z € L1,y € Ls. (8)

Therefore, we consider classes of many-sorted algebraic structures, with many-sorted operations. We now
formally define operators that have properties such as (1)—(8) above.

Definition 2.1 Let S be a set of sorts, {Ls}scs be an S-sorted family of bounded lattices Ly = (Ls, V, A,0,1)
and let s1,...,8,,5 € S. A join hemimorphism of type s1...s, — s s a function f : Ly, X---x Ly, — Ly
such that for every i,1 <i <n,
(1) f(al, [N ,ai,l,O,ai_H, PN ,an) = 0,
(2) f(al, ceey@i—1,b1 Vo, a4, .. ,an) =
= f(al, ceyGi1,b1,0441, . ..,an) Vf(al,.. Sy @i 1,ba, @541, . ..,an).

We say that a map f : Ls; X -+ X Ly, — L, is a join hemimorphism of type si*...s5» — s°, where
€1,..16n,€ € {—1,+1},if f : L x --- x LS» — L§ is a join hemimorphism, where L*! := L and
L~! := L% the dual of L = (L,V,A,0,1), i.e. the lattice (L,Vv¢,A% 0%,1?), where for every z,y € L,
zViy=zAy,zAN?y=2xVy; 09=1;and 1¢ = 0.

Definition 2.2 Let {L;}scs be an S-sorted family of bounded lattices and let f, g be two n-ary operators
such that f : Lt - - -xLy, x---xLE" — Ly and g : L§! x- - -xLdx- - -xLs» — LY, are join hemimorphisms.
We say that g is an i-residuation' associated with f if for all a1 € Lg,,...,an € Ly, ,a € Ly:

flai,...,an) <aif and only if a; < g(a1,...,04;—1,a8,0i41,-..,0n).
Example 2.3

1. The operator & on a modal algebra B is a join hemimorphism. The operator O on B is a join
hemimorphism on the dual B¢ of B.

2. Let L be a lattice. The operation = satisfying the conditions (5) and (6) is a join hemimorphism
of type lat, lat® — lat?.

3. Let L1,Ly be two lattices and let f : L1 — Lo and g : La — L1 be a Galois connection (i.e.
conditions (7) and (8) are satisfied). Let (L1,L2) be the 2-sorted algebra with sorts S = {I1,l2}.
Then f is a join hemimorphism of type l; — la, g is a join hemimorphism of type I$ — I, and g
is the 1-residuation associated with f.

4. Let (L,Cp41) be the 2-sorted algebra with sorts S = {lat,num}, where L is a bounded lattice,
and Cpy1 = ({0,1,...,m},V,A,0,n) is the n + 1-element chain. A function f : L — Cp,41 that
associates with every element of L an element of {0,1,...,n} such that f(zVy) = f(z)V f(y) and
£(0) = 0 is a join hemimorphism of type lat — num.

ITwo 4-residuations associated with the same operator coincide.
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3 Non-classical logics

3.1 Many-valued logics

Let L=(X,0,P,%,{Q1,...,Qk}) be a first-order language consisting of a (countably) infinite set X of
variables, a set O of function symbols, a set P of predicate symbols, a set ¥ of logical operators, and
a finite set of (one-place) quantifiers ()1, ...,Qx. Terms, ground terms, atomic formulae and formulae
are defined in the usual way. Let A be a set of truth values. We associate truth functions with logical
operators and quantifiers as follows:

e to every o € X with arity n we associate a truth function o4 : A™ — A,
e to every quantifier () we associate a truth function @ : P(A)\{0} — A.

A many-valued logic with language L and set of truth values A is a pair £ = (L, .A) consisting of a first-
order language L = (X, O, P, X, {Q1, ..., @k}) and a set of truth values endowed with truth functions
for all logical operators and quantifiers in L, A = (4, {oa}sex, {Qi}i=1,...k)). Many-valued logics with
a finite set of truth values are called finitely valued logics, those with an infinite set of truth values are
called infinitely valued logics.

Definition 3.1 (Frame, Interpretation) A frame for £ = (L, A) is a pair (D, I) where D is a non-
empty set, the domain, and I is a signature interpretation, i.e. a function assigning a function I(f) :
D™ — D to every n-ary function symbol f € O, and a function I(R) : D™ — A to every n-ary predicate
symbol R € P. An interpretation Z for L (or interpretation for L in A) is a triple (D, I,d) where (D,I)
is a frame and d is a variable assignment d : X — D.

Every interpretation Z = (D, I, d) extends in a canonical way to terms, and induces a valuation function
on formulae, vz : Fma(£) — A, as follows:

(1) vz(R(t1,-..,tn)) = I(R)(vz(t1),...,vz(ty)) for all n-ary R € P, n >0,

(2) UI(U(¢15 LR ¢n)) = UA(UI(¢1)7 s 7UI(¢7L)) for all n-ary o € Ea

(3) vz((Qz)¢) = Q({w | 3d € D s.t. vz, ,(¢) = w}) for all quantifiers Q, where Z, 4 is identical to T
except for assigning d to the variable x.

Assume that a subset A; of A of designated truth values for the logic £ is additionally specified. A
formula ¢ is valid in a logic £ (with set A4 of designated truth values) if and only if vz(¢) € A4 for all
interpretations Z for the language of £ in A. A formula ¢ is satisfiable in £ if and only if there is an
interpretation Z with vz (@) € Aqg.

Examples of finitely valued logics are classical logic (with set of truth values {t, f}), the Lukasiewicz
logics of order n, the Post logics of order n (set of truth values {0, -2+,...,2=2 1}). Validity and satis-

fiability in propositional finitely-valued logics is obviously decidable. (It is easy to see that satisfiability
of formulae is in NP and validity is in co-NP.)

Typical examples of infinitely-valued logics are the so-called fuzzy logics. Fuzzy logics are many-valued
logics having the interval [0,1] as set of truth values; premise combination o is modeled by t-norms.
Every continuous t-norm o on [0,1] has a unique right residuum —. By choosing the Gddel t-norm,
x oy = min(x,y); the Lukasiewicz t-norm, r oy = max(0,z + y — 1); or the product t-norm, oy =1z -y
(product of reals), we can define the Godel logic G, the Lukasiewicz logic L, or the product logic L,
respectively.

For every n € N, n-valued variants L, and G,, of the propositional Lukasiewicz and Gd&del logics,
with set of truth values {0, ﬁ, cees Z—:f, 1}, can be defined: premise combination o is modeled by the
Lukasiewicz t-norm and resp. the Gédel t-norm, and — is again the unique right residuum of o. (Product
logic is only defined for the set of truth values [0, 1], since {0, ﬁ, el Z—:f, 1} is not closed under product.)

First order versions of the above-mentioned fuzzy logics can be obtained by defining the truth functions
for quantifiers Qv = inf and Q3 = sup. Obviously, first order many-valued logics are in general undecidable
(since first order classical logic is undecidable). While the complexity of satisfiability and validity in
propositional Gédel, Lukasiewicz, and product logic is the same as for two-valued logic, the situation is
different in the first-order case. The following results are well-known (for proofs we refer e.g. to [Mun87],

[H4j98] and [H&h03)):

153



(1) Satisfiability is NP-complete and validity is co-NP-complete for the propositional Lukasiewicz log-
ics L, and the propositional Godel logics G,; for the propositional Lukasiewicz logic L; for the
propositional Goédel logic G; and for the propositional product logic L.

(2) Validity in the first-order Gédel logic is ¥1-complete, validity in the first-order Lukasiewicz logic is
II5-complete, and validity in the first-order product logic is IIo-hard.

3.2 Propositional non-classical logics

Many-valued logics are special logics, characterized by one given algebra of truth values, with a relatively
simple structure. However, many non-classical logics are usually defined by describing the properties of
premise combination and entailment by means of logical calculi (e.g. Gentzen-style calculi, Hilbert-style
calculi, natural deduction systems). Logics defined this way usually have a natural algebraic model,
namely their Lindenbaum algebra, which can be constructed by identifying provably equivalent formulae.
The equivalence classes of the theorems can be regarded as designated elements. Thus, most of the known
propositional non-classical logics can be regarded as many-valued logics with an infinite algebra of truth
values, and a suitably defined set of designated elements. In many cases it is more convenient to identify
classes of algebraic models for these logics. Below we briefly present some non-classical logics which have
as algebraic models lattices or semilattices with additional operators (in particular: Boolean algebras
with operators, Heyting algebras with operators, or (distributive) lattices or semilattices with operators).
We briefly mention well-studied logics, such as modal logics, intuitionistic logic, fuzzy logics, relevant
logics and other substructural logics such as BCC and related logics. We then present in some detail
some newer results related to TBox reasoning in description logics.

3.2.1 Logics based on classes of distributive lattices with operators

Most of the well-studied non-classical logics fall into this class. We mention some well known examples:
Modal logics are in general sound and complete with respect to classes of Boolean algebras with operators
B =(B,V,A,—,0,1,0,0), where < is a join hemimorphism, O is a meet hemimorphism, and for every
z € B, Ox = —~O—x. Intuitionistic logic is sound and complete with respect to the class of Heyting
algebras. Various types of intuitionistic modal logics are sound and complete with respect to classes
of Heyting algebras with operators. Gddel’s logic (or LC or Dummet’s logic [Dum59]) has as class of
algebraic models the class of linear Heyting algebras (Heyting algebras satisfying a = bV b= a = 1).

Checking whether a formula ¢ is a theorem in such a logic can usually be reduced to checking whether
A= ¢ =1, where A is a class of algebraic models of the logic.

Another type of logics which fall into this class are the so-called positive logics (cf. also the so-called
binary logics [Gol93] Ch.2, or the similar concept in [Dun95]). Positive logics [Gol93, Dun95] do not have
the implication symbol as a logical connective. Their algebraic models are usually lattices with operators.
In positive logics, logical consequence can only be expressed by using the provability relation F. Checking
whether ¢; F ¢ can usually be reduced to checking whether A = ¢1 < ¢2, where A is a class of algebraic
models of the logic.

3.2.2 Logics based on residuated (semi)lattices

Residuated distributive lattices occur in a natural way as algebraic models for fuzzy, relevant and sub-
structural logics.

Many fuzzy logics are sound and complete with respect to classes of residuated distributive lattices:
The basic fuzzy logic (BL), for instance, has as algebraic models the class of all linearly ordered BL-
algebras (i.e. linearly ordered bounded lattices with two binary operators o and —, (L,V,A,0,1,0,—),
where (L,o,1) is a commutative semigroup with 1, o is monotone in both arguments, and where for all
z,y,2€ Lyxoz<yiff 2<(z - y),and z Ay =z o (z - y) [H4j98]). The Gédel logic has as algebraic
models the class of all linearly ordered Heyting algebras. The Lukasiewicz logics [Luk30] has as algebraic
models the class of linearly ordered MV-algebras (BL-algebras in which the identity x = ((z — 0) — 0)
holds). The product logic has as algebraic models the class of all (linearly ordered) product algebras, i.e.
BL-algebras that satisfy

(220 —>0<((roz—yoz) > (x—y) and zN(x—0)=0.
The relevant logic RL introduced by Urquhart in [Urq96] has as class of algebraic models the class of

relevant algebras (bounded distributive lattices (L, V, A,0,1) with a lattice antimorphism — and a binary

154



Constructor name | Syntax | Semantics

negation -C DI\Cc?
conjunction CinC, | CEnc?
disjunction CiuC, | Ctuct

existential restriction | IR.C {z | y((x,y) € RT and y € CT)}
universal restriction | VR.C {z |Vy((z,y) € R”T = ye CT)}

Table 1: Constructors for ALC

join hemimorphism o, with neutral element e, and residuation —). Other examples are BCC' and related
logics [OK85], sound and complete with respect to classes of lattice-ordered residuated monoids.

In many of these logics, checking whether a formula ¢ is a theorem can be reduced to checking whether
A |= ¢ > e, where e is a designated element in their algebraic models A, usually the neutral element with
respect to a monoid operation (see Anderson and Belnap [AB75] p.364, [Ono93], p.272).

3.2.3 Description logics

The main descriptive means of description logics are the concept descriptions. Concepts are defined
with the help of a set of concept constructors, starting with a set N¢ of concept names and a set Ng
of roles. The available constructors determine the expressive power of a description logic. For instance,
in the description logic ALC, the constructors used are negation (=), conjunction (M), disjunction (U),
existential restriction (3R) and universal restriction (VR). A terminology (or TBox, for short) is a finite
set of concept definitions of the form A = C, where A is a concept name and C a concept description.
(In description logics it is usually required that TBoxes do not contain multiple definitions.)

The semantics of description logics is defined in terms of interpretations Z = (DZ,-Z), where D7 is a
non-empty set, and the function -Z maps each concept name C' € N¢ to a set CZ C DT and each role
name R € Ng to a binary relation RZ C D x DZ. Table 1 shows the constructor names used in ALC,
together with their syntax and their semantics. The extension of -Z to concept descriptions is inductively
defined using the semantics of the constructors described in Table 1. An interpretation 7 is a model of
the TBox 7 if it satisfies all the concept definitions in 7, i.e. AZ = C7Z for all definitions A = C in 7.

Definition 3.2 Let T be a TBox, and Ci,Cy two concept descriptions. C4 is subsumed by C> with
respect to T (for short, Cy Tt C2) if and only if CT C CL for every model T of T.

In practical applications also description logics which are not closed under all Boolean connectives
occur in a natural way. If we allow, for instance, only intersection and existential restriction as concept
constructors, we obtain the description logic £L£, a logic used in terminological reasoning in medicine
[Baa03]. If we allow only intersection and universal restriction as concept constructors, we obtain the
description logic F L.

We now show that in the description logics ALC,EL and FLy deciding the subsumption problem
C1 C7 C5 can be reduced to deciding a uniform word problem with respect to the class of all Boolean
algebras (resp. distributive lattices, or semilattices) with operators. For this, we give a translation of
concept descriptions into terms in a signature naturally associated with the set of constructors. For
every role name R, we introduce two unary function symbols, far and fyr. The renaming function is
inductively defined by:

e C = C for every concept name C,

[ ] ? = —|67
.Cl[—|02:61/\62, 01U02:€1V62,
e 3R.C = far(0), VR.C = fyr(C).

It is easy to see that there exists a one-to-one correspondence between interpretations of description logics,
7 = (D,-T) and Boolean algebras of sets (P(D),U,N, =, 0, D,{far, fvr}reng), together with valuations
for the v : No — P(D), where the additional operations are defined, for every U C D, by:

far(U) ={z | y((z,y) e Randy € U)}  fyr(U) ={z | Vy((z,y) e R = y e U)}.

We define the following classes of algebras:
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e BAOy,,, the class of all Boolean algebras with operators B = (B,V,A,—,0,1,{far, fvr}reny)
where f3g is a join hemimorphism, fyg is a meet hemimorphism, and fyr(z) = —far(—z) for every
z € B.

. DLOYVR, the class of all bounded distributive lattices with operators L = (L,V,A,0,1, {fyr}renz)
such that fyg is a meet hemimorphism;

. DLOJHVR, the class of all bounded distributive lattices with operators L = (L,V,A,0,1,{far}renz)
such that fgg is a join hemimorphism;

. SLOYVR, the class of all bounded meet-semilattices with operators S = (S,A,1,{fvr}reny) such
that fvg is a meet hemimorphism;

. SLOJE'VR, the class of all bounded meet-semilattices with operators S = (S, A,0,1, {far}reng) such
that fag is monotone and f3g(0) = 0.

Theorem 3.3 (1) For all concept descriptions C1,Cy and every TBozx T, Cy C1 C2 iff BAON,
(Aazcer A=C) = C1 < Ca.

(2) Assume that the only constructors are intersection and existential restriction. For all concept de-
scriptions Cy,Cs and every TBoz T, C1 C1 Cs iff SLOR, E (Auzcer A=C) = C1 < Cs.

(8) Assume that the only constructors are intersection and universal restriction. For all concept de-
scriptions C1,Cs and every TBozx T, C1 C1 Cs iff SLO]V\,R E (AszcerA=C) = C1 < Ca.

Proof: The proof is given in Appendix A. |

Theorem 3.4 The uniform word problem for BAOy, is EXPTIME-complete. The uniform word problem
for SLOJH\,R is decidable in polynomial time.

Proof: The proof is given in Appendix B. |

Corollary 3.5 Concept subsumption with respect to TBozes in ALC and FLqg can be tested in exponential
time. Concept subsumption with respect to TBozes in EL can be tested in polynomial time.

The EXPTIME-completeness of concept subsumption in ALC is well-known. Recently, Kazakov and
Nivelle proved that concept subsumption with respect to TBoxes in FLq is PSPACE-complete. The
polynomial time complexity of concept subsumption with respect to TBoxes in ££ was first proved by
Baader [Baa02]. Theorem 3.4 provides a much simpler proof of this fact, and shows, in addition, that
the restriction imposed in [Baa02] that TBoxes do not contain multiple definitions is not really necessary
for polynomial time decidability of concept subsumption in ££ .

4 Automated theorem proving

We present several approaches to automated theorem proving in non-classical logic based on translations
to classical logic, which allows the use of (various refinements of) resolution. Because of space limitations,
neither tableau nor proof-theoretic methods are discussed, although they often provide optimal time and
space complexity bounds.

This section is structured as follows. We first show that various versions of many-valued resolution
for finitely-valued logics can be reconstructed by using general saturation-based techniques for first-order
theories of transitive relations. The inference systems which we obtain this way are much more restricted,
in particular by ordering constraints and selection functions. We then consider other non-classical logics
which are not finitely valued, but for which nevertheless such embeddings into classical logics are possible.
We present, for instance, a translation to clause form for prenex first-order Gédel logics [BFC01] which
allowed the use of saturation-based techniques for dense total orderings, and then focus on propositional
logics based on distributive lattices with operators (possibly many-sorted). We show that resolution-based
decision procedures can be obtained in many interesting cases.

Notations, conventions, general definitions. As usual, the symbols V and — denote disjunction
and negation, respectively. Formal equality will be denoted by =, and atoms of the form s =t are called
equations. The symmetry of equality is built into the notation in that we do not distinguish between s~ ¢
and t~s. Negative equations —(s~t) are also written as s %¢. Semantically, equality is a congruence.
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Consequently, a formula is called equationally satisfied in an interpretation I whenever the formula is
satisfied in I, and the interpretation of = in I is a congruence over the given signature, satisfying the
respective set of congruence axioms Eq.

Orderings on syntactic expressions play an important role in theorem proving. Any ordering on ground
terms can be extended to ground literals, and then to ground clauses (by taking the multiset extension).
We say that a literal L is maximal with respect to a clause C' (denoted L > C) if L' > L for no literal L'
in C; and that L is strictly maximal with respect to C' (denoted L > C) if L' = L for no L' in C.

In order to avoid unnecessary complication in the presentation we will in this paper only deal with
the propositional variants of the various inference systems. That is, unless explicitly stated otherwise, all
expressions (terms, literals, formulas) are assumed to be ground, that is, to not contain any variables. As
the various completeness results also hold for infinite sets of clauses, lifting can be done in the standard
manner by viewing non-ground expressions to represent the set of their ground instances and by employing
unification to avoid their explicit enumeration.

4.1 Resolution in finitely-valued logics

In [BF95], Baaz and Fermiiller extended the resolution procedure to arbitrary finitely-valued logics. They
describe methods for translation to a many-valued clause form?, formulate a sound and complete many-
valued resolution calculus, and show that the completeness of the calculus is preserved when applying
simplification rules such as subsumption and deletion of certain types of tautologies. Many-valued res-
olution has also been extended to literals signed by sets of truth values in [H&h94b], also see [BFS99].
A special kind of signs (when the set A of truth values is ordered by a total order <) are regular signs
[H&h94b, H&h96], i.e. signs of the form tv; := {v | v > v;} or Jv; = {v | v < v;}.

A notion of regular signs has also been introduced in the context of annotated logics [KL92, LMR9S]
when the set A of truth values is a complete lattice with respect to an order <, with greatest element
T and least element L. In this context, a regular literal is a literal with a sign of the form tv or A\tv
(notation: ~1v), where v € A; a regular clause is a disjunction of regular literals. An inference system
consisting of annotated resolution, annotated reduction and elimination was shown to be sound and
refutationally complete [KL92, LMR98].

Many-valued and regular literals can be expressed in classical logic in a natural way: L = v corresponds
to LY; L > v corresponds to Tv : L, and so on. Formally, the encoding can be achieved by using a two-
sorted language L, with sorts, ter (for terms) and for (for formulae of the many-valued logic). The set
of function symbols in L4 includes constants of sort for for all elements of A; the predicate symbols of
the many-valued logic (viewed as function symbols with arguments of sort ter and result of sort for), the
logical connectives of the many-valued logic as function symbols with arguments and result of sort for.
We call the constants v € A truth values, and the terms of the form R(t1,...,%,), with R a predicate
symbol in the language of the many-valued logic under consideration, are called predicate terms. Truth
values will be denoted by u, v, w, s,t, and predicate terms by L. Everywhere in what follows we assume
that the set of truth values is A = {v1,...,v,}.

In what follows let > be a noetherian ordering on ground literals.

4.1.1 Many-valued clauses

With every set of many-valued clauses ®, consisting of literals L? signed by truth values, we associate a
set ®; of first-order clauses by replacing every signed literal L” in & by the equation L = v.

In what follows, literals of the form L = v are called M V-literals, and clauses consisting of MV -literals
are called MV-clauses.

In [GSS00] we proved that a set ® of many-valued clauses is satisfiable if and only if ®; U ®4 UFin is
(classically) equationally satisfiable, where

Py={uztv|u,ve Au#v}, Fin={smuv;V...Vsmuv,|saterm of sort for}

are sets of clauses which express that there are exactly n pairwise different (congruence classes of) truth
values vy,...,v, in any equality Herbrand interpretation satisfying ® 4 U Fin.

Satisfiability of ®; U® 4 UFin can for instance be checked by using superposition [BG94]. When applied
to sets of MV -clauses, the superposition calculus specializes to the following calculus, SMV:

2Many-valued literals LV are atomic formulae superscripted by truth values; many-valued clauses are disjunctions of
many-valued literals.
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Positive MV-superposition. From L=tV C and L=~v V D derive C V D provided that
t#vand (i) Lt > C; (ii) Lev = D; (iii) Lo = Lat.

Ordered factoring. From LtV L~tV C derive Lxt V C provided that L ~ ¢ is maximal
with respect to C.

Theorem 4.1 ([GSS00]) Let N be a set of MV -clauses such that N\Fin is saturated up to Eq U ®4-
redundancy with respect to SMV. Then either N contains the empty clause or else N UFin U ®4 is
equationally satisfiable.

As superposition into subterms is not possible for MV -clauses, > needs not be a reduction ordering on
terms.

In conclusion, the calculus SMV is an order-refinement of the many-valued resolution method of Baaz
and Fermiiller. Its compatibility with Eq U ® 4-redundancy, and with the simplification techniques which
redundancy justifies follows from Theorem 4.1.

4.1.2 Annotated and regular clauses

Let (A4,<4) be a finite partially ordered set, and Min(A4) the set of minimal elements in A. Let ® be a
set of regular clauses, i.e. clauses containing only literals of the form tw:L or ~tv:L, where v € A. The
encoding of ® in first-order logic, ®1, is the set of clauses obtained from ® by replacing tv:L by v <L
and ~tv:L by v £ L, where v £ L is an abbreviation for —=(v<L). Consider the following additional sets
of clauses:

P4 = {udv|u,v€edudyv,de{<, £ %}}
Sup = {(ugs)V (vL€s)V (sup(u,v) <s) | sup(u,v) exists in A, s a term of sort for}
Min = { \/ (m<s) | s a term of sort for}.

mEMin(A)

In the following we will only consider clauses with inequalities s<t as atoms. Equalities st will be
used on the meta-level as an abbreviation for conjunctions (s<t) A (¢<s). Fin will again denote the set
of clauses (represented by) {s~v; V...V sX v, | s a term of sort for}.

By Tr we denote the transitivity axiom for <: (z <y) A (y <z) — (z < 2). By a transitivity interpreta-
tion we mean a model of Tr. We say that a set of clauses N is Tr-satisfiable if there exists a transitivity
interpretation I that satisfies N. Otherwise N is Tr-unsatisfiable.

In [GSS00] we proved that if ® be a set of regular clauses then:

(1) If (A, <4) is a partially ordered set, then ® is satisfiable iff ®;U® 4 UFin is (classically) Tr-satisfiable.

(2) If (A,<4) is a sup-semilattice, then ® is satisfiable iff ®; U &4 U Sup U Min is (classically) Tr-
satisfiable.

(3) If (A,<4) is a totally-ordered set with minimal element L then & is satisfiable iff ; UP4 U {L<s |
s a term of sort for} is (classically) Tr-satisfiable.

A <-literal is a literal of the form v <L or v £ L, where L is a predicate term and v is a truth value.
A <-clause is a disjunction of <-literals. When applied to <-clauses, the chaining calculus of Bachmair
and Ganzinger [BG98] specializes to the following calculus, CS:

Negative chaining for <-clauses. From (u <L)V C and (v£ L) V D derive C V D pro-
vided that v <4 u and (i) holds.

Sup-reduction. From (u< L)V C and (v <L) V D, where u and v are incomparable, derive
(sup(u,v) <L) vV C V D provided that (ii) holds.

Ordered (positive) factoring. From B V BV C derive B V C provided that B is maximal
with respect to C.

The restrictions are: (i) (u <L)>C and (v £ L)>=D; (ii) (u <L)>C and (v<L)>D.
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Theorem 4.2 ([GSS00]) Let ® be a set of regular clauses over a finite set A truth values, and let ®1
be the encoding of ® in first-order logic.
(i) If A is a sup-semilattice with minimal elements Min(A) then ® is unsatisfiable if and only if the
empty clause can be derived from ®, U Min by a finite number of applications of inference rules in CS.
(i) Assume that A is a complete lattice with minimal element L. Let ®o be obtained from &, by
removing all literals of the form L L L and all clauses containing a literal of the form 1L <L. Then ® is
unsatisfiable if and only if there exists a derivation in CS of the empty clause from ®,.

As chaining into subterms is not possible for <-clauses, > needs not be a reduction ordering on terms.
Thus, the calculus CS is an order-refinement of the annotated resolution calculus in [LMR98]. If (4, <4)
is a totally ordered set then sup-reduction never applies. Let CT be the inference system consisting of
all inference rules in CS except sup-reduction. The refutational completeness of the CT calculus in the
case when (A, <j4) is a totally ordered set is a direct consequence of Theorem 4.2.

Since first-order many-valued logics are undecidable, in general we cannot hope to obtain decision
procedures based on the calculi above. It can however be seen that, in the propositional case, they yield
exponential time decision procedures in the length of the input.

4.2 Resolution for infinitely-valued logics

The method for translation to clause form for finitely valued logics of Baaz and Fermiiller cannot be
applied in the case when the set of truth values is infinite, nor for logics whose semantics is given in terms
of a class of algebras.

There have been several attempts for giving methods for automated theorem proving in infinitely-
valued logics. Some approaches rely on CNF translations which, for instance, allow reductions to mixed
integer programming (MIP) in the case of infinitely-valued propositional Lukasiewicz logic and Gdédel
logics [Hah94a, Hah97]. (The connectives of the product logic, however, lead outside MIP, and into
non-linear programming.) Other approaches reduce the problem of checking validity in infinitely-valued
logics to checking validity in a suitable finitely-valued logic. For instance, Aguzzoli and Ciabattoni [ACO00]
proved that a formula ¢ is valid in the infinitely valued (propositional) Lukasiewicz logic L if and only if it
is valid in a suitable m-valued Lukasiewicz logic L,,, where m only depends on the length of the formula
to be proved (in fact, m = 2'*"¢"(¢) 1 1), Thus, in this case, the methods discussed in Section 4.1 may
still be used, but could be highly inefficient, since the size of the algebra L,,, is exponential in the length
of the formula ¢. A resolution-like calculus for the infinitely-valued sentential calculus of Lukasiewicz
based on a different representation of clauses is given by Mundici and Olivetti in [MO98].

The particular properties of certain fragments of non-classical (first-order) logics allow to obtain em-
beddings into classical logic. The advantage in such situations is that refinements of classical resolution
can be used directly, without any sophisticated encodings.

An embedding of the prenex fragment of first-orded Godel logic into the first-order theory of dense total
orderings with endpoints is presented in [BFC01]. Semantically, first-order Gddel logic G (sometimes
called intuitionistic fuzzy logic, or Dummet’s LC) is viewed as an infinitely-valued logic, with the real
interval [0, 1] as set of truth values, and the semantics of the quantifiers given by supremum (for 3) and
infimum (for V). [BFCO1] study the logic G4, obtained by extending G with projection modalities

o0

V, A, interpreted by the maps V,A :[0,1] = {0,1}, V(z) =1iff z =0 and A(z) =1iff z = 1.

Theorem 4.3 ([BFCO01]) For each prenex formula Q191 - .. Qnynd(y1,-..,yn) of G5, there exists a set
CF4(3z¢(Z)) of order clauses® (which can be computed in linear time), such that Qiy1 . .. Qnynd (Y1, - -, Yn)
is valid in G5, if and only if CF*(3T$(Z)) is unsatisfiable with respect to the theory of dense total orderings
with endpoints.

The embedding is, up to a certain extent, similar to that described in the previous section in the case of
finitely-valued logics based on partially ordered, or totally ordered sets. A chaining calculus for dense total
orderings with endpoints [BG98] is then used for efficient deduction with such sets of clauses. However,
since G4 is undecidable, one cannot hope to use chaining for dense total orderings with endpoints as a
decision procedure in this case. In order to be able to use resolution as a decision procedure, in what
follows we focus on propositional non-classical logics.

30rder clauses are classical clauses with predicate symbols < and < interpreted as total dense orderings (strict and
reflexive, respectively).
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4.3 Resolution-based decision procedures for modal logics

In the attempt of understanding why so many modal logics are decidable many authors noticed that the
definition of the Kripke-style semantics justifies an embedding into (decidable fragments of) classical logic.
For instance, in [AvBN98] Andréka, Van Benthem and Németi introduced the so-called guarded fragment
(GF) of classical logic, which abstracts many of the properties of formulae obtained from the structure-
preserving translation to clause form for many modal logics. The main advantage of the embedding into
first-order logic is that it is very suitable to use for automated theorem proving, since proof techniques
developed for classical logic can be used for free. Refinements of resolution such as ordered resolution, the
use of selection functions, and specially devised calculi to deal with equivalence (or congruence) relations,
or with transitive relations proved to be extremely useful in this context.

For instance, ordered resolution was used as a decision procedure for modal logics such as K in [Ohl93,
Sch99], ordered chaining with selection was used to obtain (doubly exponential?) decision procedures for
the relational translation of propositional modal logics with modal operators satisfying the axioms D, T
or 4 in [GHMSO01]. A doubly-exponential decision procedure for the guarded fragment with equality, that
uses superposition, was given in [GAN99].

The embedding into classical logic for modal logics mentioned above is a special instance of a more
general result, which we present in the next section.

4.4 Resolution and uniform word problems in DLO

We show that links between truth of universal (Horn) sentences in classes of distributive lattices with
operators and truth in classes of suitably chosen relational models (justified by representation theorems)
can be used for obtaining embeddings into decidable fragments of first-order logic (without equality).
This type of embeddings in many cases yield optimal resolution-based decision procedures.

These results justify, in particular, existing embeddings into classical logic for many-valued logics over
finite distributive lattices with operators [SS01], but also for various classes of modal logics.

4.4.1 Algebraic and relational models

We establish a link between truth of universal sentences in classes of S-sorted distributive lattices with
operators and truth in classes of S-sorted relational structures.

Definition 4.4 An S-sorted RT ¥-relational structure ({(Xs, <)}ses,{Rx}rex) is an S-sorted family
of sets, each endowed with a reflexive and transitive relation < and with additional maps and relations
indezed by X, where, ife1, ..., en,e € {=1,4+1}, 81,...,5n,8 € S then: if R € ¥ is of type s7* ...s5" — s°,
Rx CII;, X, x X, is increasing if € = +1 and decreasing if e = —1.

We denote by DLO3,, BAOS,, and HAOS, the class of all S-sorted bounded distributive lattices, Boolean
algebras, and resp. Heyting algebras, with operators in ¥, and by RT{ the class of all S-sorted RT
Y-relational structures.

If L € DLOS, let D(L) = ({(Fp(Ls), C)}ses, { Ry} sex), whereif f : [[, LS — Lg is a join hemimor-

phism, where €1, ...,ep,e € {—1,+1}, then we define
Ry(Fi,...,Fy, F)if and only if f(F?",... F») C F*,

where F*! := F and F~! is the complement of F. Conversely, for every X € RTg, let O(X) be the
many sorted algebra ({(O(X5),U,N, 0, Xs)}ses, {fr}rex), where, for every s € S, (O(X),U,N,H, X;) is
the bounded distributive lattice of all upwards-closed subsets of X, and if R C H?:l X, x X is of type
sit...s5r = 5% then fg: [[, O(Xs,) = O(X,) is defined, for every (Uy,...U,) € [, O(Xs,) by

frU,...,U,) = (RTHUT, ..., USY))",

where R-Y(Uy,...,U,) = {z | 3z1...2p(z1 € Uy,...,2, € Uy, R(z1,...,24,7))}, and UT! := U and
U~ is the complement of U.

Similar correspondences can be established for (possibly many-sorted) Boolean algebras with operators
or Heyting algebras with operators. Note that in the case of Boolean algebras, the dual spaces are
discretely ordered (i.e. z <y iff x = y).

4In [GHMSO01] it is actually showed that a single-exponential space representation can be obtained by splitting the clauses
into their variable-disjoint regions and connecting them with the help of auxiliary monadic predicates.
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4.4.2 Structure-preserving translation to clause form

We consider subclasses V of DLOS, BAOS, or HAO$ that satisfy the following condition:

(K) There exists a K C RTy such that (i) for every A € V, D(A) € K;
(ii) for every X € K, O(X) € V.

In [SS03b] we showed that if V satisfies condition (K) then, for every formula ¢ = Vz1,...,z5(Aj; i1 =
Siz = \/;n:1 tji1 = tj2), V = ¢ if and only if for every X € K, O(X) = ¢.

For automated theorem proving it is important to find subclasses of RTY with good theoretical and
logical properties, for instance subclasses which are first-order definable.

Theorem 4.5 Condition (K) holds in the following cases:
1.V = DLOg the class of all S-sorted distributive lattices with operators in ¥; and K = RTS.

2.V = RDLO%Res the class of all S-sorted distributive lattices with operators in X satisfying the
residuation conditions in Res; and
K = RTg g, the class of those spaces in RTS which satisfy in addition:
{R¢(z1,...,2n,2) ¢ Rg(®1,...,2,...,%n,%;) | “g is the i-residuation of f" € Res}.

3.V =BAOS = {({Bs}ses, {f}sex) | Bs € Bool for all s € S; f : [[1=, Bs;, — By join hemimorphism,
for every f € X5, . 5. —s}; and

K = Rg the subclass of RTS consisting only of those S-sorted spaces in which all supports are
discretely ordered.

4.V =H, the class of all Heyting algebras; and K the family of all preordered spaces.
If A € Doy is a fized finite lattice and S = {lat,a}, then condition (K) holds in the following cases:

5.V =DLOA = {(L, A, {fi}rese, {fo}ses,) | L € Do1; fr : LF — L join hemimorphism, for every
f€XL, of type lat® — lat; fp : L™ — A join hemimorphism for every f € Xy, of type lat™ —
a}; and
K ={(X,D(A),{Rs}sexr,{Ro}ges,) | (X, {Rs}sex.) € RTx, and Ry, C X™ x D(A) increasing
for all g € &y of type lat™ — a}.

6.V = RDLOS’Res the subclass of all algebras in DLOS in which the operators in Xp satisfy the
residuation conditions in Res; and
K ={(X,D(A),{Rs}sexr,{Rg}ges,) | (X, {Rs}sex.) € RTx, and Ry, C X™ x D(A) increasing
for all g € Xy of type lat™ — a and, in addition, R¢(x1,...,2Zn,2) ¢ Ry(T1,...,%,...,Zpn, T;)
for all f,g € X, such that the condition “g is the i-residuation of f" occurs in Res}.
7.V = BAOQ ={(B,A,{fB}texs,{fo}fex,) | B € Bool; fg:B* — B join hemimorphism, for every
f €Xp, of type lat® — lat; f, : B™ — A join hemimorphism for every f € Xy, of type lat™ —
a}; and
K = {(X,D(A), {R¢}sess, {RyYoess) | (X, {Bs}jex,) € Re, and By C X™ x D(A) increasing
for all g € &y of type lat™ — a}.

Proof: The proof uses extensions of the Priestley representation theorem to various classes of distributive
lattices with operators, and extensions of the Stone representation theorem to Boolean algebras with
operators. For details we refer to [SS02, SS03a, SS03b]. m|

If a subclass V of DLOS, BAOS or HAO3 satisfies condition (K) for some first-order definable subclass
K of RTS, then the problem of checking whether a formula

qﬁ:V:cl,...,:ck(/\ $i1 = Si2 — \/ tj1 =tj2)
i=1 J=1

holds in V can be reduced to the problem of checking the satisfiability of a set of clauses.
Let ST(¢) be the set of all subterms of s; and t;,, 1 <i <n,1 <j<m,l,pe€ {1,2} (including the
variables and s;, t;, themselves).
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Theorem 4.6 ([SS02]) Assume that V and K satisfy condition (K), where K is a class of RT X-
structures definable by a finite set C' of first-order sentences. The following are equivalent:

1) VE¢

(2) The conjunction of (Dom) U (Her) U (Ren) U (P) U (N1) U---U (Nm)
is unsatisfiable, where:

(Dom) C,
<C Xy x X; is  reflerive and transitive for every sort s € S,
Ry C H?:Jrll X,, s increasing for every f € X, s, ssnins
(Her)  Va,y (z<yAPe(z) — Fe(y))
(Ren)
(1) Vz P (x) for every sort s € S,
(0) Vz =Py, (z) for every sort s € S,
(/\) vz (Pel Ne2 (33) A P€1 (.CL') A P€2 (SL'))
(V) vz (Pel Vea (33) A P€1 (.CL') \4 P€2 (SL'))
(X) Vz (Pier,en)@)® & Tz zp(Nimy Pe; ()% ARp(21,...,20,1)))
(P)  Va (Nizy Poin(z) & Pyyy(2))
(N1)  Fzy Py (1) ¢ Py,(21))
(Np)  Fzm (Pepr(@m)  # Pripo(@m))

where the unary predicates P, are indexed by elements in ST(¢), and the formulae in ¥ range over all
operators f € ¥ such that f is a join hemimorphism of type si* ...s5» — s°, where €;,& € {—1,+1}, and
L*t':=L and L' := L.

In addition, in many situations polarity of subformulae can be used for using only one direction of the
implications in (Ren). Similar ideas can be used for obtaining translations to clause form for formulae of
the form AL, si<siz = AjL; tj1<t;j2. Then only the direct implications are necessary in (P) and (N).

Ify= RDLO%Res or V= RDLOS,ReS, where Res is a set of generalized residuation rules, then the set
C of formulae contains the conditions:

Ry(z1,...,%i ..., &n, ) > Ry(21,...,2,...,Zn,T;)

for all operators f, g such that “g is an i-residuation of f” € Res.
If YV = H, the class of Heyting algebras, then the set C' contains only the preorder axioms for the
relation <.

4.4.3 Some decidability results

We now present some examples in which decidability results can be obtained.

Theorem 4.7 Ordered resolution with selection decides, in time exponential in the size of the input if
the arity of operators in X has an upper bound, and exponential in the square of the size of the input in
general, the universal clause theory of DLOg, and RDLO;.

Proof: (Idea) The results of [SS03b], Section 5.1 can easily be adapted to prove this theorem. As pointed
out in [SS03b], the selection strategy we adopt for this purpose shows that in this case inferences with
the clauses containing the < symbol are not needed for refutational completeness. |

It can be seen that for uniform word problems which contain only conjunction and join hemimorphisms,
resolution yields a polynomial time decision procedure®.

Theorem 4.8 Ordered resolution with selection decides, in time exponential in the size of the input if
the arity of operators in X has an upper bound, and exponential in the square of the size of the input in
general, the universal clause theory of DLOg, and RDLOQ, where A is a finite distributive lattice.

Proof: (Idea) We can show that inferences with the clauses containing the < symbol applied to arguments
of sort lat are not needed in the case of DLOA. Since D(A) is finite, the monotonicity and heredity rules

5Y. Kazakov, personal communication
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for sort a, can be replaced with their instances with elements in D(A). For instance the monotonicity
and heredity rule can alternatively be expressed by:

R¢(z1,...,2n,a) — Rp(x1,...,2n,D) for all a,b € D(A),a <b (9)

P.(a) — P.(b) for all a,b € D(A),a <b (10)

We can now introduce D(A) copies for every predicate symbol with last argument of sort a, e.g. by
replacing, for every a € D(A), R¢(21,...,%n,a) with R§(z1,...,2,) and Pe(a) with P. Arguments in
[SS03Db], Section 5.1 can now be applied and also in this case yield the desired complexity results. O
Similar arguments can be also used for (many sorted) Boolean algebras with operators, by considering,

in addition, the renaming rules for Boolean negation. Thus, we obtain decision procedures with optimal
time complexity.

Theorem 4.9 ([SS03b]) For every formula ¢ = Voi,...,xk(\il; 81 = sz = Vo, tj1 = tj2), or-
dered chaining with eager condensation and selection decides (in at most doubly exponential time and
exponential space with respect to the length of ¢) whether H = ¢.

4.4.4 A special case: Finitely-valued logics based on DLO.

As a special case, the results above can be applied to automated theorem proving in propositional many-
valued logics based on finite distributive lattices with operators.

Let A = (A4,V,A,0,1,{fa}sex) be a finite distributive lattice with operators, and let D(A) be the
Priestley dual of A. Since A is finite, D(A) = ({1 j | j € A, join irreducible}, C), and A is isomorphic to
O(D(A)). In this case V = {A} and K = {D(A)} satisfy condition (K). Let ¢ be the following formula
in the signature of A:

n m
¢=V$1,---;$k(/\ Si1 = Siz — \/ ti1 = tj2).
i=1 j=1

Corollary 4.10 Let A = (A,V,A,0,1,{fa}sex) be a finite distributive lattice with operators, where
A={ay,...,an}. Let D(A) = ({t41,---,14x}, ). The following are equivalent:

(1) AE 4.

(2) The conjunction of (Dom) U (Her) U (Ren) U (P)U (N;) U---U (Np)
is unsatisfiable, where:

(Dom) Vz z=1j1V---Vz =14

1ii < 1k whenever ji < j; in A
Ry (Tdirs- - Tdir> Things) whenever Ry(1ji,, .., 14i, Tjiy,) holds in D(A)

(Her)  Vz,y (z<yAPe(z) — PFely))
(Ren)

(1) Vz Py (z)

(0) Ve —Py(z)

(/\) Vz (Pell\ez (-77) x4 P61 (.CL') A P62 (.’E))

(V) Vz (P€1V62 (-77) x4 P61 (.CL') \ P62 (.’E))

(X) Vo (Pfer,cemy @) Fzy .oz (Aieg Pe,(2:)% ARg(21,. .., 20,)))
(P) Vz (Niz1 Psia () & Pyy(2))
(Nl) le (Ptn ('Z'l) % Pt12($1))
(Nm) dzm (P (Tm) ¥ Prn(zm))

where the unary predicates P, are indezed by elements in ST(¢), and the formulae in ¥ range over all
operators f € X such that f is a join hemimorphism of type €1 ...e, — €, where €;,¢ € {—1,+1}, and
Lt :=L and L7 := -L.

It is easy to see that the conjunction above is unsatisfiable if and only if the set of all its ground
instances, where the variables are instantiated with elements in D(A) is satisfiable. We thus recover
some of the results on automated theorem proving in many-valued logics having as algebra of truth
values a distributive lattice with operators in [SS01]. (The labeled literals of the form P, used in
[SS01] correspond to ground literals of the form P.(1j) in the present setting.)

For an extension to automated theorem proving in first-order many-valued logics based on distributive
lattices with operators we refer to [SS01].

163



5 Conclusions

The main goal of this paper was to show that, in many situations, efficient methods for automated
theorem proving can be obtained if we can find suitable embeddings into first-order classical logic. We
illustrated the ideas by means of various examples, ranging from many-valued logics to description logics.

In the case of many-valued logics, such embeddings into classical logic allow to reconstruct known com-
pleteness results for existing methods for automated theorems proving. Apart from this, the inference
systems we obtain are much more restricted, in particular with ordering constraints and selection func-
tions. In addition, general results in first-order logic for simplification and for eliminating redundancies
can be then used for free in the derived calculi. In many cases, the complexity of the decision procedures
obtained this way is optimal. Both in many-valued logics and in more general logics, such as modal logic,
intuitionistic logic and generalizations thereof, such embeddings into classical logic allow to use existing
efficient theorem provers for first-order logic; there is no need to devise specialized theorem provers for
particular non-classical logics.
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A Proof of Theorem 3.3

Proposition A.1 For all concept descriptions C1,Cs, and every TBozx T, Ci Ty Cs if and only if
BAONR |= (/\AECETA = C) — 1 < Cs.

Proof: This follows from the fact that every algebra in BAO y, homomorphically embeds into a Boolean
algebra of sets. m|

Lemma A.2 Every semilattice S € SLOJEVR embeds into a lattice in DLOJE'VR.

Proof: Let S = (S,A,0,1,{fs}sex) be a semilattice with 0, 1, and with monotone operators in X. Let
OT*(S) = (OT*(S),N,U,{0},S,{fs}sex) be the lattice of all non-empty order-ideals of S, where join is
set union, meet is set intersection, and the additional operators in X are defined, for every non-empty
order ideal of S, U, by fs(U) = |fs(U).

It is easy to see that for every f € %, f5({0}) = }fs({0}) = {0} and, for every U;,U, € OZ*(S),
Fs(UiUUz) = fs(Ur)Ufg(Us). Obviously, (OZ*(S),N,U, {0}, S) is a bounded distributive lattice. Thus,
OZ(S) € DLOg,,.

Let n: S — OI*(S) defined by n(z) := lz. Obviously, n(0) = {0},7(1) =S and n{z Ay) = (z Ay) =
dz N ly. We show that n(fs(z)) = lfs(z) = fs(lz). Ify € [fs(z) then y < fs(z), so y € {fs(=).
Conversely, if y € }{fs({z) then y < fs(z) for some z < z, hence, by the monotonicity of fs, y < fs(z).)
Thus, n is a homomorphism with respect to the whole signature of S. |

Lemma A.3 FEvery semilattice S € SLOYVR embeds into a lattice in DLOJVVR.

Proof: Let S = (S,A,1,{fs}rex) be a semilattice with 1, with operators in ¥ such that fs a meet
homomorphism for every f € ¥. Let OZ(S) = (OZ(S),N,U,0,S,{fs}sex) be the lattice of all order-
ideals of S, where join is set union, meet is set intersection, and the additional operators in ¥ are defined,
for every non-empty order ideal of S, U, by fg(U) = 1fs(U).

It is easy to see that for every f € &, f5(S) = [fs(S) = S (since fs(1) = 1). We show that if f
is a meet hemimorphism then for every Uy,Us € OZ(S), fs(U1 NUs) = f5(U1) N fg(Uz). The direct
inclusion is obvious. In order to prove the converse inclusion, let x € fg(U;) N fg(Uz). Then there exist
y1 € Uy and ys € Uy such that z < fs(y1) and = < fs(y2) Then z < fs(y1) A fs(y2) = fs(y1 Aya) (since
fs is a meet hemimorphism). Let y = y; A ys. Then y < y; for i = 1,2, so y € U; N Uy. This shows that
z < fs(y), with y € Uy NUs, s0 z € fg(Ur NUs).

The fact that 5 : S — OZ(S) defined by n(x) := |z is a homomorphism with respect to the whole
signature of S can be proved as before. m|

Lemma A.4 Every bounded distributive lattice with join (meet) hemimorphisms in ¥ homomorphically
embeds into a Boolean algebra with join (meet) hemimorphisms in X.

Proof: Consequence of results of Priestley duality for distributive lattices and Stone duality for Boolean
algebras. a

Proposition A.5 Assume that the only concept constructors are intersection and existential restric-
tion. For all concept descriptions C1,Cy, and every TBox T, C; Tt Cs if and only if SLOJH\,R =
(AazcerA=C) 2 C1 <G

Proof: Assume that C; C7 C,. Then, by Proposition A.1, BAOy, = (AyzcerA=C) = C1 <
Cy. Let S = (S,A,0,1,{far}reny) € SLO?VH. Then there exists an injective bounded semilattice
homomorphism 7 : S — OZ*(S), and a lattice homomorphic embedding h of OZ*(S) into a Boolean
algebra with operators B. Let v : No — S be an arbitrary valuation in S such that v(A) = ©(C) for
every A=C € T. Then honov : No — B is an assignment into an algebra in BAO y,, with h(n(v(A4))) =
honowv(C)forevery A=C € T. So, h(n(@(C1AC3))) = honov(CiAC3) = honov(Ci) = h(n(w(Ch))),
s0, by the injectivity of hon, 7(Cy A C3) = 1(Ch).

The converse follows immediately from the fact that the reduct of every algebra in BAOy, to the
signature of the problem is in SLOY,.. |

Proposition A.6 Assume that the only concept constructors are intersection and universal restric-
tion. For all concept descriptions C1,Cy, and every TBox T, C; Tt Cs if and only if SLOYVR =
(Asecer A=0) » T < G,
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Proof: Assume that C; C7 Ci. Then, by Proposition A.1, BAOy, = (/\AECETA = 6) — C; < Cs.
Let S = (S,A,1,{fvr}reng) € SLOY,. Then there exists an injective bounded semilattice homomor-
phism 7 : S — OZ(S), and a lattice homomorphic embedding h of OZ(S) into a Boolean algebra with
operators B. Let v : No¢ — S be an arbitrary valuation in S such that v(A) = 7(C) forevery A= C € T.
Then honow: No — B is an assignment into an algebra in BAOy, with h(n(v(4))) = honowv(C) for
every A= C € T. So, h(n(@(Cy A C2))) = honowv(Cy AC2) = honov(Ci) = h(n(T(Ch))), so, by the
injectivity of hon, T(Cy A C2) = 5(C}).

The converse follows immediately from the fact that the reduct of every algebra in BAOy, to the
signature of the problem is in SLOY,,. i

B Proof of Theorem 3.4

Theorem B.1 The uniform word problem for BAOy, is EXPTIME-complete.

Proof: (Sketch) A resolution-based exponential time algorithm for the uniform word problem for BAO y,
is obtained for instance in [SS03b]. EXPTIME-hardness (even for word problems which contain only
conjunction and universal and existential restriction) can be proved using arguments similar to those
used in [MGKW02], Theorem 1. O

Lemma B.2 FEvery finite partial SLOJE'VR—algebm weakly embeds into a distributive lattice in DLOJE'VR.

Proof: Let P = (P,A,0,1,{far}reny) be a partial semilattice. This means that:
(i) A is a partially defined binary operation,
(ii) for every R € Ng, fag is a partially defined unary operation,

(iii) x A z is defined in P for every z € P;
x Ay is defined in P iff y A z is defined in P and they are equal;
if z Ay is defined in P and z A (y A z) is defined in P then also (z Ay) A z is defined in P and
zAYAz)=(zAYy)Az;

(iv) far(0) is defined in P and equal to O for every R € Ng;
if x Ay is defined in P and equals x Ay = z, and fag(z) and fsr(y) are defined in P then
far(z) A far(y) is defined in P and equals fag(x), for every R € Ng.

We can define a partial order on P by z < y iff x Ay is defined in P and equals z. Let OZ(P) :=
(OZ(P,<),n, {0}, S, {fsr}reNy), Where union is join, intersection is meet, and the additional operators
are defined, for every order ideal of S, U, by f5g(U) = l{far(z) | far(z) defined in P,z € U}. It is easy
to see that f3({0}) = J{f3r(0)} = {0}; and f5 is monotone for every R € Ng.

Let n: P — OZ(P) be defined by n(z) = Jz. We show that 7 is a weak embedding, i.e. it is injective,

and whenever fp(p1,...,pn) is defined in P, 9(fp(p1,..-,pn)) = F(P1),---,0(pn)).
e 1) is obviously injective.
o It is easy to prove that n(1) = S, n(0) = {0}, and whenever zAy is defined in P, n(zAy) = n(z)Nn(y).

e Assume that fsg(x) is defined in P. Then n(far(z)) = lfar(z). On the other hand, fip(lz) =

Hfar(W) | far(y) defined in P,y < z}. If y € n(far(z)) then y < fagr(z), soy € fag(z). If
y € far(lz) then y < fag(z) for some z such that fig(z) is defined and z < z (i.e. such that z Az
is defined in P and equals z). But then f3g(z) A far(z) is defined in P and equal to fagr(z), so

y < far(2) < far(z). Hence y € n(far(x)). This shows that 7(far(z)) = far(n(z)). O
Proposition B.3 The uniform word problem for SLO?VR is decidable in polynomial time.

Proof: By a result of Burris [Bur95], a quasivariety K has a polynomial time decidable word problem if
every finite partial algebra which weakly satisfies the (quasi-)identities of X weakly embeds into a total
algebra in K. Lemma B.2 shows that this is the case for K = SLOJEVR. i
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