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Abstract. We show that many properties studied in mathematical anal-
ysis (monotonicity, boundedness, inverse, Lipschitz properties possibly
combined with continuity, derivability) are expressible by formulae in a
class for which sound and complete hierarchical proof methods for test-
ing satisfiability of sets of ground clauses exist. The results are useful for
automated reasoning in analysis and in the verification of hybrid systems.

1 Introduction

Efficient reasoning about functions over numerical domains subject to certain
properties (monotonicity, convexity, continuity or derivability) is a major chal-
lenge both in automated reasoning and in symbolic computation. Besides its
theoretical interest, it is very important for verification (especially of hybrid sys-
tems). The task of automatically reasoning in extensions of numerical domains
with function symbols whose properties are expressed by first-order axioms is
highly non-trivial: most existing methods are based on heuristics. Very few sound
and complete methods or decidability results exist, even for specific fragments:
Decidability of problems related to monotone or continuous functions over R

were studied in [3,4,1]. In [3,4] Harvey Friedman and Akos Seress give a decision
procedure for formulae of the type (∀f ∈ F)φ(f, x1, . . . xn), where F is the class
of continuous (or differentiable) functions over R, xi range over R and φ contains
only existential or only universal quantifiers, evaluations of f and comparisons
w.r.t. the order on R. Reasoning about functions which satisfy other axioms,
or about several functions is not considered there. In [1], Domenico Cantone,
Gianluca Cincotti, and Giovanni Gallo give a decision procedure for the validity
of universally quantified sentences over continuous functions satisfying (strict)
convexity or concavity conditions and/or monotonicity.

In this paper we apply recent methods for hierarchical reasoning we developed
in [8] to the problem of checking the satisfiability of ground formulae involving
functions over numerical domains. The main contributions of the paper are:

(1) We extend the notion of locality of theory extensions in [8] to encompass
additional axioms and give criteria for recognizing locality of such extensions.

(2) We give several examples, including theories of functions satisfying various
monotonicity, convexity, Lipschitz, continuity or derivability conditions and
combinations of such extensions. Thus, our results generalize those in [1].



(3) We illustrate the use of hierarchical reasoning to tasks such as deriving con-
straints between parameters which ensure (un)satisfiability.

Structure of the paper. In Sect. 1.1 we illustrate the ideas on examples. In
Sect. 2 local extensions are defined, and hierarchical reasoning in such extensions,
as well as ways of recognizing them are discussed. Section 3 provides a large
number of examples from analysis with applications to verification.

1.1 Illustration

Assume that f :R→R satisfies the bi-Lipschitz condition (BLλ
f ) with constant

λ and g is the inverse of f . We want to determine whether g satisfies the bi-
Lipschitz condition on the codomain of f , and if so with which constant λ1, i.e.
to determine under which conditions the following holds:

R ∪ (BL
λ
f ) ∪ (Inv(f, g)) |= φ, (1)

where φ : ∀x, x′, y, y′(y=f(x)∧y′=f(x′) → 1

λ1

|y−y′|≤|g(y)− g(y′)|≤λ1|y−y′|);

(BL
λ
f ) ∀x, y(

1

λ
|x − y| ≤ |f(x) − f(y)| ≤ λ|x − y|);

Inv(f, g) ∀x, y(y = f(x) → g(y) = x).

Entailment (1) is true iff R∪ (BLλ
f )∪ (Inv(f, g))∪G is unsatisfiable, where G =

(c1=f(a1)∧ c2=f(a2)∧ ( 1

λ1

|c1−c2| > |g(c1)−g(c2)|∨ |g(c1)−g(c2)| > λ1|c1−c2|))
is the formula obtained by Skolemizing the negation of φ.

Standard theorem provers for first order logic cannot be used in such situations.
Provers for reals do not know about additional functions. The Nelson-Oppen
method [7] for reasoning in combinations of theories cannot be used either.

The method we propose reduces the task of checking whether formula (1) holds
to the problem of checking the satisfiability of a set of constraints over R. We first
note that for any set G of ground clauses with the property that “if g(c) occurs in
G then G also contains a unit clause of the form f(a) = c” every partial model P

of G – where (i) f and g are partial and defined exactly on the ground subterms
occurring in G and (ii) P satisfies BLλ

f ∪ Inv(f, g) at all points where f and g

are defined – can be completed to a total model of R ∪ (BLλ
f ) ∪ (Inv(f, g)) ∪ G

(cf. Thm. 8 and Cor. 9). Therefore, problem (1) is equivalent to

R ∪ (BL
λ
f ∪ Inv(f, g))[G] ∪ G |=⊥,

where (BLλ
f ∪ Inv(f, g))[G] is the set of those instances of BLλ

f ∪ Inv(f, g) in
which the terms starting with g or f are ground terms occurring in G, i.e.

(BL
λ
f ∪ Inv(f, g))[G] =

1

λ
|a1 − a2| ≤ |f(a1) − f(a2)| ≤ λ|a1 − a2| ∧

(c1 = f(a1) → g(c1) = a1) ∧ (c2 = f(a1) → g(c2) = a1) ∧

(c1 = f(a2) → g(c1) = a2) ∧ (c2 = f(a2) → d(c2) = a2).



We separate the numerical symbols from the non-numerical ones by introducing
new names for the extension terms, together with their definitions D = (f(a1) =
e1 ∧ f(a2) = e2 ∧ g(c1) = d1 ∧ g(c2) = d2) and replacing them in (BLλ

f ∪
Inv(f, g))[G] ∪ G. The set of formulae obtained this way is BL0 ∪ Inv0 ∪ G0.
We then use – instead of these definitions – only the instances Con[G]0 of the
congruence axioms for f and g which correspond to these terms. We obtain:

BL0 :
1

λ
|a1 − a2| ≤ |e1 − e2| ≤ λ|a1 − a2|

Inv0 : (c1=e1→d1=a1) ∧ (c2=e1→d2=a1) ∧ (c1=e2→d1=a2) ∧ (c2=e2→d2=a2)

G0 : c1 = e1 ∧ c2 = e2 ∧ (|d1 − d2| <
|c1 − c2|

λ1
∨ |d1 − d2| > λ1|c1 − c2|)

Con[G]0 c1 = c2 → d1 = d2 ∧ a1 = a2 → e1 = e2

Thus, entailment (1) holds iff BL0∧Inv0∧G0∧Con[G]0 is unsatisfiable, i.e. iff

∃a1, a2, c1, c2, d1, d2, e1, e2(BL0 ∧ Inv0 ∧ G0 ∧ Con[G]0) is false.

The quantifiers can be eliminated with any QE system for R. We used Redlog

[2]; after simplification (w.r.t. λ>1, λ1>1 and some consequences) we obtained:

λ1λ
2 − λ < 0 ∨ λ1λ − λ2 < 0 ∨ λ1 − λ < 0 ∨ (λ1λ − λ2 > 0 ∧ λ1 = λ) ∨

(λ2
1λ − λ1 > 0 ∧ (λ2

1 − λ1λ < 0 ∨ (λ2
1 − λ1λ > 0 ∧ λ1 = λ))) ∨

(λ2
1λ − λ1 > 0 ∧ λ2

1 − λ1λ < 0 ∧ λ1 − λ > 0) ∨ (λ2
1λ − λ1 > 0 ∧ λ2

1 − λ1λ < 0).

If λ>1, λ1>1, this formula is equivalent to λ1<λ. Hence, if λ>1, λ1>1 we have:

R ∪ (BL
λ
f ) ∧ (Inv(f, g)) |= φ, iff λ1 ≥ λ. (2)

The constraints we obtain can be used for optimization (e.g. we can show that
the smallest value of λ1 for which g satisfies the bi-Lipschitz condition is λ).

In this paper we investigate situations where this type of reasoning is possible.
In Sect. 2 local extensions are defined, and ways of recognizing them, and of
hierarchical reasoning in such extensions are discussed. Section 3 provides several
examples from analysis with applications to verification.

2 Local Theory Extensions

Let T0 be a theory with signature Π0 = (S0, Σ0, Pred), where S0 is a set of
sorts, Σ0 is a set of function symbols, Pred is a set of predicate symbols. We
consider extensions T1 of T0 with new sorts and function symbols (i.e. with
signature Π = (S0 ∪S1, Σ0 ∪Σ1, Pred)), satisfying a set K of clauses. We denote
such extensions by T0 ⊆ T1 = T0 ∪ K. We are interested in disproving ground
formulae G in the extension Πc of Π with new constants Σc. This can be done
efficiently if we can restrict the number of instances to be taken into account
without loss of completeness. In order to describe such situations, we need to
refer to “partial models”, where only the instances of the problem are defined.



2.1 Total and Partial Models

Partial Π-structures are defined as total ones, with the difference that for every
f ∈ Σ with arity n, fA is a partial function from An to A. Evaluating a term
t with respect to a variable assignment β : X → A in a partial structure A

is the same as for total algebras, except that this evaluation is undefined if
t = f(t1, . . . , tn) and either one of β(ti) is undefined, or (β(t1), . . . , β(tn)) is
not in the domain of fA. For a partial structure A and β : X→A, we say that
(A, β) |=w (¬)P (t1, . . . , tn) if either (a) some β(ti) is undefined, or (b) β(ti)
are all defined and (¬)PA(β(t1), . . . , β(tn)) holds in A. (A, β) weakly satisfies a
clause C (notation: (A, β) |=w C) if (A, β) |=w L for at least one literal L in C.
A weakly satisfies a set of clauses K (A |=w K) if (A, β) |=w C for all C ∈ K and
all assignments β.

2.2 Locality

Let Ψ be a closure operator stable under renaming constants, associating with
sets K and T of axioms resp. ground terms, a set ΨK(T ) of ground terms. We
consider condition (LocΨ ) (cf. also [5]):

(LocΨ ) for every ground formula G, T1 ∪ G |=⊥ iff T0 ∪ K[ΨK(G)] ∪ G has no
weak partial model in which all terms in ΨK(G) are defined,

where K[ΨK(G)] consists of all instances of K in which the terms starting with
extension functions are in the set ΨK(G) := ΨK(st(K, G)), where st(K, G) is the
set of ground terms occurring in K or G. (If Ψ is the identity function, we denote
K[ΨK(G)] by K[G] and the locality condition by (Loc).)

2.3 Hierarchical Reasoning

Assume the extension T0 ⊆ T1=T0∪K satisfies (LocΨ ). To check if T1∪G |=⊥ for a
set G of ground Πc-clauses, note that, by locality, T1∪G |=⊥ iff T0∪K[ΨK(G)]∪G

has no weak partial model. We purify K[ΨK(G)]∪G by introducing, bottom-up,
new constants ct (from a set Σc) for subterms t = f(g1, . . . , gn) with f ∈ Σ1, gi

ground Σ0 ∪Σc-terms, together with their definitions ct ≈ t. Let D be the set of
definitions introduced this way. The formula thus obtained is K0∪G0∪D, where
K0 ∪ G0 is obtained from K[ΨK(G)] ∪ G by replacing all extension terms with
the corresponding constants.

Theorem 1 ([5]) Assume that T0 ⊆ T0 ∪ K satisfies (LocΨ ). Let K0 ∪ G0 ∪ D

be obtained from K[ΨK(G)]∪G as explained above. The following are equivalent:

(1) T0∪K∪G is satisfiable;
(2) T0 ∪ K0 ∪ G0 ∪ Con[G]0 has a (total) model, where Con[G]0 is the set of

instances of the congruence axioms corresponding to D:

Con[G]0 = {

n
∧

i=1

ci ≈ di → c ≈ d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.



Thus, if the extension T0 ⊆ T1 satisfies (LocΨ ) then satisfiability w.r.t. T1 is
decidable for all ground clauses G for which K0 ∪ G0 ∪ N0 is finite and belongs
to a fragment F0 of T0 for which checking satisfiability is decidable. Theorem 1
also allows us to give parameterized complexity results for the theory extension:

Theorem 2 Let g(m) be the complexity of checking the satisfiability w.r.t. T0 of
formulae in F0 of size m. The complexity of checking satisfiability of a formula
G w.r.t. T1 is of order g(m), where m is a polynomial in n = |ΨK(G)| whose
degree (≥ 2) depends on the number of extension terms in in K.

2.4 Recognizing locality

We can recognize local extensions T0 ⊆ T1 by means of flat and linear1 clauses
as follows.

Theorem 3 ([5]) Assume that K is flat and linear and ΨK(T ) is finite for any
finite T . If the extension T0 ⊆ T0∪K satisfies condition (CompΨ

w) then it satisfies
(Loc)Ψ, where:

(CompΨ
w) Every weak partial model A of T1 with totally defined Σ0-functions,

such that the definition domains of functions in Σ1 are finite and such
that the set of terms f(a1, . . . , an) defined in A is closed under Ψ wea-
kly embeds into a total model B of T1 s.t. A|Π0

' B|Π0
are isomorphic.

Theorem 4 (Considering additional axioms.) Let Ax1 be an additional set
of axioms in full first-order logic. Assume that every weak partial model A of T1

with totally defined Σ0-functions satisfying the conditions in (CompΨ
w) weakly

embeds into a total model B of T0 ∪ K ∪ Ax1. Let G be a set of ground clauses.
The following are equivalent:

(1) T0 ∪ K ∪ Ax1 ∪ G |=⊥.
(2) T0 ∪ K[ΨK(G)] ∪ G has no partial model in which all ground subterms in

K[ΨK(G)] ∪ G are defined.

3 Examples of Local Extensions

We give several examples of local extensions of numerical domains. Besides
axioms already considered in [8,10,6] (Sect. 3.1) we now look at extensions
with functions satisfying inverse conditions, convexity/concavity, continuity and
derivability. For the sake of simplicity, we here restrict to unary functions, but
most of the results also hold for functions f : R

n → R
m.

1 A non-ground formula is Σ1-flat if function symbols (also constants) do not occur
as arguments of functions in Σ1. A Σ1-flat non-ground formula is called Σ1-linear
if whenever a universally quantified variable occurs in two terms which start with
functions in Σ1, the two terms are identical, and if no term which starts with a
function in Σ1 contains two occurrences of the same universal variable.



3.1 Monotonicity and Boundedness Conditions

Any extension of a theory with free function symbols is local. In addition the
following theory extensions have been proved to be local in [8,10,6]:

Monotonicity. Any extension of the theory of reals, rationals or integers with
functions satisfying Monσ(f) is local ((Compw) holds [8,10]) 2:

Mon
σ(f)

^

i∈I

xi≤i
σiyi ∧

^

i6∈I

xi=yi → f(x1, .., xn) ≤ f(y1, .., yn).

The extension T0⊆T0∪SMon(f) is local if T0 is the theory of reals (and f : R→R)
or the disjoint combination of the theories of reals and integers (and f : Z→R)
[5]. The extension of the theory of integers with (SMonZ(f)) is local.

SMon(f) ∀i, j(i<j → f(i)<f(j)) SMonZ(f) ∀i, j(i<j → (j−i) < f(j)−f(i)).

Boundedness. Assume T0 contains a reflexive binary predicate ≤, and f 6∈ Σ0.
Let m ∈ N. For 1 ≤ i ≤ m let ti(x1, . . . , xn) and si(x1, . . . , xn) be terms in
the signature Π0 and φi(x1, . . . , xn) be Π0-formulae with (free) variables among
x1, . . . , xn, such that T0 |= ∀x(φi(x) → si(x) ≤ ti(x)), and if i 6= j, φi∧φj |=T0

⊥.

Let GB(f)=
∧m

i=1
GBφi(f) and Def(f)=

∧n

i=1
Defφi(f), where:

GB
φi (f) ∀x(φi(x) → si(x) ≤ f(x) ≤ ti(x)) Def

φi(f) ∀x(φi(x) → f(x) = ti(x))

(i) The extensions T0 ⊆ T0 ∪ GB(f) and T0 ⊆ T0 ∪ Def(f) are both local [10,5].
(ii) Any extension of a theory for which ≤ is a partial order (or at least reflexive)

with functions satisfying Monσ(f) and Boundt(f) is local [10,5].

Boundt(f) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a Π0-term with variables among x1, . . . , xn whose
associated function has the same monotonicity as f in any model. Similar
results hold for strictly monotone functions.

Injectivity. An extension T0 ⊆ T1 = T0 ∪ Inj(f) with a function f of arity i → e

satisfying Inj(f) is local provided that in all models of T1 the cardinality of the
support of sort i is lower or equal to the cardinality of the support of sort e.

Inj(f) ∀i, j(i 6= j → f(i) 6= f(j)).

3.2 Inverse conditions

Consider the following inverse condition:

Inv(f, g) ∀x, y(y = f(x) → g(y) = x).

Such conditions often occur in mathematics and are important in verification
(e.g. to model direct and inverse links between certain objects).

2 For i ∈ I, σi∈{−, +}, and for i 6∈ I, σi=0; ≤+=≤,≤−=≥.



Theorem 5 Let T0 be a theory with signature Π0 = (S0, Σ0, Pred). Assume that
f ∈ Σ0 and T0 |= Inj(f). Let g 6∈ Σ0. The extension T0 ⊆ T0 ∪ Inv(f, g) is local.

Proof : Let P be a weak partial model of T0∪Inv(f, g). Then P|Π0
is a total model

of T0 (hence fP : P → P is total and injective) and gP : P → P is a partial
function such that whenever b = f(a) and gP (b) is defined, gP (b) = a. Let c0 ∈ P

be arbitrary but fixed. We define gP : P → P by:

gP (b) =







a if b = fP (a) for some a ∈ P,

g(b) if g(b) defined,
c0 if b 6∈ fP (P ) and g(b) is not defined.

By the injectivity of fP , gP is well-defined and extends gP . Thus T0 ⊆ T0 ∪
Inv(f, g) satisfies Compw, so it is local. 2

Theorem 6 Let T0 be a theory and f, g 6∈ Σ0. Let K(f) be a set of clauses over
the signature (Σ0∪{f}, Pred). Assume that T0 ⊆ T0∪K(f) satisfies Compw, and
that T0 ∪ K(f) |= Inj(f). Then the following are equivalent:

(1) T0 ∪ (K(f) ∪ Inv(f, g)) ∪ G |=⊥;
(2) T0 ∪ (K(f) ∪ Inv(f, g))[G] ∪ G |=⊥ for all sets G of ground clauses with the

property that if g(c) occurs in G then also some f(a) = c occurs in G.

Proof : Let P be a partial model of T0 ∪ (K(f) ∪ Inv(f, g))[G] ∪ G in which all
ground subterms in K(f) and G are defined (and no other terms). We use the
fact that T0 ⊆ T0 ∪K(f) satisfies Compw to extend fP to a total function f . We
now extend gP to a total function g : P → P as follows. Let p ∈ P . If there exists
q ∈ P such that f(q) = p we define g(p) = q. g is defined arbitrarily otherwise.
As before it is easy to see that g is well-defined and extends gP . 2

3.3 Convexity/Concavity

Let f be a unary function, and I = [a, b] a subset of the domain of definition of
f . We consider the axiom:

Conv
I (f) ∀x, y, z

„

x, y∈I ∧ x≤z≤y →
f(z)−f(x)

z−x
≤

f(y)−f(x)

y−x

«

.

Theorem 7 The extensions T0 ⊆ T0 ∪ ConvI
f and T0 ⊆ T0 ∪ ConcI

f are local in
each of the following situations:

(i) T0 = R, the theory of real numbers, and f is a new unary function;
(ii) T0 = Z, the theory of integers, and f is a new unary function;
(iii) T0 is the many-sorted combination of the theories of reals (sort real) and

integers (sort int) and f has arity int → real.

Proof : Let P be a partial algebra which weakly satisfies ConvI
f in which f has a

finite definition domain. Let p1, . . . , pn ∈ R be the points at which f is defined.
Let f : R → R be obtained by linear interpolation from f . Then f is convex. All
other cases are proved similarly. 2



3.4 Lipschitz Conditions

Consider the following conditions:

(Lλ
f (c0)) ∀x(|f(x) − f(c0)| ≤ λ|x − c0|) Lipschitz condition at c0

(Lλ
f ) ∀x, y(|f(x) − f(y)| ≤ λ|x − y|) (uniform) Lipschitz condition

(BL
λ
f ) ∀x, y( 1

λ
|x − y| ≤ |f(x) − f(y)| ≤ λ|x − y|) bi-Lipschitz condition

Such conditions occur in the verification of hybrid systems when specifying (by
universal axioms) that the derivative of a function is bounded by a given value.

Theorem 8 The extensions R ⊆ R∪(Lλ
f (c0)), R ⊆ R∪(Lλ

f ), and R ⊆ R∪(BLλ
f )

satisfy Compw, hence are local.

Proof : To prove that R ⊆ R ∪ (Lλ
f (c0)) satisfies Compw it is sufficient to define,

for every partial model P , fP (p) := c0 whenever it is not defined. To prove that
R ⊆ R ∪ (Lλ

f ) and R ⊆ R ∪ (BLλ
f ) satisfy Compw, let P be a partial algebra in

which f has a finite definition domain. Let p1, . . . , pn ∈ R be the points at which
f is defined. Let f : R → R be obtained by linear interpolation from f . It is easy
to check that if f satisfies condition Lλ

f then f also satisfies Lλ
f , and if f satisfies

condition BLλ
f then f also satisfies BLλ

f . 2

From Thms. 6 and 8 we obtain the result used in the illustration in Sect. 1.

Corollary 9 The extension R∪BLλ
f ∪ Inv(f, g) of R has the property that for all

sets G of ground clauses such that if g(c) occurs in G then also f(a) = c occurs
in G, R ∪ (BLλ

f ∪ Inv(f, g)) ∪G |=⊥ iff R ∪ (BLλ
f ∪ Inv(f, g))[G] ∪G has no weak

partial model in which all subterms of G are defined (and only those).

3.5 Continuity, Derivability

We consider the following continuity conditions for a function f : R → R:

Contf (c0) ∀ε(ε>0→∃δ(δ>0∧∀x(|x−c0|<δ→|f(x)−f(c0)|<ε))) continuity at c0

Contf ∀x(Contf (x)) continuity

and the following derivability conditions for a (continuous) function f :

Der(f, f ′)(c0) : ∀ε(ε>0→∃δ(δ>0∧∀x(|x−c0|<δ→| f(x)−f(c0)
x−c0

−f ′(c0)|<ε)))

Der
≤n(f, f1, . . . , fn)(c0) :

n̂

i=1

Contfi−1 (c0) ∧ Der(f i−1, f i)(c0)

Der(f, f ′) := ∀xDer(f, f ′)(x); Der≤n(f, f1, . . . , fn) = ∀xDer≤n(f, f1, . . . , fn)(x)
(axiomatizing derivability – resp. n-times derivability – at every point, where
n ∈ N ∪ {∞}, f0 = f and f i is the i-th derivative of f).

Theorem 10 Any partial function over the reals with a finite domain of defini-
tion extends to a total continuous function over the reals.



Proof : For R ∪ Contf (c0) we can extend any partial model to a total one by
defining f(x) := f(x) whenever f(x) is defined and f(x) := f(c0) otherwise. For
showing that R ⊆ R ∪ Contf satisfies condition Compw we extend any partial
model to a total one by taking f to be the function obtained by (e.g. linear)
interpolation from the partially defined function fP . We prove that R ⊆ R ∪
UContf satisfies condition Compw as follows: if P is a weak partial model of R∪
UContf , and fP has a finite definition domain, we use a polynomial interpolation
procedure for extending fP to a polynomial function f which then is uniformly
continuous. 2

Theorem 11 R ∪ Contf (c0) ∪ Der(f, f ′)(c0) and R ∪ Contf ∪ Der(f, f ′) are Ψ -
local extensions of R, where Ψ(T ) = T ∪ {f(c) | f ′(c) ∈ T} ∪ {f ′(c) | f(c) ∈ T}.
R ⊆ R∪Der≤n(f, f1, . . . , fn)(c0) and R ⊆ R∪Der≤n(f, f1, . . . , fn) are Ψn-local
extensions, where Ψn(T ) = T∪{fk(c) | 0≤k≤n if f i(c)∈T for some 0≤i≤n}.

Proof : We can use any polynomial interpolation theorem to compute a total
model from any partial model (e.g. the Hermite interpolation theorem). 2

Example 12 We want to check whether R ∪ Cont(f)(c0) |= Lλ
f (c0). This holds

iff R∪Cont(f)(c0)∧G |=⊥, where G = |f(c1)−f(c0)| > λ|c1 − c0| is the formula
obtained from ¬Lλ

f (c0) after Skolemization. We proceed as follows.

Step 1: By Theorem 11, R ∪ Cont(f)(c0) ∧ G |=⊥ iff R ∪ Free(f) ∧ G |=⊥.

Step 2: We purify G replacing the ground terms starting with f with new con-
stants and replacing the definitions D = {f(c0)=d0, f(c1)=d1} with correspond-
ing instances of the congruence axioms, and obtain:

Con[G]0 ∧ (Free(f) ∧ G)0 : c1=c0→d1=d0 ∧ |d1 − d0| > λ|c1 − c0|

It can easily be checked that the problem is satisfiable in R. A solution (i.e. real
values for c0, c1, d1, λ for which the formula above becomes true) can easily be
found by any solver for the reals. An example is the valuation β which assigns
c1 the value c0 + 1, and d1 the value d0 + λ + 1.

Model generation. From any satisfying valuation for this problem, β : X→R

with β(c0)=c0, β(c1)=c1, β(d0)=d0, β(d1)=d1, we can construct a model for R∪
(Cont(f)(c0))∪¬(Lλ

f (c0)) by noticing that we extend every partial function with

f(c0) = d0 and f(c1) = d1 to a total continuous function f : R → R (e.g. a linear

function with f(c0) = d0 if c1 = c0 and f(x) = d0 + d1−d0

c1−c0
(x − c0) if c1 6= c0).

3.6 Combinations

Analyzing the proofs in the previous sections we notice that the same completion
for the partial functions can be used for (i) monotone, strictly monotone, con-
vex/concave, Lipschitz and continuous functions over R. The same completion
(possibly different from that in (i)) is used (ii) for Lipschitz, and for (uniformly)
continuous and n-derivable functions over R.



Theorem 13 The following axiom combinations define local extensions of R:

(1) Arbitrary combinations of [S]Mon)(f), Convf , Lλ
f [(c0)], BLλ

f , Contf [(c0)];

(2) Arbitrary combinations of Lλ
f [(c0)], BLλ

f , Contf [(c0)], Contf [(c0)]∧Der(f, f ′)[(c0)],

Der≤n(f, f1, .., fn)(c0), and Der≤n(f, f1, .., fn).

However, care is needed when combining Der(f, f ′) with boundedness or mono-
tonicity conditions on f ′, or with convexity/concavity conditions on f or f ′.
The types of extensions considered before can be combined up to a certain extent.

Theorem 14 Let {f1, . . . , fn} be unary function symbols, and K1, . . . ,Kn be
systems of axioms such that for every i, Ki is a set of formulae over the signature
of R augmented with fi. Assume that for every i ∈ {1, . . . , n}, Ki is in one of the
classes considered in Thm. 13. Then R ⊆ R∪K1 ∪ · · · ∪Kn is a local extension.

Proof : Analogous to the proof in [9]. 2

The constructions in the previous sections can be relativized to a subinterval I

of the domain of definition of the function. We denote this by adding the index
I to the corresponding axiom. Locality is preserved for families {CI

f | I ∈ J } of
axioms in the class above relativized over a family of mutually disjoint intervals.

Example 15 We want to determine which constraints on λ, λ1, λ2 guarantee
that if f, g satisfy the Lipschitz conditions at c0 with coefficients λ1 > 0, λ2 > 0
then f + g satisfies the Lipschitz condition at c0 with coefficient λ, i.e.:

R ∪ (Lλ1

f (c0)) ∪ (Lλ2
g (c0)) |= Lλ

f+g(c0) (3)

or, equivalently, that R∪ (Lλ1

f (c0))∪ (Lλ2
g (c0))∪G |=⊥, where G = |f(c)+ g(c)−

(f(c0)+g(c0))| 6≤ λ · |c− c0| is the set of ground clauses obtained from ¬Lλ
f+g(c0)

by Skolemization.

Step 1. By Theorem 14, R ∪ (Lλ1

f (c0)) ∪ (Lλ2
g (c0)) is a local extension of R, so

R ∪ (Lλ1

f (c0)) ∪ (Lλ2
g (c0)) ∪ G is satisfiable iff R ∪ (Lλ1

f (c0)) ∪ (Lλ2
g (c0))[G] ∪ G

has a partial model in which {c0, f(c0), g(c0), c, f(c), g(c)} (all ground subterms
occurring in all terms in (Lλ1

f (c0)) ∪ (Lλ2
g (c0)) or in G) are defined.

Step 2. We purify the new problem by replacing the ground terms starting with f
or g with new constants, and obtain a set of definitions D = {f(c)≈d, f(c0)≈d0,
g(c)≈e, g(c0)≈e0} and a set of constraints over R (we omitted those in which
x, y are instantiated with the same constant):

|d−d0| ≤ λ1|c−c0| ∧ |e−e0| ≤ λ2|c−c0| ∧ |(d + e)−(d0 + e0)| ≤ λ|c−c0|

This problem is satisfiable iff the problem obtained by replacing D with the
corresponding instances Con[G]0 of the congruence axioms for f, g is satisfiable:

c = c0 → d = d0 ∧ c = c0 → e = e0

|d−d0| ≤ λ1|c−c0| ∧ |e−e0| ≤ λ2|c−c0| ∧ |(d + e)−(d0 + e0)| ≤ λ|c−c0|



i.e. iff the following formula is satisfiable (in R):

φ(λ1, λ2, λ) = ∃c0∃c∃d0∃d∃e0∃e(λ1>0 ∧ λ2>0 ∧ λ>0 ∧ (c≈c0 → d≈d0) ∧ (c≈c0 → e≈e0)

∧ |d−d0|≤λ1|c−c0| ∧ |e−e0|≤λ2|c−c0| ∧ |(d + e) − (d0 + e0)| 6≤ λ|c − c0|).

After eliminating the quantifiers in φ with redlog [2] and simplifying the result
taking into account that λi > 0, λ > 0 we obtain the following equivalent formula:

λ > 0 ∧ λ1 > 0 ∧ λ2 > 0 ∧ ((λ−λ1+λ2<0 ∧ λ1−λ2≥0) ∨

(λ+λ1−λ2<0 ∧ λ1−λ2<0) ∨ (λ+λ1−λ2<0 ∧ λ1−λ2≤0) ∨

λ−λ2 < 0 ∨ λ−λ1 < 0 ∨ (λ−λ1−λ2 < 0 ∧ λ1+λ2≥0))

which is equivalent to λ < λ1 + λ2 ∧ λ1 > 0 ∧ λ2 > 0 ∧ λ > 0. We thus proved
that for λ1 > 0, λ2 > 0, and λ > 0:

R ∪ (Lλ1

f ) ∧ (Lλ2
g ) |= (Lλ

f+g) iff λ ≥ λ1 + λ2.

4 Conclusions

We presented a class of extensions of numerical domains with additional func-
tions for which sound and complete proof methods exist, which allow to reduce
testing satisfiability of quantifier-free formulae, hierarchically, to a satisfiability
problem in the “base”, numerical domain.3 These results can be applied for auto-
mated reasoning in mathematical analysis as well as in verification. An example
we considered in the frame of AVACS involved train control systems [6]. We
used hierarchical reasoning to determine constraints between the parameters of
such control systems which guarantee safety. The new results we present here
open new possibilities for efficient verification, since Lipschitz conditions, as well
as continuity and derivability conditions occur naturally in the verification of
(parametric) hybrid systems (Lipschitz conditions can model e.g. boundedness
of derivatives). For tests we used an implementation (cf. also [5]) of the method
for hierarchical reasoning in local theory extensions described in [8,5]. All tests
and experiments are very encouraging. In the future we will also consider prob-
lems involving satisfiability tests for formulae with (alternations) of quantifiers.
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