
Verifying CSP-OZ-DC Specifications with

Complex Data Types and Timing Parameters⋆

Johannes Faber1, Swen Jacobs2, and Viorica Sofronie-Stokkermans2

1 Department of Computing Science, University of Oldenburg, Germany
j.faber@uni-oldenburg.de

2 Max-Planck-Institut Informatik, Saarbrücken, Germany
{sjacobs,sofronie}@mpi-sb.mpg.de

Abstract. We extend existing verification methods for CSP-OZ-DC to
reason about real-time systems with complex data types and timing pa-
rameters. We show that important properties of systems can be encoded
in well-behaved logical theories in which hierarchic reasoning is possible.
Thus, testing invariants and bounded model checking can be reduced to
checking satisfiability of ground formulae over a simple base theory. We
illustrate the ideas by means of a simplified version of a case study from
the European Train Control System standard.

1 Introduction

Complex real-time systems, consisting of several components that interact, arise
in a natural way in a wide range of applications. In order to verify these systems,
one needs, on the one hand, to find a suitable specification language, and on the
other hand, to develop efficient techniques for their verification.

In the specification of complex systems, one needs to take several aspects
into account: control flow, data changes, and timing aspects. Motivated by this
necessity, in [HO02, Hoe06] a specification language CSP-OZ-DC (COD) is de-
fined, which combines Communicating Sequential Processes (CSP), Object-Z
(OZ) and the Duration Calculus (DC). Verification tasks (e.g., invariant check-
ing or bounded model checking) can usually be reduced to proof tasks in theories
associated to the COD specification. These theories can be combinations of con-
crete theories (e.g., integer, rational or real numbers) and abstract theories (e.g.,
theories of functions or of data structures). Existing verification techniques for
COD [HM05, MFR06] do not incorporate efficient reasoning in complex theories,
which is essential to perform such verification tasks efficiently.

In this paper, we analyse both aspects mentioned above. We use COD specifi-
cations of systems, with complex data types and timing parameters, and analyse
possibilities for efficient invariant checking and bounded model checking in these
systems. The main contributions of the paper can be described as follows.

⋆ This work was partly supported by the German Research Council (DFG) under
grant SFB/TR 14 AVACS. See http://www.avacs.org for more information.

http://www.avacs.org

2

Specification: We extend existing work in which COD specifications were used
[HO02, Hoe06, MFR06] in two ways:
(i) We use abstract data structures for representing and storing information

about an unspecified parametric number of components of the systems.
This allows us to pass in an elegant way from verification of several finite
instances of a verification problem (for 2, 3, 4, ... components) to general
verification results, in which the number of components is a parameter.

(ii) In order to refer to time constants also within the specification’s data
(OZ) part, we introduce timing parameters. This allows for more flexible
specifications of timing constraints.

Verification: We show that, in this context, invariant checking or bounded
model checking can be reduced to proving in complex theories. We analyse
the theories that occur in relationship with a given COD specification, and
present a sound and efficient method for hierarchic reasoning in such theories.
We identify situations where the method is sound and complete (i.e., where
the specific properties of systems define chains of local theory extensions).

Applications: Our running example is an extension of a case study that we
considered in [JSS07] (in which we first applied hierarchic reasoning in the
verification of train control systems). Here, we additionally encompass ef-
ficient handling of emergency messages and illustrate the full procedure –
starting from a COD description of the case study to the verification.

Structure of the paper. We illustrate the idea of our approach by means of a case
study, which will be our running example (Sect. 1.1). Section 2 introduces the
specification language COD and discusses an extension with timing parameters.
Section 3 presents an operational semantics of COD specifications, in terms
of Phase Event Automata (PEA), and discusses some simplifications for PEA.
Section 4 presents a verification method for COD specifications: the associated
PEA are translated into transition constraint systems; verification is reduced to
satisfiability checking in combinations of theories. We identify some theories, in
which hierarchic reasoning is possible, occurring frequently in applications.

1.1 Illustration

RBC

braking distance

Fig. 1. Emergencies in the ETCS

We here give a general description of a
case study inspired by the specification
of the European Train Control System
(ETCS) standard [ERT02]. We explain
the tools we used for modelling the ex-
ample and give the idea of the method
for checking safety. This will be used as
a running example throughout the pa-
per. Related ETCS scenarios have been
studied in [HJU05, FM06, MFR06, TZ06]. The example we consider has a less
complicated control structure than those in [FM06, MFR06]. Instead, it consid-
ers an arbitrary number of trains, and hence, needs to use more realistic and
sophisticated data types.

3

The RBC Case Study. We consider a radio block centre (RBC), which com-
municates with all trains on a given track segment. The situation is sketched
in Fig. 1. Every train reports its position to the RBC in given time intervals
and the RBC communicates to every train how far it can safely move, based
on the position of the preceding train; the trains adjust their speed between
given minimum and maximum speeds. If a train has to stop suddenly, it sends
an emergency message. The RBC handles the message sent by a train (which
we refer to as emergency train) by instructing each train behind the emergency
train on the track to stop too.

Idea. In this case study, the following aspects need to be considered:

(1) The scenario describes processes running in parallel.
(2) We need to specify the state space and the pre- and postconditions of actions.
(3) There are timing constraints on the duration of system states.

For encompassing all these aspects, we use the specification language COD,
that allows to express the control flow of the systems (expressed in CSP), data
structures used for modelling state and state change (OZ) and time constraints
(DC). We pass from specification to verification as follows:

– We associate so-called Phase Event Automata ACSP ,AOZ ,ADC with the
CSP, OZ and DC part, respectively. Their parallel composition A represents
the semantics of the COD specification.

– From A we derive a family of transition constraints that describe the prop-
erties of the transitions in the system.

– We use this set of transition constraints for checking given safety properties.

This last verification step is highly non-trivial. Transition constraints may com-
bine constraints over various theories. In our case, we need to reason in a com-
bination of a theory of integers (indices of trains), reals (for modelling speeds or
distances), arrays (in which the current speed and reported positions of the trains
are stored), and functions (e.g., associating with each speed an upper bound for
the optimal braking distance at that speed). Many of these data structures have
additional properties, which need to be specified as axioms in first-order logic
with quantifiers. We show that properties of systems can be encoded in well-
behaved logical theories in which efficient reasoning is possible.

2 CSP-OZ-DC: A High-Level Specification Language

In order to capture the control flow, data changes, and timing aspects of the
systems we want to verify, we use the high-level specification language CSP-OZ-
DC (COD) [HM05, Hoe06], which integrates three well-investigated formalisms:
Communicating Sequential Processes [Hoa85], Object-Z [Smi00], and Duration
Calculus [ZH04], allowing the compositional and declarative specification of each
aspect by means of the best-suited formalism. In particular, data and data
changes are specified in a constraint-based representation (using OZ). In this

4

paper, we use this advantage of the COD representation and extend the known
verification procedures for COD [HM05, MFR06] to combination of theories.

We give an intuition of the formalism and its advantages using our case
study: We model a radio block centre (RBC) that controls the railway traffic
on a single (to simplify matters infinite) track segment. This RBC controls n
consecutive trains, represented by their position and speed values. The full COD
specification is given in Fig. 2, that we explain in the remainder of this section.

The specification begins with the declaration of a timing parameter T PR
(cf. Sect. 2.1), followed by the interface part, in which methods are declared.
These methods are used in all parts (CSP, OZ, DC) of the COD specification,
and provide the functionality of the COD class.

Interface:
method positionReport
method detectEmergency : [trainNumber : N]

CSP. We use CSP [Hoa85] to specify the control flow of a system using processes
over events. The interface part declares all possible events.

CSP:
main

c
= Driveability ||| Detection

Driveability
c
= positionReport → Driveability

Detection
c
= detectEmergency → Detection

The main process of our specification comprises an interleaving of two subpro-
cesses, Driveability and Detection, for controlling the trains and incoming emer-
gency messages synchronously. The Detection process detects emergencies using
detectEmergency events, while the Driveability process regularly updates the
train positions using positionReport events.

OZ. The data space and its changes are specified with OZ schemata [Smi00].
The OZ part of the running example begins with the state schema defining the
state space of the RBC. Positions and speed values of the trains are given by
sequences train : seqPosition and speed : seqSpeed , where the types are given by
reals: Position == R,Speed == R+. Sequences, in the sense of OZ, are partial
functions train : N → Position, that are defined for all i ≤ n. A third data type
is Acceleration, which is also real-valued: Acceleration == R+.

State space:
train : seq Position emergencyTrain : N

speed : seq Speed maxDec : Acceleration
maxSpeed , minSpeed : Speed d : Position
brakingDist : Speed → Position n : N

The variable emergencyTrain is a pointer to the first train on the track that re-
ported an emergency. We also define some important constants, for the maximal
speed, for the minimal speed (without emergencies), the number of trains n, and
the safety margin between trains d . Next follow axioms for the data structures
defined in the state schema.

5

Axioms:

0 < minSpeed < maxSpeed
n = #train = #speed
0 < d = brakingDist(maxSpeed)

∀ s : Speed • brakingDist(s) ≥ s2

2∗maxDec

∀ s1, s2 : Speed | s1 < s2 • brakingDist(s1) < brakingDist(s2)
brakingDist(0) = 0

The latter three axioms ensure a safety distance between the trains. The function
brakingDist yields for a given speed value the distance needed by a train in order
to stop if the emergency brakes are applied. For the constant maximal deceler-

ation maxDec, the minimal braking distance for a speed value spd is spd2

2∗maxDec
.

Since the trains can not always reach their maximal deceleration, we define this
term as a lower bound for our braking function. We require monotonicity of
brakingDist and specify its value for a speed value of 0.

Every COD class has an Init schema (cf. Fig. 2) that constrains initial val-
ues of state variables, and communication schemata which define state changes.
Every communication schema (prefix com) belongs to a CSP event as given by
the interface of a class. Every time a CSP event occurs the state space is changed
according to the constraints of the appropriate communication schema.

com detectEmergency
∆(speed , emergencyTrain)
newEmergencyTrain? : N

newEmergencyTrain? ≤ n
emergencyTrain ′ = min{newEmergencyTrain?, emergencyTrain}
speed ′(emergencyTrain ′) = 0
∀ i ∈ N | i 6= emergencyTrain ′ • speed ′(i) = speed(i)

Consider for instance the schema for detectEmergency. The first line identifies
state variables that are changed by this schema, the remaining variables im-
plicitly stay unchanged. The expression newEmergencyTrain? (second line) rep-
resents an input variable. The following lines constrain state changes (primed
variables denote the post-state while unprimed variables refer to the pre-state).
For example emergencyTrain ′ = min{newEmergencyTrain?, emergencyTrain}
sets the new value for emergencyTrain. (The train with the lowest number is
the first on the track. So, emergencyTrain always points to the first train on
the track that reported an emergency.) The schema com positionReport (Fig. 2)
sets the speed values for all trains and calculates their new positions: without
an emergency train in front, the speed can be arbitrary between minSpeed and
maxSpeed , unless the distance to the previous train is too small (< d); in this
case the speed is set to minSpeed . In case of an emergency, the trains behind the
emergency train brake with maximal deceleration.

DC. The duration calculus (DC) is an interval-based dense real-time logic [ZH04].

Important operators of the DC are the chop operator a that splits an interval

6

into subintervals, the operator ℓ yielding the length of an interval, and the every-
where operator ⌈p⌉ specifying that a predicate p holds everywhere on an interval.
An explicit time constant t ∈ Q+ or a symbolic constant T are used to define
interval lengths. Since DC is undecidable we use a decidable sub-class (counter-
example formulae). We apply the algorithm of [Hoe06] to generate automata
from DC specifications of this subclass.

DC:
¬(true a l positionReport a (ℓ < T PR) a l positionReport a true)

¬(true a
⊟ positionReport ∧ (ℓ > T PR) a true)

In the DC specification above, the first formula specifies that it will never be

the case (¬) that two positionReport events (l) are separated (a) by an interval
with a length (ℓ) smaller than T PR. (So there will be at least T PR time units
between two position reports.) In the second formula, ⊟ describes an interval in
which no position report event is detected. The formula states that there is no
interval of a length greater than T PR without a positionReport event. Together
the formulae define the exact periodicity of positionReport .

2.1 Timing Parameters in COD

The original definition of COD in [Hoe06] only allows for using rational num-
bers to define interval lengths. This restriction results in a loss of generality: a
developer always has to define exact values for every interval, even if the speci-
fication does not depend on an exact length. In our example, one has to replace
the T PR constant in the DC formulae with a fixed rational to get a valid COD
specification. To overcome this problem, we introduce timing parameters as an
extension for COD. That is, we allow the usage of symbolic constants for the
interval definitions in the DC part, like T PR in our example. These symbolic
constants are declared as generic constants (parameters of the class) and also
are accessible in the OZ part. For instance, we use T PR in the schema of
positionReport . That allows us to use the same (undetermined) interval length
in the OZ and in the DC part.

3 Operational Semantics of COD Specifications

In this section, we present a translation from COD specifications to PEA. We ex-
tend existing translations from COD to PEA to also deal with timing parameters
and study possibilities of simplifying the PEA obtained this way.

3.1 Translation of COD Specifications into PEA

Phase Event Automata (PEA) are timed automata [AD94] involving both data
and timing aspects. Our definition of PEA is based on [Hoe06], but differs in
that we also allow symbolic constants to occur in clock invariants Lc(C). In

7

|
{
z

}

In
te

r-
fa

c
e

|
{
z

}

C
S
P

p
a
rt

|
{
z

}

O
Z

p
a
rt

|
{
z

}

D
C

p
a
rt

RBC [T PR : Q+]
method positionReport
method detectEmergency : [trainNumber : N]

main
c
= Driveability ||| Detection

Driveability
c
= positionReport → Driveability

Detection
c
= detectEmergency → Detection

train : seqPosition emergencyTrain : N

speed : seqSpeed maxDec : Acceleration
maxSpeed,minSpeed : Speed d : Position
brakingDist : Speed → Position n : N

0 < minSpeed < maxSpeed
n = #train = #speed

0 < d = brakingDist(maxSpeed) (1)

∀ s : Speed • brakingDist(s) ≥ s2

2∗maxDec
∀ s1, s2 : Speed | s1 < s2 • brakingDist(s1) < brakingDist(s2)
brakingDist(0) = 0

Init

emergencyTrain > n

∀ i : dom speed • minSpeed ≤ speed(i) ≤ maxSpeed
∀ i : dom train | i 6= 1

• train(i) < train(i − 1) − brakingDist(speed(i))

com positionReport
∆(train, speed)

∀ i : dom train | i = 1 ∧ i < emergencyTrain

• minSpeed ≤ speed′(i) ≤ maxSpeed
∀ i : dom train | 1 < i < emergencyTrain ∧ train(i − 1) − train(i) ≥ d

• minSpeed ≤ speed′(i) ≤ maxSpeed
∀ i : dom train | 1 < i < emergencyTrain ∧ train(i − 1) − train(i) < d

• minSpeed = speed′(i)
∀ i : dom train | i ≥ emergencyTrain

• speed′(i) = max{speed(i) − maxDec ∗ T PR, 0}
∀ i : dom train • train′(i) = train(i) + speed′(i) ∗ T PR

com detectEmergency
∆(speed, emergencyTrain)
newEmergencyTrain? : N

newEmergencyTrain? ≤ n

emergencyTrain′ = min{newEmergencyTrain?, emergencyTrain}
speed′(emergencyTrain′) = 0
∀ i ∈ N | i 6= emergencyTrain′ • speed′(i) = speed(i)

¬(true a l positionReport a (ℓ < T PR) a l positionReport a true)

¬(true a ⊟ positionReport ∧ (ℓ > T PR) a true)

Fig. 2. The COD specification for the emergency case study

8

what follows, let L(V) be a subset of the language of OZ predicates.1 For a
set C of clock variables and timing parameters T , the set Lc(C ,T) of (convex)
clock constraints with constants is defined by the following BNF grammar:

δ ::= c < t | c ≤ t | c < z | c ≤ z | δ ∧ δ,

where c ∈ C is a clock, t ∈ Q+ is a rational constant, and z ∈ T is a timing
parameter. The semantics is given by clock valuations γ : C → R+ assigning
non-negative reals to clocks. The semantics of a timing parameter z is an inter-
pretation I : T → Q+. We write γ, I |= δ iff δ holds for γ and I. For a set of
clocks X , we denote by (γ+ t) the increasing of clocks, i.e., (γ+ t)(c) := γ(c)+ t ,
and by γ[X := 0] the valuation, where each clock in X is set to zero and the
values of the remaining clocks are given by γ.

Definition 1 (Phase Event Automaton). A phase event automaton (PEA)
is a tuple (P ,V ,A,C ,E , s , I ,P0), where P is a finite set of locations (phases)
with initial locations P0 ⊆ P; V ,A,C are finite sets of real-valued variables,
events, and real-valued clocks, respectively; s : P → L(V), I : P → Lc(C ,T)
assign state invariants resp. clock invariants to phases. The set of edges is E ⊆
P×L(V∪V ′∪A∪C)×P(C)×P. We assume that a stuttering edge (p,

∧

e∈A¬e∧
∧

v∈V v ′=v , ∅, p) (empty transition) exists for every phase p.
The operational semantics of PEA is defined by infinite runs of configurations

〈(p0, β0, γ0, t0,Y0), (p1, β1, γ1, t1,Y1), · · · 〉, where initially p0 ∈ P0 and γ0(c) = 0
for c ∈ C. For i ∈ N and variable valuations βi (with βi(v) = β′

i(v
′)) we demand

β(i) |= s(pi) and γi + ti , I |= I (pi) and ti > 0. For transitions (pi , g,X , pi+1) ∈
E we further require βi , β

′
i+1, γi + ti ,Yi |= g and γi+1 = (γi + ti)[X := 0].

Thus, a PEA is an automaton enriched by constraints to define data changes and
clocks to measure time (similar to a timed automaton). An edge (p1, g,X , p2)
represents a transition from p1 to p2 with a guard g over (possibly primed)
variables, clocks, and events, and a set X of clocks that are to be reset. Primed
variables v ′ denote the post-state of v whereas the unprimed v always refers to
the pre-state. In the parallel composition of PEA, we consider conjunctions of
guards of transitions and invariants of locations.

Definition 2 (Parallel Composition). The parallel composition of two PEA
A1 and A2, where Ai = (Pi ,Vi ,Ai ,Ci ,Ei , si , Ii ,P

0
i), is defined by

A1 || A2 := (P1 × P2,V1 ∪ V2,A1 ∪ A2,C1 ∪C2,E , s1 ∧ s2, I1 ∧ I2,P
0
1 × P0

2),

where ((p1, p2), g1∧g2,X1∪X2, (p
′
1, p

′
2)) ∈ E iff (pi , gi ,Xi , p

′
i) ∈ Ei with i = 1, 2.

The translation of COD specifications into PEA is compositional: every part
of the specification is translated separately into PEA; the semantics for the
entire specification is the parallel composition of the automata for every part:
A(COD) = A(CSP) ‖ A(OZ) ‖ A(DC).

1 Ideally, L(V) should be expressive enough so that specifications with complex data
types can be translated, but should permit automatic verification.

9

Translation of the CSP part. The translation of the CSP part into PEA is
based on the structured operational semantics of CSP [Ros98]. If this semantics
of the CSP part is given as a labelled transition system (Q ,A, q0,−→) with
locations Q and events A from the COD specification, its PEA is A(CSP) =
(Q , ∅,A, ∅,E , s , I , {q0}), where s(q) = true, I (q) = true for all q ∈ Q and

E = {(p, only(e), ∅, p′) | p
e

−→ p′} ∪ {(p, only(τ), ∅, p) | p ∈ Q}.

The predicate only(e) demands that only the event e is communicated whereas
only(τ) demands that no event is communicated. That is, E consists of transi-
tions for every transition in the original transition system and of stuttering edges
for every location. The PEA of our example’s CSP part is pictured in Fig. 3.

Translation of the OZ part. The OZ part of a COD specification is translated
into a PEA with two locations: one for setting the initial values of state variables
and one for the running system, with a transition for each state changing event.
The variables of the PEA are the variables Var(State) declared in the state
schema. The set A of events of the PEA consists of all COD events for which a
communication schema com c exists. For each such event the automaton has a
transition executing the state change as defined in the associated communication
schema. The resulting PEA is A(OZ) = ({p0, p1},Var(State),A, ∅,E , s , I , {q0}),
where s(p0) = Init (invariant from the initial schema), s(p1) = State (invariant
from the state schema), I (pi) = true for i = 1,2, and

E = {(p1, only(c) ∧ com c, ∅, p1) | c ∈ A} ∪

{(pi , only(τ) ∧ ΞState, ∅, pi) | i = 1, 2} ∪ {(p0, only(τ) ∧ ΞState, ∅, p1)}.

The OZ predicate ΞState demands that the state space is not changed: ΞState :⇔
∧

v∈Var(State) v ′ = v . The formula com c only changes the state of the variables
occurring in the ∆ list of the corresponding operation schema; the remaining
variables remain implicitly unchanged. The OZ part PEA of the RBC is illus-
trated in Fig. 3. Formula (1) refers to the state schema from Fig. 2. The operation
schemata, e.g., com positionReport refer to the constraints of the specification.

Translation of the DC part. Each formula of the DC part is translated into
an individual PEA. The translation of counter-example formulae (cf. Sect. 2),

e.g., ¬(phase0
a event1 a phase1

a · · · a phasen), into PEA is similar to
the translation of a non-deterministic finite automaton into a deterministic one:
every location of the resulting automaton represents a subset of DC phases.
Every run of the automaton leading to a location labelled with phasei accepts
the prefix of the DC counter-example up to phasei . In addition, phasei may have
an upper or lower time bound. In this case, the automaton includes a clock ci
measuring the duration of the phase. Event expressions eventi separating two DC
phases constitute the guards that restrict transitions from phasei−1 to phasei .
Technical details of the construction can be found in [Hoe06]. The automata for
the DC part of the RBC specification are displayed in Fig. 3(c). For instance,
the upper automaton enforces the behaviour defined by the second DC formulae

10

only(positionReport)

only(detectEmergency)

true

main

Drive‖|Detect

(a) CSP part

¬positionReport ∧
¬detectEmergency ∧
ΞState

com detectEmergency

only(detectEmergency) ∧

com positionReport

only(positionReport) ∧

(1)

(1) ∧ Init

(b) OZ part

¬positionReport

c2 < T PR

¬positionReport
∧ c2 ≥ T PR

positionReport

{c2}

{c1}
positionReport

¬positionReport
∧ c1 < T PR

positionReport

∧ c2 ≥ T PR

{c2}
¬positionReport

c2 ≤ T PR

c1 ≤ T PR

(c) DC part

Fig. 3. PEA for the RBC case study. Boxes around formulae indicate state
invariants; braces ({c1},{c2}) indicate clock resets.; Ξ is defined on page 9.

of our example (Fig. 2). It consists of one location with a clock invariant, i.e, the
automaton stays in this location for at most T PR time units – the only way to
reset the clock c1 is the transition that synchronises on positionReport . By this,
every positionReport event has to occur in time.

3.2 PEA with Timing Parameters

As we allow timing parameters to occur in the DC part and in convex clock
expressions, we need to adapt the translation of the DC part into PEA given in
[Hoe06]: since the original translation does not depend on concrete values of ra-
tional constants, we can treat timing parameters exactly like rational constants.
The clock constraints generated by the translation are then convex as before.
Important properties of PEA, e.g., the translation into TCS (cf. Sect. 4), only
depend on the convexity of clock constraints. We thus obtain:

Theorem 1. The translation from COD with complex data types and timing
parameters to PEA described here is sound (i.e., the PEA runs are exactly the
system runs admitted by the CSP, OZ, and DC part) and compositional.

3.3 Simplifications of PEA

As mentioned in Section 3.1, the operational semantics of the whole COD speci-
fication is given by the parallel product of the individual PEA. This product can
grow very large: theoretically, its size is the product of the size of all individual
automata, both in terms of locations and in terms of transitions. We propose
the following simplifications for the product PEA:

– Transitions whose combined guards evaluate to false can be removed, as
can be locations that are not connected to an initial state. We can also
remove all events from the PEA, as these are only used for synchronising
the individual automata [Hoe06].

11

c1 < T PR ∧
c2 < T PR ∧
Ξ

∧ c2 ≥ 1 {c1,c2}
com positionReport

c1 < T PR ∧ c2 < T PR ∧
com detectEmergency

{c1,c2}
com positionReport

c1 < T PR ∧
com detectEmergency

c1 < T PR
∧ Ξ

c1 < T PR
∧ Ξ

(1) ∧ c1 ≤ T PR

(1) ∧ c1 ≤ T PR

(1) ∧ Init ∧
c1 ≤ T PR

c1 ≤ T PR ∧
c2 ≤ T PR ∧ (1)

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

(1) ∧ Init ∧ c1 ≤ T PR

Fig. 4. Simplified product PEA

– Consider the case that we have several clocks in the product automaton.
All clocks run at the same speed and can be reset to 0 by transitions. If we
have two (or more) clocks for which the set of transitions that resets them is
the same, we can identify them, i.e., remove one clock and replace it by the
other in all guards. This not only gives us a system with one variable less,
but may also remove additional transitions by making their guards false.

Theorem 2. Let A = (P ,V ,A,C ,E , s , I ,P0) be a PEA, c1, c2 ∈ C. If
{(p1, g,X , p2) ∈ E | c1 ∈ X } = {(p1, g,X , p2) ∈ E | c2 ∈ X }, then A is equiva-
lent to A′ = (P ,V ,A,C \ {c2} ,E ′, s ′, I ′,P0), where E ′, s ′ and I ′ result from
E , s and I by replacing all occurrences of c2 by c1.

Applied to the running example, the first simplification reduces the product
automaton from 8 locations and 90 transitions (without stuttering edges) to 5
locations and 10 transitions. With the second one, we remove one clock variable
and one additional transition from the product automaton. The entire product
automaton with simplifications is pictured in Fig. 4. It basically comprises four
locations representing slightly different possibilities to initialise the system and
one dead end location in the lower right corner. The latter is eventually en-
tered and can be interpreted as the main state of the system. Here the trains
periodically report their positions to the RBC and emergencies may be detected.

4 Verification of COD Specifications

In this section, we elaborate on verifying safety properties of systems with com-
plex data types specified in COD, based on their translation to PEA. We define
transition constraint systems (TCS) and show how to extract a TCS from a
PEA. We introduce the verification tasks that we consider. After an intuitive
presentation of our idea for efficient verification, we formally analyse situations
where verification problems can be reduced to checking satisfiability of ground
formulae over a simple theory. The method is illustrated on the running example.

12

Language and theory associated with a COD specification. Let S be
a COD specification. The signature of S , ΣS consists of all sorts, functions
and predicates declared in the OZ specification either implicitly (by mentioning
standard theories) or explicitly. The theory of S , TS is constructed by extending
the (many-sorted) combination T0 of all standard theories used in the OZ and DC
specification with the functions declared in the OZ part and the axioms for the
data structures specified at the beginning of the OZ part (which we will denote
by Ax). In what follows, the theory TS will be considered to be a background
theory: even if we do not refer to it explicitly, it is always taken into account.

4.1 Translation of PEA to TCS

Let Σ be a signature, V a set of (typed) variables, and V ′ a copy of corresponding
primed variables. Let F(X) be the family of all Σ-formulae in the variables X .

Definition 3 (Transition Constraint Systems). A transition constraint sys-
tem T is a tuple (V , Θ, Φ) with Θ ∈ F(V) and Φ ∈ F(V ∪ V ′). The formula Θ

characterises the initial states of T, Φ the transition constraints of T (i.e., the
relationships between the variables V and V ′ – before and after transitions).

A translation from PEA to TCS has been developed by Hoenicke and Maier
[HM05, Hoe06]. We use the simplified translation from [Hoe06].

Let S be a COD specification and AS = (P ,V ,A,C ,E , s , I ,P0) the PEA
associated with S . We associate with AS the TCS T (AS) = (V , Θ, Φ), where:

– V = V ∪ A ∪ C ∪ {len, pc}, where len is a real-valued variable representing
the time spent in the current state, and pc is the program counter that is
interpreted over P and represents the current location (phase) of the system.

– Θ =
∨

p∈P0
pc=p ∧ len>0∧

∧

c∈C c=len∧ s(p)∧ I (p). Θ requires that there
exists an initial location p in which a positive time len is spent, all clocks are
set to len and both the state and the clock invariant of the location p hold.

– Φ =
∨

(p1,g,X ,p2)∈E pc=p1∧pc′=p2∧g∧s ′(p2)∧I ′(p2)∧len′>0∧
∧

c∈X c′=len′∧
∧

c∈C\X c′=c + len′, where s ′ and I ′ represent s and I with unprimed vari-
ables replaced by primed ones. The formula Φ states that there exists a
transition (p1, g,X , p2) such that the program counter is p1 before and p2

after the transition, the guard g of the transition as well as the state and
clock invariant of location p2 are satisfied, the system will remain in p2 for
some positive time, and clocks are incremented by len′ if they are not reset
by the transition (otherwise they are set to len′).

We thus obtain a representation of the original COD specification S in terms
of first-order formulae over the signature ΣS and theory TS of S . We encode
states of the system by formulae over V . If σ, σ′ are states (encoded as formulae
over V , and V ′ respectively), we say that σ is reachable in one step from σ in
TS = (V , Θ, Φ) w.r.t. TS if TS , σ, σ′ |= Φ. A run of TS is a sequence of states
〈σ1, . . . σm〉 such that TS , σ1 |= Θ and σi+1 is reachable in one step from σi .

As a consequence of the results in [Hoe06] we obtain:

13

Corollary 1. The translation from PEA to TCS preserves the semantics: every
run in the TCS can be mapped to a run of the PEA; the mapping is surjective.

Example 1. Consider the RBC example discussed in Sect. 1.1. We use the simpli-
fied PEA A = (P ,V ,A,C ,E , s , I ,P0) developed in Sect. 3.3, where A = ∅ and
C = {x1}. The TCS T (A) = (V , Θ, Φ) associated with A is defined as follows2:

(1) V = V ∪ A ∪ C ∪ {len, pc}. For technical reasons we model the variables of
type sequence (e.g. train, speed) as functions of sort i → num.

The following formulae (extracted from the OZ specification) help define T (A):

φinput = newEmergencyTrain′ > 0,
φclock = x1<1 ∧ len′>0 ∧ x ′

1=x1 + len′ ∧ x ′
1≤1,

φinit = (∀ i : 1<i≤n → train(i)<train(i − 1)−brakingDist(speed(i)))∧
(∀ i : 1≤i≤n → minSpeed≤speed(i)≤maxSpeed) ∧ (emergencyTrain>n),

φemerg = newEmergencyTrain ≤ n ∧
emergencyTrain′ = min {newEmergencyTrain, emergencyTrain} ∧
speed′(emergencyTrain′) = 0 ∧
∀ i : i 6= emergencyTrain′ → speed′(i) = speed(i),

φposRep = ∀ i : i=1 ∧ emergencyTrain>i → minSpeed≤speed′(i)≤maxSpeed ∧
∀ i : 1<i<emergencyTrain ∧ train(i − 1)−train(i)≥d

→ minSpeed≤speed′(i)≤maxSpeed ∧
∀ i : 1<i<emergencyTrain ∧ train(i − 1)−train(i)<d

→ speed′(i)=minSpeed ∧
∀ i : i≥emergencyTrain → speed′(i)=max {speed(i)−maxDec∗T PR, 0}∧
∀ i : 1≤i≤n → train′(i)=train(i)+speed′(i)∗T PR,

φconst =
∧

c∈const c
′ = c, where const = {maxDec, maxSpeed, minSpeed, n, d,T PR}

is the set of all variables in V that do not change during execution.

(2) The initial predicate is Θ = pc = 1 ∧ len > 0 ∧ x1 = len ∧ φinit.
(3) We describe the transition relation Φ in terms of the individual transitions.

Several transitions change only the clock, but no state variables. Let S1 =
{(1, 1), (1, 3), (3, 3)} ,S2 = {(1, 2), (1, 4), (2, 2), (2, 4), (4, 4)} ⊂ P × P , and

φ(i,j) =

{

(pc=i ∧ pc′=j ∧ φclock ∧ φinit ∧ φconst ∧ φinput) if (i , j) ∈ S1

(pc=i ∧ pc′=j ∧ φclock ∧ φconst ∧ φinput) if (i , j) ∈ S2
.

Finally, we have the following transitions that change the state variables:
φ1 = (pc=4 ∧ pc′=4 ∧ φemerg ∧ φclock ∧ φconst ∧ φinput),
φ2 = (pc=4 ∧ pc′=5 ∧ φposRep ∧ len′>0 ∧ x ′

1=0 ∧ x ′
1 ≤ 1 ∧ φconst ∧ φinput),

φ3 = (pc=5 ∧ pc′=5 ∧ φemerg ∧ φclock ∧ φconst ∧ φinput),
φ4 = (pc=5 ∧ pc′=5 ∧ φposRep ∧ len′>0 ∧ x ′

1=0 ∧ x ′
1≤1 ∧ φconst ∧ φinput).

Altogether, Φ =
∨

(i,j)∈S1∪S2
φ(i,j) ∨

∨4
i=1 φi .

2 We will use a sans serif font for all symbols in the signature of the TCS T (A).

14

4.2 Verification of TCS

The verification problems we consider are invariant checking and bounded model
checking. We explain the problems which occur in this context, and present an
idea that allows to solve these problems in certain situations. We illustrate the
problems as well as the verification methods on our case study.

Invariant checking. We can check whether a formula Ψ is an inductive invari-
ant of a TCS T=(V , Θ, Φ) in two steps: (1) prove that TS , Θ |= Ψ ; (2) prove that
TS , Ψ, Φ |= Ψ ′, where Ψ ′ results from Ψ by replacing every x ∈ V by x ′. Failure
to prove (2) means that Ψ is not an invariant, or Ψ is not inductive w.r.t. T .3

Example 2. For the system described in Sect. 1.1, let Ψ be the formula that
states that the distance between two trains must always be greater than the
sum of the braking distances of the trains in between (Ψ is a safety condition):

Ψ = ∀ i : 1 < i ≤ n → train(i) < train(i − 1) − brakingDist(speed(i)).

To check that Ψ is an inductive invariant, we need to check that:

(1) The initial states of the system, given by Θ, satisfy the safety property Ψ .

(2) Assuming that a given state σ satisfies Ψ , any state σ′ reachable from σ

using the transition predicate Φ satisfies Ψ ′.

Checking (1) is not a problem. For (2) we need to show TS |= Ψ ∧ Φ → Ψ ′,
where TS is the theory associated with the COD specification, an extension of
T0 (many-sorted combination of real arithmetic (sort num) with an index theory
describing precedence of trains (sort i)), with the set of definitions Def ⊆ Ax for
global constants of the system (Ax are the axioms in the OZ specification) and
with function symbols brakingDist, train, train′, speed, speed′ fulfilling the axioms
specified in Ax, Ψ , and Φ. We need to show that T0 ∧ Ax ∧ Ψ ∧ Φ ∧ ¬Ψ ′ |=⊥.

Bounded model checking. We check whether, for a fixed k , unsafe states
are reachable by runs of T=(V , Θ, Φ) of length at most k . Formally, we check
whether:

TS ∧ Θ0 ∧
j

∧

i=1

Φi ∧ ¬Ψj |=⊥ for all 0 ≤ j ≤ k ,

where Φi is obtained from Φ by replacing all variables x ∈ V by xi , and all
variables x ′ ∈ V ′ by xi+1; Θ0 is Θ with x0 replacing x ∈ V ; and Ψi is Ψ with xi

replacing x ∈ V .

3 Proving that a Ψ is an invariant of the system in general requires to find a stronger
formula Γ (i.e., T0 |= Γ → Ψ) and prove that Γ is an inductive invariant.

15

Problem. Standard combination methods [NO79, Ghi04] allow for testing sa-
tisfiability in certain combinations of theories, but only for ground formulae.
Our problem contains several non-ground formulae: the global axioms Ax, the
invariant Ψ and the transition relation Φ. Only ¬Ψ ′ corresponds to a ground set of
clauses. Thus, standard methods are not directly applicable. We want to reduce
the problem above to a ground satisfiability problem over decidable theories. To
this end, we may replace quantified formulae by a number of ground instances,
giving a decidable ground satisfiability problem over the base theory T0 (plus
free function symbols). This approach is sound, but in general not complete. In
what follows, we identify situations when this method is complete.

Our idea. In order to overcome the problem mentioned above we proceed as
follows. We start from a base theory T0 associated with the COD specification S
(usually a many-sorted combination of standard theories, e.g., integers or reals).
For the case of invariant checking we consider the following successive extensions
of T0 and study possibilities of efficient reasoning in these extensions:

– the extension T1 of T0 with the definitions and axioms in the OZ part of the
COD specification for variables which do not occur in Φ (i.e., do not change);

– the extension T2 of T1 with the remaining variables in a set V (including
those of sort sequence, modelled by functions) which occur in Φ and satisfy
Ψ (together with the corresponding definitions and axioms);

– the extension T3 of T2 with primed variables V ′ (including primed versions
of functions for the variables of sort sequence) satisfying Φ.

Example 3. Again consider the running example. We consider successive exten-
sions of T0, a many-sorted combination of real arithmetic (for reasoning about
time, positions and speed, sort num) with an index theory (for describing prece-
dence between trains, sort i). For the case of invariant checking, we have:

– the extension T1 of T0 with a monotone and bounded function brakingDist

as well as global constants, defined by Def ⊆ Ax,
– the extension T4 of T1 with V-variables from Φ, satisfying Ψ , defined by:

– Let T2 be the extension of T1 with the (free) function speed.
– Let T3 be the extension of T2 with the binary function secure defined for

every 0 < i < j < n by secure(i , j) =
∑j

k=i+1 brakingDist(speed(k)).

– T4 is the extension of T3 with function train satisfying Ψ (equivalent to Ψ):

Ψ = ∀ i , j (0 < i < j ≤ n → train(j) < train(i) − secure(i , j)),

– the extension T5 of T4 with functions train′ and speed′ satisfying Φ.

We show that for all of these extensions hierarchic reasoning is possible (cf.
Sect. 4.3).4 This allows us to reduce problem (2) to testing satisfiability of ground
clauses in T0, for which standard methods for reasoning in combinations of theo-
ries can be applied. A similar method can be used for bounded model checking.

4 We consider extensions with axiom Ψ instead of Ψ since Ψ defines a local theory
extension, and hence it allows for hierarchic reasoning (cf. Sect. 4.3), whereas Ψ

does not have this property. We are currently studying possibilities of automatically
recognising local theory extensions, and of automatically generating (equivalent) sets
of axioms defining local extensions from given sets of axioms.

16

4.3 Efficient Reasoning in Complex Theories: Locality

In the following, we identify situations in which we can give sound, complete
and efficient methods for reasoning in theory extensions.

Local theory extensions. Let T0 be a theory with signature Π0 = (S0, Σ0, Pred).
We consider extensions with new sorts S1 and new function symbols Σ1 con-
strained by a set K of (universally quantified) clauses in signature Π = (S , Σ, Pred),
where S = S0 ∪S1 and Σ = Σ0 ∪Σ1. We are interested in checking satisfiability
of sets of ground clauses G with respect to such theory extensions.

When referring to sets G of ground clauses we assume they are in the signa-
ture Πc = (S , Σ ∪ Σc , Pred) where Σc is a set of new constants. An extension
T0 ⊆ T0∪K is local if satisfiability of a set G of clauses w.r.t. T0∪K only depends
on T0 and those instances K[G] of K in which the terms starting with extension
functions are in the set st(K,G) of ground terms which already occur in G or
K. Formally, the extension T0 ⊆ T0 ∪ K is local if condition (Loc) holds:

(Loc) For every set G of ground clauses, T0 ∧ K ∧ G is unsatisfiable iff T0∧
K[G] ∧G has no partial model where all terms in st(K,G) are defined

A partial model of T0∧K[G]∧G is a partial Πc-structure P s.t. P|Π0
is a total

model of T0 and P satisfies all clauses in K[G]∧G where all terms are defined.
We give examples of local theory extensions relevant for the verification tasks

we consider. Some appear in [GSSW06, SS05, SS06], some are new.

Theorem 3. The extension of any theory with free function symbols is local.

In addition, assume the base theory has a reflexive partial ordering ≤. Then:

(1) Extensions of T0 with axioms of the following type are also local:

(GBoundt
f) ∀ x1, . . . , xn(φ(x1, . . . , xn) → f (x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a term, φ(x1, . . . , xn) a conjunction of literals, both in
the base signature Π0 and with variables among x1, . . . , xn .

(2) For i ∈ {1, . . . ,m}, let ti(x1, . . . , xn) and si(x1, . . . , xn) be terms and let
φi(x1, . . . , xn) be conjunctions of literals, all of them in the base signature
Π0, with variables among x1, . . . , xn , such that for every i 6= j , φi ∧φj |=T0

⊥.
Any “piecewise-bounded” extension T0∧(GBoundf), where f is an extension

symbol, is local. Here (GBoundf) =
∧m

i=1(GBound
[si ,ti],φi

f);

(GBound
[si ,ti],φi

f) ∀ x (φi(x) → si(x) ≤ f (x) ≤ ti(x)).

(3) For many ordered theories including the reals (for a complete list see [SS05,
SS06, JSS07]), extensions with (possibly strictly) monotone functions are
local. Combinations with boundedness axioms (GBoundt

f), where t has the
same monotonicity as f , do not destroy locality.

Hierarchic reasoning in local theory extensions. Let T0 ⊆ T1=T0 ∪ K be
a local theory extension. To check the satisfiability of a set G of ground clauses
w.r.t. T1 we can proceed as follows (for details cf. [SS05]):

17

Step 1: Use locality. By the locality condition, G is unsatisfiable w.r.t. T1 iff
K[G]∧G has no partial model in which all the subterms of K[G]∧G are defined,
and whose restriction to Π0 is a total model of T0.

Step 2: Flattening and purification. We purify and flatten K[G]∧G by introduc-
ing new constants for the arguments of the extension functions as well as for the
(sub)terms t = f (g1, . . . , gn) starting with extension functions f ∈ Σ1, together
with corresponding new definitions ct ≈ t . The set of clauses thus obtained has
the form K0 ∧ G0 ∧ D , where D is a set of ground unit clauses of the form
f (c1, . . . , cn) ≈ c, where f ∈ Σ1 and c1, . . . , cn , c are constants, and K0,G0 are
clause sets without function symbols in Σ1.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to testing
satisfiability in T0 by replacing D with the following set of clauses:

N0 =
∧

{
n
∧

i=1

ci = di → c = d | f (c1, . . . , cn) = c, f (d1, . . . , dn) = d ∈ D}.

Theorem 4 ([SS05]). Assume that T0 ∪K is a local extension of T0. With the
notations above, G is satisfiable in T0 ∪K iff K0 ∧ G0 ∧ N0 is satisfiable in T0.

The method above is easy to implement and efficient. If all the variables in K are
guarded by extension functions then the size of K0∧G0∧N0 is polynomial in the
size of G. Thus, the complexity of checking the satisfiability of G w.r.t. T0 ∧ K
is g(nk) (where k depends on K cf. e.g. [SS05]) where g(n) is the complexity of
checking the satisfiability of a set of ground clauses of size n in T0.

Application to parametric verification of COD specifications. A sound
but potentially incomplete method for checking whether T0∧Ax∧Ψ∧Φ∧¬Ψ ′ |= ⊥,
which can always be used, is to take into account only certain ground instances
of the universally quantified formulae in Ax∧Ψ∧Φ, related to the ground formula
G = ¬Ψ ′. However complete approaches can often be obtained, because many
axioms used in verification problems define chains of local extensions of T0:

– definitions for constants can be expressed by axioms of the type GBoundt
f ;

– often, transition relations which reflect updates of variables or of a sequence
f according to mutually exclusive “modes of operation” are axiomatised by
axioms of the form (GBoundf) as defined in Theorem 3(2) and 3(3).

If a complete approach can be given, the method for hierarchic reasoning de-
scribed above can be used in two ways. If the constraints on the parameters of
the systems are completely specified in the COD specification, then it allows us
to reduce the problem of checking whether a system property Ψ is an inductive
invariant to the problem of deciding satisfiability of a set of constraints in T0.
Alternatively, we may choose not to specify all constraints on the parameters.
As a side effect, after the reduction of the problem to a satisfiability problem in
the base theory, one can automatically determine constraints on the parameters
(in the running example these are, e.g., T PR, minSpeed, maxSpeed, ...), which
guarantee that the property is an inductive invariant and are sufficient for this.
(This can be achieved for instance using quantifier elimination.)

18

4.4 Example: The RBC Case Study

We show how the verification method based on hierarchic reasoning can be
applied to our case study. The following is a consequence of Theorem 3.

Theorem 5. Let T0 be the (many-sorted) combination of real arithmetic (for
reasoning about time, positions and speed, sort num) with an index theory (for
describing precedence between trains, sort i).

(1) The extension T1 of T0 with a monotone and bounded function brakingDist

as well as global constants, with definitions Def ⊆ Ax, is local.
(2) The extension T2 of T1 with the (free) function speed is local.
(3) The extension T3 of T2 with the function secure (cf. Example 3) is local.
(4) The extension T4 of T3 with functions train satisfying Ψ (Example 3) is local.
(5) The extension T5 of T4 with functions train′ and speed′ satisfying Φ is local.

We follow the steps in the method for hierarchic reasoning in Sect. 4.3 and
reduce the verification task to a satisfiability problem in the base theory T0. To
make our task slightly simpler, we split the transition relation and look at every
φi separately. Those φi that do not change the state variables train and speed

are sure to preserve the invariant. Furthermore, the program counters do not
interfere with the invariant. As a result, we have two interesting cases:

Φ1 = φemerg ∧ φclock ∧ φconst ∧ φinput,

Φ2 = φposRep ∧ len′ > 0 ∧ x ′
1 = 0 ∧ x ′

1 ≤ 1 ∧ φconst ∧ φinput.

We start with the first transition. We have to prove T0 ∧ Def ∧ Defsecure ∧ Ψ ∧
Φ1 ∧ ¬Ψ ′ |=⊥. This is a satisfiability problem over T4 ∧ Φ1. In a first reduction,
this problem is reduced to a problem over T4 = T0 ∧ Def ∧ Defsecure ∧ Ψ :

Step 1: Use locality. For this step, the set of ground clauses we consider is G =
¬Ψ ′ = {1 < k1, k1 ≤ n, k2 = k1 + 1, s = speed′(k1), train

′(k1) ≥ train′(k2) −
brakingDist(s)}. Of the extension symbols train′ and speed′, only speed′ occurs in
Φ1. Ground terms with speed′ are speed′(k1) in G and speed′(emergencyTrain′)
in Φ1. Thus, Φ1[G] consists of two instances of Φ1: one with i instantiated to
k1, the other with i instantiated to emergencyTrain′ (we remove clauses that are
generated in both instantiations such that they only appear once):

Φ1[G] = φclock ∧ φinput ∧ φconst ∧ newEmergencyTrain ≤ n ∧
emergencyTrain′ = min {newEmergencyTrain, emergencyTrain} ∧
speed′(emergencyTrain′) = 0 ∧
k1 6= emergencyTrain′ → speed′(k1) = speed(k1) ∧
emergencyTrain′ 6= emergencyTrain′

→ speed′(emergencyTrain′) = speed(emergencyTrain′).

Step 2: Flattening and purification. Φ1[G] ∧ G is already flat with respect to
speed′ and train′. We purify the set of clauses by replacing every ground term
with speed′ or train′ at the root with new constants c1, . . . , c4 and obtain a set
of definitions D = {speed′(emergencyTrain′) = c1, speed′(k1) = c2, train

′(k1) =
c3, train

′(k2) = c4}, together with the purified sets of clauses

19

G0 = {1 < k1, k1 ≤ n, k2 = k1 + 1, s = c2, c3 ≥ c4 − brakingDist(s)}

Φ1[G]0 = φclock ∧ φinput ∧ φconst ∧ newEmergencyTrain ≤ n ∧
emergencyTrain′ = min {newEmergencyTrain, emergencyTrain} ∧
c1 = 0 ∧ k1 6= emergencyTrain′ → c2 = speed(k1) ∧
emergencyTrain′ 6= emergencyTrain′ → c1 = speed(emergencyTrain′).

Step 3: Reduction to satisfiability in T4. We add the set of clauses N0 =
{emergencyTrain′ = k1 → c1 = c2, k1 = k2 → c3 = c4}. This allows us to remove
D and obtain a ground satisfiability problem in T4 : Φ1[G]0 ∧ G0 ∧ N0. In four
further reduction steps, we reduce this problem (using a similar procedure) to
a ground satisfiability problems over T0. This set of clauses can now directly be
handed to a decision procedure for the combination of the theories of reals and
indices. In the same way, the transition Φ2 can be handled.

5 Conclusions

In this paper, we presented a method for invariant checking and bounded model
checking for complex specifications of systems containing information about pro-
cesses, data, and time. In order to represent these specifications in full generality,
we used the specification language CSP-OZ-DC (COD) [HO02, Hoe06]. Similar
combined specification formalisms are, e.g., [MD99, Smi02, Süh02] but we prefer
COD due to its strict separation of control, data, and time, and to its composi-
tionality (cf. Sect. 3), that is essential for automatic verification.

One of our goals was to model complex systems with a parametric number of
components. For this, it was essential to use complex data structures (e.g., arrays,
functions). Therefore, in this paper we needed to extend existing verification
techniques for COD [HM05, MFR06] to situations when abstract data structures
appear. Also, in order to achieve a tighter binding of the OZ to the DC part, we
introduced timing parameters, allowing for more flexible specifications.

We showed that, in this context, invariant checking or bounded model check-
ing can be reduced to proving in complex theories. This was done using transla-
tions from COD to PEA (and then to simplified PEA) and from PEA to TCS
(these translations can be fully automated – we already have tool support for
them). We then analysed the type of theories that occur in relationship with a
given COD specification, and presented a sound method for efficient reasoning
in these theories. At the same time, we identified situations when the method
is sound and complete (i.e., when the specific properties of “position updates”
can be expressed by using chains of local theory extensions). All these ideas
were illustrated by means of a running example complementing scenarios stud-
ied in [FM06, MFR06] (as now we consider an arbitrary number of trains) and
in [JSS07] (as now we also encompass efficient handling of emergency messages).
We kept the running example relatively easy in order to ensure clarity of presen-
tation. More complicated scenarios can be handled similarly (we also considered,
e.g., situations in which time passes between position and speed updates).

In ongoing work, we investigate possibilities to use methods for abstraction-
based model checking and invariant generation for this type of models.

20

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[ERT02] ERTMS User Group, UNISIG. ERTMS/ETCS System requirements speci-
fication. http://www.aeif.org/ccm/default.asp, 2002. Version 2.2.2.

[FM06] J. Faber and R. Meyer. Model checking data-dependent real-time properties
of the European Train Control System. In FMCAD, pages 76–77. IEEE
Computer Society, 2006.

[Ghi04] S. Ghilardi. Model theoretic methods in combined constraint satisfiability.
Journal of Automated Reasoning, 33(3–4):221–249, 2004.

[GSSW06] H. Ganzinger, V. Sofronie-Stokkermans, and U. Waldmann. Modular proof
systems for partial functions with Evans equality. Information and Compu-
tation, 204(10):1453–1492, 2006.

[HJU05] H. Hermanns, D.N. Jansen, and Y.S. Usenko. From StoCharts to MoDeST: a
comparative reliability analysis of train radio communications. In Workshop
on Software and Performance, pages 13–23. ACM Press, 2005.

[HM05] J. Hoenicke and P. Maier. Model-checking of specifications integrating pro-
cesses, data and time. In FM 2005, volume 3582 of LNCS. Springer, 2005.

[HO02] J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A combination of specifica-
tion techniques for processes, data and time. Nordic Journal of Computing,
9(4):301–334, 2002. Appeared March 2003.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[Hoe06] J. Hoenicke. Combination of Processes, Data, and Time. PhD thesis, Uni-

versity of Oldenburg, Germany, 2006.
[JSS07] S. Jacobs and V. Sofronie-Stokkermans. Applications of hierarchic reasoning

in the verification of complex systems. ENTCS (special issue dedicated to
PDPAR 2006), 2007. 15 pages. To appear.

[MD99] B. P. Mahony and J. S. Dong. Overview of the semantics of TCOZ. In IFM,
pages 66–85. Springer, 1999.

[MFR06] R. Meyer, J. Faber, and A. Rybalchenko. Model checking duration calculus:
A practical approach. In ICTAC, volume 4281 of LNCS, pages 332–346.
Springer, 2006.

[NO79] G. Nelson and D.C. Oppen. Simplification by cooperating decision proce-
dures. ACM TOPLAS, 1(2):245–257, 1979.

[Ros98] A.W. Roscoe. Theory and Practice of Concurrency. Prentice Hall, 1998.
[Smi00] G. Smith. The Object Z Specification Language. Kluwer Academic, 2000.
[Smi02] G. Smith. An integration of real-time Object-Z and CSP for specifying

concurrent real-time systems. In IFM, volume 2335 of LNCS, pages 267–
285. Springer, 2002.

[SS05] V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
CADE, LNCS 3632, pages 219–234. Springer, 2005.

[SS06] V. Sofronie-Stokkermans. Interpolation in local theory extensions. In IJCAR,
LNCS 4130, pages 235–250. Springer, 2006.

[Süh02] Carsten Sühl. An overview of the integrated formalism RT-Z. Formal Asp.
Comput, 13(2):94–110, 2002.

[TZ06] J. Trowitzsch and A. Zimmermann. Using UML state machines and petri
nets for the quantitative investigation of ETCS. In VALUETOOLS, pages
1–34. ACM Press, 2006.

[ZH04] C. Zhou and M. R. Hansen. Duration Calculus. Springer, 2004.

http://www.aeif.org/ccm/default.asp

