
Electronic Notes in Theoretical Computer Science

Proceedings of the Fourth International Workshop
on Pragmatics of Decision Procedures in
Automated Reasoning, Seattle, August 21, 2006

Applications of hierarchical reasoning in the

verification of complex systems 3

Swen Jacobs1 Viorica Sofronie-Stokkermans2

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, Saarbrücken, Germany

Abstract

In this paper we show how hierarchical reasoning can be used to verify properties of complex systems. Chains
of local theory extensions are used to model a case study taken from the European Train Control System
(ETCS) standard, but considerably simplified. We show how testing invariants and bounded model checking
(for safety properties expressed by universally quantified formulae, depending on certain parameters of the
systems) can automatically be reduced to checking satisfiability of ground formulae over a base theory.

Keywords: Combinations of decision procedures, Hierarchical reasoning, Verification

1 Introduction

Many problems in computer science can be reduced to proving satisfiability of con-

junctions of (ground) literals modulo a background theory. This theory can be a

standard theory, the extension of a base theory with additional functions (free or

subject to additional conditions), or a combination of theories. In [8] we showed that

for special types of theory extensions, which we called local, hierarchic reasoning in

which a theorem prover for the base theory is used as a “black box” is possible.

Many theories important for computer science are local extensions of a base the-

ory. Several examples (including theories of data structures, e.g. theories of lists

(or arrays cf. [4]); but also theories of monotone functions or of functions satisfying

semi-Galois conditions) are given in [8,9]. Here we present additional examples of

local theory extensions occurring in the verification of complex systems.

In this paper we address a case study taken from the specification of the Euro-

pean Train Control System (ETCS) standard (cf. [3]) but considerably simplified,

namely an example of a communication device responsible for a given segment of

1 Email: sjacobs@mpi-sb.mpg.de
2 Email: sofronie@mpi-sb.mpg.de
3 This work was partly supported by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS). See www.avacs.org for more information.

c©2006 Published by Elsevier Science B. V.

mailto:sjacobs@mpi-sb.mpg.de
mailto:sofronie@mpi-sb.mpg.de

Jacobs, Sofronie-Stokkermans

the rail track, where trains may enter and leave. We suppose that, at fixed mo-

ments in time, all knowledge about the current positions of the trains is available

to a controller which accordingly imposes constraints on the speed of some trains,

or allows them to move freely within the allowed speed range on the track. Related

problems were tackled before with methods from verification [3].

The approach we use in this paper is different from previously used methods.

We use sorted arrays (or monotonely decreasing functions) for storing the train

positions. The use of abstract data structures allows us to pass in an elegant

way from verification of several finite instances of problems (modeled by finite-

state systems) to general verification results, in which sets of states are represented

using formulae in first-order logic, by keeping the number of trains as a parameter.

We show that for invariant or bounded model checking the specific properties of

“position updates” can be expressed in a natural way by using chains of local theory

extensions. Therefore we can use results in hierarchic theorem proving both for

invariant and for bounded model checking 4 . By using locality of theory extensions

we also obtained formal arguments on possibilities of systematic slicing (for bounded

model checking): we show that for proving (disproving) the violation of the safety

condition we only need to consider those trains which are in a neighborhood of the

trains which violate the safety condition 5 .

Structure of the paper. Section 2 contains the main theoretical results needed in

the paper. In Section 3 we describe the case study we consider. In Section 4 we

present a method for invariant and bounded model checking based on hierarchical

reasoning. Section 5 contains conclusions and perspectives.

2 Preliminaries

Theories and models. Theories can be regarded as sets of formulae or as sets of

models. Let T be a theory in a (many-sorted) signature Π = (S,Σ,Pred), where S

is a set of sorts, Σ is a set of function symbols and Pred a set of predicate symbols

(with given arities). A Π-structure is a tuple

M = ({Ms}s∈S , {fM}f∈Σ, {PM}P∈Pred),

where for every s ∈ S, Ms is a non-empty set, for all f ∈ Σ with arity

a(f)=s1×. . .×sn→s, fM :
∏n

i=1 Msi
→Ms and for all P ∈ Pred with arity a(P) =

s1×. . .×sn, PM ⊆ Ms1
× . . .×Msn

. We consider formulae over variables in a (many-

sorted) family X = {Xs | s ∈ S}, where for every s ∈ S, Xs is a set of variables of

sort s. A model of T is a Π-structure satisfying all formulae of T . In this paper,

whenever we speak about a theory T we implicitly refer to the set Mod(T) of all

models of T , if not otherwise specified.

Partial structures. Let T0 be a theory with signature Π0 = (S0,Σ0,Pred). We

consider extensions T1 of T0 with signature Π = (S,Σ,Pred), where S = S0∪S1,Σ =

4 Here we only focus on one example. However, we also used this technique for other case studies (among
which one is mentioned – in a slightly different context – in [9]).
5 In fact, it turns out that slicing (locality) results with a similar flavor presented by Necula and McPeak
in [6] have a similar theoretical justification.

2

Jacobs, Sofronie-Stokkermans

Σ0 ∪ Σ1 (i.e. the signature is extended by new sorts and function symbols) and T1

is obtained from T0 by adding a set K of (universally quantified) clauses. Thus,

Mod(T1) consists of all Π-structures which are models of K and whose reduct to Π0

is a model of T0.

A partial Π-structure is a structure M = ({Ms}s∈S , {fM}f∈Σ, {PM}P∈Pred), where

for every s ∈ S, Ms is a non-empty set and for every f ∈ Σ with arity s1×. . .×sn→s,

fM is a partial function from
∏n

i=1 Msi
to Ms. The notion of evaluating a term t

with variables X = {Xs | s ∈ S} w.r.t. an assignment {βs:Xs → Ms | s ∈ S} for

its variables in a partial structure M is the same as for total many-sorted algebras,

except that the evaluation is undefined if t = f(t1, . . . , tn) with a(f)=s1×. . .×sn→s,

and at least one of βsi
(ti) is undefined, or else (βs1

(t1), . . . , βsn
(tn)) is not in the

domain of fM. In what follows we will denote a many-sorted variable assignment

{βs:Xs → Ms | s ∈ S} as β : X → M. Let M be a partial Π-structure, C a clause

and β : X → M. We say that (M, β) |=w C iff either (i) for some term t in C,

β(t) is undefined, or else (ii) β(t) is defined for all terms t of C, and there exists a

literal L in C s.t. β(L) is true in M. M weakly satisfies C (notation: M |=w C) if

(M, β) |=w C for all β : X → M. M is a weak partial model of a set of clauses K

(notation: M |=w K, M is a w.p.model of K) if M |=w C for all C ∈ K.

Local theory extensions. Let K be a set of (universally quantified) clauses in the

signature Π = (S,Σ,Pred), where S = S0 ∪ S1 and Σ = Σ0 ∪ Σ1. In what follows,

when referring to sets G of ground clauses we assume they are in the signature

Πc = (S,Σ∪Σc,Pred) where Σc is a set of new constants. An extension T0 ⊆ T0∪K

is local if satisfiability of a set G of clauses with respect to T0∪K only depends on T0

and those instances K[G] of K in which the terms starting with extension functions

are in the set st(K, G) of ground terms which already occur in G or K. Formally,

K[G] = {Cσ |C ∈ K, for each subterm f(t) of C, with f ∈ Σ1,

f(t)σ ∈ st(K, G), and for each variable x which does not

occur below a function symbol in Σ1, σ(x) = x},

and T0 ⊆ T1=T0 ∪ K is a local extension if it satisfies condition (Loc):

(Loc) For every set G of ground clauses G |=T1
⊥ iff there is no partial

Πc-structure P such that P|Π0
is a total model of T0, all terms

in st(K, G) are defined in P , and P weakly satisfies K[G] ∧ G.

In [8,9] we gave several examples of local theory extensions: e.g. any extension of

a theory with free function symbols; extensions with selector functions for a con-

structor which is injective in the base theory; extensions of several partially ordered

theories with monotone functions. In Section 4.2 we give additional examples which

have particular relevance in verification.

Hierarchic reasoning in local theory extensions. Let T0 ⊆ T1=T0 ∪ K be a

local theory extension. To check the satisfiability of a set G of ground clauses w.r.t.

T1 we can proceed as follows (for details cf. [8]):

3

Jacobs, Sofronie-Stokkermans

Step 1: Use locality. By the locality condition, G is unsatisfiable w.r.t. T1 iff K[G]∧G

has no weak partial model in which all the subterms of K[G] ∧ G are defined, and

whose restriction to Π0 is a total model of T0.

Step 2: Flattening and purification. We purify and flatten K[G] ∧ G by introduc-

ing new constants for the arguments of the extension functions as well as for the

(sub)terms t = f(g1, . . . , gn) starting with extension functions f ∈ Σ1, together with

new corresponding definitions ct ≈ t. The set of clauses thus obtained has the form

K0 ∧ G0 ∧ D, where D is a set of ground unit clauses of the form f(c1, . . . , cn) ≈ c,

where f ∈ Σ1 and c1, . . . , cn, c are constants, and K0, G0 are clause sets without

function symbols in Σ1.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to testing

satisfiability in T0 by replacing D with the following set of clauses:

N0 =
∧

{
n
∧

i=1

ci = di → c = d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ D}.

Theorem 2.1 ([8]) With the notations above, the following are equivalent:

(1) T0 ∧ K ∧ G has a model.

(2) T0 ∧ K[G] ∧ G has a w.p.model (where all terms in st(K, G) are defined).

(3) T0 ∧ K0 ∧ G0 ∧ D has a w.p.model (with all terms in st(K, G) defined).

(4) T0 ∧ K0 ∧ G0 ∧ N0 has a (total) Σ0-model.

3 The RBC Case Study

The case study we discuss here is taken from the specification of the European Train

Control System (ETCS) standard [3]: we consider a radio block center (RBC),

which communicates with all trains on a given track segment. Trains may enter

and leave the area, given that a certain maximum number of trains on the track is

not exceeded. Every train reports its position to the RBC in given time intervals

and the RBC communicates to every train how far it can safely move, based on the

position of the preceding train. It is then the responsibility of the trains to adjust

their speed between given minimum and maximum speeds.

For a first try at verifying properties of this system, we have considerably sim-

plified it: we abstract from the communication issues in that we always evaluate

the system after a certain time ∆t, and at these evaluation points the positions

of all trains are known. Depending on these positions, the possible speed of every

train until the next evaluation is decided: if the distance to the preceding train is

less than a certain limit lalarm, the train may only move with minimum speed min

(otherwise with any speed between min and the maximum speed max).

3.1 Formal Description of the System Model

We present two formal system models. In the first one we have a fixed number of

trains; in the second we allow for entering and leaving trains.

4

Jacobs, Sofronie-Stokkermans

Model 1: Fixed Number of Trains. In this simpler model, any state of the

system is characterized by the real-valued constants ∆t >R 0 (the time between

evaluations of the system) 6 , min and max (the minimum and maximum speed of

trains), lalarm (the distance between trains which is deemed secure), the integer

constant n (the number of trains) and the function pos (mapping integers between

0 and n − 1 to real values representing the position of the corresponding train).

We use an additional function pos′ to model the evolution of the system: pos′(i)

denotes the position of i at the next evaluation point (after ∆t time units). The

way positions change (i.e. the relationship between pos and pos′) is defined by the

following set Kf = {F1,F2,F3,F4} of axioms:

(F1) ∀i (i = 0 → pos(i) + ∆t∗min ≤R pos′(i) ≤R pos(i) + ∆t∗max)

(F2) ∀i (0 < i < n ∧ pos(i − 1) >R 0 ∧ pos(p(i)) − pos(i) ≥R lalarm
→ pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t∗max)

(F3) ∀i (0 < i < n ∧ pos(i − 1) >R 0 ∧ pos(p(i)) − pos(i) <R lalarm
→ pos′(i) = pos(i) + ∆t∗min)

(F4) ∀i (0 < i < n ∧ pos(i − 1) ≤R 0 → pos′(i) = pos(i))

Note that the train with number 0 is the train with the greatest position, i.e. we

count trains from highest to lowest position.

Axiom F1 states that the first train may always move at any speed between min

and max. F2 states that the other trains can do so if their predecessor has already

started and the distance to it is larger than lalarm. If the predecessor of a train has

started, but is less than lalarm away, then the train may only move at speed min

(axiom F3). F4 requires that a train may not move at all if its predecessor has not

started.

Model 2: Incoming and leaving trains. If we allow incoming and leaving trains,

we additionally need a measure for the number of trains on the track. This is given

by additional constants first and last, which at any time give the number of the first

and last train on the track (again, the first train is supposed to be the train with

the highest position). Furthermore, the maximum number of trains that is allowed

to be on the track simultaneously is given by a constant maxTrains. These three

values replace the number of trains n in the simpler model, the rest of it remains

the same except that the function pos is now defined for values between first and

last, where before it was defined between 0 and n−1. The behavior of this extended

system is described by the following set Kv consisting of axioms (V1) − (V9):

(V1) ∀i (i = first → pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t ∗ max)

(V2) ∀i (first < i ≤ last ∧ pos(i − 1) >R 0 ∧ pos(i − 1) − pos(i) ≥R lalarm
→ pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t ∗ max)

(V3) ∀i (first < i ≤ last ∧ pos(i − 1) >R 0 ∧ pos(i − 1) − pos(i) <R lalarm
→ pos′(i) = pos(i) + ∆t ∗ min)

6 Inequality over integers is displayed without subscript, inequality over reals is marked with an R

5

Jacobs, Sofronie-Stokkermans

(V4) ∀i (first < i ≤ last ∧ pos(i − 1) ≤R 0 → pos′(i) = pos(i))

(V5) last − first + 1 < maxTrains → last′ = last ∨ last′ = last + 1

(V6) last − first + 1 = maxTrains → last′ = last

(V7) last − first + 1 > 0 → first′ = first ∨ first′ = first + 1

(V8) last − first + 1 = 0 → first′ = first

(V9) last′ = last + 1 → pos′(last′) <R pos′(last)

where primed symbols denote the state of the system at the next evaluation.

Here, axioms V1 − V4 are similar to F1 − F4, except that the fixed bounds are

replaced by the constants first and last. V5 states that if the number of trains is less

than maxTrains, then a new train may enter or not. V6 says that no train may enter

if maxTrains is already reached. V7 and V8 are similar conditions for leaving trains.

Finally, V9 states that if a train enters, its position must be behind the train that

was last before.

4 Hierarchical reasoning in verification

The safety condition which is important for this type of systems is collision freeness.

Intuitively (but in a very simplified model of the system of trains) collision freeness

is similar to a bounded strict monotonicity property for the function pos which

stores the positions of the trains:

Mon(pos) ∀i, j (0 ≤ i < j < n → pos(i) >R pos(j))

Mon(pos) expresses the condition that for all trains i, j on the track, if i precedes j

then i should be positioned strictly ahead of j.

We will also consider a more realistic extension, which allows to express collision-

freeness when the maximum length of the trains is known. In both cases, we focus

on invariant checking and on bounded model checking.

4.1 Problems: Invariant checking, bounded model checking

In what follows we illustrate the ideas for the simple approach, in which collision-

freeness is identified with strict monotonicity of the function which stores the po-

sitions of the trains. To check that strict monotonicity of train positions is an

invariant, we need to check that:

(a) In the initial state the train positions (expressed by a function pos0) satisfy

the strict monotonicity condition Mon(pos0).

(b) Assuming that at a given state, the function pos (indicating the positions) sat-

isfies the strict monotonicity condition Mon(pos), and the next state positions,

stored in pos′, satisfy the axioms K, where K ∈ {Kf ,Kv}, then pos′ satisfies

the strict monotonicity condition Mon(pos′).

Checking (a) is not a problem. For (b) we need to show that in the extension T

of a combination T0 of real arithmetic (sort num) with an index theory describing

precedence of trains (sort i), with the two functions pos and pos′ (with arity i → num)

6

Jacobs, Sofronie-Stokkermans

the following holds:

T |= K ∧ Mon(pos) → Mon(pos′), i.e. T ∧ K ∧ Mon(pos) ∧ ¬Mon(pos′) |=⊥ .

The set of formulae to be proved unsatisfiable w.r.t. T involves the axioms K and

Mon(pos), containing universally quantified variables of sort i. Only ¬Mon(pos ′)

corresponds to a ground set of clauses G. However, positive results for reasoning

in combinations of theories were only obtained for testing satisfiability for ground

formulae [7,5], so are not directly applicable.

In bounded model checking the same problem occurs. For a fixed k, one

has to show that there are no paths of length at most k from the initial state

to an unsafe state. We therefore need to store all intermediate positions in ar-

rays pos0, pos1, . . . , posk, and – provided that K(posi−1, posi) is defined such that

K = K(pos, pos′) – to show:

T ∧

j
∧

i=1

K(posi−1, posi) ∧ Mon(pos0) ∧ ¬Mon(posj) |=⊥ for all 0 ≤ j ≤ k.

4.2 Our solution: locality, hierarchical reasoning

Our idea. In order to overcome the problem mentioned above we proceed as

follows. We consider two successive extensions of the base theory T0 (a many-sorted

combination of real or rational arithmetic – for reasoning about positions, sort num

– with an index theory – for describing precedence between trains, sort i):

• the extension T1 of T0 with a monotone function pos, of arity i→num,

• the extension T2 of T1 with a function pos′ (arity i→num) satisfying K ∈ {Kf ,Kv}.

We show that both extensions T0 ⊆ T1 = T0 ∪ Mon(pos) and T1 ⊆ T2 = T1 ∪ K

are local, where K ∈ {Kf ,Kv}. This allows us to reduce problem (b) to testing

satisfiability of ground clauses in T0, for which standard methods for reasoning in

combinations of theories can be applied. A similar method can be used for bounded

model checking.

The base theory. As mentioned before, we assume that T0 is the many-sorted

combination of a theory T i
0 (sort i) for reasoning about precedence between trains

and a theory T num
0 (sort num) for reasoning about distances between trains. We

have several possibilities of choosing T i
0 : we can model the trains on a track by

using an (acyclic) list structure, where any train is linked to its predecessor, or

using the theory of integers with predecessor. T num
0 can be the theory of real or

rational numbers, or linear real or rational arithmetic.

Notation. As a convention, everywhere in what follows i, j, k denote variables of

sort i and c, d denote variables of sort num.

Collision freeness as monotonicity. In what follows let T i
0 be the theory of

(linear) integer arithmetic and T num
0 be the theory of real or rational numbers.

In both these theories satisfiability of ground clauses is decidable. Let T0 be the

(disjoint, many-sorted) combination of T i
0 and T num

0 . Then classical methods on

7

Jacobs, Sofronie-Stokkermans

combinations of decision procedures for (disjoint, many-sorted) theories can be used

to give a decision procedure for satisfiability of ground clauses w.r.t. T0. Let T1 be

obtained by extending T0 with a function pos of arity i → num mapping train indices

to the real numbers, which satisfies condition Mon(pos):

Mon(pos) ∀i, j (first ≤ i < j ≤ last → pos(i) >R pos(j)),

where i and j are indices, < is the ordering on indices and >R is the usual ordering

on the real numbers. (For the case of a fixed number n of trains, we can assume

that first = 0 and last = n − 1.)

A more precise axiomatization of collision-freeness. The monotonicity axiom

above is, in fact, an oversimplification. A more precise model, in which the length

of trains is considered can be obtained by replacing the monotonicity axiom for pos

with the following axiom:

∀i, j, k (first ≤ j ≤ i ≤ last ∧ i − j = k → pos(j) − pos(i) ≥R k ∗ LengthTrain),

where LengthTrain is the standard (resp. maximal) length of a train.

As base theory we consider the combination T ′
0 of the theory of integers and reals

with a multiplication operation ∗ of arity i × num → num (multiplication of k with

the constant LengthTrain in the formula above) 7 . Let T ′
1 be the theory obtained by

extending T ′
0 with a function pos satisfying the axiom above.

Theorem 4.1 The following extensions are local theory extensions:

(1) The theory extension T0 ⊆ T1.

(2) The theory extension T ′
0 ⊆ T ′

1 .

Proof : (1) The clause which states that pos is strictly decreasing

Mon(pos) ∀i, j (first ≤ i < j ≤ last → pos(i) >R pos(j))

is flat and linear w.r.t. pos, so we can prove the claim by showing that every weak

partial model M of T1 in which everything except pos is totally defined can be

extended to a total model of T1. Locality then follows by results in [8]. To define

pos at positions where it is undefined we use the density of real numbers and the

fact that between two integers there are only finitely many integers:

Let M be a weak partial model of T1. We denote by Mi the universe of M of

sort i (i.e. the set of integers) and by Mnum the support of M of sort num (i.e. the

set of real numbers). Then for all i, j ∈ Mi, if i < j and both pos(i) and pos(j)

are defined then pos(i) >R pos(j). To extend M to a total model of T1, we define

values for the pos(i) that are undefined in M . For every i ∈ Mi we check for the

smallest i+>i and the greatest i−<i with pos(i+), pos(i−) defined in M :

• if neither such an i+ nor such an i− exists, then pos is totally undefined. Clearly,

one can choose values for all indices such that Mon(pos) is satisfied.

7 In the light of locality properties of such extensions (cf. Theorem 4.1), k will always be instantiated by
values in a finite set of concrete integers, all within a given, concrete range; thus the introduction of this
many-sorted multiplication does not affect decidability.

8

Jacobs, Sofronie-Stokkermans

• if there exists an i+, but not an i−, we can choose any value for pos(i) which

satisfies pos(i) >R pos(i+).

• if there exists an i−, but not an i+, we can choose any value for pos(i) which

satisfies pos(i−) >R pos(i).

• if both i+ and i− exist, choose pos(i) such that it satisfies pos(i−) >R pos(i) >R

pos(i+).

The procedure can be repeated until pos is defined at all points between first and

last. As there are finitely many positions between these two positions, the procedure

terminates after a finite number of steps. We can define pos arbitrarily outside of

this range. The result is a total model of T1.

(2) The proof is similar to the proof of (1). Let M be a weak partial model of T ′
1 .

Let Mi, Mnum as above. Then for all i, j ∈ Mi, if i− j = k > 0 and both pos(i) and

pos(j) are defined then pos(j) − pos(i) ≥R k ∗ LengthTrain. To extend M to a total

model of T ′
1 , we define values for the pos(i) that are undefined in M , using i+ and

i− as above:

• if neither such an i+ nor such an i− exists, then a is totally undefined. Clearly,

one can choose values for all indices such that the condition above is satisfied.

• if there exists an i+, but not an i−, we can fill in all the values, starting from i+

by defining pos(i+ − 1) = pos(i+) + LengthTrain, and inductively, pos(j − 1) =

pos(j) + LengthTrain for all i+ ≤ j ≤ first.

• if there exists an i−, but not an i+, we proceed similarly.

• if both i+ and i− exist, we know that pos(i−)−pos(i+) ≤ (i+− i−)∗LengthTrain.

Starting with j = i− + 1 we define for every i− < j < i+ − 1, pos(j) = pos(j −

1) + LengthTrain. 2

We now extend the resulting theory T1 again in two different ways, with the axiom

sets for one of the two system models, respectively. A similar construction can be

done starting from the theory T ′
1 .

Theorem 4.2 The following extensions are local theory extensions:

(1) The extension T1 ⊆ T1 ∪Kf .

(2) The extension T1 ⊆ T1 ∪Kv.

Proof : The idea for both proofs is to show that weak partial models can be extended

to total ones, which implies locality by the results in [8].

(1) Clauses in Kf are flat and linear w.r.t. pos′, so we can prove locality of the

extension by showing that weak partial models can be extended to total ones. Let

M be a weak partial model of T1 ∪Kf , where everything but pos′ is totally defined.

We extend M by defining values for all undefined pos′(i):

• if i < 0 or i ≥ n, pos′(i) can be chosen arbitrarily;

• if 0 ≤ i ≤ n− 1, the left-hand sides of the implications (F1) to (F4) are mutually

exclusive, i.e. for any possible valuation of i we only have to satisfy the right-hand

side of one implication; the other implications are true because their antecedent

9

Jacobs, Sofronie-Stokkermans

is false. Let i with 0 ≤ i ≤ n − 1 for which pos′(i) is undefined in M :

· if the left-hand side of (F1) or (F2) is true in M , choose a pos′(i) that satisfies

pos(i) + min ≤R pos′(i) ≤R pos(i) + max. This is possible, as min ≤R max;

· if the the left-hand side of (F3) is true in M , let pos′(i)=pos(i)+∆t∗min;

· if the the left-hand side of (F4) is true in M , let pos′(i) = pos(i).

From the construction it is clear that we obtain a total model of T1 ∪ K.

(2) is proved similarly: As above, the axioms are flat and linear w.r.t. the function

symbol pos′ (and of course the constants first′, last′), so it is enough to show that

the weak partial models of T1 ∪ Kv can be extended to total models.

Let M be a partial model of T1 ∪ Kv in which everything but pos′, first′, last′ is

totally defined. We extend M to a total model of T1 ∪Kv in four steps:

(i) As in (1), we define values for undefined pos′(i) within the bounds of axioms

(V1) to (V4), i.e. between first and last. For values outside of the bounds, we

cannot make a statement yet, as (V9) also contains pos′.

(ii) if first′ and/or last′ are undefined, axioms (V5) to (V8) are satisfied by defining

first′ = first and/or last′ = last.

(iii) if last′ = last + 1 in M and pos′(last′) is undefined, define pos′(last′) such that

pos′(last′) <R pos′(last).

(iv) for all pos′(i) that are still undefined, arbitrary values can be chosen.

We thus can extend M to a total model of T1 ∪ Kv. 2

4.2.1 Hierarchical reasoning

Let K ∈ {Kv,Kf}. By the locality of T1 ⊆ T2 = T1 ∪ K and by Theorem 2.1, the

following are equivalent:

(1) T0 ∧ Mon(pos) ∧ K ∧ ¬Mon(pos′) |=⊥,

(2) T0 ∧ Mon(pos) ∧ K[G] ∧ G |=w⊥, where G = ¬Mon(pos′),

(3) T0 ∧ Mon(pos) ∧ K0 ∧ G0 ∧ N0(pos′) |=⊥,

where K[G] consists of all instances of the rules in K in which the terms starting

with the function symbols pos′ are ground subterms already occurring in G or K,

K0 ∧G0 is obtained from K[G]∧G by introducing new constants for the arguments

of the extension functions as well as for the (sub)terms t = f(g1, . . . , gn) starting

with extension functions f ∈ Σ1, and N0(pos′) is the set of instances of the congru-

ence axioms for pos′ which correspond to the definitions for these newly introduced

constants.

It is easy to see that, due to the special form of the rules in K (all free variables in

any clause occur as arguments of pos′ both in Kf and in Kv), K[G] (hence also K0)

is a set of ground clauses. By the locality of T0 ⊆ T1 = T0 ∪Mon(pos), the following

are equivalent:

(1) T0 ∧ Mon(pos) ∧ K0 ∧ G0 ∧ N0(pos′) |=⊥,

(2) T0 ∧ Mon(pos)[G′] ∧ G′ |=w⊥, where G′ = K0 ∧ G0 ∧ N0(pos′),

(3) T0 ∧ Mon(pos)0 ∧ G′
0 ∧ N0(pos) |=⊥,

10

Jacobs, Sofronie-Stokkermans

where Mon(pos)[G′] consists of all instances of the rules in Mon(pos) in which the

terms starting with the function symbol pos are ground subterms already occurring

in G′, Mon(pos)0 ∧ G′
0 is obtained from Mon(pos)[G′] ∧ G′ by purification and flat-

tening, and N0(pos) corresponds to the set of instances of congruence axioms for

pos which need to be taken into account. The method is illustrated in Section 4.3.

4.2.2 Application: parametric verification

The method for hierarchical reasoning described above allows us to reduce the prob-

lem of checking whether system properties such as collision freeness are inductive

invariants to deciding satisfiability of corresponding constraints in T0.

As a side effect, after the reduction of the problem to a satisfiability problem in

the base theory, one can automatically determine constraints on the parameters (e.g.

∆t,min,max, ...) which guarantee that the property is an inductive invariant, and are

sufficient for this. (This can be achieved for instance using quantifier elimination.)

4.2.3 Bounded model checking

In the example above we restricted attention to the problem of showing that a prop-

erty of train systems (collision freeness) is an inductive invariant. Similar results can

be established for bounded model checking. In this case the arguments are similar,

but one needs to consider chains of extensions of length 1, 2, 3, . . . , k for a bounded

k, corresponding to the paths from the initial state to be analyzed. An interesting

side-effect of our approach (restricting to instances which are similar to the goal) is

that it provides a possibility of systematic, goal-directed slicing: for proving (dis-

proving) the violation of the safety condition we only need to consider those trains

which are in a neighborhood of the trains which violate the safety condition.

4.3 Illustration

This section contains an illustration of the verification method based on hierarchical

reasoning on the case study given in Section 3.

We indicate how to apply hierarchical reasoning on the case study given in Section 3,

Model 1 8 . We follow the steps given at the end of Section 2 and show how the sets

of formulas are obtained that can finally be handed to a prover of the base theory.

To check whether T1 ∪ Kf |= ColFree(pos′), where

ColFree(pos′) ∀i (0 ≤ i < n − 1 → pos′(i) >R pos′(i + 1)),

we check whether T1∪Kf∪G |= ⊥, where G = {0 ≤ k < n−1, k′ = k+1, pos′(k) ≤R

pos′(k′)} is the (skolemized) negation of ColFree(pos′), flattened by introducing a

new constant k′.

Reduction from T1∪Kf to T1. This problem is reduced to a satisfiability problem

over T1 as follows:

8 We illustrate our approach for the simplest model. For a variable number of trains or the other definition
of collision-freeness, the approach is the same.

11

Jacobs, Sofronie-Stokkermans

Step 1: Use locality. We construct the set Kf [G]: There are no ground subterms

with pos′ at the root in Kf , and only two ground terms with pos′ in G, pos′(k)

and pos′(k′). This means that Kf [G] consists of two instances of Kf : one with i

instantiated to k, the other instantiated to k ′. E.g., the two instances of F2 are:

(F2[G]) (0 < k < n ∧ pos(k − 1) >R 0 ∧ pos(k − 1) − pos(k) ≥R lalarm
→ pos(k) + ∆t ∗ min ≤R pos′(k) ≤R pos(k) + ∆t∗max)

(0 < k′ < n ∧ pos(k′ − 1) >R 0 ∧ pos(k′ − 1) − pos(k′) ≥R lalarm
→ pos(k′) + ∆t ∗ min ≤R pos′(k′) ≤R pos(k′) + ∆t∗max)

The construction of (F1[G]), (F3[G]) and (F4[G]) is similar. In addition, we specify

the known relationships between the constants of the system:

(Dom) ∆t >R 0 ∧ 0 ≤R min ∧ min ≤R max

Step 2: Flattening and purification. Kf [G]∧G is already flat w.r.t. pos′. We replace

all ground terms with pos′ at the root with new constants: we replace pos′(k) by c1

and pos′(k′) by c2. We obtain a set of definitions D = {pos′(k) = c1, pos′(k′) = c2}

and a set Kf0
of clauses which do not contain occurrences of pos′, consisting of

(Dom) together with:

(G0) 0 ≤ k < n − 1 ∧ k′ = k + 1 ∧ c1 ≤R c2

(F20) (0 < k < n ∧ pos(k − 1) >R 0 ∧ pos(k − 1) − pos(k) ≥R lalarm
→ pos(k) + ∆t ∗ min ≤R c1 ≤R pos(k) + ∆t∗max)

(0 < k′ < n ∧ pos(k′ − 1) >R 0 ∧ pos(k′ − 1) − pos(k′) ≥R lalarm
→ pos(k′) + ∆t ∗ min ≤R c2 ≤R pos(k′) + ∆t∗max)

The construction can be continued similarly for F1, F3 and F4.

Step 3: Reduction to satisfiability in T1. We add the functionality clause N0 =

{k = k′ → c1 = c2} and obtain a satisfiability problem in T1: Kf0
∧ G0 ∧ N0.

Reduction from T1 to T0. To decide satisfiability of T1∧Kf0
∧G0∧N0, we have to

do another transformation w.r.t. the extension T0 ⊆ T1. The resulting set of ground

clauses can directly be handed to a decision procedure for the combination of the

theory of indices and the theory of reals. We flatten and purify the set Kf0
∧G0∧N0

of ground clauses w.r.t. pos by introducing new constants denoting k−1 and k ′−1,

together with their definitions k′′ = k − 1, k′′′ = k′ − 1; as well as constants di

for pos(k), pos(k′), pos(k′′), pos(k′′′). Taking into account only the corresponding

instances of the monotonicity axiom for pos we obtain a set of clauses consisting of

(Dom) together with:

(G′
0
) k′′ = k − 1 ∧ k′′′ = k′ − 1

(G0) 0 ≤ k < n − 1 ∧ k′ = k + 1 ∧ c1 ≤R c2

(GF10) k = 0 → d1 + ∆t∗min ≤R c1 ≤R d1 + ∆t∗max

k′ = 0 → d2 + ∆t∗min ≤R c2 ≤R d2 + ∆t∗max

(GF20) 0<k<n ∧ d3>R0 ∧ d3−d1 ≥R lalarm → d1+∆t∗min ≤R c1 ≤R d1+∆t∗max

0<k′<n ∧ d4>R0 ∧ d4−d2 ≥R lalarm → d2+∆t∗min ≤R c2 ≤R d2+∆t∗max

12

Jacobs, Sofronie-Stokkermans

(GF30) 0<k<n ∧ d3>R0 ∧ d3−d1 <R lalarm → c1 = d1+∆t∗min

0<k′<n ∧ d4>R0 ∧ d4−d2 <R lalarm → c2 = d2+∆t∗min

(GF40) (0<k<n ∧ d3 ≤R 0 → c1=d1) ∧ (0<k′<n ∧ d4 ≤R 0 → c2=d2)

Mon(pos)[G′] k < k′ → d1 >R d2 ∧ k′ < k → d2 >R d1 ∧ k′′ < k′′′ → d3 >R d4

k < k′′ → d1 >R d3 ∧ k′ < k′′′ → d2 >R d4 ∧ k′′′ < k → d4 >R d1

k < k′′′ → d1 >R d4 ∧ k′′ < k → d3 >R d1 ∧ k′′′ < k′ → d4 >R d2

k′ < k′′ → d2 >R d3 ∧ k′′ < k′ → d3 >R d2 ∧ k′′′ < k′′ → d4 >R d3

N0(pos′) k = k′ → c1 = c2

N0(pos) k = k′ → d1 = d2 ∧ k = k′′ → d1 = d3 ∧ k′ = k′′′ → d2 = d4

k = k′′′ → d1 = d4 ∧ k′ = k′′ → d2 = d3 ∧ k′′ = k′′′ → d3 = d4

In fact, the constraints on indices can help to further simplify the instances of

monotonicity of Mon(pos)[G′] ∧ N0(pos) ∧ N0(pos′): k′ > k, k′′ < k, k′′ < k′, k′′′ <

k′, k′′′ = k. The set of clauses equivalent to Mon(pos)[G′] ∧ N0(pos) ∧ N0(pos′) is

given below. (Here we do these simplifications by hand; this can be done as well by

a pre-simplification program which detects obviously true relationships between the

premises of these rules.) After making these simplifications we obtain the following

set of (many-sorted) constraints:

CDefinitions CIndices (sort i) CReals (sort num) CMixed

pos′(k) = c1 ∧ pos(k′) = d2 k′ = k + 1 d1 >R d2 ∧ d3 >R d4 (GF10)

pos′(k′) = c2 ∧ pos(k′′) = d3 k′′ = k − 1 d3 >R d2 ∧ d4 >R d2 (GF20)

pos(k) = d1 ∧ pos(k′′′) = d4 k′′′ = k′ − 1 d3 >R d1 ∧ d1 = d4 (GF30)

0 ≤ k, k′ < n − 1 c1 ≤R c2 ∧ (Dom) (GF40)

For checking the satisfiability of CIndices ∧CReals ∧CMixed we can use a prover for the

two-sorted combination of the theory of integers and the theory of reals, possibly

combined with a DPLL methodology for dealing with full clauses.

We present below an alternative method, somewhat similar to DPLL(T0), but which

uses only branching on the literals containing terms of sort i, and thus reduces the

verification problem to the problem of checking the satisfiability of a set of linear

constraints over the reals. This idea, we think, may be used to simplify automated

verification for a whole class of problems in which the axioms are guarded by simple,

mutually disjoint and exhaustive premises expressed in a specific theory. Such

examples occur very often in verification where several disjoint cases need to be

taken into account.

k = 0: Due to the constraints in CIndices, the premises of all the other rules in

GF10−GF40 become false, so all the rules except for the first rule in GF10 become

trivially true. We thus only need to check the satisfiability (in the theory T num
0)

of d1+∆t∗min ≤R c1 ≤R d1+∆t∗max ∧ CReals. This is obviously satisfiable.

k 6= 0: We distinguish the following possibilities:

13

Jacobs, Sofronie-Stokkermans

k < 0: unsatisfiable because of 0 ≤ k in G0.

k > 0: We distinguish the following possibilities:

k > n − 1: unsatisfiable because of k ≤ n − 1 in G0.

k ≤ n − 1: We distinguish the following possibilities:

k′ = 0: We need to check the satisfiability of the following set of constraints

over the reals:










































GF10 : d2 + ∆t∗min ≤R c2 ≤R d2 + ∆t∗max

GF20 : d3>R0 ∧ d3−d1 ≥R lalarm → d1+∆t∗min ≤R c1 ≤R d1+∆t∗max

GF30 : d3>R0 ∧ d3−d1 <R lalarm → c1 = d1+∆t∗min

GF40 : d3 ≤R 0 → c1=d1

CReals c1 ≤R c2 ∧ d1 >R d2 ∧ d3 >R d1 ∧ d3 >R d2 ∧ d4 >R d2 ∧

d3 >R d4 ∧ d1 = d2

By using quantifier elimination for the variables c1, c2, d1, d2, d3, d4, we can

obtain a direct relationship between ∆t,min,max, lalarm which guarantees

satisfiability. We did this by using the REDLOG system [2].

k′ < 0: unsatisfiable because of CIndices.

k′ > 0: We distinguish the following possibilities:

k′ > n − 1: unsatisfiable because of CIndices.

k′ ≤ n: We need to check the satisfiability of the following set of con-

straints over the reals:


























































GF20 : d3>R0 ∧ d3−d1 ≥R lalarm → d1+∆t∗min ≤R c1 ≤R d1+∆t∗max

d4>R0 ∧ d4−d2 ≥R lalarm → d2+∆t∗min ≤R c2 ≤R d2+∆t∗max

GF30 : d3>R0 ∧ d3−d1 <R lalarm → c1 = d1+∆t∗min

d4>R0 ∧ d4−d2 <R lalarm → c2 = d2+∆t∗min

GF40 : d3 ≤R 0 → c1=d1

d4 ≤R 0 → c2=d2

CReals c1 ≤R c2 ∧ d1 >R d2 ∧ d3 >R d1 ∧ d3 >R d2 ∧ d4 >R d2 ∧

d3 >R d4 ∧ d1 = d2

Again, by using quantifier elimination we can obtain a relationship be-

tween ∆t,min,max, lalarm which guarantees satisfiability.

Although the proofs above are generated by hand, the method is easy to implement.

An implementation of the hierarchical method described in Section 2 is in progress.

5 Conclusions

In this paper we described a case study concerning a system of trains on a rail

track, where trains may enter and leave the area. An example of a safety condition

for such a system (collision freeness) was considered. The problem above can be

reduced to testing satisfiability of quantified formulae in complex theories. However,

the existing results on reasoning in combinations of theories are restricted to testing

satisfiability for ground formulae.

This paper shows that, in the example considered, we can reduce satisfiabil-

ity checking of universally quantified formulae to the simpler task of satisfiability

14

Jacobs, Sofronie-Stokkermans

checking for ground clauses. For this, we identify corresponding chains of theory

extensions T0 ⊆ T1 ⊆ · · · ⊆ Ti, such that Tj = Tj−1 ∪ Kj is a local extension

of Tj−1 by a set Kj of (universally quantified) clauses. This allows us to reduce,

for instance, testing collision freeness in theories containing arrays to represent the

train positions, to checking the satisfiability of a set of sets of ground clauses over

the combination of the theory of reals with a theory which expresses precedence

between trains. However, the applicability of the method is far more general: the

challenge is, at the moment, to recognize classes of local theories occurring in vari-

ous areas of application. The method can be used for parametric verification: after

the reduction of the problem to a satisfiability problem in the base theory, one

can automatically determine constraints on the parameters (∆t,min,max, ...) which

guarantee that the property is an inductive invariant. The implementation of the

procedure described here is in progress; the method is clearly easy to implement.

Our results also open a possibility of using abstraction-refinement deductive model

checking in a whole class of applications including the examples presented here –

these aspects are not discussed in this paper, and rely on results we obtained in [9].

The results we present here also have theoretical implications: In one of the

models we considered here, collision-freeness is expressed as a monotonicity condi-

tion. Limits of decidability in reasoning about sorted arrays were explored in [1].

The decidability of satisfiability of ground clauses in the fragment of the theory

of sorted arrays which we consider here is an easy consequence of the locality of

extensions with monotone functions.

Acknowledgement. Many thanks to Johannes Faber for sending us a case study

taken from the specification of the European Train Control System which we used

as a starting point for the specification considered in this paper.

References

[1] A. Bradley, Z. Manna, and H. Sipma. What’s decidable about arrays? In E. Emerson and K. Namjoshi,
editors, Verification, Model-Checking, and Abstract-Interpretation, 7th Int. Conf. (VMCAI 2006), LNCS
3855, pp. 427–442. Springer, 2006.

[2] A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin,
31(2):2–9, 1997.

[3] J. Faber. Verifying real-time aspects of the European Train Control System. In Proceedings of the 17th
Nordic Workshop on Programming Theory, pp. 67–70. University of Copenhagen, Denmark, 2005.

[4] H. Ganzinger, V. Sofronie-Stokkermans, and U. Waldmann. Modular proof systems for partial functions
with Evans equality. Information and Computation, 204(10): 1453-1492, 2006.

[5] S. Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal of Automated
Reasoning, 33(3–4):221–249, 2004.

[6] S. McPeak and G. Necula. Data structure specifications via local equality axioms. In K. Etessami and
S. Rajamani, editors, Computer Aided Verification, 17th International Conference, CAV 2005, LNCS
3576, pp. 476–490, 2005.

[7] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM Trans. on
Programming Languages and Systems, 1(2):245–257, 1979.

[8] V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In R. Nieuwenhuis, editor,
Automated deduction - CADE-20. Proceedings of the 20th International Conference on Automated
Deduction, LNCS 3632, pp. 219–234. Springer, 2005.

[9] V. Sofronie-Stokkermans. Interpolation in local theory extensions. In U. Furbach and N. Shankar editors,
Automated Reasoning. Third International Joint Conference, IJCAR 2006, LNAI 4130, pp. 235–250.
Springer, 2006.

15

	Introduction
	Preliminaries
	The RBC Case Study
	Formal Description of the System Model

	Hierarchical reasoning in verification
	Problems: Invariant checking, bounded model checking
	Our solution: locality, hierarchical reasoning
	Illustration

	Conclusions
	References

