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Abstract

In this paper we show that states, transitions and behavior of concurrent systems can often be modeled as
sheaves over a suitable topological space. In this context, geometric logic can be used to describe which
local properties, of individual systems, are preserved, at a global level, when interconnecting the systems.
The main area of application is to modular verification of complex systems. We illustrate the ideas by
means of an example involving a family of interacting controllers for trains on a rail track.

1 Introduction

Complex systems, consisting of several components that interact, arise in a natural

way in a wide range of applications. The components may be complex themselves

(they may e.g. contain a database; may have their specific internal logic and an

appropriate inference mechanism; a planning mechanism, etc.), or may be simple -

but even then their composition can complicated because of the necessity to take into

account the interaction between the single components. One of the main problems

that arise in the verification of such complex systems is the state explosion problem:

the state space can grow exponentially with the number of components. Symbolic

representations of states and symbolic model checking have greatly increased the

size of the systems that can be verified. However, many realistic systems are still too

large to be handled. It is therefore important to find techniques that can be used to

further extend the size of the systems that can be verified. One possibility is to check

properties in a modular way (i.e. verify them for the individual components, infer

that they also hold in the system obtained by the interconnection of the individual

components, and then use them to deduce additional properties of the system). Not

all properties are preserved by interconnection: for instance deadlocks might occur
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when interconnecting deadlock free systems. The main goal of this paper is to offer

an answer to an important question in verification:

Which properties of complex systems can be checked in a modular way?

To answer such questions, in this paper we use an analogy with phenomena in

topology and algebraic geometry, where sheaves are used to describe locally defined

objects which can be patched together into a global object. Thus, sheaf theory

allows to establish links between “local” and “global” properties. We show that,

given a family of interacting systems, states, actions, transitions, behavior in time

can often be modeled by sheaves over a suitable topological space (where the topol-

ogy expresses how the interacting systems share the information). Many properties

of systems can be expressed as assertions about states, actions, transitions, behavior

in time. The sheaf semantics allows us to prove, by using results from geometric

logic, that those properties of systems that can be expressed by cartesian axioms

are preserved after interconnecting the systems.

The starting point of our research is the work of Goguen [6], who uses sheaves

to model behavior in an ’interval of observation’, and Monteiro and Pereira [13],

where behavior is modeled by sheaves of monoids. The idea of modeling states,

actions and transitions by sheaves with respect to a topological space, and of using

geometric logic for studying the link between properties of the components and

properties of the systems that arises from their interconnection occurs, to the best

of our knowledge, for the first time in our previous work [16,17,18]. We present an

overview of our results in [17,18] together with new results which illustrate how sheaf

theory can be used for the modular verification of complex systems. We illustrate

all the notions introduced by means of a running example involving a family of

interacting controllers controlling a subsets of consecutive trains on a linear, loop-

free, rail track. The main contributions of the paper are summarized below:

• We start with a presentation of our previous results described in [16,17,18], where

we showed that states, parallel actions, transitions and behavior in time can

be modeled by sheaves. Concerning these topics, the main contribution of this

paper consists in illustrating the various notions we use (definition of systems,

states, parallel actions, transitions, conditions on transition relations, categorical

constructions, covers, gluing and sheaf properties) by means of a running example.

• In addition to the model of behavior we considered in [16,17,18], we also analyze

a description of behavior by traces of execution (modeled by free monoids and

partially commutative monoids). We analyze gluing and sheaf properties also in

this context. We pay special attention also in this case to identifying situations

when the stalks of the sheaves are isomorphic to the behavior of the individual

systems, whereas the global sections are isomorphic to the behavior of the colimit

of these systems. For this, we use results on sheaf representation in universal

algebra. We establish links with existing results in the study of Petri nets and

Mazurkiewicz traces [3] and on modeling behavior by sheaves of monoids [13].

• We use geometric logic for describing properties which can be checked modularly.

We illustrate the ideas on the running example, and describe a simple complex

system for trains for which safety and lifeness can be checked in a modular way.
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Structure of the paper. The paper is structured as follows. In Section 2 we present

a model for systems (including also their states, parallel actions and transitions).

Section 3 contains the definition of a category of systems and the description of

pullbacks and colimits in this category. In Section 4 we give a model for complex,

interacting systems, and motivate the use of sheaf theory. Sections 5–8 describe

our sheaf-theoretic semantics for states, parallel actions, transitions and behavior.

In Section 9 geometric logic is used to test preservation of ’local’ properties under

connection of systems. Several examples are given in Section 10.

2 Systems

Our aim is to model interconnected systems. We assume systems are described by:

• a set X of control variables of the system, a set Γ of constraints on X expressed

in a language L,

• a set A of atomic actions, and a set C of constraints on A.

Let Σ = (Sort, O, P ) be a signature, consisting of a set Sort of sorts, a set O of

operation symbols and a set P of predicate symbols. For a (many-sorted) set of

variables X = {Xs}s∈Sort let FmaΣ(X) be the set of formulae over Σ.

A Σ-structure is a structure M = ((Ms)s∈Sort, {fM}f∈O, {RM}R∈P ) where if f ∈ O

has arity s1 . . . sn → s then fM : Ms1 × . . . ×Msn → Ms and if R ∈ P has arity

s1 . . . sn then RM ⊆ Ms1 × . . . × Msn . The class of all Σ-structures is denoted

StrΣ. If M ∈ StrΣ, s : X → M is a sort-preserving assignment, and φ ∈ FmaΣ(X),

(M, s) |= φ (abbreviated by s |= φ) is defined in the usual way (cf. [1], Ch. 1).

Definition 2.1 A system S is a tuple (Σ, X,Γ,M,A,C), where

(i) Σ = (Sort, O, P ) and X = {Xs}s∈Sort are as specified above; together they

define the language LS of the system S;

(ii) Γ ⊆ FmaΣ(X) is a set of constraints, which is closed with respect to the se-

mantical consequence relation 3 |=M ;

(iii) M ∈ StrΣ;

(iv) A is a set of actions; for every a ∈ A, a set Xa ⊆ X of variables on which a

depends, and a transition relation Tra ⊆ Sta × Sta, where Sta = {s|Xa | s :

X →M, s |= Γ} are specified;

(v) C is a set of constraints on actions, expressed by boolean equations over FB(A)

(the free boolean algebra generated by A) stating e.g. which actions can (or

have to) be executed in parallel, and which cannot; C must contain all boolean

equations that can be deduced from C.

In what follows, we may refer to any of the components of a system S by adding S

as a subscript, e.g. ΣS for its signature. Xa
S will denote the minimal set of variables

on which a ∈ AS depends, and Tra
S the transition relation associated with a.

3 The relation |=M is defined by Γ |=M φ if and only if for every assignment s : X → M of values in M to
the variables in X, if s |= γ for every γ ∈ Γ, then s |= φ.
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For the sake of simplicity, in the examples below we will only mention explicitly the

axioms in Γ and C and not all their consequences.

Example 2.2 We consider a system consisting of n consecutive trains on a linear

track controlled by a radio controller (cf. also [8]). The trains report their position

to the controller at fixed time intervals ∆t. The controller analyzes the distances

between successive trains (we assume that certain security distance treshholds l0 <

l1 < · · · < lm < . . . and corresponding maximal speed limits maxSpeed(1) < · · · <
maxSpeed(m) < . . . , deemed to be safe for the trains, are known) and updates the

movement modes of trains accordingly. A train with movement mode k can move in

the next time interval ∆t with an arbitrary speed between a minimal speed and the

maximal speed limit of mode k, maxSpeed(k). The system is modeled as follows:

(i) Language: Σ = (Sort, O, P ), where Sort = {real, nat};
• O = {+,−,minSpeed,maxSpeed, succ}, where +,−:real, real→real, minSpeed

is a constant of sort real, maxSpeed a function of arity nat → real, and succ

of arity nat → nat.
• P = {≤}, where ≤ has arity real, real.
• X =

⋃n
i=1{TrainIndexi,ActualPosi,RepPosi,Modei}, where TrainIndexi con-

trols the number of train i on the line track, and ActualPosi,RepPosi and

Modei control the actual, resp. reported position and the movement mode of

train i respectively.

(ii) Constraints: Γ = {succ(TrainIndexi) = TrainIndexi+1 | i ∈ {1, . . . , n− 1}}.

(iii) Model M=(Mnat,Mreal,+,−,minSpeed,maxSpeed, succ,≤), where Mnat = N;

Mreal = R; +,− are addition and subtraction on R, succ : N → N is the

successor function, minSpeed ∈ R, maxSpeed : N → R associates with a mode

k ∈ N the maximal allowed speed in mode k; ≤ is the order relation on R.

(iv) Actions: A = {reporti | i ∈ {1, . . . , n}} ∪ {update} ∪ {movei | i ∈ {1, . . . , n}}.
• reporti depends on the variables Xri = {ActualPosi,RepPosi,Modei}.

If s, s′ : X →M then (s|Xri , s′|Xri
) ∈ Trri iff s(Modei) = 0

s′(RepPosi) = s(ActualPosi)
s′(ActualPosi) = s(ActualPosi).

• update depends on Xu =
⋃

i∈{1,...,n}{ActualPosi,RepPosi,Modei}.
If s, s′ : X →M then (s|Xu , s′|Xu) ∈ Trri if and only if for all i ∈ {1, . . . , n}

the following hold: (i) s(Modei) = 0, (ii) s′(ActualPosi) = s(ActualPosi),

(iii) s′(RepPosi) = s(ActualPosi), and (iv) s′(Modei) is updated according to

the following rules: s′(Mode1) > 0 and for all i ≥ 2:

if lk < s(RepPosi−1) − s(RepPosi) ≤ lk+1 then s′(Modei) = k + 1.

• movei depends on Xmi = {ActualPosi,Modei}. It is enabled at a state s iff

s(Modei) > 0 for all i ∈ {1, . . . , n}; it changes ActualPosi according to the

value of Modei as follows, for i ∈ {1, . . . , n}:

s′(ActualPosi)∈[RepPosi+∆t∗minSpeed,RepPosi+∆t∗maxSpeed(s(Modei))];

and it updates the value of Modei to 0: s′(Modei) = 0 for i ∈ {1, . . . , n}.

(v) Constraints on actions: C = {report1 = report2 = · · · = reportn = update} ∪
{reporti ∧ movei = 0 | i ∈ {1, . . . , n}} ∪ {move1 = · · · = moven}.
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2.1 States, parallel actions

It is important to describe the states of a system and the actions which can be

performed in parallel (which we here name admissible parallel actions).

Definition 2.3 Let S = (Σ, X,Γ,M,A,C) be a system.

• A state of S is an assignment s : X →M satisfying all formulae in Γ. The set of

states of the system S is St(S) = {s : X →M | s |= Γ}.

• The admissible parallel actions of S are sets of actions, represented by maps

f : A → {0, 1} that satisfy all constraints in C. The set of admissible parallel

actions of S is the set Pa(S) = {f : A→ {0, 1} | f satisfies C}.

Below we restrict our attention to finite systems, i.e. systems whose signatures, sets

of control variables and sets of actions are finite; this suffices for practical appli-

cations and avoids having to consider infinitely many actions occurring in parallel.

Example 2.4 Consider the system S in Example 2.2 with n ≥ 2. A state is a map

s : X →M which satisfies Γ. For instance, any map s : X →M such that:

• s(TrainIndex1) = 1, s(TrainIndex2) = 2, . . . , s(TrainIndexn) = n or

• s(TrainIndex1) = 100, s(TrainIndex2) = 101, . . . , s(TrainIndexn) = 100 + (n− 1).

is a state of S. If s(TrainIndex1) = 1 and s(TrainIndex2) = 3, s cannot be a state.

An admissible parallel action is a map f : A→ {0, 1} which satisfies the constraints

in C. Examples of admissible parallel actions are

(i) f(report1) = f(report2) = · · · = f(reportn) = f(update) = 1, and 0 otherwise,

(ii) f(move1) = · · · = f(moven) = 1 and 0 otherwise.

Any map f with f(move1) = f(report1) = 1, or with f(reporti) = 0 but f(update) =

1, is not an admissible parallel action, since it does not satisfy the constraints in C.

2.2 Transitions

Let S = (Σ, X,Γ,M,A,C) be a system. Let TrS(a) = {(s1, s2) | s1, s2 ∈
St(S), (s1 |Xa, s2|Xa) ∈ Tra, s1(x) = s2(x) if x 6∈ Xa}. We extend the notion of

transition to parallel actions. For this we present two (non-equivalent) properties of

transitions that express compatibility of the actions in an admissible parallel action:

(Disj) Let f ∈ Pa(S), s ∈ St(S) such that for every a ∈ f−1(1) there is an sa ∈

St(S) with (s|Xa , sa
|Xa) ∈ Tra. Then for all a, b ∈ f−1(1) and x∈Xa∩Xb,

sa(x) = sb(x) (the new local states agree on intersections). Then,

TrS(f) = {(s, t) | s, t ∈ St(S), (s|Xa , t|Xa) ∈ Tra for every a such that

f(a) = 1 and s(x) = t(x) if x 6∈
⋃

a,f(a)=1 X
a}.

The property (Disj) applies when a parallel action f : A → {0, 1} is admissible

iff its components do not consume common resources. This happens e.g. if for all

a1, a2 ∈ A with f(a1) = f(a2) = 1, either a1 = a2 ∈ C or Xa1 and Xa2 are disjoint.

In concurrency theory, this property is called “real parallelism” or “independence”.
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Example 2.5 Consider the example in Section 2.2. Let f : A → {0, 1} be an

admissible parallel action. We have two possibilities:

(i) f(report1) = · · · = f(reportn) = f(update) = 1 and 0 otherwise.

The transition relation of this parallel action updates the value of each vari-

able RepPosi according to the transition relation of reporti, resp. update. The

changes are not contradictory, since the effect of update agrees with the effect

of report1, . . . , reportn on the variables in Xu ∩Xri . Thus, (Disj) holds.

(ii) f(report1) = · · · = f(reportn) = f(update) = 0 and f(move1) = · · · =

f(moven) = 1 and f is 0 otherwise. As the actions movej , j = 1, . . . , n de-

pend on disjoint sets of variables, (Disj) is satisfied also in this case.

The transition relation of this parallel action updates the value of each variable

ActualPosi. Since the sets of variables these actions depend upon, namely Xmi ,

are mutually disjoint, these changes cannot be contradictory.

(Indep) Assume that if a = b ∈ C then Xa = Xb and Tra = Trb, and a and b

can both be identified with one action: the parallel execution of a, b.

Let f ∈ Pa(S), s ∈ St(S). We identify all a, b ∈ A with a = b ∈ C

and f(a) = f(b) = 1. Let {b1, . . . , bm} ⊆ f−1(1). We assume that:

(i) g : A→ {0, 1}, defined by g(a) = 1 iff a ∈ {b1, . . . , bm}, is in Pa(S);

(ii) if s
b1→s1

b2→s2→ . . .→sm−1
bm→ t then for every permutation σ of {1, . . . ,m},

there exist states tσ1 , . . . , t
σ
m−1 with s

bσ(1)
→ tσ1

bσ(2)
→ tσ2→ . . .→tσm−1

bσ(m)
→ t

Then TrS(f) = {(s, t) | s, t ∈ St(S), and ∃s0, s1, . . . , sn−1, sn ∈ St(S) s.t. s0 = s,
sn = t, and (si−1, si) ∈ TrS(ai), for all 1 ≤ i ≤ n}.

It is easy to see that if (s, t) ∈ TrS(f) then s(x) = t(x) for every x 6∈
⋃

a,f(a)=1 X
a.

The property (Indep) reflects how transitions are interpreted when actions to be

performed in parallel do consume common resources. It applies if the state reached

after executing an action is uniquely determined: the fact that all components of a

parallel action f : A → {0, 1} can be applied at a state s is a necessary condition

for f to be applicable at state s, but in general not sufficient (in addition, one

has to ensure that there are enough resources to perform all actions). Condition

(Indep)(i) holds e.g. if C is the set of all consequences of a set C0 consisting only

of formulae of the form a1 = a2 and a1 ∧ a2 = 0. Condition (Indep)(ii) states that

the final state does not depend on the order in which the actions are executed (it is

related to the notions of interleaving and permutable actions used in concurrency).

Example 2.6 We consider a variant of Example 2.2, in which we assume that there

is no control unit, but all trains have access to all information about the positions

of all trains. The trains report all together and move all together. The actions are

A = {report1, . . . , reportn} ∪ {move1, . . . ,moven}, with constraints C = {report1 =

· · · = reportn} ∪ {move1 = · · · = moven} ∪ {reporti ∧ movei = 0 | i ∈ {1, . . . , n}}.

Let f : A → {0, 1} be an admissible parallel action. Then f−1(1) is either ∅ or

{report1, . . . , reportn} or {move1, . . . ,moven}. As in all cases the actions in f−1(1)

depend on disjoint sets of variables, the final state does not depend on the order in

which the actions would be performed sequentially.
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3 A category of systems

Essential to our model for communication is that systems have common subsystems

through which information exchange is made. Let S, T be two systems. We say

that S is a subsystem of T (denoted S �→ T ) if ΣS ⊆ ΣT , XS ⊆ XT , AS ⊆ AT , the

constraints in ΓS (resp. CS) are consequences of the constraints in ΓT (resp. CT ),

and MS = MT |ΣS
(the reduct of MT to the signature ΣS).

Let S �→ T . If we regard a transition in T from the perspective of S, some variables

in S may change their values with no apparent cause, namely if some action in AT

but not in AS is performed, which depends on variables in XS . If this cannot be

the case, we call the subsystem S �→ T transition-connected. Formally:

Definition 3.1 S is a transition-connected (t.c.) subsystem of T (denoted S ↪→ T )

if S �→ T and the following two conditions hold:

(T1) If a ∈ AT and Xa
T ∩XS 6= ∅ then a ∈ AS , and Xa

S = Xa
T ∩XS .

(T2) If a ∈ AS , s1, s2 ∈ St(T ), and (s1|Xa
T
, s2|Xa

T
) ∈ Tra

T then (s1|Xa
S
, s2|Xa

S
) ∈ Tra

S .

It is easy to see that the relation ↪→ is a partial order on systems.

Example 3.2 Consider the system S = (Σ, X,Γ,M,A,C) in Example 2.2. Let 1 ≤
k ≤ l ≤ n and I = {k, . . . , l}. Consider the restriction S l

k = (Σ, X l
k,Γ

l
k,M,Al

k, C
l
k)

of S to the consecutive trains controlled by the variables in {TrainIndexi | i ∈ I}.

• X l
k =

⋃
i∈I{TrainIndexi,ActualPosi,RepPosi,Modei},

• Γl
k = {succ(TrainIndexi) = TrainIndexi+1 | i ∈ {k, . . . , l − 1}},

• Al
k = {reporti | i ∈ I} ∪ {update} ∪ {movei | i ∈ I}, and

• C l
k is the restriction of C to the actions in Al

k:

C l
k = {reporti=update | i∈I} ∪ {reporti∧movei=0 | i∈I} ∪ {movek= . . .=movel}.

Condition (T1) obviously holds: if an action of S depends on variables known in S l
k,

then the action is known in S l
k. Condition (T2) obviously holds for {reporti | i ∈

I} ∪ {movei | i ∈ I} and, for update, for all trains which follow a train known in S l
k.

For the first train (T2) is a consequence of the fact that the mode update restrictions

in S are stronger than those in S l
k (any mode allowed in S is still allowed in S l

k).

We define a category TcSys having as objects systems, and a morphism S ↪→ T

between S and T whenever S is a t.c. subsystem of T . TcSys has pullbacks (infimums

with respect to this order of t.c. subsystems of a given system; we will denote this

operation by ∧) and colimits of diagrams of t.c. subsystems of a given system.

Proposition 3.3 The category TcSys has pullbacks.

Proof : Let S1 ↪→ S and S2 ↪→ S, where S = (Σ, X,Γ,M,A,C), Si = (Σi, Xi,Γi,

Mi, Ai, Ci). Then Mi = M|Σi
, and for every a ∈ Ai, X

a
i = Xa

S ∩Xi (i = 1, 2) Hence,

for every a ∈ A1 ∩A2, X
a
1 ∩X2 = Xa

2 ∩X1 = Xa
S ∩X1 ∩X2.

Let S12 = (Σ1∩Σ2, X1∩X2,Γ1∩Γ2,MS |Σ1∩Σ2
, A1∩A2, C1∩C2), and such that

for every a ∈ A1∩A2, X
a
12 = Xa

1∩X2 = Xa
2∩X1 = Xa

S∩X1∩X2, and Tra
12 =

{(s1|Xa
12
, s2|Xa

12
) | s1, s2 ∈ St(S1), (s1|Xa

1
, s2|Xa

1
) ∈ Tra

S1
} ∪ {(s1|Xa

12
, s2|Xa

12
) | s1, s2 ∈

7
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St(S2), (s1|Xa
2
, s2|Xa

2
) ∈ Tra

S2
}. It is easy to see that S12 is a transition-connected

subsystem of both S1 and S2, and has the universality property of a pullback. 2

Proposition 3.4 Let S = (Σ, X,M,Γ, A,C) be a system and {Si ↪→ S | i ∈ I}
a family of transition-connected subsystems of S, where for every i ∈ I, Si =

(Σi, Xi,Mi,Γi, Ai, Ci). The colimit of this family in SYSil is the system S with

ΣS =
⋃

i∈I Σi, XS =
⋃

i∈I Xi,MS = M|
S

i∈I Σi
,ΓS = (

⋃
i∈I Γi)

• (the family of

all logical consequences of
⋃

i∈I Γi), AS =
⋃

i∈I Ai, CS = (
⋃

i∈I Ci)
• (the family

of all logical consequences of
⋃

i∈I Ci), and where for every a ∈
⋃

i∈I Ai X
a
S

=
⋃

a∈Ai
Xa

i , and Tra
S

= {(s1|Xa

S
, s2|Xa

S
) | s1, s2 ∈ St(S), and for every i ∈ I with a ∈

Ai, (s1|Xa
i
, s2|Xa

i
) ∈ Tra

Si
}.

Proof : (Sketch) One needs to show that for every i ∈ I, Si is a transition-connected

subsystem of S, and that S satisfies the universality property of a colimit. The

proof is long, but straightforward. 2

Example 3.5 Consider the system S in Example 2.2, and two restrictions S1 = Sn
k

and S2 = Sl
1 constructed as in Example 3.2. The pullback of S1 and S2 is S12 = Sl

k

(defined as in Example 3.2 if k ≤ l, or the system with the empty set of control

variables and actions if l < k). The colimit S of the diagram {S1, S2, S12} (with

transition-connected morphisms S l
k ↪→ Sn

k , S
l
k ↪→ Sl

1 has the following components:

• ΣS = Σ;MS = M ;

• XS =
⋃

i∈{1,...,l}∪{k,...,n}{TrainIndexi,ActualPosi,RepPosi,Modei},

• ΓS = {succ(TrainIndexi) = TrainIndexi+1 | i ∈ {1, . . . , l − 1} ∪ {k, . . . , n− 1}}•,

• AS =
⋃

i∈{1,...,l}∪{k,...,n}{reporti,movei} ∪ {update};

• CS = ({reporti = update | i ∈ {1, . . . , l} ∪ {k, . . . , n}} ∪ {reporti ∧ movei = 0 | i ∈
{1, . . . , l} ∪ {k, . . . , n}} ∪ {move1 = · · · = movel} ∪ {movek = · · · = moven})

•.

If k ≤ l then S coincides with S. If l < k − 1 then XS 6= X, so S is obviously

different from S. Assume now that l = k − 1. Then XS = X,AS = A,CS = C, but

ΓS 6= Γ (the constraint succ(TrainIndexk−1) = TrainIndexk cannot be recovered from

Γl
1 ∪ Γn

k), hence S is different from S also in this case.

4 Modeling families of interacting systems

When analyzing concrete complex systems, we tend to be interested in a subcategory

of TcSys, containing only the systems relevant for a given application. To this end,

we assume a family InSys of interacting systems is specified, fulfilling:

(i) All S ∈ InSys are transition-connected subsystems of a system S with AS finite.

(ii) InSys is closed under all pullbacks S1 ∧ S2 of t.c. subsystems S1, S2 of S.

(iii) (InSys,∧) is a meet-semilattice.

The first condition enforces the compatibility of models on common sorts and the

finiteness of AS for every S ∈ InSys; the second and third condition ensure that

all systems by which communication is handled are taken into account. A system

obtained by interconnecting some elements of InSys can either be seen as the set

8
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of all elements of InSys by whose interaction it arises (a subset of InSys which is

downwards-closed with respect to ↪→) or as the colimit of such a family of elements.

We define Ω(InSys) as consisting of all families of elements of InSys which are closed

under transition connected subsystems. Clearly, Ω(InSys) is a topology on InSys.

Note: Ω(InSys) is the Alexandroff topology associated with the dual of the poset

(InSys, ↪→). Since we assumed that InSys is finite and closed under pullbacks, this

topology coincides with the Scott topology associated with the dual of (InSys, ↪→).

Example 4.1 Consider now the extension of the example in Section 2.2 considered

in Example 3.5: Let k ≤ l ∈ {1, . . . , n}, let I1 = {k, . . . , n}, I2 = {1, . . . , l}, I12 =

{k, . . . , l}, and let InSys = {S1, S2, S12} be the family consisting of the subsys-

tems of S = (Σ, X,Γ,M,A,C) described in Section 2.2 corresponding to the sets

of trains with indices in I1, I2 and I12 respectively: S1 = Sn
k , S2 = Sl

1, S12 = Sl
k.

Then InSys satisfies conditions (i), (ii) and (iii) above. The system obtained by

interconnecting S1, S2, S12 can be regarded either as the set {S1, S2, S12} or as the

colimit of the diagram defined by these systems, which coincides with the sys-

tem S defined in Section 2.2. In this case, Ω(InSys) consists of the following sets

{∅, {S12}, {S1, S12}, {S2, S12}, {S1, S2, S12}}.

Our goal is to express the links between components of a system and the result of

their interconnection. We start from the observation that compatible local states

can be ’glued’ into a global state (similar for parallel actions, transitions). For

expressing such gluing condition in a general setting, we use sheaf theory.

4.1 Sheaf theory: An introduction

In what follows, notions from category theory are assumed known. For details cf.

[9] or [12]. Categories and sheaves will be denoted in sans-serif style, e.g. Set, Sh(I).

Let I be a topological space, and Ω(I) the topology on I.

Definition 4.2 A presheaf on I is a functor P : Ω(I)op → Sets. Let U ⊆ V be

open sets in I, and iVU : U ↪→ V the inclusion morphism in Ω(I). The restriction to

U , P (iVU ) : P (V ) → P (U) is denoted by ρV
U .

A sheaf on I is a presheaf F : Ω(I)op → Sets that satisfies the following condition:

for each open cover (Ui)i∈I of U and family of elements si∈F (Ui) s.t. for all

i, j, ρUi

Ui∩Uj
(si)=ρ

Uj

Ui∩Uj
(sj), there is a unique s∈F (U) with ρU

Ui
(s)=si for all i.

The morphisms of (pre)sheaves are natural transformations. We denote by PreSh(I)

the category of presheaves over I and by Sh(I) the category of sheaves over I.

Definition 4.3 The stalk of a sheaf F on I at a point i ∈ I is the colimit Fi =
lim
−→i∈U

F (U), where U ranges over all open neighborhoods of i. The assignment

F 7→ Fi defines the stalk functor at i, Stalki : Sh(I) → Set.

Sheaves can be defined also in a different way. An indexed system of sets (Fi)i∈I

can alternatively be regarded as a map f : F =
∐

i∈I Fi → I, with the property that

for every x ∈ F , f(x) = i if and only if x ∈ Fi. If the index set I has a topology,

then the set F can be endowed with a topology such that f is continuous (i.e. the

sets in the family (Fi)i∈I are continuously indexed).

9
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Definition 4.4 A bundle over I is a triple (F, f, I) where F and I are topological

spaces and f : F → I is continuous. For every i ∈ I, f−1(i) will be denoted by Fi.

Then F =
∐

i∈I Fi. Let (F, f, I) and (G, g, I) be two bundles over I. A morphism

between (F, f, I) and (G, g, I) is a continuous map h : F → G such that g ◦ h = f .

The category of bundles over I is denoted Sp/I.

Let LH/I be the full subcategory of Sp/I with objects (F, f, I), where f : F → I a

local homeomorphism (i.e. for every a ∈ F there are open neighborhoods U and U ′

of a respectively f(a) such that f : U → U ′ is a homeomorphism).

Definition 4.5 Let (F, f, I) be a bundle over I. A partial section defined on a

open subset U ⊆ I is a continuous map s : U → F with the property that f ◦ s is

the inclusion U ⊆ I. A section defined on I is called global section. The set of all

partial sections over the open subset U of I will be denoted by Γ(F, f)(U).

The following links between (pre)sheaves and bundles exist:

• For every bundle (F, f, I) let Γ(F ) = {s : I → F | s continuous and f ◦ s = idI},
the set of all global sections of F . This defines a functor Γ : Sp/I → PreSh(I).

• Let F be a presheaf on I. For every i ∈ I let Fi be the stalk of F at a point

i ∈ I. The collection of stalks (Fi)i∈I is an I-indexed family of sets. Let D(F )

denote the disjoint union of the stalks, and let π : D(F ) → I be the canonical

projection on I defined by π(x) = i iff x ∈ Fi. For s ∈ F (U) and i ∈ U , let

si be the image of s in Fi. The map s : U → D(F ), s(i) = si defines a partial

section of π : D(F ) → I; we impose on D(F ) the coarsest topology for which all

such sections are continuous. D(F ) = (D(F ), π, I) is a bundle. This construction

defines a functor D : PreSh(I) → Sp/I.

Theorem 4.6 (cf. [9,12]) The functor D : PreSh(I) → Sp/I preserves finite lim-

its and is left adjoint to Γ : Sp/I → PreSh(I). The functors D,Γ restrict to an

equivalence of categories between Sh(I) and LH/I.

Γ ◦D : PreSh(X) → Sh(X) is known as the sheafification functor.

Theorem 4.7 (cf. [9,12]) The inclusion Sh(X)→PreSh(X) has a left adjoint,

Γ◦D : PreSh(X)→Sh(X). The sheafification functor Γ◦D preserves all finite limits.

5 States, partial actions

Let InSys be a family of systems satisfying conditions (i), (ii), (iii) in Section 4, and

Ω(InSys) be the topology on InSys consisting of all subsets InSys which are closed

under t.c. subsystems. We define functors modeling states and parallel actions:

(St) St : Ω(InSys)op → Set is defined as follows:

Objects: St(U) = {(si)Si∈U | si ∈ St(Si), and if Si ↪→ Sj then si = sj |Xi
};

Morphisms: if U1

ι
⊆U2, St(ι):St(U2)→St(U1) is St(ι)((si)Si∈U2)=(si)Si∈U1 .

(Pa) Pa : Ω(InSys)op → Set is defined as follows:

Objects: Pa(U) = {(fi)Si∈U | fi ∈ Pa(Si), and if Si ↪→ Sj then fi = fj |Ai
};

Morphisms: if U1

ι
⊆U2, Pa(ι):Pa(U2)→Pa(U1) is Pa(ι)((fi)Si∈U2)=(fi)Si∈U1 .

10
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Example 5.1 Consider the family InSys = {S1, S12, S2} in Example 3.5.

States. Any tuple (s1, s2, s12), where si ∈ St(Si) for i ∈ {1, 2, 12} and s1|X12
=

s2|X12
= s12, is an element in St(InSys). Assume first that k ≤ l.

• Let si : XSi
→ M be such that s(TrainIndexi) = i for all i ∈ {1, . . . , l}, and such

that s1|X12
= s2|X12

= s12. Then (s1, s2, s12) ∈ St(InSys).

• Let s1 : XS1 → M be defined by s(TrainIndexi) = i for all i ∈ {1, . . . , l}, and s2 :

XS2 →M be defined by s(TrainIndexi) = i+ 1 for all i ∈ {k, . . . , n}. s1 ∈ St(S1),

s2 ∈ St(S2), but they do not agree on the common control variables (in particular,

s1(TrainIndexk) = k, s2(TrainIndexk) = k + 1). So (s1, s2, s1|XS12
) 6∈ St(InSys).

Assume now that l < k. Then S12 is the system with an empty set of control

variables. Hence, s1 : XS1 → M defined by s(TrainIndexi) = i for all i ∈ {1, . . . , l},
and s2 : XS2 →M , defined by s(TrainIndexi) = i+ 1 for all i ∈ {k, . . . , n}, agree on

the common variables. Therefore (s1, s2, s1|XS12
) ∈ St(InSys).

Let U = {S1, S12, S2} and U1 = {S1, S12} be the two sets in Ω(InSys) which contain

S1, and let i be the inclusion between U1 and U . Then St(i) : St(U) → St(U1) is

defined by St(i)(s1, s2, s12) = ρU
U1

(s1, s2, s12) = (s1, s12).

Parallel Actions. Any tuple (f1, f2, f12), where fi ∈ Pa(Si) for i ∈ {1, 2, 12} and

f1|A12
= f2|A12

= f12, is an element in Pa(InSys). In particular:

• (f1, f2, f12) with f−1
j (1) = {reporti | i ∈ Ij} ∪ update. These are admissible

parallel actions in the corresponding systems, and f1|A12
= f2|A12

= f12. Then

(f1, f2, f12) ∈ Pa(InSys).

Tuples (f1, f2, f12) which do not satisfy these conditions are not in Pa(InSys):

• (f1, f2, f12) with f−1
j (1) = {reporti | i ∈ Ij} ∪ update ∪ {movei | i ∈ Ij} is not in

Pa(InSys), because the components are not admissible parallel actions.

• (f1, f2, f12) with f−1
1 (1) = {reporti | i ∈ I1}∪update and f−1

2 (1) = {movei | i ∈ I2}
is not in Pa(InSys), because the components do not agree on A12.

Theorem 5.2 ([18]) The functors St and Pa are sheaves on InSys. For each

Si∈InSys, the stalk at Si of St (resp. Pa) is in bijection with St(Si) (resp. Pa(Si)).

Moreover, for each U ∈ Ω(InSys), St(U) (resp. Pa(U)) is in bijection with St(SU )

(resp. Pa(SU )), where SU is the colimit of the diagram defined by U .

Example 5.3 Let InSys = {S1, S12, S2} as defined in Example 4.1 (with k ≤ l):

(1) An example of an open cover for U = {S1, S2, S12} is {U1, U2, U12}, where U1 =

{S1, S12}, U2 = {S2, S12}, U12 = {S12}. Let (s1, s12) ∈ St(U1) and (t2, t12) ∈
St(U2) be such that ρU1

U12
(s1, s12) = ρU2

U12
(t2, t12). Then s12 = t12 and there is

a unique element (s1, t2, s12) ∈ St(U) such that ρU
U1

(s1, t2, s12) = (s1, s12) and

ρU
U2

(s1, t2, s12) = (t2, t12). Similar for Pa.

(2) The stalk of St at S1 is the colimit of the diagram St(U)
St(i)
→ St(U1)

St(id)
→ St(U1)

and hence in bijection with St(U1). Similarly for Pa.

(3) It can be seen that St(U) is in bijection with St(S), where S is the system in

the example in Section 2.2: Let (s1, s2, s12) ∈ St(U). Then s : X →M defined

11
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by s(x) = si(x) iff x ∈ Xi is well defined (due to the definition of St(U)) and

in St(S). Conversely, if s ∈ St(S), then (sX1 , sX2 , s|X12
) ∈ St(U).

Also Pa(U) is in bijection with Pa(S): If (f1, f2, f12) ∈ Pa(U) then f : A→
{0, 1} defined by f(x) = fi(x) iff x ∈ Ai is well defined (due to the definition

of Pa(U)). It can also be checked that if f1 |= C1 and f2 |= C2 then f |= C.

Thus, f ∈ Pa(S). The converse is immediate.

Assume now that S1, S2, S12 are as in Example 3.5 but l < k, say l = k − 1. The

open cover and stalk construction in (1) and (2) above are the same. However,

St(U) is in bijection with St(S), where S is the colimit of the diagram defined by

U as described in Example 3.5 which in this case is different from S. In particular,

s : X →M with s(TrainIndex1) = 1, s(TrainIndex2) = 2, . . . , s(TrainIndexk−1) = k−1

and s(TrainIndexk) = k + 1, . . . , s(TrainIndexn−1) = n is a state of S, but not of S.

6 Transitions

Let InSys be a family of systems satisfying conditions (i), (ii), (iii) in Section 4. We

define a functor modeling transitions:

(Tr) Tr : Ω(InSys)op → Set is defined as follows:

Objects: Tr(U) = {(f, s, s′) | f = (fi)Si∈U ∈ Pa(U), s = (si)Si∈U ∈ St(U),

s′ = (s′i)Si∈U ∈ St(U), (si, s
′
i) ∈ TrSi

(fi), for all Si ∈ U};

Morphisms: if U1

ι
⊆ U2, Tr(ι) : Tr(U2) → Tr(U1) is defined by

Tr(ι)((f, s, s′)) = (Pa(ι)(f),St(ι)(s),St(ι)(s′)),

where, for every Si in InSys and fi ∈ Pa(Si), TrSi
(fi) is the transition relation

associated to fi in Si as explained in Section 3.

Example 6.1 Consider the family {S1, S12, S2} in Example 4.1. With the notation

introduced in Example 4.1, let:

• sj(ActualPosi) = ai, sj(RepPosi) = ri, sj(Modei) = mi, for i ∈ Ij ;

• fj be such that f−1
j (1) = {reporti | i ∈ Ij} ∪ update, and

• s′j be defined by: s′j(ActualPosi) = ai, s
′
j(RepPosi) = ai, s

′
j(Modei) = m′

i, where

m′
i is computed according to the transition rules for update in Example 2.2.

Then: fi ∈ Pa(Si), si, s
′
i ∈ St(Si), (si, s

′
i) ∈ Tr(Si) for i ∈ {1, 2, 12},

f1|A12
= f2|A12

= f12 and s1|X12
= s2|X12

= s12.

Hence, ((f1, s1, s
′
1), (f2, s2, s

′
2), (f12, s12, s

′
12)) is in Tr(InSys).

Theorem 6.2 ([18]) The functor Tr : Ω(InSys)op → Set is a subsheaf of Pa×St×St.

Moreover:

• For every Si ∈ InSys, the stalk of Tr at Si is in bijection with Tr(Si) = {(f, s, s′) |
(s, s′) ∈ TrSi

(f)}.

• If the transitions obey either (Disj) or (Indep), then, for every U ∈ Ω(InSys),

Tr(U) is in bijection with Tr(SU) = {(f, s, s′) | (s, s′) ∈ TrSU
(f)}, where SU is

the colimit of the diagram defined by U .

Example 6.3 Consider the family {S1, S12, S2} in Example 4.1. Let

12
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((f1, s1, s
′
1), (f2, s2, s

′
2), (f12, s12, s

′
12)) ∈ Tr(U). Let f : A → {0, 1} be defined by

f(x) = fi(x) iff x ∈ Ai is well defined. Then f ∈ Pa(S). Similarly, s, s′ : X → M ,

defined by (s(x) = si(x) and s′(x) = s′i(x)) iff x ∈ Xi are well defined and in St(S).

As shown in Example 2.5, the transitions in all systems S1, S2, S12 obey condition

(Disj). The changes of the components of parallel actions are not contradictory and

affect only the variables the actions depend upon. Thus, (s, s′) is in the transition

induced (according to rule (Disj)) by f . Hence, (s, s′) ∈ TrS(f). The converse is

an immediate consequence of the fact that, as showed in Example 3.2, S1, S2, S12

are transition-connected subsystems of S.

7 Behavior in time

In [6], the behavior of a given system S in time is modeled by a functor F :

T op → Set, where T is the basis for the topology on N consisting of all the sets

{0, 1, . . . , n}, n ∈ N. Intuitively, for every T ∈ T , F (T ) represents the succession

of the states of the systems “observed” during the interval of time T . We analyze

various alternative possibilities of modeling behavior.

7.1 Behavior as successions of states and actions

Since we are interested in actions as well as states, we present a different description

of behavior. Let T consist of N together with all sets {0, 1, . . . , n}, n ∈ N. The

behavior in an interval T ∈ T of a complex system obtained by interconnecting a

family InSys (satisfying conditions (i)–(iii) in Section 4) is modeled by all successions

of pairs (state, action) of the component subsystems that can be observed during

T , i.e. by the functor BT : Ω(InSys)op → Set defined as follows:

Objects: for U ∈ Ω(InSys), BT (U)={h:T→St(U)×Pa(U)|K(h, T )},

Morphisms: for U1

ι
⊆ U2 by BT (ι):BT (U2)→BT (U1), where if h ∈ BT (U2),

BT (ι)(h)=(St(ι)×Pa(ι))◦h : T
h

−→ St(U2)×Pa(U2)
St(ι)×Pa(ι)
−−−−−−→ St(U1)×Pa(U1).

Here K(h, T ) expresses the fact that for every n, if n, n+ 1 ∈ T and h(n) = (s, f),

h(n+ 1) = (s′, f ′) then (f, s, s′) ∈ Tr(U).

Example 7.1 We illustrate the definition above. Let T = N, and let U =

{S1, S2, S12} as in Example 4.1. We represent an element h in BT (InSys) as a

table (first row: arguments i of h, second row: the value h(i), i.e. a pair of tuples):

h(i)

St(U) Pa(U)

i St(S1) St(S12) St(S2) Pa(S1) Pa(S12) Pa(S2)

(i ∈ I1) (i ∈ I12) (i ∈ I2) (i ∈ I1) (i ∈ I12) (i ∈ I2)

ActPosi RepPosi Modei (restr.) ActPosi RepPosi Modei repi upd movei (restr.) repi upd movei

0 ai ri mi ai ri mi ai ri mi 1 1 0 1 1 0 1 1 0

1 ai ai m′

i ai ai m′

i ai ai m′

i 0 0 1 0 0 1 0 0 1

2 a′

i ai m′

i a′

i ai m′

i a′

i ai m′

i 1 1 0 1 1 0 1 1 0

3 a′

i a′

i m′′

i a′

i a′

i m′′

i a′

i a′

i m′′

i 1 1 0 1 1 0 1 1 0

. . . ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
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Theorem 7.2 ([18]) Let BT (S) = {h : T → St(S) × Pa(S) | KS(h, T )}, where

KS(h, T ) expresses the fact that for every n, if n, n + 1 ∈ T and h(n) = (s, f),

h(n+ 1) = (s′, f ′) then (s, s′) ∈ TrS(f). Then:

• For every T ∈ T , BT : Ω(InSys)op → Set is a sheaf.

• For every Si ∈ InSys, the stalk at Si is in bijection with BT (Si).

• If the transitions obey (Disj) or (Indep), then, for every U ∈ Ω(InSys), BT (U)

is in bijection with BT (SU ), where SU is the colimit of the diagram defined by U .

7.2 Behavior: Admissible Parallel Actions as Words

If we ignore the states, the behavior of any system S can be expressed by a subset

LS of the free monoid Pa(S)∗ over the set of possible actions of S, where:

LS = {f1 . . . fn | ∃h : {0, . . . , n} → St(S) × Pa(S),∃si ∈ St(S), s.t.

∀i ∈ {0, . . . , n− 1}, (si, si+1) ∈ TrS(fi)} ⊆ Pa(S)∗.

Consider the family {Pa(Si)
∗ | Si ∈ InSys}. If Si, Sj ∈ InSys and Si ↪→ Sj, let

ρ
Sj

Si
: Pa(Sj) → Pa(Si) be the restriction to Si. The restriction extends to a

homomorphism of monoids, pj
i : Pa(Sj)

∗→Pa(Si)
∗. If there is no risk of confusion,

in what follows we will abbreviate pj
i (wj) by wj |Si

. Let M(InSys) be defined by:

M(InSys) = {(wi)Si∈InSys | wi ∈ Pa(Si)
∗ and ∀Si ↪→ Sj, p

j
i (wj) = wi}.

It can be seen that M(InSys) is the limit of the diagram {Pa(Si)
∗ | Si ∈ InSys}

(with the morphisms pj
i for every Si ↪→ Sj).

Theorem 7.3 Let M : Ω(InSys)op → Sets be defined as follows:

Objects: M(U) = {(wi)Si∈V | wi∈Pa(Si)
∗, wi|Sj

= wj for every Sj ↪→ Si},

Morphisms: if ι : U1 ⊆ U2, M(ι) : M(U2) →M(U1) is defined for every

(wi)Si∈U2 by M(ι)((wi)Si∈U2) = (wi)Si∈U1.

Then M is a sheaf of monoids. M(V ) is the limit of the diagram {Pa(Si)
∗ | Si ∈ V }

(with morphisms pj
i : Pa(Sj)

∗→Pa(Si)
∗ whenever Si ↪→ Sj).

Proof : Let U ∈ Ω(InSys) and {Uk | k ∈ K} be a cover for U . Let {wk}k∈K be

a family of elements, such that for every k ∈ K, wk = (wi
k)Si∈Uk

and for every

k1, k2 ∈ K, if Si ∈ Uk1 ∩ Uk2 then wi
k1

= wi
k2

.

We define w = (wi)Si∈U as follows: for every Si ∈ U , Si ∈ Uk for some k. Then

wi is defined to be wi
k. Note that wi is well defined because of the compatibility

of the family {wk}k∈K , and pU
Uk

(w) = wk for every k ∈ K. The uniqueness of w

follows from the fact that for every w′ = (w′
i)Si∈U such that pU

Uk
(w′) = wk for every

k ∈ K we have w′
i = wk

i for every Si ∈ Uk.

The fact that M(V ) is the limit of the diagram {Pa(Si)
∗ | Si ∈ V } (with the

corresponding morphisms) can be checked without difficulty. 2

Remark: Let S be the colimit of the diagram defined by U . The connection

between Pa(S)∗ and M(U) is rather loose: Let p : Pa(S)∗ → M(U) be defined by

p(f1 . . . fn) = ((f1 . . . fn)|Si
)Si∈U ∈M(U). If we identify the empty action with the

empty word ε, p may not be injective as can be seen from the following example:
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Example 7.4 Let S1 and S2 be as defined in Example 4.1, where trains are indexed

by I1 = {k1, . . . , n} and I2 = {1, . . . , k2} and k2 < k1, with the difference that

update is omitted as in Example 2.6. Let InSys = {S1, S2, ∅}. Let w1 = f1f2 and

w2 = f2f1, where f−1
1 (1) = {reporti | i ∈ I1} and f−1

2 (1) = {movej | j ∈ I2}. Note

that f1
−1
|A1

(1) = {reporti | i ∈ I1}, f2
−1
|A1

(1)=f1
−1
|A2

(1)=∅, and f2
−1
|A2

(1) = {movej | j ∈

I2}. Thus, p(w1) = ((f1f2)|S1
, (f1f2)|S2

, (f1f2)|∅) = ((f1|A1
f2|A1

), (f1|A2
f2|A2

), ε) =

(f1ε, εf2, ε) = (εf1, f2ε, ε) = ((f2|A1
f1|A1

), (f2|A2
f1|A2

), ε) = p(w2), but w1 6= w2.

The next example shows that p : Pa(S)∗ → M(U) is not necessarily onto: There

may exist compatible families (even if we only consider singleton parallel actions)

of sequences of actions that cannot be “glued together” to a sequence of actions on

Pa(S). A similar result appears in [13] (in that case, no parallelism is allowed).

Example 7.5 Let S1, S2, S3 be three systems all having the same language, the

same constraints on variables and the same model for the variables, such that

AS1 = {a, b, d}, AS2 = {b, c, e}, AS3 = {a, c, f}
CS1 = {a ∧ b = 0} CS2 = {b ∧ c = 0} CS3 = {a ∧ c = 0}

Let S be the system obtained by interconnecting S1, S2, S3. Then AS =

{a, b, c, d, e, f}, CS = {a ∧ b = 0, b ∧ c = 0, a ∧ c = 0}. Consider w1 = ab ∈ Pa(S1)
∗,

w2 = bc ∈ Pa(S2)
∗, w3 = ca ∈ Pa(S3)

∗. It is easy to see that p1
12(w1) = p2

12(w2) = b,

p2
23(w2) = p3

23(w3) = c, p1
13(w1) = p3

13(w3) = a, but there is no w ∈ Pa(S)∗ such

that w|Si
= wi, i = 1, 2, 3.

We investigate therefore other ways of modelling behavior for which tighter links

between local and global behavior exist.

7.3 Behavior: Partially Commutative Monoids

In what follows we assume that the constraints on actions are all of the form ai∧aj =

0 (they state which actions cannot be performed in parallel).

Definition 7.6 Let S be a system with the property that the constraints on actions

are all of the form ai ∧ aj = 0. The dependence graph of S is the graph (AS , DS)

having as set of vertices AS , and where DS is defined by (a1, a2) ∈ DS if a1 = a2 or

a1 ∧ a2 = 0 ∈ CS .

For every system S with dependence graph (AS , DS) we denote by M(S) =

M(AS , DS) the free partially commutative monoid defined by (AS , DS), i.e. the

quotient of A∗
S by the congruence relation generated by a1a2 = a2a1 for every

(a1, a2) ∈ (AS × AS)\DS . For basic properties of (free) partially commutative

monoids we refer e.g. to [3], pp.9-29 and 67-79.

For every Si ∈ InSys\∅, let M(Si) = A∗
Si
/θi (where θi is the congruence defined

as explained above from (ASi
× ASi

)\DSi
) be the partially commutative monoid

associated with the dependence graph of Si. Let S be the colimit of the diagram

defined by InSys. Then AS =
⋃

Si∈InSysAi and DS =
⋃

Si∈InSysDi. Hence, for every

Si ∈ InSys there is a canonical projection pi : M(S) → M(Si) which is onto. Let

ker(pi) be the kernel of pi. Then M(Si) 'M(S)/ker(pi).
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If Si ↪→ Sj , then we denote the canonical projection by pj
i : M(Sj) → M(Si), and

if Si, Sj ∈ S, then pj
ij : M(Sj) → M(Si ∩ Sj), and pi

ij : M(Si) → M(Si ∩ Sj) are

the canonical mappings. Note that all homomorphisms pi
j : M(Si) → M(Sj) and

pi
ij : M(Si) →M(Si ∩ Sj) are onto. We know that for all Sj ↪→ Si, p

i
j ◦ pi = pj.

Example 7.7 Consider a family of two systems of trains S1, S2 over disjoint sets

I1, I2 of trains as in Example 4.1 but with l < k. We simplify the description by

replacing all actions that need to be executed at the same time with one action.

The system Si (i ∈ {1, 2}) obtained this way has two actions updatei and movei

The constraints are Ci = {updatei ∧ movei = 0}. Thus θi = id, so M(Si) = A∗
Si

.

Let S be the system obtained by the interconnection of S1 and S2.

AS = {update1, update2,move1,move2} and CS = C1 ∪C2.

DS = {(update1, update1), (update2, update2), (move2,move2), (move1,move1),
(update1,move1), (move1, update1), (update2,move2), (move2, update2)}

(AS ×AS)\DS = {(update1, update2), (update2, update1), (update1,move2),
(move2, update1), (move1, update2), (update2,move1),
(move1,move2), (move2,move1)}

Thus, M(S) = A∗
S/θ, where θ is the congruence generated by (AS ×AS)\DS .

Applying a method due to [2] (cf. Appendix A) – where sheaves of algebras are

constructed, whose stalks are quotients of a given algebra – we deduce for partially

commutative monoids results similar to those given in [13] for monoids. The results

are similar to results on Petri Nets and Mazurkiewicz traces presented in [3].

Let (F, f, InSys) be defined by F =
∐

Si∈InSysM(Si), and f : F → InSys be the

natural projection. Assume that a subbasis for the topology on F is SB = {[m](U) |
U ∈ Ω(InSys),m ∈M(S)}, where [m](U) = {pi(m) | i ∈ U}.

We first show that Ω(InSys) has the property that for every m1,m2 ∈ M(S), if

pi(m1) = pi(m2) then there exists an open neighborhood U of Si in Ω(InSys) such

that for every Sj ∈ U , pj(m1) = pj(m2) (i.e. it is an S-topology).

Lemma 7.8 Ω(InSys) is a S-topology (cf. Definition A.2).

Proof : We show that for every m1,m2 ∈M(S), if pi(m1) = pi(m2) then there exists

an open neighborhood U of Si in Ω(InSys) s.t. for every Sj ∈ U , pj(m1) = pj(m2).

Let m1,m2 ∈ M(S) with pi(m1) = pi(m2). Let U = ↓Si = {Sj ∈ InSys | Sj ↪→ Si}.
U ∈ Ω(InSys) and pj(m1) = pi

j(pi(m1)) = pi
j(pi(m2)) = pj(m2) for every Sj ∈ U . 2

Let α : M(S) → Γ(I, FA) be defined by α(m) = ([m]θi
)i∈I . Since Ω(InSys) is an

S-topology, by Theorem A.1 and Corollary A.3 in Appendix A we have:

(1) (F, f, InSys) is a sheaf of algebras,

(2) The stalk at Si ∈ InSys is isomorphic to M(Si),

(3) In M(S)
α
→ Γ(InSys, F ) ≤

∏
Si∈InSysM(Si)

πi→M(Si)

(3.i) πi ◦ α is an epimorphism,

(3.ii) M(S) is a subdirect product of {M(Si)}Si∈InSys iff α is a monomorphism.
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Lemma 7.9 Let s : InSys →
∐

Si∈InSysM(Si) be such that s(Si) ∈M(Si) for every

Si ∈ InSys. Let m ∈M(S) and U ∈ Ω(InSys). Then Si ∈ s−1([m](U)) if and only if

Si ∈ U and s(Si) = pi(m).

Proof : Note that s−1([m](U)) = {Si ∈ InSys | s(Si) ∈ [m](U)} = {Si ∈ InSys |
s(Si) ∈ {pj(m) | Sj ∈ U}}. We first prove the direct implication. Assume that Si ∈
s−1([m](U)). Then s(Si) = pj(m) for some Sj ∈ U . Since f ◦ s(Si) = Si, it follows

that Si = f(s(Si)) = f(pj(m)) = Sj , hence Si ∈ U and s(Si) = pi(m). To prove the

converse, assume that Si ∈ U and s(Si) = pi(m). Then s(Si) ∈ {pj(m) | Sj ∈ U},
hence Si ∈ s−1([m](U)). 2

Lemma 7.10 Let τ be the topology on F =
∐

Si∈InSysM(Si) generated by SB =

{[m](U) | U ∈ Ω(InSys),m ∈ M(S)} as a subbasis. Then s : InSys →
∐

Si∈InSysM(Si) such that for every Si ∈ InSys, s(Si) ∈ M(Si) is continuous if

and only if for every Si, Sj ∈ InSys such that Sj ↪→ Si, p
i
j(s(Si)) = s(Sj).

Proof : Since SB is a subbasis for the topology on F =
∐

Si∈InSysM(Si), s : InSys →
∐

Si∈InSysM(Si) is continuous iff for every [m](U) ∈ SB, s−1([m](U)) ∈ Ω(InSys).

We first prove the direct implication. Assume that s : InSys →
∐

Si∈InSysM(Si) is

continuous. Let Si, Sj ∈ InSys be such that Sj ↪→ Si. We prove that pi
j(s(Si)) =

s(Sj). Let U = ↓Si ∈ Ω(InSys) and let m ∈ M(S) be such that pi(m) = s(Si)

(the existence of m is ensured by the fact that pi : M(S) → M(Si) is onto).

From the continuity of s we know that s−1([m](↓Si)) ∈ Ω(InSys). Obviously, Si ∈
s−1([m](↓Si)). Therefore, since Sj ↪→ Si, Sj ∈ s−1([m](↓Si)), hence, by Lemma 7.9,

s(Sj) = pj(m). Therefore, s(Sj) = pj(m) = pi
j(pi(m)) = pi

j(s(Si)).

Conversely, assume that for every Si, Sj ∈ InSys such that Sj ↪→ Si it holds

that pi
j(s(Si)) = s(Sj). We prove that s is continuous. Let [m](U) ∈ SB, where

m ∈ M(S) and U ∈ Ω(InSys). We prove that s−1([m](U)) ∈ Ω(InSys). Let Si ∈
s−1([m](U)). Then Si ∈ U and s(Si) = pi(m). Let Sj ↪→ Si. Then Sj ∈ U and by

the hypothesis, s(Sj) = pi
j(s(Si)) = pi

j(pi(m)) = pj(m). Thus, Sj ∈ s−1([m](U)).

Therefore s−1([m](U)) ∈ Ω(InSys). 2

Lemma 7.11 The set Γ(InSys, F ) of global sections of F has the form

Γ(InSys, F ) = {(mi)Si∈InSys | mi ∈M(Si) and ∀Sj ↪→ Si ∈ InSys, pi
j(mi) = mj}.

Proof : We know that Γ(InSys, F ) = {s : InSys →
∐

Si∈InSysM(Si) | s continuous and

s(Si) ∈M(Si),∀Si ∈ InSys}. (The elements of Γ(InSys, F ) are tuples (s(Si))Si∈InSys.)

Let first s ∈ Γ(InSys, F ). Then s is continuous and, by Lemma 7.10, for all Si, Sj ∈
InSys with Sj ↪→ Si, p

i
j(s(Si)) = s(Sj). Conversely, let (mi)Si∈InSys be such that for

every Si, Sj ∈ InSys,mi ∈ M(Si) if Sj ↪→ Si then pi
j(mi) = mj. Let s : InSys →

∐
Si∈InSysM(Si) be defined by s(Si) = mi for every Si ∈ InSys. Then, whenever

Sj ↪→ Si ∈ InSys, pi
j(s(Si)) = s(Sj) and, by Lemma 7.10, s is continuous. 2

Theorem 7.12 Let (F, f, InSys) be defined as above. Then (F, f, InSys) is a sheaf

space of algebras. The stalk at Si ∈ InSys is isomorphic to M(Si); the set of global

sections is Γ(InSys, F ) = {(mi)Si∈InSys | mi ∈M(Si), and ∀Si ↪→ Sj, p
j
i (mj) = mi}.

Additionally the following hold:

17



Sofronie-Stokkermans

(1) If InSys is finite, then

(i) M(S) ↪→ Γ(InSys, F ) ≤
∏

Si∈InSysM(Si)
πi→M(Si) is a subdirect product.

(ii) The embedding M(S) ↪→ Γ(InSys, F ) is an isomorphism iff every chordless

cycle in the dependence graph GS of S is a cycle in a subgraph GSi
for

some Si ∈ InSys.

(2) If InSys is infinite, and if for every a ∈ AS there are at most finitely many Si ∈
InSys with a ∈ Ai, then there is an injective morphism M(S) →

⊕
Si
M(Si),

where
⊕

Si
M(Si) = {(wi)i∈I | wi ∈M(Si), wi = ε a.e.} is the weak product of

the family {M(Si)}Si∈ InSys.

Proof : The form of Γ(InSys, F ) follows from Lemma 7.11. (1)(i) and (2) are a

consequence of Theorem B.1 and the subsequent comments in Appendix B. (1)(ii)

is a direct consequence of Theorem 3.3.2 in [3]. 2

Example 7.13 First consider the family of systems in Example 7.7. The depen-

dency graph of S, GS = (AS , DS) contains the following non-trivial chordless cycles:

(i) (update1,move1, update1) and (move1, update1,move1) (all cycles in GS1)

(ii) (update2,move2, update2) and (move2, update2,move2) (all cycles in GS2).

Thus, in this case the embedding in Theorem 7.12(1)(ii) is an isomorphism.

Example 7.14 Consider the systems in Example 7.5. The dependency graphs are:

• GS1 = (A1, D1), with D1 = {(a, a), (b, b), (d, d), (a, b), (b, a)},

• GS2 = (A2, D2), with D2 = {(b, b), (c, c), (e, e), (b, c), (c, b)},

• GS3 = (A3, D3), with D3 = {(a, a), (c, c), (f, f), (a, c), (c, a)}).

GS = (A1 ∪ A2 ∪ A3, D1 ∪ D2 ∪ D3) contains the chordless cycle (a, b, c, a) which

is not contained in any of the subgraphs GSi
, i ∈ {1, 2, 3}. Thus, the embedding in

Theorem 7.12(1)(ii) is not an isomorphism.

8 Other concepts and their sheaf semantics

Time. One possibility for expressing time internally in the category Sh(InSys) is to

model time by the sheafification N of the constant presheaf N : Ω(InSys)op → Set

(defined for every U by N (U) = N), which can be constructed as follows:

• Let N+ : Ω(InSys)op → Sets, defined by N+(U) = N if U 6= ∅ and N+(∅) = 1 (for

the empty cover there is exactly one matching family; the empty one).

• Let N = (N+)+ : Ω(InSys)op → Sets. An element of (N+)+(U) is an equivalence

class of sets of elements ij ∈ N (Uj) for some open covering {Uj | j ∈ J} of U ,

which match (ij1 = ij2) whenever the overlap Uj1 ∩Uj2 is nonempty. Thus, these

elements “glue” together to give a function i : U → N, with the property that

every point of U has some open neighborhood on which the function is constant.

For every U ∈ Ω(InSys), N(U) = {i : U → N | f locally constant 4 }. There exist

Sh(InSys)-arrows 1
0
→ N

s
→ N; the sheaf N is the natural number object in Sh(InSys).

4 f :U→X is locally constant if ∀x∈U there is an open neighborhood U1⊆U of x on which f is constant.
This means that ’local clocks’ of the systems in U synchronize for systems sharing common subsystems.
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Other constructions. Various other sheaves and natural transformations can

be defined by using standard categorical constructions in Sh(InSys). We can e.g.

define a natural transformation BN × N
a
→ St × Pa whose components BN(U) ×

N(U)
aU→ St(U) × Pa(U) are defined by aU (h, (ni)Si∈U ) = ((si

i)Si∈U , (f
i
i )Si∈U ), for

every U ∈ Ω(InSys), where for every Si ∈ U , h(ni) = ((si
j)Sj∈U , (f

i
j)Sj∈U ). 5

Theorem 8.1 ([18]) For every Si ∈ InSys, StalkSi
(a) is (up to isomorphism) the

map BT (Si) × N
aSi→ St(Si) × Pa(Si), defined by aSi

(h, n) = h(n).

9 Geometric logic and properties of systems

We provide interpretations for properties of systems (i.e. statements about states,

actions, behavior) both concretely (in the category of sets) and in a category of

sheaves, and establish links between the set-theoretical (both for individual systems

and for their interconnections) and the sheaf-theoretical interpretation. These links

are then used to prove preservation of truth when interconnecting systems.

9.1 Many-sorted first order languages and their interpretation in Sh(I)

Let L be a many-sorted first-order language consisting of a collection of sorts and

collections of function and relation symbols. Terms and atomic formulae from L
are defined in the standard way; compound formulae are constructed by using the

connectives ∨,∧,⇒,¬ and the quantifiers ∃,∀, for every sort X. An interpretation

M of L in Sh(I) is constructed by associating:

• a sheaf XM on I to every sort X,

• a subsheaf RM ⊆ XM
1 ×· · ·×XM

n to every relation symbol R of arity X1×· · ·×Xn,

• an arrow fM : XM
1 × · · · ×XM

n → YM in Sh(I) to every function symbol f with

arity X1 × · · · ×Xn → Y .

Each term t(x1, . . . , xn) of sort Y is (inductively) interpreted as an arrow tM :

XM
1 × · · · × XM

n → YM ; and every formula φ(x1, . . . , xn) with free variables

FV (φ) ⊆ {x1, . . . , xn}, where xi is of sort Xi, gives rise to a subsheaf {(x1, . . . , xn) |
φ(x1, . . . , xn)}M ⊆ XM

1 × · · · ×XM
n . For details we refer to [12], Ch. X.

Definition 9.1 A geometric formula is a formula built from atomic formulae by

using only the connectives ∨ and ∧ and the quantifier ∃. A geometric axiom is a

formula of the form (∀x1, . . . , xn)(φ⇒ ψ) where φ and ψ are geometric formulae.

Let T be a theory in the language L. A variable in a geometric formula is called

T-provably unique if its value in every model of T is uniquely determined by the

values of the remaining free variables.

A cartesian formula w.r.t. T is a formula constructed from atomic formulae

using only the connective ∧ and the quantifier ∃ over T-provably unique variables.

A cartesian axiom w.r.t. T is a formula of the form (∀x)(φ(x) ⇒ ψ(x)) where φ and

5 The map aU has as arguments a behaviour along N of the family of systems in U , h ∈ BN(U), and a tuple
consisting of ’local clocks’ of the systems in U which synchronize on systems sharing common subsystems.
aU returns the pair ((si

i)Si∈U , (f i
i )Si∈U ) where (si

i, f
i
i ) is the pair state/parallel action in the behavior

corresponding to the system Si in U , at the time point indicated by the local clock ni of Si.
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ψ are cartesian formulae w.r.t. T. A cartesian theory is a theory whose axioms can

be ordered such that each is cartesian w.r.t. the preceding ones.

A geometric axiom (∀x1 . . . xn)(φ⇒ψ) is satisfied in an interpretation M in Sh(I)

if {(x1, . . . , xn)|φ}M is a subobject of {(x1, . . . , xn)|ψ}M in Sh(I).

9.2 Stalk functors, global section functors; preservation of truth

Stalk functors. For every Si ∈ InSys let fi : {∗} → InSys be defined by fi(∗) = Si.

The inverse image functor corresponding to fi, the stalk functor StalkSi
= f∗i :

Sh(InSys) → Set, associates to every sheaf F ∈ Sh(InSys) the stalk at Si, FSi
. For

all Si ∈ InSys, f ∗i preserves the validity of geometric axioms. The stalk functors f ∗
i

are collectively faithful, so they reflect the validity of geometric axioms.

Global section functor. Consider the unique map g : InSys → {∗}. The direct im-

age functor, g∗ : Sh(InSys) → Set, is the global section functor g∗(F ) = F (InSys) for

every F ∈ Sh(InSys). Thus, the global section functor preserves the interpretation

of every cartesian axiom.

9.3 A geometric logic for reasoning about complex systems

Let L be a fixed many-sorted language including at least sorts like st(ate), pa(rallel-

action), b(ehavior), t(ime); constants like s0 : st (initial state), 0 : t (initial moment

of time); function symbols like appl : b× t → st×pa, p1 : st×pa → st, p2 : st×pa →
pa; relation symbols like tr(ansition) ⊆ pa × st × st, =X⊆ X ×X for every sort X,

etc. Let M be an interpretation of L in Sh(InSys) such that stM = St, paM = Pa,

bM = BN, t = N, applM = a, p1
M = π1, p2

M = π2 (the canonical projections),

trM = Tr. For every sort X, we interpret =X : X ×X → Ω as usual.

Theorem 9.2 ([18]) Sh(InSys) satisfies a geometric axiom in the interpretation M

if and only if Set satisfies it in all interpretations f ∗
i (M). If Sh(InSys) satisfies a

cartesian axiom, this is also true in Set in the interpretation g∗(M) (f∗i (M) and

g∗(M) interpret a sort X as f ∗
i (XM ) resp. g∗(X

M )).

From Theorems 6.2 and 7.2 we know that for every Si ∈ InSys, f ∗i (St) = StSi
'

St(Si) and f∗i (Pa) = PaSi
' Pa(Si); if S is the system obtained by interconnecting

all elements in InSys, g∗(St) = St(InSys) ' St(S), and g∗(Pa) = Pa(InSys) ' Pa(S).

The same holds for Tr and BT . Moreover, f ∗i (N) = N, g∗(N) = N(InSys), and, by

Theorem 8.1, f∗i (appl) = aSi
: BN(Si) × N → St(Si) × Pa(Si). Hence, statements

about states, actions and transitions in Sh(InSys) are translated by f ∗
i (resp. g∗) to

corresponding statements about states, actions and transitions in Si (resp. S).

We illustrate the ideas above by several classes of properties of systems (adapted

from [11]) which we express in the language L. For instance, if h is a possible

behavior and j a moment in time, then h(j) can be expressed in L by appl(h, j); the

state of h at j can be expressed by s(h, j), where s = p1 ◦appl : b×t
appl
→ st×pa

p1→ st.

(a) Safety properties are of the form (∀h : b)(∀j : t)(P (s(h, 0)) ⇒ Q(s(h, j))),

where P and Q are formulae in L. As examples we mention:

partial correctness: (∀h : b)(∀j : t)[(P (s(h, 0)) ∧ Final(s(h, j))) ⇒ Q(s(h, j))];

global invariance of Q: (∀h : b)(∀j : t)[P (s(h, 0)) ⇒ Q(s(h, j))].
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(b) Liveness properties have the form (∀h : b)[P (s(h, 0)) ⇒ (∃j : t)Q(s(h, j))].

With s0 denoting the initial and sf a final state, examples are: total correctness

and termination: (∀h : b)[P (s(h, 0)) ⇒ (∃j : t)(Final(s(h, j)) ∧ Q(s(h, j)))];

accessibility: (∀h : b)[(s(h, 0) = s0) ⇒ (∃j : t)(s(h, j) = sf )].

(c) Precedence properties: (∀h : b)(∀j : t)[(P (s(h, 0))∧A(s(h, j)))⇒Q(s(h, j))].

Theorem 9.3 ([18]) Assume that the following conditions are fulfilled:

(1) The final states form a subsheaf Stf ⊆ St interpreting a sort stf of L. (This

happens e.g. if in the definition of a system final states are specified by addi-

tional constraints, and in defining colimits this information is also used.)

(2) The properties P,Q,A can be expressed in L (using the sorts, constants, func-

tion and relation symbols mentioned at the beginning of Section 9), and can be

interpreted in Sh(InSys) and also in Set (to express, for every Si in InSys, the

corresponding property of Si, or S).
The truth of formulae describing safety, liveness and precedence properties (as in

(a),(b),(c) above) is preserved under inverse image functors if in the definitions of

the property P (c.q. Q,A) only conjunction, disjunction and existential quantifica-

tion occur. The truth of these formulae is additionally preserved by direct image

functors if only conjunction and unique existential quantification occur in them.

9.4 Example 1: Safety of train systems controlled by a radio controller

Consider the example in Section 4.1: Let k ≤ l ∈ {1, . . . , n}, I1 = {k, . . . , n}, I2 =

{1, . . . , l}, and I12 = {k, . . . , l}. Let InSys = {S1, S2, S12} be the family consisting

of the subsystems of S described in Section 2.2 corresponding to the sets of trains

with indices in I1, I2 and I12. Let Γj
s, j ∈ {1, 2, 12} be the following constraints

encoding collision freeness of Sj (where ⇒ denotes logical implication):

Γj
s = {succ(TrainIndexi) = TrainIndexk ⇒ ActualPosi<ActualPosk−L | i, k ∈ Ij}.

For every Sj ∈ {1, 2, 12} let SafeSt(Sj) = {s : Xj → Mj | s |= Γj ∪ Γj
s} be the

set of safe states of Sj
6 . Let SafeState : Ω(InSys) → Sets be defined on objects

by SafeState(U) = {(sj)Sj∈U | sj ∈ SafeSt(Sj), and sj |Xi
= si whenever Si ↪→ Sj},

and on morphisms by restriction. We can define a set of similar constraints Γs and

a similar set of safe states SafeSt(S) for the system S, where:

Γs={succ(TrainIndexi)=TrainIndexk ⇒ ActualPosi<ActualPosk−L | i, k∈{1, . . . , n}}.

If I1 ∩ I2 6= ∅ then Γ1
s ∪ Γ2

s = Γs
7 . Analogously to Theorem 6.2 we can show:

Theorem 9.4 The following hold:

(i) SafeState is a sheaf. Moreover, SafeState is a subsheaf of St.

(ii) For each Si∈InSys, the stalk of SafeState at Si is in bijection with SafeSt(Si).

(iii) SafeState(InSys) is in bijection with SafeSt(S).

Collision freeness can be expressed as follows:

CollFree (∀h : b)(∀j : t) [SafeState(s(h, 0)) ⇒ SafeState(s(h, j))].

6 We denote by Γj the restriction of Γ (cf. Definition 2.2) to Xj
7 Note that if I1 ∩ I2 = ∅ then some of the constraints of Γs cannot be deduced from Γ1

s and Γ2
s
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This formula contains only atomic formulae and the implication symbol. Therefore,

by Theorem 9.3, its truth is preserved both under inverse image functors and under

direct image functors, and it is reflected by the stalk functors:

• Assume that S1, S2, S12 satisfy CollFree. Then for all h ∈ BN(Sj), t ∈ N, if

π1(h(0)) ∈ SafeSt(Sj) then π1(h(t)) ∈ SafeSt(Sj). Due to the form of the formula

CollFree, its truth is reflected by the stalk functors f ∗
j : Sh(InSys) → Set. It

therefore follows that Sh(InSys) satisfies, internally, the formula CollFree.

• The truth of CollFree is preserved by the global section functor g∗ : Sh(InSys) →
Set, defined by g(F ) = F (InSys). Therefore, (in Set) the following holds:

∀h∈BN(InSys),∀t∈N(InSys) [π1(h(0))∈SafeState(InSys)⇒π1(h(t))∈SafeState(InSys)]

As, by Theorems 9.4 and 7.2, SafeState(InSys) is in bijective correspondence with

SafeSt(S) and BN(InSys) is in bijective correspondence with BN(S), we obtain:

∀h ∈ BN(S), ∀t ∈ N, if π1(h(0)) ∈ SafeSt(S) then π1(h(t)) ∈ SafeSt(S).

Corollary 9.5 Consider a family of consecutive trains on a linear track without

loops. Assume that each train i controls both its position and the position of its

predecessor, and accordingly determines its movement mode. We obtain a family

{Si | i ∈ {2, . . . , n}} of systems consisting of two successor trains each (each defined

as in Example 2.2 for n = 2). Let U consist of this family of systems together

with their intersections. The colimit of this family is the system S described in

Example 3.5. By Theorem 9.3, if collision freeness can be guaranteed for all the

systems in U , then the system S is collision free.

For suitably chosen minSpeed,maxSpeed and update interval ∆t all 2-train systems

are collision free (for an automatic proof ideas from [8] can be used). Therefore, the

n-train system in Example 2.2 can be proved to be collision free for these values.

Remark: The condition that the systems consist of successive trains and overlap

over one extremity is needed for recovering the successor constraints on trains for

the colimit. We obtain similar links between global and local properties also with

a cover consisting of one-train systems. However, then the colimit of the system

defined by such a cover is different of the system S; we would obtain a link between

the safety of the systems consisting of one train only and the safety of a system in

which all trains are on independent tracks.

9.5 Example 2: Lifeness

We adapt the example in the previous section and give an example of lifeness prop-

erty which can be expressed by means of a cartesian theory, and thus can be checked

modularly. Assume that the constraints Γ′
j on for system Sj consist of Γj (defined

as Γl
k in Example 3.2) and the constraint (

∧
i∈Ij

Modei = 0) ∨ (
∏

i∈Ij
Modei > 0).

As in Theorem 9.4 we can prove that this defines a subsheaf St′j of St; the following

constraints define subsheaves of St′ with properties similar to those of SafeState:

• Γj
su = Γ′

j ∪ Γj
s ∪ {Modei = 0 | i ∈ Ij} defines a sheaf SafeStateUpdate;

• Γj
CanMove = Γ′

j ∪ {Modei > 0 | i ∈ Ij} defines a sheaf CanMove;

• Γj
CannotMove = Γ′

j ∪ {Modei = 0 | i ∈ Ij} defines a sheaf CannotMove.
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For Si ∈ InSys let Minimal(Si) = {(h, j) | s(h, j) ∈ CanMove(Si) and ∀k(s(h, k) ∈
CanMove(Si) → k ≥ j)}, characterizing the minimal moment in time j w.r.t. a

behavior h at which all trains in system Si can move. These definitions can be used

to define a subsheaf MinimalCanMove ⊆ BN × N with properties similar to those of

St,Pa,Tr,B. A form of lifeness can be expressed by the following cartesian axioms:

∀h : b (SafeStateUpdate(s(h, 0)) → ∃j : t MinimalCanMove(h, j))

∀h : b,∀i : t (MinimalCanMove(h, i) → CanMove(s(h, i)))

∀h : b,∀i, k : t (MinimalCanMove(h, i) ∧ CanMove(s(h, k)) → i ≤ k)

(where the existential quantified variable in the first axiom is provably unique mod-

ulo the second and third axiom), and can thus be checked modularly.

10 Conclusion

We showed that a family InSys of interacting systems closed under pullbacks can

be endowed with a topology which models the way these systems interact. States,

parallel actions, transitions, and behavior can be described as sheaves on this topo-

logical space. We then used geometric logic to determine which kind of properties

of systems in InSys are preserved when interconnecting these systems. The main

advantage of our approach is that it enables us to verify properties of complex sys-

tems in a modular way. We illustrated the ideas by means of a running example,

involving systems of trains controlled by interacting controllers. In future work we

plan to look at other applications, including geographically distributed systems,

controlled by geographically fixed controllers, whose domains overlap.

We think that there should exist relationships between the approach described in

this paper and other new approaches to the study of concurrency such as, for in-

stance, higher dimensional automata (cf. [14,15]) or approaches based on meth-

ods from geometry and algebraic topologicy in particular homotopic methods (cf.

[7]). Links between algebraic topology and concurrency as well as links with higher

dimensional automata between have been studied e.g. by Gaucher, Goubault, Fa-

jstrup, and Raussen (cf. e.g. [5,4]). We would like to compare our approach with the

methods mentioned above. Using homological and especially homotopic methods

seems to be the next natural step after the sheaf semantics given in this paper.

Acknowledgements: Many thanks to the referees for their helpful comments.
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A Appendix. Sheaves of algebras

Let A be an algebra of similarity type Σ, (θi)i∈I a family of congruences on A, and

τ a topology on I. The following problem was addressed and solved in [2]: In which

situation does a sheaf exist with fibers Ai = A/θi such that for every a ∈ A the

map [a] : I →
∐

i∈I Ai is a global section? Two constructions are possible:

Construction 1 Let (FA, f, I) be defined by FA =
∐

i∈I A/θi, and f : FA → I

be the natural projection. Assume that a subbasis for the topology on FA is

{[a](U) | U ∈ τ, a ∈ A}, where [a](U) = {[a](i) | i ∈ U} = {[a]θi
| i ∈ U}.

Construction 2 Let GA : τ → ΣAlg be defined on objects by GA(U) = A/θU ,

where θU =
∧

i∈U θi and on morphisms, for every V ⊆ U by the canonical mor-

phism GA(U) = A/θU → A/θV = GA(V ), aθU
7→ aθV

.

Let Gi = lim
−→i∈U

GA(U) be the stalks of GA, and for every i ∈ I let gi : Gi → Ai

be the unique morphism that arises from the universality property of the colimit.

Note that gi(ρ
U
i (a)) = aθi

for every U ∈ τ and every i ∈ I. GA is a presheaf of

algebras. Let (SGA, g, I) be the associated sheaf.

In Construction 1, the stalk at i is isomorphic to Ai, but (FA, f, I) might be not a

sheaf space. In Construction 2, (SGA, g, I) is a sheaf space, but gi : Gi → Ai may

not be an isomorphism.

Theorem A.1 ([2]) The following conditions are equivalent:

(1) If [a]θi
= [b]θi

then there is an open neighborhood U of i such that for every

j ∈ U , [a]θj
= [b]θj

.

(2) (FA, f, I) is a sheaf of algebras.

(3) For every i ∈ I, gi : Gi → Ai is an isomorphism.

Definition A.2 If (θi)i∈I is a family of congruences on an algebra A, then any

topology on I that satisfies (1) is called an S-topology.
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Corollary A.3 ([2]) Assume that the topology on I is an S-topology with respect

to the family of congruences (θi)i∈I . Then (FA, f, I) and (SGA, g, I) are isomorphic

sheaves of algebras for which

(1) The stalk at i is isomorphic to Ai = A/θi,

(2) The map α : A→ Γ(I, FA) defined by α(a) = ([a]θi
)i∈I is a homomorphism,

(3) In A
α
→ Γ(I, FA) ≤

∏
i∈I A/θi

pi→ A/θi:

(i) pi ◦ α is an epimorphism, and

(ii) A is a subdirect product of the family (A/θi)i∈I iff
∧

i∈I θi = ∆A

(i.e. iff α is a monomorphism).
The coarsest S-topology on I can be constructed as follows:

Lemma A.4 ([2], [10]) Let A ↪→
∏

i∈I Ai
pi
→ Ai be a subdirect product. The coars-

est S-topology on I is generated by the sets E(a, b)={i∈I | pi(a)=pi(b)} as a subbasis.

Lemma A.5 ([10]) Let A ↪→
∏

i∈I Ai
pi
→ Ai be a subdirect product and τ1, τ2 be

two topologies on I. If τ1 ⊆ τ2 and τ1 contains the equalizer topology induced by A

(generated by the sets E(a, b) as a subbasis), then Γ(FA, (I, τ1)) ⊆ Γ(FA, (I, τ2)).

Even if the topology on I is an S-topology, A is not necessarily isomorphic to the

algebra Γ(I, FA). A necessary and sufficient condition for A to be isomorphic to an

algebra of global sections of a sheaf with fibers Ai = A/θi, for i ∈ I is given below:

Definition A.6 A family (ci)i∈I of elements of A is said to be global with respect

to (θi)i∈I if for every i ∈ I there exist ai
1, . . . , a

i
n, b

i
1, . . . , b

i
n ∈ A such that:

(i) (ai
j , b

i
j) ∈ θi for every j = 1, . . . , n,

(ii) If (ai
j , b

i
j) ∈ θk for every j = 1, . . . , n then (ck, ci) ∈ θk.

Theorem A.7 ([2]) Let (θi)i∈I be a family of congruences on an algebra A such

that A is a subdirect product of (A/θi)i∈I . Endow I with its coarsest S-topology.

Then α : A → Γ(I, FA) is an isomorphism iff for every family of elements (ci)i∈I

global with respect to (θi)i∈I , there is a c ∈ A with (c, ci) ∈ θi for every i ∈ I.

B Appendix. Partially commutative monoids

If G = (A,D) is a dependency graph, we denote by M(G) the quotient A∗/θ, where

θ is the congruence generated by {(a1a2, a2a1) | (a1, a2) 6∈ D} (a free partially

commutative monoid).

Theorem B.1 (Corollary 1.4.5 in [3]) Let G be an undirected graph and {Gj |
j ∈ J} be a finite family of subgraphs of G. For j ∈ J let πj : M(G) → M(Gj) be

the canonical projection and π : M(G) →
∏

j∈J M(Gj) be the homomorphism into

the direct product defined by π(t) = (πj(t))j∈J . Then π is injective iff G=
⋃

j∈JGj.

If {Mj | j ∈ J} is a family of non-trivial free partially commutative monoids then
∏

j∈J Mj is free partially commutative iff J is finite [3]. If {Gj | j ∈ J} is not finite,

then – assuming that for every vertex x of G there are finitely many j ∈ J such that

x is a vertex of Gj – there is an injective morphism M(G) ↪→
⊕

j∈J M(Gj), where
⊕

j∈J M(Gj) = {(mj)j∈J | mj ∈M(Gj) for all j ∈ J,mj = ε a.e. 8 } [3], p.27.

8 a.e. means almost everywhere
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