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Abstract

In this paper we show how hierarchical reasoning can be used to
verify properties of complex systems. Chains of local theory extensions
are used to model a case study taken from the European Train Control
System (ETCS) standard, but considerably simplified. We show how
testing invariants and bounded model checking can automatically be
reduced to checking satisfiability of ground formulae over a base theory.

1 Introduction

Many problems in computer science can be reduced to proving satisfiability
of conjunctions of (ground) literals modulo a background theory. This theory
can be a standard theory, the extension of a base theory with additional
functions (free or subject to additional conditions), or a combination of
theories. In [8] we showed that for special types of theory extensions, which
we called local, hierarchic reasoning in which a theorem prover for the base
theory is used as a “black box” is possible. Many theories important for
computer science are local extensions of a base theory. Several examples
(including theories of data structures, e.g. theories of lists (or arrays cf. [3]);
but also theories of monotone functions or of functions satisfying semi-Galois
conditions) are given in [8] and [9]. Here we present additional examples of
local theory extensions occurring in the verification of complex systems.

In this paper we address a case study taken from the specification of
the European Train Control System (ETCS) standard [2], but considerably
simplified, namely an example of a communication device responsible for
a given segment of the rail track, where trains may enter and leave. We
suppose that, at fixed moments in time, all knowledge about the current
positions of the trains is available to a controller which accordingly imposes
constraints on the speed of some trains, or allows them to move freely within
the allowed speed range on the track. Related problems were tackled before
with methods from verification [2].

The approach we use in this paper is different from previously used
methods. We use sorted arrays (or monotonely decreasing functions) for
storing the train positions. The use of abstract data structures allows us to
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pass in an elegant way from verification of several finite instances of problems
(modeled by finite-state systems) to general verification results, in which sets
of states are represented using formulae in first-order logic, by keeping the
number of trains as a parameter. We show that for invariant or bounded
model checking the specific properties of “position updates” can be expressed
in a natural way by using chains of local theory extensions. Therefore we can
use results in hierarchic theorem proving both for invariant and for bounded
model checking1. By using locality of theory extensions we also obtained
formal arguments on possibilities of systematic “slicing” (for bounded model
checking): we show that for proving (disproving) the violation of the safety
condition we only need to consider those trains which are in a ’neighborhood’
of the trains which violate the safety condition2.

Structure of the paper. Section 2 contains the main theoretical results needed
in the paper. In Section 3 we describe the case study we consider. In Sec-
tion 4 we present a method for invariant and bounded model checking based
on hierarchical reasoning. Section 5 contains conclusions and perspectives.

2 Preliminaries

Theories and models. Theories can be regarded as sets of formulae or
as sets of models. Let T be a theory in a (many-sorted) signature Π =
(S,Σ,Pred), where S is a set of sorts, Σ is a set of function symbols and
Pred a set of predicate symbols (with given arities). A Π-structure is a tuple

M = ({Ms}s∈S , {fM}f∈Σ, {PM}P∈Pred),

where for every s ∈ S, Ms is a non-empty set, for all f ∈ Σ with arity
a(f)=s1. . .sn → s, fM :

∏n
i=1

Msi
→Ms and for all P ∈ Pred with arity

a(P ) = s1. . .sn, PM ⊆ Ms1
× . . .×Msn

. We consider formulae over variables
in a (many-sorted) family X = {Xs | s ∈ S}, where for every s ∈ S, Xs is a
set of variables of sort s. A model of T is a Π-structure satisfying all formulae
of T . In this paper, whenever we speak about a theory T we implicitly refer
to the set Mod(T ) of all models of T , if not otherwise specified.

Partial structures. Let T0 be a theory with signature Π0 = (S0,Σ0,Pred).
We consider extensions T1 of T0 with signature Π = (S,Σ,Pred), where
S = S0 ∪ S1,Σ = Σ0 ∪ Σ1 (i.e. the signature is extended by new sorts
and function symbols) and T1 is obtained from T0 by adding a set K of
(universally quantified) clauses. Thus, Mod(T1) consists of all Π-structures
which are models of K and whose reduct to Π0 is a model of T0.

A partial Π-structure is a structure M = ({Ms}s∈S , {fM}f∈Σ, {PM}P∈Pred),
where for every s ∈ S, Ms is a non-empty set and for every f ∈ Σ with arity

1Here we only focus on one example. However, we also used this technique for other
case studies (among which one is mentioned – in a slightly different context – in [9]).

2In fact, it turns out that slicing (locality) results with a similar flavor presented by
Necula and McPeak in [6] have a similar theoretical justification.
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s1 . . . sn → s, fM is a partial function from Ms1
× · · · × Msn

to Ms. The
notion of evaluating a term t with variables X = {Xs | s ∈ S} w.r.t. an
assignment {βs:Xs → Ms | s ∈ S} for its variables in a partial structure M
is the same as for total many-sorted algebras, except that this evaluation
is undefined if t = f(t1, . . . , tn) with a(f) = (s1 . . . sn → s), and at least
one of βsi

(ti) is undefined, or else (βs1
(t1), . . . , βsn

(tn)) is not in the domain
of fM. In what follows we will denote a many-sorted variable assignment
{βs:Xs → Ms | s ∈ S} as β : X → M. Let M be a partial Π-structure, C

a clause and β : X → M. We say that (M, β) |=w C iff either (i) for some
term t in C, β(t) is undefined, or else (ii) β(t) is defined for all terms t of C,
and there exists a literal L in C s.t. β(L) is true in M. M weakly satisfies
C (notation: M |=w C) if (M, β) |=w C for all assignments β. M weakly
satisfies (is a weak partial model of) a set of clauses K (notation: M |=w K,
M is a w.p.model of K) if M |=w C for all C ∈ K.

Local theory extensions. Let K be a set of (universally quantified) clauses
in the signature Π = (S,Σ,Pred), where S = S0 ∪ S1 and Σ = Σ0 ∪ Σ1. In
what follows, when referring to sets G of ground clauses we assume they are
in the signature Πc = (S,Σ ∪ Σc,Pred) where Σc is a set of new constants.
An extension T0 ⊆ T0 ∪ K is local if satisfiability of a set G of clauses with
respect to T0∪K, only depends on T0 and those instances K[G] of K in which
the terms starting with extension functions are in the set st(K, G) of ground
terms which already occur in G or K. Formally,

K[G] = {Cσ |C ∈ K, for each subterm f(t) of C, with f ∈ Σ1,

f(t)σ ∈ st(K, G), and for each variable x which does not
occur below a function symbol in Σ1, σ(x) = x},

and T0 ⊆ T1=T0 ∪K is a local extension if it satisfies condition (Loc):

(Loc) For every set G of ground clauses G |=T1
⊥ iff there is no partial

Πc-structure P such that P|Π0
is a total model of T0, all terms

in st(K, G) are defined in P , and P weakly satisfies K[G] ∧ G.

In [8, 9] we gave several examples of local theory extensions: e.g. any ex-
tension of a theory with free function symbols; extensions with selector
functions for a constructor which is injective in the base theory; extensions
of several partially ordered theories with monotone functions. In Section 4.2
we give additional examples which have particular relevance in verification.

Hierarchic reasoning in local theory extensions. Let T0 ⊆ T1=T0 ∪K
be a local theory extension. To check the satisfiability of a set G of ground
clauses w.r.t. T1 we can proceed as follows (for details cf. [8]):

Step 1: Use locality. By the locality condition, G is unsatisfiable w.r.t. T1 iff
K[G] ∧ G has no weak partial model in which all the subterms of K[G] ∧ G

are defined, and whose restriction to Π0 is a total model of T0.
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Step 2: Flattening and purification. We purify and flatten K[G] ∧ G by
introducing new constants for the arguments of the extension functions as
well as for the (sub)terms t = f(g1, . . . , gn) starting with extension functions
f ∈ Σ1, together with new corresponding definitions ct ≈ t. The set of
clauses thus obtained has the form K0 ∧G0 ∧D, where D is a set of ground
unit clauses of the form f(c1, . . . , cn) ≈ c, where f ∈ Σ1 and c1, . . . , cn, c are
constants, and K0, G0 are clause sets without function symbols in Σ1.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to
testing satisfiability in T0 by replacing D with the following set of clauses:

N0 =
∧

{

n∧

i=1

ci≈di→c≈d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ D}.

Theorem 1 ([8]) With the notations above, the following are equivalent:

(1) T0 ∧ K ∧ G has a model.

(2) T0∧K[G]∧G has a w.p.model (where all terms in st(K,G) are defined).

(3) T0∧K0∧G0∧D has a w.p.model (with all terms in st(K,G) defined).

(4) T0∧K0∧G0∧N0 has a (total) Σ0-model.

3 The RBC Case Study

The case study we discuss here is taken from the specification of the Eu-
ropean Train Control System (ETCS) standard (cf. e.g. [2]): we consider a
radio block center (RBC), which communicates with all trains on a given
track segment. Trains may enter and leave the area, given that a certain
maximum number of trains on the track is not exceeded. Every train reports
its position to the RBC in given time intervals and the RBC communicates
to every train how far it can safely move, based on the position of the pre-
ceding train. It is then the responsibility of the trains to adjust their speed
between given minimum and maximum speeds.

For a first try at verifying properties of this system, we have considerably
simplified it: we abstract from the communication issues in that we always
evaluate the system after a certain time ∆t, and at these evaluation points
the positions of all trains are known. Depending on these positions, the
possible speed of every train until the next evaluation is decided: if the
distance to the preceding train is less than a certain limit lalarm, the train
may only move with minimum speed min (otherwise with any speed between
min and the maximum speed max).

3.1 Formal Description of the System Model

We present two formal system models. In the first one we have a fixed
number of trains; in the second we allow for entering and leaving trains.

Model 1: Fixed Number of Trains. In this simpler model, any state of
the system is characterized by the following functions and constants:

4



• ∆t > 0, the time between evaluations of the system.

• min and max, the minimum and maximum speed of trains. We assume
that 0 ≤ min ≤ max.

• lalarm, the distance between trains which is deemed secure.

• n, the number of trains.

• pos, a function which maps indices (between 0 and n−1) associated to
trains on the track to the positions of those trains on the track. Here
pos(i) denotes the current position of the train with index i.

We use a new function pos′ to model the evolution of the system: pos′(i)
denotes the position of i at the next evaluation point (after ∆t time units).
The way positions change (i.e. the relationship between pos and pos′) is
defined by the following set Kf = {F1,F2,F3,F4} of axioms:

(F1) ∀i (i = 0 → pos(i) + ∆t∗min ≤R pos′(i) ≤R pos(i) + ∆t∗max)

(F2) ∀i (0 < i < n ∧ pos(i − 1) >R 0 ∧ pos(p(i)) − pos(i) ≥R lalarm
→ pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t∗max)

(F3) ∀i (0 < i < n ∧ pos(i − 1) >R 0 ∧ pos(p(i)) − pos(i) <R lalarm
→ pos′(i) = pos(i) + ∆t∗min)

(F4) ∀i (0 < i < n ∧ pos(i − 1) ≤R 0 → pos′(i) = pos(i)),

Note that the train with number 0 is the train with the greatest position,
i.e. we count trains from highest to lowest position.

Axiom F1 states that the first train may always move at any speed
between min and max. F2 states that the other trains can do so if their
predecessor has already started and the distance to it is larger than lalarm.
If the predecessor of a train has started, but is less than lalarm away, then
the train may only move at speed min (axiom F3). F4 requires that a train
may not move at all if its predecessor has not started.

Model 2: Incoming and leaving trains. If we allow incoming and
leaving trains, we additionally need a measure for the number of trains on
the track. This is given by additional constants first and last, which at any
time give the number of the first and last train on the track (again, the first
train is supposed to be the train with the highest position). Furthermore, the
maximum number of trains that is allowed to be on the track simultaneously
is given by a constant maxTrains. These three values replace the number of
trains n in the simpler model, the rest of it remains the same except that the
function pos is now defined for values between first and last, where before it
was defined between 0 and n − 1. The behavior of this extended system is
described by the following set Kv consisting of axioms (V1) − (V9):

(V1) ∀i (i = first → pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t ∗ max)

(V2) ∀i (first < i ≤ last ∧ pos(i − 1) >R 0 ∧ pos(i − 1) − pos(i) ≥R lalarm
→ pos(i) + ∆t ∗ min ≤R pos′(i) ≤R pos(i) + ∆t ∗ max)
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(V3) ∀i (first < i ≤ last ∧ pos(i − 1) >R 0 ∧ pos(i − 1) − pos(i) <R lalarm
→ pos′(i) = pos(i) + ∆t ∗ min)

(V4) ∀i (first < i ≤ last ∧ pos(i − 1) ≤R 0 → pos′(i) = pos(i))

(V5) last − first + 1 < maxTrains → last′ = last ∨ last′ = last + 1

(V6) last − first + 1 = maxTrains → last′ = last

(V7) last − first + 1 > 0 → first′ = first ∨ first′ = first + 1

(V8) last − first + 1 = 0 → first′ = first,

(V9) last′ = last + 1 → pos′(last′) <R pos′(last)

where primed symbols denote the state of the system at the next evaluation.
Here, axioms V1−V4 are similar to F1−F4, except that the fixed bounds

are replaced by the constants first and last. V5 states that if the number of
trains is less than maxTrains, then a new train may enter or not. V6 says
that no train may enter if maxTrains is already reached. V7 and V8 are
similar conditions for leaving trains. Finally, V9 states that if a train enters,
its position must be behind the train that was last before.

4 Hierarchical reasoning in verification

The safety condition which is important for this type of systems is collision
freeness. Intuitively (but in a very simplified model of the system of trains)
collision freeness is similar to a ’bounded strict monotonicity’ property for
the function pos which stores the positions of the trains:

Mon(pos) ∀i, j (0 ≤ i < j < n → pos(i) >R pos(j))

Mon(pos) expresses the condition that for all trains i, j on the track, if i

precedes j then i should be positioned strictly ahead of j.

We will also consider a more realistic extension, which allows to express
collision-freeness when the maximum length of the trains is known. In both
cases, we focus on invariant checking and on bounded model checking.

4.1 Problems: Invariant checking, bounded model checking

In what follows we illustrate the ideas for the simple approach, in which
collision-freeness is identified with strict monotonicity of the function which
stores the positions of the trains. To check that strict monotonicity of train
positions is an invariant, we need to check that:

(a) In the initial state the train positions (expressed by a function pos0)
satisfy the strict monotonicity condition Mon(pos0).

(b) Assuming that at a given state, the function pos (indicating the po-
sitions) satisfies the strict monotonicity condition Mon(pos), and the
next state positions, stored in pos′, satisfy the axioms K, where K ∈
{Kf ,Kv}, then pos′ satisfies the strict monotonicity condition Mon(pos′).
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Checking (a) is not a problem. For (b) we need to show that in the extension
T of a combination T0 of real arithmetic with an index theory describing
precedence of trains, with the two functions pos and pos′ the following hold:

T |= K∧Mon(pos) → Mon(pos′), i.e. T ∧K∧Mon(pos)∧¬Mon(pos′) |=⊥ .

The set of formulae to be proved unsatisfiable w.r.t. T involves the axioms
K and Mon(pos), containing universally quantified variables of sort i. Only
¬Mon(pos′) corresponds to a ground set of clauses G. However, positive re-
sults for reasoning in combinations of theories were only obtained for testing
satisfiability for ground formulae [7, 4], so are not directly applicable.

In bounded model checking the same problem occurs. For a fixed k, one
has to show that there are no paths of length at most k from the initial state
to an unsafe state. We therefore need to store all intermediate positions in
arrays pos0, pos1, . . . , posk, and – provided that K(posi−1, posi) is defined
such that K = K(pos, pos′) – to show:

T ∧

j∧

i=1

K(posi−1, posi) ∧ Mon(pos0) ∧ ¬Mon(posj) |=⊥ for all 0 ≤ j ≤ k.

4.2 Our solution: locality, hierarchical reasoning

Our idea. In order to overcome the problem mentioned above we proceed
as follows. We consider two successive extensions of the base many-sorted
combination T0 of real arithmetic (for reasoning about positions, sort num)
with an index theory (for describing precedence between trains, sort i):

• the extension T1 of T0 with a monotone function pos, of arity i → num,

• the extension T2 of T1 with a function pos′ satisfying K ∈ {Kf ,Kv}.

We show that both extensions T0 ⊆ T1 = T0∪Mon(pos) and T1 ⊆ T2 = T1∪K
are local, where K ∈ {Kf ,Kv}. This allows us to reduce problem (b) to
testing satisfiability of ground clauses in T0, for which standard methods for
reasoning in combinations of theories can be applied. A similar method can
be used for bounded model checking.

The base theory. As mentioned before, we assume that T0 is the many-
sorted combination of a theory T i

0
(sort i) for reasoning about precedence

between trains and the theory T num
0

of real numbers (sort num) for reasoning
about distances between trains. As a convention, everywhere in what follows
i, j, k denote variables of sort i and c, d denote variables of sort num.

We have several possibilities of choosing T i
0
: we can model the trains on

a track by using an (acyclic) list structure, where any train is linked to its
predecessor, or using the theory of integers with predecessor.

In what follows let T i
0

be (a fragment of) integer arithmetic and T num
0

be
the theory of real or rational numbers. In both these theories satisfiability
of ground clauses is decidable.
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Collision freeness as monotonicity. Let T0 be the (disjoint, many-
sorted) combination of T i

0
and T num

0
. Then classical methods on combina-

tions of decision procedures for (disjoint, many-sorted) theories can be used
to give a decision procedure for satisfiability of ground clauses w.r.t. T0. Let
T1 be obtained by extending T0 with a function pos of arity i → num mapping
train indices to the real numbers, which satisfies condition Mon(pos):

Mon(pos) ∀i, j (first ≤ i < j ≤ last → pos(i) >R pos(j)),

where i and j are indices, < is the ordering on indices and >R is the usual
ordering on the real numbers. (For the case of a fixed number of trains, we
can assume that first = 0 and last = n − 1.)

A more precise axiomatization of collision-freeness. The monotonic-
ity axiom above is, in fact, an oversimplification. A more precise model, in
which the length of trains is considered can be obtained by replacing the
monotonicity axiom for pos with the following axiom:

∀i, j, k (first ≤ j ≤ i ≤ last∧ i− j = k → pos(j)−pos(i) ≥ k ∗LengthTrain),

where LengthTrain is the standard (resp. maximal) length of a train.
As base theory we consider the combination T ′

0
of the theory of inte-

gers and reals with a multiplication operation ∗ of arity i × num → num
(multiplication of k with the constant LengthTrain in the formula above)3.

Let T ′
1

be the theory obtained by extending the combination T ′
0

of the
theory of integers and reals with a function pos satisfying the axiom above.

Theorem 2 The following extensions are local theory extensions:

(1) The theory extension T0 ⊆ T1.

(2) The theory extension T ′
0
⊆ T ′

1
.

Proof : We prove that every model of T1 in which the function pos is partially
defined can be extended to a model in which pos is totally defined. Locality
then follows by results in [8]. To define pos at positions where it is undefined
we use the density of real numbers and the discreteness of the index theory
(between two integers there are only finitely many integers). 2

We now extend the resulting theory T1 again in two different ways, with
the axiom sets for one of the two system models, respectively. A similar
construction can be done starting from the theory T ′

1
.

Theorem 3 The following extensions are local theory extensions:

(1) The extension T1 ⊆ T1 ∪Kf

(2) The extension T1 ⊆ T1 ∪Kv.

3In the light of locality properties of such extensions (cf. Theorem 2), k will always be
instantiated by values in a finite set of concrete integere, all within a given, concrete range;
thus the introduction of this many-sorted multiplication does not affect decidability.
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Proof : (1) Clauses in Kf are flat and linear w.r.t. pos′, so we again prove lo-
cality of the extension by showing that weak partial models can be extended
to total ones. The proof proceeds by a case distinction. We use the fact that
the left-hand sides of the implications in Kf are mutually exclusive. (2) is
proved similarly. 2

Let K ∈ {Kv ,Kf}. By the locality of T1 ⊆ T2 = T1 ∪ K and by Theorem 1,
the following are equivalent:

(1) T0 ∧ Mon(pos) ∧ K ∧ ¬Mon(pos′) |=⊥,

(2) T0 ∧ Mon(pos) ∧ K[G] ∧ G |=w⊥, where G = ¬Mon(pos′),

(3) T0 ∧ Mon(pos) ∧ K0 ∧ G0 ∧ N0(pos′) |=⊥,

where K[G] consists of all instances of the rules in K in which the terms start-
ing with the function symbols pos′ are ground subterms already occurring
in G or K, K0 ∧G0 is obtained from K[G]∧G by introducing new constants
for the arguments of the extension functions as well as for the (sub)terms
t = f(g1, . . . , gn) starting with extension functions f ∈ Σ1, and N0(pos′) is
the set of instances of the congruence axioms for pos′ which correspond to
the definitions for these newly introduced constants.

It is easy to see that, due to the special form of the rules in K (all free
variables in any clause occur as arguments of pos′ both in Kf and in Kv),
K[G] (hence also K0) is a set of ground clauses. By the locality of T0 ⊆ T1 =
T0 ∪ Mon(pos), the following are equivalent:

(1) T0 ∧ Mon(pos) ∧ K0 ∧ G0 ∧ N0(pos′) |=⊥,

(2) T0 ∧ Mon(pos)[G′] ∧ G′ |=w⊥, where G′ = K0 ∧ G0 ∧ N0(pos′),

(3) T0 ∧ Mon(pos)0 ∧ G′
0
∧ N0(pos) |=⊥,

where Mon(pos)[G′] consists of all instances of the rules in Mon(pos) in
which the terms starting with the function symbol pos are ground subterms
already occurring in G′, Mon(pos)0∧G′

0
is obtained from Mon(pos)[G′]∧G′ by

purification and flattening, and N0(pos) corresponds to the set of instances
of congruence axioms for pos which need to be taken into account.

This allows us to use hierarchical reasoning on properties of the system, i.e.
to reduce the verification of system properties to deciding satisfiability of
constraints in T0. An advantage is that, after the reduction of the problem to
a satisfiability problem in the base theory, one can automatically determine
which constraints on the parameters (e.g. ∆t,min,max, ...) guarantee truth
of the invariant. This can be achieved, e.g. using quantifier elimination. The
method is illustrated in Section 4.3; more details can be found in [5].

Similar results can be established for bounded model checking. In this case
the arguments are similar, but one needs to consider chains of extensions
of length 1, 2, 3, . . . , k for a bounded k, corresponding to the paths from
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the initial state to be analyzed. An interesting side-effect of our approach
(restricting to instances which are similar to the goal) is that it provides a
possibility of systematic “slicing”: for proving (disproving) the violation of
the safety condition we only need to consider those trains which are in a
’neighborhood’ of the trains which violate the safety condition.

4.3 Illustration

In this section we indicate how to apply hierarchical reasoning on the case
study given in Section 3, Model 1. We follow the steps given at the end of
Section 2 and show how the sets of formulas are obtained that can finally
be handed to a prover of the base theory T0.

To check whether T1 ∪Kf |= ColFree(pos′), where

ColFree(pos′) ∀i (0 ≤ i < n − 1 → pos′(i) >R pos′(i + 1)),

we check whether T1 ∪ Kf ∪ G |= ⊥, where G = {0 ≤ k < n − 1, k′ =
k + 1, pos′(k) ≤R pos′(k′)} is the (skolemized) negation of ColFree(pos′),
flattened by introducing a new constant k ′. This problem is reduced to a
satisfiability problem over T1 as follows:

Step 1: Use locality. We construct the set Kf [G]: There are no ground
subterms with pos′ at the root in Kf , and only two ground terms with pos′

in G, pos′(k) and pos′(k′). This means that Kf [G] consists of two instances
of Kf : one with i instantiated to k, the other instantiated to k ′. E.g., the
two instances of F2 are:

(F2[G]) (0 < k < n ∧ pos(k − 1) >R 0 ∧ pos(k − 1) − pos(k) ≥R lalarm
→ pos(k) + ∆t ∗ min ≤R pos′(k) ≤R pos(k) + ∆t∗max)

(0 < k′ < n ∧ pos(k′ − 1) >R 0 ∧ pos(k′ − 1) − pos(k′) ≥R lalarm
→ pos(k′) + ∆t ∗ min ≤R pos′(k′) ≤R pos(k′) + ∆t∗max)

The construction of (F1[G]), (F3[G]) and (F4[G]) is similar. In addition, we
specify the known relationships between the constants of the system:
(Dom) ∆t > 0 ∧ 0 ≤ min ∧ min ≤ max

Step 2: Flattening and purification. Kf [G] ∧ G is already flat w.r.t.
pos′. We replace all ground terms with pos′ at the root with new constants:
we replace pos′(k) by c1 and pos′(k′) by c2. We obtain a set of definitions
D = {pos′(k) = c1, pos′(k′) = c2} and a set Kf0

of clauses which do not
contain occurrences of pos′, consisting of (Dom) together with:

(G0) 0 ≤ k < n − 1 ∧ k′ = k + 1 ∧ c1 ≤R c2

(F20) (0 < k < n ∧ pos(k − 1) >R 0 ∧ pos(k − 1) − pos(k) ≥R lalarm
→ pos(k) + ∆t ∗ min ≤R c1 ≤R pos(k) + ∆t∗max)

(0 < k′ < n ∧ pos(k′ − 1) >R 0 ∧ pos(k′ − 1) − pos(k′) ≥R lalarm
→ pos(k′) + ∆t ∗ min ≤R c2 ≤R pos(k′) + ∆t∗max)

The construction can be continued similarly for F1, F3 and F4.
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Step 3: Reduction to satisfiability in T1. We add the functionality
clause N0 = {k = k′ → c1 = c2} and obtain a satisfiability problem in T1:
Kf0

∧ G0 ∧ N0. To decide satisfiability of T1 ∧ Kf0
∧ G0 ∧ N0, we have to

do another transformation w.r.t. the extension T0 ⊆ T1. The resulting set
of ground clauses can directly be handed to a decision procedure for the
combination of the theory of indices and the theory of reals. We flatten and
purify the set Kf0

∧G0 ∧N0 of ground clauses w.r.t. pos by introducing new
constants denoting k − 1 and k′ − 1, together with their definitions k ′′ =
k−1, k′′′ = k′−1; as well as constants di for pos(k), pos(k′), pos(k′′), pos(k′′′).
Taking into account only the corresponding instances of the monotonicity
axiom for pos we obtain a set of clauses consisting of (Dom) together with:

(G′

0) k′′ = k − 1 ∧ k′′′ = k′ − 1
(G0) 0 ≤ k < n − 1 ∧ k′ = k + 1 ∧ c1 ≤R c2

(GF20) 0<k<n ∧ d3>R0 ∧ d3−d1 ≥R lalarm → d1+∆t∗min ≤R c1 ≤R d1+∆t∗max
0<k′<n ∧ d4>R0 ∧ d4−d2 ≥R lalarm → d2+∆t∗min ≤R c2 ≤R d2+∆t∗max

and Mon(pos)[G′]. After making some simplifications we obtain the following
set of (many-sorted) constraints:

CDefinitions CIndices CReals CMixed

pos′(k) = c1 pos(k′) = d2 k′′ = k − 1 c1 ≤R c2 d3 >R d4 (GF10)
pos′(k′) = c2 pos(k′′) = d3 k′′′ = k′ − 1 d1 >R d2 d4 >R d2 (GF20)
pos(k) = d1 pos(k′′′) = d4 0 ≤ k < n − 1 d3 >R d1 d1 = d4 (GF30)

k′ = k + 1 d3 >R d2 (Dom) (GF40)

For checking the satisfiability of CIndices∧CReals∧CMixed we can use a prover
for the two-sorted combination of the theory of integers and the theory of
reals, possibly combined with a DPLL methodology for dealing with full
clauses. An alternative method, somewhat similar to DPLL(T0), would be
to use only branching on the literals containing terms of index sort – this
reduces the verification problem to the problem of checking the satisfiability
of a set of linear constraints over the reals.

5 Conclusions

In this paper we described a case study concerning a system of trains on a
rail track, where trains may enter and leave the area. An example of a safety
condition for such a system (collision freeness) was considered. The problem
above can be reduced to testing satisfiability of quantified formulae in com-
plex theories. However, the existing results on reasoning in combinations of
theories are restricted to testing satisfiability for ground formulae.

This paper shows that, in the example considered, we can reduce sat-
isfiability checking of universally quantified formulae to the simpler task of
satisfiability checking for ground clauses. For this, we identify corresponding
chains of theory extensions T0 ⊆ T1 ⊆ · · · ⊆ Ti, such that Tj = Tj−1∪Kj is a
local extension of Tj−1 by a set Kj of (universally quantified) clauses. This
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allows us to reduce, for instance, testing collision freeness in theories con-
taining arrays to represent the train positions, to checking the satisfiability
of a set of sets of ground clauses over the combination of the theory of reals
with a theory which expresses precedence between trains. The applicability
of the method is however general: the challenge is, at the moment, to recog-
nize classes of local theories occurring in various areas of application. The
implementation of the procedure described here is in progress, the method is
clearly easy to implement. At a different level, our results open a possibility
of using abstraction-refinement deductive model checking in a whole class of
applications including the examples presented here – these aspects are not
discussed in this paper, and rely on results we obtained in [9].

The results we present here also have theoretical implications: In one
of the models we considered here, collision-freeness is expressed as a mono-
tonicity condition. Limits of decidability in reasoning about sorted arrays
were explored in [1]. The decidability of satisfiability of ground clauses in
the fragment of the theory of sorted arrays which we consider here is an easy
consequence of the locality of extensions with monotone functions.
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