
Local reasoning in verification:

Implementation and experiments

Carsten Ihlemann, Swen Jacobs, Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Campus E 1.4, Saarbrücken, Germany

We have implemented the approach for hierarchical reasoning described
in [1] as well as the extensions to reasoning in chains of theory extensions
[2, 3]. Our tool (LoRe) allows us to reduce satisfiability problems in an
extended theory to a base theory for which we can then use existing
solvers. It takes as input the axioms of the theory extension, the ground
goal and the list of extension function symbols. Chains of extensions are
handled by having a list of axiom sets, and correspondingly a list of lists
of extension function symbols.

– The input is analyzed for ground terms with extension functions at
the root.

– After instantiating the axioms w.r.t. these terms, the extension sym-
bols are hierarchically removed.

– The resulting formula is either given to a prover for a base theory, or
taken as goal for another reduction (if we have a chain of extensions).

The program has two modes of execution. The first mode automatically
produces inputs for a class of theorem provers for the base theory. Cur-
rently, we can produce base theory output for Yices, Mathsat and Redlog,
but other solvers can be integrated easily. In the second mode, the inter-
action with the theorem prover for the base theory is integrated in the
prover itself (the choice of the prover is settled by command line switch).

We run tests on various examples, including different versions of the train
controller example [2, 3], an array version of the insertion algorithm, and
reasoning in theories of arrays and lists. In Fig. 1 we list running times
for 8 different versions of the train example, each of the following four
versions in a satisfiable and an unsatisfiable variant:

– simple (fixed number of trains, no length measure),
– length (fixed number of trains with length),
– variable (variable number of trains, no length measure),
– full (variable number of trains with length).

We set the timeout to 300 seconds. In Fig. 1, not supported means that
we would have to hand a non-linear arithmetic problem to Yices. We can
instead use Redlog. We have successfully used it for these problems.

|K∞| |K∞[G]| |K∈| |K∈[G]| Runtimes (sec)
LoRe LoRe+Yices Yices

simple SAT 5 20 4 8 0.028 0.049 timeout
simple UNSAT 6 21 4 8 0.027 0.047 0.032
length SAT 6 21 4 8 0.031 0.052∗ not supported
length UNSAT 7 22 4 8 0.031 0.053∗ not supported
variable SAT 8 71 9 21 0.128 0.183 timeout
variable UNSAT 9 72 9 21 0.135 0.181 0.052
full SAT 9 72 9 21 0.156 not supported not supported
full UNSAT 10 73 9 21 0.167 not supported not supported

The times for benchmark 3 and 4 are marked with ‘*’ in order to point out that the
replacement of the differences (u − v) ∗ LengthTrain, where u, v ∈ {k, k′, k′′, k′′′} has
been done manually. This was necessary because the input for Yices cannot contain
non-linear arithmetical expressions. We used the following abbreviations:

– |K〉|: the number of clauses which define extension i in the chain of local extensions.
– |K〉[G]|: the number of instances which we generate.
– LoRe time: the time needed by LoRe for the hierarchical reduction.
– LoRe+Yices time: the total time for reduction and use of Yices for SAT checking.
– Yices time: the time needed by Yices for solving the original problem.

Fig. 1. Tests with the RBC case study (various versions)

While Yices can be used successfully also directly for unsatisfiable for-
mulae, this does not hold if we change the input problem to a formula
which is satisfiable w.r.t. the extended theory. In this case, Yices returns
“unknown” after a 300 second timeout. After the reduction with our tool,
Yices (applied to the problem for the base theory) returns “satisfiable” in
a fraction of a second, and even supplies a model for this problem that can
be lifted to a model in the extended theory for the initial set of clauses1.
Even more information can be obtained using the quantifier elimination
facilities offered e.g. by Redlog for determining constraints between the

parameters of the problems which guarantee safety.

In Fig. 2 we list running times for two examples involving reasoning about
arrays: an array insertion algorithm and an example considered in [4].

We are working towards extending the tool support to stable locality, and
for extensions with clauses containing proper first-order formulae.

1 The lifting is straightforward, given the output of our tool, but is not automated at
the moment.

|K| |G| | K[G] Runtimes (sec)
(Mode 2; line switch -Yices)

array-insert 9 4 64 0.080

array-example [4] 10 11 640 0.400

We used the following abbreviations:
– |K|: the number of clauses which define the extension.
– |G|: the size of the set of ground clauses to be proved/disproved.
– |K[G]|: the number of instances which we generate.
– Runtimes: times in mode 2, using a direct call of Yices.

Fig. 2. Reasoning about arrays

References

1. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: 20th
Int. Conf. on Automated Deduction (CADE-20), LNAI 3632, Springer (2005) 219–
234

2. Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchical reasoning in the
verification of complex systems. Electronic Notes in Theoretical Computer Science
174 (2007) 39–54

3. Faber, J., Jacobs, S., Sofronie-Stokkermans, V.: Verifying CSP-OZ-DC specifica-
tions with complex data types and timing parameters. In: Integrated Formal Meth-
ods (IFM 2007), LNCS 4591, Springer (2007) 233–252

4. Bradley, A., Manna, Z., Sipma, H.: What’s decidable about arrays? In: Verification,
Model-Checking, and Abstract-Interpretation, 7th Int. Conf. (VMCAI 2006). LNCS
3855, Springer (2006) 427–442

