
Constraint Solving for Interpolation

Andrey Rybalchenko1,2 and Viorica Sofronie-Stokkermans2

1 Ecole Polytechnique Fédérale de Lausanne
2 Max-Planck-Institut für Informatik, Saarbrücken

Abstract. Interpolation is an important component of recent methods
for program verification. It provides a natural and effective means for
computing separation between the sets of ‘good’ and ‘bad’ states. The ex-
isting algorithms for interpolant generation are proof-based: They require
explicit construction of proofs, from which interpolants can be computed.
Construction of such proofs is a difficult task. We propose an algorithm
for the generation of interpolants for the combined theory of linear arith-
metic and uninterpreted function symbols that does not require a priori
constructed proofs to derive interpolants. It uses a reduction of the prob-
lem to constraint solving in linear arithmetic, which allows application
of existing highly optimized Linear Programming solvers in black-box
fashion. We provide experimental evidence of the practical applicability
of our algorithm.

1 Introduction

Interpolation [5] is an important component of recent methods for program ver-
ification. It provides a natural and effective means for computing separation
between the sets of ‘good’ and ‘bad’ states. Such separations provide a basis
for powerful heuristics for the discovery of relevant predicates for predicate ab-
straction with refinement and for the over-approximation in model checking, see
e.g. [6, 10–12,16–18, 26].

The applicability of interpolation-based verification methods crucially de-
pends on the employed procedure for interpolant generation. The existing algo-
rithms for interpolant generation are proof-based: They require explicit construc-
tion of proofs, from which interpolants can be computed (resolution proofs in
propositional logic, proofs for linear inequalities over the reals, or in the combined
theory of linear arithmetic with uninterpreted function symbols [14, 21, 17]). Ex-
plicit construction of such proofs is a difficult task, which hinders the practical
applicability of interpolants for verification. In fact, the existing tools for the gen-
eration of interpolants over linear arithmetic and uninterpreted function symbols
only handle the difference bound-fragment of arithmetic constraints [11, 17]. One
of the consequences of this limitation is that no program whose correctness de-
pends on a predicate over three or more variables can be handled by the method
described in [7].

We propose an algorithm for the generation of interpolants for the combined
theory of linear arithmetic and uninterpreted function symbols that does not

require a priori constructed proofs to derive interpolants. It uses a reduction
of the problem to constraint solving in linear arithmetic. Thus, the algorithm
allows application of existing highly optimized Linear Programming solvers in
black-box fashion, which leads to a practical implementation.

The main contributions of the paper are the following.

– First, we describe an algorithm LI for the generation of interpolants for
linear arithmetic only, which is based on a reduction to constraint solving.
The algorithm LI has the following advantages:
• it allows to handle directly strict and non-strict inequalities,
• it can be implemented using a Linear Programming solver as a black

box.
– Second, we present an algorithm LIUIF for generating interpolants in com-

bination of linear arithmetic with uninterpreted function symbols, following
the hierarchical style of [23, 24]. It applies the algorithm LI as a subroutine.

– We provide experimental evidence of the applicability of this constraint based
interpolant generation.

Our implementation is integrated into the predicate discovery procedure of the
software verification tools Blast [7] and ARMC [20]. Our experiments with
Blast on Windows device drivers provide a direct comparison with the existing
tool FOCI [17], and show promising running times in favour of the constraint
based approach. Our method can handle systems which pose problems to other
interpolation-based provers: It allowed us, for instance, to apply ARMC to verify
safety properties of train controller systems [19], which required inference of
predicates with both strict and nonstrict inequalities, and it allows us to verify
examples that require predicates over up to four variables.

Related work: Our algorithm differs from the existing methods for the inter-
polant generation [11, 12, 17, 26] in the following key points. Being constraint
based, our algorithm does not require a priori constructed resolution proof to
derive an interpolant. However, it is possible to construct such a proof using
non-negative linear combinations of inequalities computed by our algorithm.

Our method for the synthesis of interpolants for the combined theory of linear
arithmetic and uninterpreted function symbols, follows the hierarchical style
of [23, 24], and uses the interpolant construction method for linear arithmetic as
a black-box. The algorithm presented in this paper, on which our implementation
is based, differs from that in [24], being tuned to our constrained based approach.

In fact, our method for generating interpolants for linear arithmetic can be
used as a black box procedure also in other contexts, e.g. for the method for
constructing interpolants in combinations of theories over disjoint signatures
proposed in [26] or for the interpolant generation method for the combinations
of linear arithmetic, uninterpreted function symbols, lists, and sets with cardi-
nality constraints, which uses a reduction to the invariant generation in linear
arithmetic and uninterpreted function symbols [12]. Conversely, our method for
the synthesis of interpolants for the combined theory of linear arithmetic and

2

uninterpreted function symbols can use any method for interpolant construction
for linear arithmetic.

The “split” prover [11] applies a sequent calculus for the synthesis of inter-
polants whose linear arithmetic part is restricted to difference bounds constraints
with a user-defined constraint on the bound. In contrast, our implementation is
constraint-based and handles full linear arithmetic. Its extension to accommo-
date user-defined constraints is a subject of ongoing work.

Our algorithm constructs linear arithmetic interpolants in a way similar to
constraint-based invariant and ranking function generation methods based on
Farkas’ lemma and linear programming, see e.g. [2–4]. We use its extension
(Motzkin’s transposition theorem) to handle strict inequalities. In the terminol-
ogy of linear programming, interpolants are hyperplanes that separate strictly
disjoined convex hulls and contain only common variables of the hulls.

Structure of the paper: We introduce the necessary preliminaries in Section 2.
We describe the algorithm LI for the synthesis of constrained interpolants in
linear arithmetic in Section 3, and its extension LIUIF for the handling of unin-
terpreted function symbols in Section 4. We briefly describe our implementation
and experimental results in Section 5.

2 Preliminaries

In what follows we will use the following notations:

Linear constraints over rational and real spaces. We write Ax < a and
Ax ≤ a for systems (conjunctions) of strict and non-strict inequalities, respec-
tively. We write Ax 6 a for a system that may contain inequalities of both kinds.
We refer to such systems as mixed ones. Given Ax 6 a, we write Altx < alt and
Alex ≤ ale for the systems that contain strict and non-strict inequalities from
Ax 6 a, respectively. A row vector λ with mA elements defines a linear com-
bination of inequalities from Ax 6 a. The vector λ has sub-vectors λlt and λle

that correspond to strict and non-strict inequalities from Ax 6 a, respectively.
We have λA = λltAlt + λleAle and λa = λltalt + λleale. We write A|k for the k-th

column of a matrix A. We write Akx 6 ak to refer to a system of inequalities
with index k. Given a vector i we write iT to denote its transposition.

We note that precise handling of strict inequalites is required for interpolation
problems over rationals/reals, which occur in the verification of real time and
hybrid systems. Consider the unsatisfiable conjunction x < 0 and x ≥ 0, where
x ranges over rationals/reals. The relaxation of x < 0 to non-strict inequality
x ≤ 0 leads to the loss of unsatisfiability. The strengthening of x < 0 to x ≤ −1
may result in the interpolant x ≤ −1 which is not an interpolant for the original
problem, since x < 0 does not imply x ≤ −1.

Extensions with uninterpreted functions. Let Σ be a set of (new) function
symbols. Let T0 be one of the theories LI(Q) (linear rational arithmetic) or LI(R)
(linear real arithmetic). with signature Π0 = (Σ0,Pred). We denote by LI(Q)Σ

the extension of Q with the uninterpreted function symbols in Σ. LI(R)Σ is

3

defined similarily. In what follows, the definitions are given for the case of linear
rational arithmetic. Similar definitions can also be given for LI(R)Σ . A model
M of LI(Q)Σ is a model of LI(Q) with universe M and with a function fM :
Mn → M for each f ∈ Σ with arity n. No additional constraints are imposed
on the properties of these functions (i.e. they are free).

Truth, satisfiability and entailment w.r.t. a theory. Let T be a theory
(that is, a set of models in a given signature Σ). Truth and satisfiability of a
first-order formula in a given model are defined in the standard way. Let φ and
ψ be formulae over the signature Σ. We say that φ is true w.r.t. T (denoted
|=T φ) if φ is true in all models of T ; φ entails (or implies) ψ w.r.t. T (denoted
φ |=T ψ) if ψ is true in all models of T in which φ is true; φ is satisfiable w.r.t.
T if there exists a model of T in which φ is true. If φ is false in all models of T ,
we say that φ is unsatisfiable. Note that φ is unsatisfiable iff φ |=T ⊥, where ⊥
stands for false.

Interpolants. A theory T has interpolation if, for all formulae φ and ψ in the
signature of T , if φ |=T ψ then there exists a formula I containing only symbols
which occur in both φ and ψ such that φ |=T I and I |=T ψ. An alternative
formulation in the model-checking literature is:

If φ ∧ ψ |=T ⊥ then there exists a formula I containing only symbols
which occur in both φ and ψ such that φ |=T I and ψ ∧ I |=T ⊥.

First order logic has interpolation [5]. However, even if φ and ψ are very sim-
ple (e.g. quantifier-free or conjunctions of atoms), I may still be an arbitrary
formula. In many applications it is important to find simple interpolants: for
instance, if φ and ψ are quantifier-free formulae, we are often interested in the
existence of quantifier-free interpolants. We say that a theory T has quantifier-
free interpolants if for all quantifier-free formulae A and B:

If A ∧ B |=T ⊥ there exists a quantifier-free formula I over the common
variables of A and B such that A |=T I and I ∧ B |=T ⊥.

3 Linear interpolants

In this section we present an algorithm LI (Linear Interpolation) for the inter-
polant generation for linear arithmetic (with both strict and non-strict inequal-
ities). We show the algorithm in Figure 1.

The input of LI consists of two mixed systems of inequalities Ax 6 a

and Bx 6 b that are mutually disjoint, i.e. the conjunction Ax 6 a ∧ Bx 6 b is
not satisfiable. The output of the algorithm is a linear interpolant ix C δ, where
C ∈ {≤, <}.

The algorithm proceeds by constructing linear programming problems and
solving these problems using an off-the-shelf linear programming solver. The
solver is treated as a black box. The structure of the problems reflects the dif-
ferent cases why the conjunction Ax 6 a ∧ Bx 6 b is unsatisfiable, following
Motzkin’s transposition theorem [22]. The proofs of Theorems 2 and 3 provide
a formal explanation of the correspondence.

4

input

Ax 6 a and Bx 6 b : systems of strict and non-strict inequalities,
where Ax 6 a ∧ Bx 6 b is unsatisfiable

output

ix C δ: interpolant, where C ∈ {≤, <}
vars

Φ: auxiliary constraint
λ: vector defining linear combination of inequalities in Ax 6 a

λlt, λle: sub-vectors of λ defining linear combination of
strict and non-strict inequalities in Ax 6 a, respectively
(in particular, λA = λltAlt + λleAle and λa = λltalt + λleale)

µ, µlt, µle: analogous to λ, λlt, and λle

begin

Φ := λ ≥ 0 ∧ µ ≥ 0 ∧ i = λA ∧ δ = λa ∧ λA + µB = 0
if exist λ, µ, i, δ satisfying Φ ∧ λa + µb ≤ −1 then

(∗ 1st branch ∗)
return ix ≤ δ

else if exist λ, µ, i, δ satisfying Φ ∧ λa + µb ≤ 0 ∧ λlt 6= 0 then

(∗ 2nd branch ∗)
return ix < δ

else if exist λ, µ, i, δ satisfying Φ ∧ λa + µb ≤ 0 ∧ µlt 6= 0 then

(∗ 3rd branch ∗)
return ix ≤ δ

end.

x A a λ Alt Ale alt ale λlt λle

n × 1 mA × n mA × 1 1 × mA mAlt × n mAle × n mAlt × 1 mAle × 1 1 × mAlt 1 × mAle

Fig. 1. Algorithm LI for the synthesis of linear interpolants. The table shows dimen-
sions of matrices and vectors used in the algorithm. The dimensions for Bx 6 b, µ, µlt,
and µle are fixed in a similar fashion.

Theorem 1 ((Motzkin’s) transposition theorem [22]). Let A and B be
matrices and let a and b be column vectors. Then there exists a vector x with
Ax < a and Bx ≤ b, if and only if for all row vectors y, z ≥ 0:

– if yA+ zB = 0 then ya+ zb ≥ 0; and

– if yA+ zB = 0 and y 6= 0 then ya+ zb > 0.

Example 1. We simulate the algorithm LI on the following unsatisfiable con-
junction of mixed systems of inequalities

z < 0 ∧ x ≤ z ∧ y ≤ x and y ≤ 0 ∧ x+ y ≥ 0.

5

We assume an additional constraint that the resulting interpolant must not con-
tain the variable y. We translate the inequalities into the matrix representation.





0 0 1
1 0 −1
−1 1 0





︸ ︷︷ ︸

A





x

y

z



 6





0
0
0





︸ ︷︷ ︸

a

(
0 1 0
−1 −1 0

)

︸ ︷︷ ︸

B





x

y

z



 6

(
0
0

)

︸︷︷︸

b

We split the mixed system Ax 6 a into the strict part Altx < alt and the
non-strict part Alex ≤ ale.

(
0 0 1

)

︸ ︷︷ ︸

Alt





x

y

z



 <
(
0
)

︸︷︷︸

alt

(
1 0 −1
−1 1 0

)

︸ ︷︷ ︸

Ale





x

y

z



 ≤
(
0
)

︸︷︷︸

ale

The system Bx 6 b is equal to its non-strict part B lex ≤ ble. The strict part of
Bx 6 b is empty.

Let i = (ix iy iz) and δ be the unknown coefficients that define the interpolant

i
(x

y
z

)
C δ, where C is either the strict < or non-strict ≤ inequality relation

symbol. The algorithm computes the values for the unknown coefficients and
determines the relation C.

Let λ = (λ1 λ2 λ3) and µ = (µ1 µ2) be the linear combinations of the
inequalities of the first and the second system, respectively. We have λlt = (λ1)
and λle = (λ2 λ3). The values of λ and µ determine the interpolant.

The guard of the first branch of LI is unsatisfiable. The guard of the second
branch is satisfiable; we compute the valuations λ = (1 1 0) and µ = (1 1)
together with the interpolant’s coefficients i = (1 0 0) and δ = 0. Since λlt = (1),
we have that C is the strict inequality relation symbol. The resulting interpolant
is x < 0. �

For the completeness of the exposition, we show that two mutually unsatisfiable
systems of mixed inequalities have an interpolant that is a single inequality. This
inequality may be strict or non-strict.

Theorem 2 (Linear interpolants for mixed linear inequalities). Given
mutually unsatisfiable systems Ax 6 a and Bx 6 b of strict and non-strict
inequalities, there exists a linear inequality interpolant ix C δ, where C ∈ {≤, <}.

The correctness of the algorithm LI is stated in the following theorem.

Theorem 3 (Algorithm LI: Soundness and completeness). The algo-
rithm LI is sound and complete: It always produces a linear interpolant, by
taking the 1st, 2nd or 3rd branch.

3.1 Interpolants for disjunctions

We obtain an algorithm for the synthesis of constrained interpolants for disjunc-
tions of mixed systems

6

∨

k

Akx 6 ak and
∨

l

Blx 6 bl

by taking the disjunction of convex hulls
∨

k

∧

l

iklx 6 δkl

that consists of interpolants iklx 6 δkl for each pair of disjuncts Akx 6 ak

and Blx 6 bl. The constraints above are in disjunctive normal form: both for-
mulae for which the interpolant is computed are disjunctions of conjunctions.
In applications we sometimes need to compute constrained interpolants for con-
junctions of non-unit clauses, i.e. for formulae in conjunctive normal form. For
this we can use standard methods discussed e.g. in [17] or [26]: in a DPLL-style
procedure partial interpolants are generated for the unsatisfiable branches and
then recombined using ideas of Pudlák [21].

4 Extension with uninterpreted function symbols

So far, we have presented an algorithm for the generation of interpolants in the
theory of linear arithmetic. Our application domains mentioned in the intro-
duction include software model checking and verification of timed and hybrid
systems. They naturally motivate an extension of the interpolant-generation al-
gorithm to combination of linear arithmetic with additional theories.

In this section we consider the extension with free functions, which is useful
for conservative approximation of non-arithmetic expressions. The algorithm we
propose is based on a hierarchical calculus for reasoning in certain extensions of
theories (which we called local extensions) [23]. This calculus makes it possible
to reduce checking satisfiability of quantifier-free formulae w.r.t. the extension,
to checking satisfiability of formulae in the ’base theory’. Any extension of a
theory with uninterpreted function symbols falls into this class. As the notion of
local theory extension is not needed in the present context, all relevant results
will be presented for the special case of extensions of linear rational and real
arithmetic with free function symbols. For the sake of simplicity, we will use
as running example LI(Q). All results can be used as well for LI(R). However,
many of the results presented here also hold for more general extensions. Such
generalizations were presented in [24].

We begin by giving the main idea of the hierarchical calculus for extensions
with free function symbols in [23] (Section 4.1). Based on this, in Section 4.2 we
present a hierarchical method for generating interpolants in such extensions.

Notation: Everywhere in what follows let Σ be a set of (new) function sym-
bols. We denote by LI(Q)Σ the extension of Q with the uninterpreted function
symbols in Σ. We refer to the function symbols in Σ as extension functions. To
distinguish them from constraints in linear arithmetic, we denote conjunctions
of (unit) literals over this extended signature using a special font (A ∧ B).

7

4.1 A hierarchical calculus

Let Σ be a set of uninterpreted function symbols, let LI(Q)Σ be the extension
of linear rational arithmetic LI(Q) with the uninterpreted function symbols in
Σ. Given a disjunction φ(x1, . . . , xn) of conjunctions of atomic formulae over the
signature of LI(Q)Σ , we want to check whether

LI(Q)Σ |= ∀x1 . . . ∀xnφ(x1, . . . , xn),

i.e., whether φ holds in each model of LI(Q)Σ and for all possible assignments of
values in this model to the variables x1, . . . , xn. Equivalently, we can test whether
there exists a model and a possible assignment to the variables x1, . . . , xn in it
for which ¬φ becomes true, i.e. checking whether ¬φ(x1, . . . , xn) is satisfiable.
Thus, proving truth w.r.t. all models and valuations can be reduced to proving
satisfiability of sets of clauses w.r.t. LI(Q)Σ.

Let G(c1, . . . , cn) be a set of quantifier-free clauses with variables c1, . . . , cn
3

in the signature of LI(Q)Σ . To check the satisfiability of G(c1, . . . , cn) w.r.t.
LI(Q)Σ we can proceed as follows:

Step 1: Flattening and purification. G is purified and flattened by introducing
fresh variables for the arguments of the extension functions as well as for the
subterms t = f(g1, . . . , gn) starting with extension functions f ∈ Σ, together
with corresponding definitions ct = t. We obtain a set of clauses G0 ∧D, where
D consists of unit clauses of the form f(c1, . . . , cn) = c, where c1, . . . , cn, c are
variables and f ∈ Σ, and G0 contains clauses without function symbols in Σ.

Step 2: Reduction to testing satisfiability in LI(Q). By the locality of any exten-
sion with free function symbols [23], we know that we can reduce the problem of
testing satisfiability of G w.r.t. LI(Q)Σ to a satisfiability test in LI(Q) as shown
in Theorem 4.

Theorem 4 ([23]). With the notations above, the following are equivalent:
(1) G |=LI(Q)Σ⊥,
(2) G0 ∧D |=LI(Q)Σ⊥,
(3) G0 ∧N0 |=LI(Q) ⊥, where

N0 =
∧
{
∧n

i=1 ci = di → c = d | f(c1, . . . , cn) = c ∈ D, f(d1, . . . , dn)=d ∈ D}.

is the set of functionality axioms corresponding to the terms occurring in D.

Problem (3) in Theorem 4 is a satisfiability problem for quantifier-free clauses in
linear rational arithmetic. We thus reduced, hierarchically, the problem of testing

3 In what follows we are concerned with satisfiability of such clauses; the variables
in G(c1, . . . , cn) are implicitly existentially quantified. In the automated reasoning
literature, existential variables are replaced by constants, using skolemization; thus
one can replace the variables in G(c1, . . . , cn) by (Skolem) constants. In what follows
we refer to them as variables. However, the notation we chose reminds that these
existentially quantified variables can, in fact, be regarded as “constants”.

8

the satisfiability of the set of quantifier-free clauses G in LI(Q)Σ to the problem
of testing the satisfiability of a set of quantifier-free constraints in LI(Q).

Complexity. Flattening and purification can be done in linear time; the growth
of the formulae is linear. The size of the satisfiability problem in LI(Q) obtained
by the translation above is quadratic in the number of extension terms in the
input formula. Hence, the complexity of the procedure is of order k(n2), where
n is the size of the input formula and k(m) is the complexity of the problem of
testing the satisfiability of sets of ground clauses in LI(Q) for an input of size m.

Remark. If G is a set of unit clauses then the procedure mimics the Nelson-
Oppen procedure for combination of LI(Q) with the theory of free function
symbols in Σ within the prover for linear arithmetic. (Due to the convexity of
linear arithmetic, we can always find a clause in N0 whose premises are implied
by G. The clause is replaced with its conclusion and the procedure is repeated
until a set of unit clauses is obtained.) Thus, exchange of equalities between
shared variables needs not be done explicitly. The complexity of the method is
similar to that of the Nelson-Oppen combination of convex theories.

The following example illustrates the method.

Example 2. Let G = A ∧ B, where

A : g(a) = c+ 5 ∧ f(g(a)) ≥ c+ 1,

B : h(b) = d+ 4 ∧ d = c+ 1 ∧ f(h(b)) < c+ 1.

We show that A ∧ B is unsatisfiable in LI(Q){f,g,h} as follows:

Step 1: Flattening and purification. We purify and flatten the formulae A and
B by replacing the terms starting with f with new variables. We obtain the
following purified form:

A0 : a1 = c+ 5 ∧ a2 ≥ c+ 1, DA : a1 = g(a) ∧ a2 = f(a1),

B0 : b1 = d+ 4 ∧ d = c+ 1 ∧ b2 < c+ 1, DB : b1 = h(b) ∧ b2 = f(b1).

Step 2: Hierarchical reasoning. By Theorem 4 we have that A∧B is unsatisfiable
in LI(Q){f,g,h} iff A0∧B0∧N0 is unsatisfiable in LI(Q), where N0 corresponds to
the consequences of the congruence axioms for those ground terms which occur
in the definitions DA ∧DB for the newly introduced variables.

Def G0 N0

DA : a1=g(a)∧ a2=f(a1) A0 : a1 = c + 5 ∧ a2 ≥ c + 1 N0 : b1=a1 → b2=a2

DB : b1=h(b) ∧ b2=f(b1) B0 : b1 = d + 4 ∧ d = c + 1 ∧ b2 < c + 1

To prove that A0 ∧B0 ∧N0 is unsatisfiable, note that A0 ∧B0 |= a1 = b1. Hence,
A0 ∧ B0 ∧N0 entails a2 = b2 ∧ a2 ≥ c+ 1 ∧ b2 < c+ 1, which is inconsistent.

9

4.2 Hierarchical Interpolation in LI(Q)Σ

We show how this hierarchical calculus can be used to generate interpolants for
extensions with free function symbols.

Assume that A∧B |=LI(Q)Σ⊥, where A and B are two sets of ground clauses.
Our goal is to find an interpolant, that is a quantifier-free formula I , containing
only variables and uninterpreted function symbols which are common to A and
B such that

A |=LI(Q)Σ I and I ∧ B |=LI(Q)Σ⊥ .

For the sake of simplicity we first restrict to sets A and B of unit clauses, i.e. to
conjunctions of ground literals. Our goal is to reduce the search for the inter-
polant of A ∧ B in LI(Q)Σ to:

(i) constructing an interpolant I0 in LI(Q),
(ii) using I0 to construct an interpolant for A∧B (by appropriate substitutions).

Flattening and purification do not influence the existence of interpolants [24]: If
I0 is an interpolant of the flattened forms (A0∧DA)∧(B0∧DB) of A0 and B0, then
the formula I0, obtained from I0 by replacing, recursively, all newly introduced
variables with the terms in the original signature which they represent, is an
interpolant for A ∧ B. Therefore we can restrict w.l.o.g. to finding interpolants
for the purified and flattened set of formulae (A0 ∧DA) ∧ (B0 ∧DB).

By Theorem 4, A0∧DA∧B0∧DB |=LI(Q)Σ⊥ if and only if A0∧B0∧N0 |=LI(Q)⊥,
where N0 =

∧
{
∧n

i=1 ci=di → c=d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ D}.
By definition, N0 = NA ∧ NB ∧ Nmix, where NA only contains variables from
A0 (it is A-pure), NB only contains variables from B0 (it is B-pure), and Nmix =
∧
{
∧n

i=1 ai=bi → a=b | f(a1, . . . , an) = a ∈ (DA\DB), f(b1, . . . , bn) = b ∈
(DB\DA)}. The clauses in Nmix are mixed, i.e. contain combinations of A-local
and B-local variables. Thus, the equivalence in Theorem 4 cannot be used directly
for generating a ground interpolant.

Example 3. Consider the reduction to the base theory in the previous example.
The clause a1 = b1 → a2 = b2 of N0 contains both A-local and B-local variables.

Idea. The idea of our approach is to separate mixed instancesNmix of congruence
axioms in N0, into an A-part and a B-part. We show that if A∧B |=LI(Q)Σ⊥ then

we find a set T of terms in the signature of LI(Q)Σ containing only variables
and extension functions common to A and B, which allows us to separate the
instances of functionality axioms in Nmix into a part NA

sep consisting of instances
of functionality axioms for extension terms occurring in A and T , and a part
NB

sep consisting of instances with terms occurring in B and T . We show that such
a separation does not lead to the loss of unsatisfiability, i.e. that the conjunction

(A0 ∧NA ∧NA
sep) ∧ (B0 ∧NB ∧NB

sep)

has no model where the extension functions may be partial, but in which all
terms in DA, DB , and T are defined.

10

Example 4. Consider the reduction to the base theory in the example given in
Section 4.1. The clause a1 = b1 → a2 = b2 of Nmix can be replaced with a
conjunction of A-pure and B-pure clauses as follows:

Note that A0 ∧ B0 |= a1 = b1. It is easy to see that there exists a term t

(namely t = c + 5) containing only variables common to A0 and B0 such that
A0 |=LI(Q) a1 = t and B0 |=LI(Q) t = b1. Let T = {t} = {c + 5}. We show
that instead of using the mixed clause a1 = b1 → a2 = b2, we can use, without
loss of unsatisfiability, the flattened and purified instances NA

sep and NB
sep of the

functionality axioms corresponding to terms in A and T , resp. B and T :

NA
sep = {a1 = c+ 5 → a2 = cf(c+5)}, NB

sep = {c+ 5 = b1 → cf(c+5) = b2}.

(We introduced a new constant cf(c+5) for f(c+ 5), together with its definition
DT : cf(c+5) = f(c + 5).) We can thus replace N0 with the instances of the
congruence axioms NA

sep and NB
sep, now separated into an A-part and a B-part.

It is now sufficient to compute an interpolant in LI(Q) for

(A0 ∧N
A
sep) ∧ (B0 ∧N

B
sep).

To compute the interpolant, note that A0 ∧ NA
sep is logically equivalent to

A0 ∧ a2=cf(c+5), and B0 ∧ NB
sep is logically equivalent to B0 ∧ b2=cf(c+5). The

conjunction (A0∧a2=cf(c+5))∧ (B0∧b2=cf(c+5)) is unsatisfiable. An interpolant
is I0 : cf(c+5) ≥ c+ 1. Thus, A0 ∧ a2=cf(c+5) |= I0 and B0 ∧ b2=cf(c+5) ∧ I0 |=⊥.

Let I = (f(c+5) ≥ c+1) be obtained by replacing the newly introduced constant
cf(c+5) with the term it denotes (namely f(c+ 5)). It is easy to see that:

A0 ∧DA |=LI(Q){f,g,h} A0 ∧ (a2=f(c+ 5)) |=LI(Q){f,g,h} I,

B0 ∧DB |=LI(Q){f,g,h} B0 ∧ (b2=f(c+ 5)) |=LI(Q){f,g,h} ¬I.

Thus, I is an interpolant for (A0 ∧DA) ∧ (B0 ∧DB), hence also for A ∧ B.

The method. Assume that A0 ∧ DA ∧ B0 ∧ DB |=LI(Q)Σ⊥. Then A0 ∧ B0 ∧

N0 |=LI(Q)⊥, where N0 = NA ∧NB ∧Nmix, the clauses in NA are A-pure, those
inNB are B-pure, and those inNmix =

∧
{
∧n

i=1 ai = bi → a = b | f(a1, . . . , an) =
a ∈ (DA\DB), f(b1, . . . , bn) = b ∈ (DB\DA)} contain combinations of A-local
and B-local variables.

Our goal is to replace Nmix with the conjunction of an A-pure and a B-pure
part, NA

sep∧N
B
sep, of instances of the functionality axioms. The correctness of the

method relies on the following properties of linear arithmetic: convexity with
respect to equality atoms (Lemma 1) and separability of entailed inequalities
(Lemma 2).

Lemma 1. Linear arithmetic over R or over Q is convex w.r.t. equality atoms,
i.e. for each conjunction Γ of literals and for every set of equalities si = ti,
i ∈ {1, . . . , n}, if Γ |=

∨n
i=1 si = ti then Γ |= sj = tj for some j ∈ {1, . . . , n}.

11

Lemma 2. Let Ax ≤ a and Bx ≤ b be two conjunctions of constraints in linear
arithmetic, and let xi and xj , where i, j ∈ {1, . . . , n}, appear in Ax ≤ a and
Bx ≤ b, respectively.

(1) If Ax ≤ a ∧ Bx ≤ b implies xi ≤ xj then there exists a linear expression t

over variables that are common to Ax ≤ a and Bx ≤ b such that Ax ≤ a

implies xi ≤ t and Bx ≤ b implies t ≤ xj [26].
(2) If Ax ≤ a∧Bx ≤ b implies xi = xj then there exists a linear expression t over

variables that are common to Ax ≤ a and Bx ≤ b such that Ax ≤ a∧Bx ≤ b

implies xi = t and t = xj .

We show that Nmix can be replaced with the conjunction of an A-pure and a
B-pure part, NA

sep ∧N
B
sep, of instances of the functionality axioms, at the price of

having to take into account additional terms over the shared signature of A and
B not occurring in A ∧ B.

Theorem 5 ([24]). Let A0 and B0 be conjunctions of literals in the signature of
LI(Q) such that A0 ∧B0 ∧N |=T0

⊥, for a set N = NA ∪NB ∪Nmix of flattened
instances of congruence axioms. There exists a set T of ΣLI(Q)-terms containing
only variables common to A0 and B0, and possibly common newly introduced
variables in a set Σc such that

A0 ∧ B0 ∧ (NA ∧NB) ∧Nsep |=T0
⊥,

where Nsep =
∧
{(

∧n

i=1 ci=ti → c=cf(t1,...,tn)) ∧ (
∧n

i=1 ti=di → cf(t1,...,tn)=d) |∧n

i=1 ci = di → c = d ∈ Nmix} = NA
sep ∧N

B
sep

and cf(t1,...,tn) are new variables in Σc (considered to be common) introduced for
the terms f(t1, . . . , tn).

A direct consequence of Theorem 5 is the possibility of hierarchically generating
interpolants in LI(Q)Σ.

Corollary 1 ([24]). Assume that (A0 ∧ DA) ∧ (B0 ∧ DB) |=LI(Q)Σ⊥, and let

N0, N
A, NB , Nmix, N

A
sep, N

B
sep be as before. Then:

(1) There exists a formula I0 containing only variables which occur both in A0

and B0 such that (A0∧N
A∧NA

sep)|=LI(Q)I0 and (B0∧N
B∧NB

sep)∧I0|=LI(Q) ⊥.

(2) The ground formula I obtained from I0 by recursively replacing every variable
ct introduced in the separation process with the term t is an interpolant for
(A0 ∧DA) ∧ (B0 ∧DB), i.e.:
(i) I contains only variables and extension functions common to A and B;
(ii) A0 ∧DA |=LI(Q)Σ I and B0 ∧DB ∧ I |=LI(Q)Σ⊥.

By Theorem 5 and Corollary 1 we know that if A and B are conjunctions of
literals in linear arithmetic and uninterpreted function symbols such that A ∧ B

is unsatisfiable then there exists an interpolant; its existence is not influenced
by the choice of the separating terms in the set T . The method terminates; its

12

complexity is discussed in [24], and depends on the complexity of computing
separating terms in linear arithmetic, and on the complexity of computing in-
terpolants for conjunctions of clauses in LI. In order to compute an interpolant
for (A0 ∧NA ∧NA

sep) ∧ (B0 ∧NB ∧NB
sep) one can use, for instance, the method

discussed in Section 3.1.

We now present an alternative approach, in which the computation of the
interpolant is interleaved with the separation process. The idea is described in
the algorithm in Figure 2. The algorithm is based on Theorem 5 and Corollary 1,
but contains several optimizations, which allow performing simultaneously the
separation into an A-pure and a B-pure part and the interpolant construction.
Termination and correctness of the algorithm are proved in what follows.

Theorem 6. The algorithm in Figure 2 terminates and returns an interpolant
I of A ∧ B.

In spite of the fact that the procedure for computing interpolants for linear
arithmetic is called as a “black box”, and that our method does not require the
existence of an a priori constructed resolution proof for building the interpolant,
the complexity of the algorithm described in Figure 2 is comparable to that
of other methods for interpolant generation which construct interpolants from
proofs [11, 12, 17, 26]. The complexity depends linearly on the length of the proof
(which in this case is built ’online’). In addition, the complexity of the procedure
used for “separating” equalities needs to be taken into account.

Theorem 7. Assume that we start from an implementation such that in LI(Q)
for a formula of length m:

(a) interpolants can be computed in time g(m),
(b) P -interpolating terms can be computed in time h(m),
(c) entailment can be checked in time k(m).

Then the method described above allows to compute an interpolant in time of
order n2 · (k(n2)+h(n2))+g(n2)+l.

Problems (a)–(c) can be solved in polynomial time for sets of unit clauses [22]
and in NP for sets of clauses [25]. Due to the specific form of the axioms in N0

which need to be taken into account (Horn, with all premises being equalities),
the sets of clauses which occur in the problems we consider may fall into tractable
classes [13], for which satisfiability can be tested in polynomial time.

5 Experiments

We implemented the presented algorithms in a tool called CLP-Prover. 4 Al-
though the presented algorithms are correct for both rational and real spaces,
our implementation handles only rationals, which is due to the applied constraint
solver [8]. CLP-Prover is built in SICStus Prolog [15], which is a Constraint

4
CLP-Prover homepage: http://mtc.epfl.ch/~rybalche/clp-prover/.

13

input

Ax ≤ a and Bx ≤ b : constraints in matrix form (obtained from flattening and
purifying conjunctions A and B of (unit) literals in linear
arithmetic and uninterpreted function symbols such that
A ∧ B is unsatisfiable)

D : definitions for fresh variables created by flattening and purification of A and B

N0 : instances of functionality axioms for functions from D

output

I: the resulting interpolant
local vars

I0, I1, I2 : partial interpolants; t−
i

, t+
i
: separating terms

begin

if N0 6= ∅ then

choose C :
V

n

i=1 ci = di → c = d from N0

such that Ax ≤ a ∧ Bx ≤ b |=LI(Q)

V

n

i=1 ci = di

(assume C is an instance of the functionality axiom for f ∈ Σ)
for each i ∈ {1, . . . , n} do

compute t+
i

and t−
i

over A-B-common variables such that
Ax ≤ a |=LI(Q) ci ≤ t+

i
and Bx ≤ b |=LI(Q) t+

i
≤ di and

Ax ≤ a |=LI(Q) ci ≥ t−
i

and Bx ≤ b |=LI(Q) t−
i
≥ di

done

I0 := false

I1 := true

for each k := index within {1, . . . , n} such that t+
k
6= t−

k
do

I0 := I0 ∨ t+
k

> t−
k

I1 := I1 ∧ t+
k

= t−
k

Ax ≤ a := Ax ≤ a ∧ t+
k

= t−
k

Bx ≤ b := Bx ≤ b ∧ t−
k

= t+
k

done

t := fresh variable; D := D ∪ {t = f(t+1 , . . . , t+n)}
Ax ≤ a := Ax ≤ a ∧ c = t

Bx ≤ b := Bx ≤ b ∧ t = d

I2 := result of recursively applying the procedure
for the new Ax ≤ a, Bx ≤ b and D, and N0\{C}

I := I0 ∨ (I1 ∧ I2) where each definition from D is applied
else

ix ≤ δ := result of applying LI on Ax ≤ a and Bx ≤ b

I := ix ≤ δ where each definition from D is applied
endif

return “interpolant I”
end.

Fig. 2. Algorithm LIUIF for the synthesis of constrained interpolants for linear arith-
metic and uninterpreted function symbols. LIUIF uses the algorithm LI as a subrou-
tine.

14

Number CLP-Prover time (s) FOCI

Example of queries Solving Applying Total Total time (s)
LI part axioms solving

ntdrivers/kbfiltr.i 139 0.13 0.02 0.15 0.46 0.55
ntdrivers/diskperf.i 747 0.38 0.21 0.59 2.68 3.72
ntdrivers/floppy.i 1082 0.61 0.36 0.97 3.97 4.91
ntdrivers/cdaudio.i 1060 2.23 0.20 2.43 4.92 4.80

Table 1. Experimental evaluation on examples from Blast distribution. (Memory
consumption was not an issue.) ‘Solving LI-part’ is the time spent on solving the system
of constraints that defines an interpolant in linear arithmetic. ‘Applying axioms’ is the
time spent on testing entailment of premises of functionality axiom instances. ‘Total
solving’ is the total time spent on constraint solving. ‘Total’ is the total time spent in
CLP-Prover, which includes parsing, computation of constraint systems, constraint
solving, etc.

Logic Programming (CLP) system [9]. In particular, the CLP scheme requires
that the constraint solver infers all equalities that are implied by the constraint
store. This allows for an efficient implementation of the instantiation of function-
ality axioms, see the “choose C” step in Figure 2. We integrated CLP-Prover

into the predicate discovery procedure of the software verification tools Blast [7]
and ARMC [20]. The integration with ARMC is two-way, namely, interpolants
generated by CLP-Prover are used by ARMC to compute abstraction. The
interface to Blast is only used for comparing with the existing interpolating
theorem prover FOCI [17].

Our experiments with Blast on Windows device drivers provide a direct
comparison with the FOCI tool, which is also integrated into Blast. We used a
3 GHz Linux PC, Blast 2.0 and applied CLP-Prover on 3,000 interpolation
problems that are also passed to FOCI. The table shows that a constraint-based
implementation can provide support for full linear arithmetic with competitive
running time.

We applied ARMC to verify safety properties of train controller systems [19].
These examples depend crucially on the ability of our algorithm to handle strict
inequalities directly. The running times were similar to the experiments with
Blast. Additionally, we applied ARMC to verify absence of array bounds vi-
olations (90 checks) for a compact (200 LOC) but intricate C program that
performs singular value decomposition. CLP-Prover spends 190 ms on con-
straint solving for 457 interpolation problems, and computes interpolants over
up to four variables. Unfortunately, we could not compare the running times for
these experiments with FOCI since the latter does not support strict inequalities
(whose relaxation immediately leads to unacceptable loss of precision), and is
restricted to the difference bounds fragment of linear arithmetic (i.e. predicates
containing four variables cannot be discovered).

15

6 Conclusion and ongoing work

We presented a constraint-based algorithm for the synthesis of interpolants in
linear arithmetic and interpreted function symbols. Our algorithm does not re-
quire a priori constructed proofs to derive interpolants, which is a difficult task.
The algorithm uses a reduction to constraint solving problem in linear arith-
metic, which can be efficiently solved by using a Linear Programming tools in a
black-box fashion. Our experiments provide evidence for the practical applica-
bility of the algorithm.

In ongoing work, we are exploring the constraint based setup to accommodate
user-defined constraints on the form of the generated interpolant, which has
promising applications in software verification. In particular, we would like to
compute interpolants that are elements of a predefined abstract domain relevant
for static analysis, see e.g. [1].

Acknowledgements We thank Friedrich Eisenbrand for valuable discussions.
This work is supported in part by the German Research Foundation (DFG)

as a part of the Transregional Collaborative Research Center “Automatic Verifi-
cation and Analysis of Complex Systems” (SFB/TR 14 AVACS), by the German
Federal Ministry of Education and Research (BMBF) in the framework of the
Verisoft project under grant 01 IS C38.

References

1. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In PLDI’2003:
Programming Language Design and Implementation, pages 196–207. ACM Press,
June 7–14 2003.

2. A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability. In
CAV’2005: Computer Aided Verification, volume 3576 of LNCS, pages 491–504.
Springer, 2005.

3. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. 420-432. In CAV’2003: Computer Aided Verification,
volume 2725 of LNCS, pages 420–432. Springer, 2003.

4. P. Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In VMCAI’2005: Verifica-
tion, Model Checking, and Abstract Interpretation, volume 3385 of LNCS, pages
1–24. Springer, 2005.

5. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symb. Log., 22(3):250–268, 1957.

6. J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig interpo-
lation and symbolic pushdown systems. In TACAS’2006: Tools and Algorithms for
the Construction and Analysis of Systems, volume 3920 of LNCS, pages 489–503.
Springer, 2006.

7. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions
from proofs. In POPL’2004: Principles of Programming Languages, pages 232–
244. ACM Press, 2004.

16

8. C. Holzbaur. OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute
for Artificial Intelligence, Vienna, 1995. TR-95-09.

9. J. Jaffar and S. Michaylov. Methodology and implementation of a CLP system.
In ICLP’1987: Int. Conf. on Logic Programming, volume 1. MIT Press, 1987.

10. R. Jhala and K. L. McMillan. Interpolant-based transition relation approxima-
tion. In CAV’2005: Computer Aided Verification, volume 3576 of Lecture Notes in
Computer Science, pages 39–51. Springer, 2005.

11. R. Jhala and K. L. McMillan. A practical and complete approach to predicate re-
finement. In TACAS’2006: Tools and Algorithms for the Construction and Analysis
of Systems, volume 3920 of LNCS, pages 459–473. Springer, 2006.

12. D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures. In
FSE’2006: Foundations of Software Engineering. ACM, 2006. To appear.

13. M. Koubarakis. Tractable disjunctions of linear constraints: Basic results and
applications to temporal reasoning. Theoretical Computer Science, 266(1-2):311–
339, 2001.

14. J. Kraj́ıcek. Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997.

15. T. I. S. Laboratory. SICStus Prolog User’s Manual. Swedish Institute of Computer
Science, PO Box 1263 SE-164 29 Kista, Sweden, October 2001. Release 3.8.7.

16. K. L. McMillan. Interpolation and SAT-based model checking. In CAV’2003:
Computer Aided Verification, volume 2725 of LNCS, pages 1–13. Springer, 2003.

17. K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
345(1):101–121, 2005.

18. K. L. McMillan. Lazy abstraction with interpolants. In CAV’2006: Computer
Aided Verification, volume 4144 of LNCS, pages 123–136. Springer, 2006.

19. R. Meyer, J. Faber, and A. Rybalchenko. Model checking duration calculus: A
practical approach. In ICTAC’2006: Int. Colloq. on Theoretical Aspects of Com-
puting, volume 4281 of LNCS, pages 332–346. Springer, 2006.

20. A. Podelski and A. Rybalchenko. ARMC: the logical choice for software model
checking with abstraction refinement. In PADL’2007: Practical Aspects of Declar-
ative Languages, LNCS. Springer, 2007. to appear.

21. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log., 62(3):981–998, 1997.

22. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons Ltd.,
1986.

23. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
CADE’2005: Int. Conf. on Automated Deduction, volume 3632 of LNCS, pages
219–234. Springer, 2005.

24. V. Sofronie-Stokkermans. Interpolation in local theory extensions. In IJCAR’2006:
Int. Joint Conf. on Automated Reasoning, volume 4130 of LNCS, pages 235–250.
Springer, 2006.

25. E. Sontag. Real addition and the polynomial hierarchy. Information Processing
Letters, 20(3):115–120, 1985.

26. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.
In CADE’2005: Int. Conf. on Automated Deduction, volume 3632 of LNCS, pages
353–368. Springer, 2005.

17

