
Automated theorem proving by resolution

in non-classical logics

Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, Saarbrücken,

Germany

Abstract

This paper is an overview of a variety of results, all centered around a common
theme, namely embedding of non-classical logics into first order logic and resolution
theorem proving. We present several classes of non-classical logics, many of which
are of great practical relevance in knowledge representation, which can be translated
into tractable and relatively simple fragments of classical logic. In this context, we
show that refinements of resolution can often be used successfully for automated
theorem proving, and in many interesting cases yield optimal decision procedures.

1 Introduction

During the last years, a large number of non-classical logics were studied.
In particular, various methods for automated theorem proving in such logics
have been proposed: sequent calculi, various kinds of analytic tableaux, and
various types of resolution-like calculi. Most of these methods are strongly
related to the particular characteristics of the logics. It usually is non-trivial
to give efficient implementations for these specialized calculi, which makes it
difficult to maintain, scale, and modify such provers in order to ensure that
they develop at the same speed as performant theorem provers for classical
logic. Therefore, it is very desirable to find uniform principles, applicable to
large classes of logics, which lead to simple and reusable implementations.

Identifying such a unifying principle is the main goal of the present paper.
We present several situations in which non-classical logics can be translated
into tractable and simple fragments of classical logic, and resolution can be
used successfully for automated theorem proving. The main advantage of such
an approach is that it allows us to use existing automated theorem provers

Email address: sofronie@mpi-sb.mpg.de (Viorica Sofronie-Stokkermans).

Preprint submitted to Elsevier Science 18th May 2007

for free, without the need of any sophisticated encodings. In this paper we
will show that in many interesting and quite general situations translations to
classical logic allow us to obtain decision procedures of optimal complexity.

The paper starts with a presentation of various non-classical logics, such as
many-valued logics (with finite or infinite set of truth values), modal logics,
intuitionistic logics, relevant logics, and description logics. The presentation
focuses on the algebraic semantics: either in terms of one fixed finite algebra,
in the case of finitely-valued logics, or in terms of an arbitrary algebra, in the
case of more general many-valued logics; or in terms of classes of algebras. It is
known that checking validity of formulae in non-classical logics having an alge-
braic semantics often can be reduced to checking whether corresponding word
problems hold in the class of algebraic models. We show that similar phenom-
ena also occur in some specific description logics: checking subsumption with
respect to TBoxes can often be reduced to checking whether suitably defined
uniform word problems hold in classes of Boolean algebras, distributive lattices
or semilattices with operators. We therefore consider more general problems
in universal algebra, such as word problems and uniform word problems with
respect to specific classes of algebras, generally classes of (distributive) lattices
with operators.

In the second part of the paper we describe methods for automated theorem
proving for the logics in the classes considered above. We focus on methods
based on translations to classical logic. We first show that various versions of
many-valued resolution for finitely-valued logics can be reconstructed by using
general saturation-based techniques for first order theories of transitive rela-
tions [GS00]. We then consider other non-classical logics which are not finitely
valued, but for which nevertheless such embeddings into classical logics are
possible. We present, for instance, a translation to clause form for prenex
first order Gödel logics [BFC01] which allows to use saturation-based tech-
niques for dense total orderings, and then focus on propositional logics based
on distributive lattices with operators (possibly many-sorted). We show that
resolution-based decision procedures with optimal complexity can be obtained
in many cases by using refinements of resolution such as ordered resolution
with selection, or ordered chaining with selection.

The paper is an overview of a variety of results, all centered around a com-
mon theme, namely embedding of non-classical logics into first order logic and
resolution theorem proving. Some of the results in Section 3.3.1 – in partic-
ular the proof given there for the PTIME complexity of the description logic
EL – are, to the best of our knowledge, new. We do not present or discuss
implementation issues, nor technicalities about the automated reasoning part.
Also experimental results and comparisons are out of the scope of the present
paper due to the wide range of logics which we present here.

2

2 Preliminaries

For basic notions of universal algebra we refer e.g. to [BS81]. We also assume
known standard notions, such as partially-ordered set, (bounded) lattice, and
distributive lattice, as well as (prime) filters in lattices. For definitions and
more details we refer to [DP90].

Let Σ be a signature and a : Σ → N an arity function. A Σ-algebra is a
structure A = (A, {σA}σ∈Σ), where A is a non-empty set and for every σ ∈ Σ,
σA : Aa(σ) → A. Given a set X, the term algebra over Σ in the variables X

will be denoted TΣ(X). An equation is an expression of the form t1 = t2 where
t1, t2 ∈ TΣ(X); an implication is an expression of the form β1 ∧ · · · ∧ βm → α,
where β1, . . . , βm, α are equations. A conditional equation (or quasi-equation)
is an expression which is either an equation or an implication. A Σ-algebra
A = (A, {σA}σ∈Σ) satisfies an equation t1 = t2 (notation: A |= t1 = t2) if t1
and t2 become equal for every substitution of elements in A for the variables.
A satisfies an implication γ := (t1 = t′1 ∧ · · · ∧ tm = t′m) → t = t′ (notation:
A |= γ) if for every substitution v of elements in A for the variables in γ such
that v(ti) = v(t′i) for all i = 1, . . . , m, v(t) = v(t′).

A class K of algebras satisfies an equation or implication γ (notation: K |= γ)
if every algebra A of K satisfies γ. An equational class (or variety) is the class
of all algebras that satisfy a set of equations. A quasi-variety is the class of all
algebras that satisfy a class of quasi-equations.

The word problem for a class K of Σ-algebras is the problem of deciding, for
any two Σ-terms t1, t2 whether K |= t1 = t2. The uniform word problem for
a class K of Σ-algebras is the problem of deciding, for any implication of the
form (t1 = t′1 ∧ · · · ∧ tm = t′m) → t = t′, whether K |= (t1 = t′1 ∧ · · · ∧ tm =
t′m) → t = t′.

3 Non-classical logics

This section contains general information about non-classical logics. We start
with a brief presentation of first order many-valued logics (with finite or infinite
set of truth values). We give several examples, and mention various decidability
and complexity results. We then consider classes of (propositional) logics best
described in terms of classes of algebras, such as modal logics, intuitionistic
logics, relevant logics, and description logics.

The presentation focuses on the algebraic semantics: either in terms of one
fixed finite algebra, in the case of finitely-valued logics, or in terms of an

3

arbitrary algebra, in the case of more general many-valued logics; or in terms
of classes of algebras. We emphasize the fact that checking validity of formulae
(or various subsumption problems) can be reduced to checking (uniform) word
problems for classes of Boolean algebras, distributive lattices or semilattices
with operators.

3.1 Many-valued logics

Let L = (X, O, P, Σ, {Q1, . . . , Qk}) be a first order language consisting of a
(countably) infinite set X of variables, a set O of function symbols, a set P of
predicate symbols, a set Σ of logical operators, and a finite set of (one-place)
quantifiers Q1, . . . , Qk. Terms, ground terms, atomic formulae and formulae
are defined in the usual way. Let A be a set of truth values. We associate truth
functions with logical operators and quantifiers as follows:

• to every σ ∈ Σ with arity n we associate a truth function σA : An → A,
• to every quantifier Q we associate a truth function Q : P(A)\{∅} → A.

A many-valued logic with language L and set of truth values A is a pair
L = (L,A) consisting of a first order language L = (X, O, P, Σ, {Q1, . . . ,

Qk}) and a set of truth values endowed with truth functions for all logical
operators and quantifiers in L, A = (A, {σA}σ∈Σ, {Qi}i=1,...,k). Many-valued
logics with a finite set of truth values are called finitely valued logics, those
with an infinite set of truth values are called infinitely valued logics.

Definition 3.1 A frame for L = (L,A) is a pair (D, I) where D is a non-
empty set, the domain, and I is a signature interpretation, i.e. a function
assigning a function I(f) : Dn → D to every n-ary function symbol f ∈ O,
and a function I(R) : Dn → A to every n-ary predicate symbol R ∈ P . An
interpretation I for L (or interpretation for L in A) is a triple (D, I, d) where
(D, I) is a frame and d is a variable assignment d : X → D.

Every interpretation I = (D, I, d) extends in a canonical way to terms, and
induces a valuation function on formulae, vI : Fma(L) → A, as follows:

• vI(R(t1, . . . , tn)) = I(R)(vI(t1), . . . , vI(tn)) for all n-ary R ∈ P , n ≥ 0,

• vI(σ(φ1, . . . , φn)) = σA(vI(φ1), . . . , vI(φn)) for all n-ary σ ∈ Σ,
• vI((Qx)φ) = Q({w | ∃d ∈ D s.t. vIx,d

(φ) = w}) for all quantifiers Q, where
Ix,d is identical to I except for assigning d to the variable x.

Assume that a subset Ad of A of designated truth values for the logic L is
additionally specified. A formula φ is valid in a logic L (with set Ad of desig-
nated truth values) if and only if vI(φ) ∈ Ad for all interpretations I for the
language of L in A. A formula φ is satisfiable in L if and only if there is an

4

interpretation I with vI(φ) ∈ Ad. For detailed introductions to many-valued
logics we refer to [Urq86, BF95, BFS99, Häh01].

Examples of finitely-valued logics: The simplest example is classical logic
(the set of truth values is {0, 1}, where 0 stands for “false” and 1 for “true”).
Several three-valued logics have been introduced in the attempt of modeling
possibility, meaningless statements, or undefinedness. In all cases, the set of
truth values is the three element set {0, 1

2
, 1}. The logical connectives are

defined according to the meaning of the intermediate value 1
2

which needs to
be expressed such as, for instance: “possible” in Lukasiewicz’s 3-valued logic
 L3; “meaningless” in Bochvar’s 3-valued logic, or “undefined” in Kleene’s logic.
Several generalizations to finitely many degrees of truth exist. For instance,
the Lukasiewicz logic of order n, Ln, has as set of truth values the n-element
chain {0, 1

n−1
, . . . , n−2

n−1
, 1}, a totally ordered set, and connectives ◦ L and → L,

where x◦ L y = max(0, x+y−1) and x → L y = min(1, 1−x+y). Logics with
a set of truth values which is not linearly ordered (but usually lattice ordered)
have been also defined. One example is the 4-valued Belnap logic (which has
been used for reasoning about inconsistent databases), where the algebra of
truth values is the product of the 2-element chain with itself. Another example
is the class of SHn-logics introduced by Iturrioz [Itu83, IO96], which have as
algebra of operators the product of the n-element chain with itself, and with
additional operators.

Examples of infinitely-valued logics: Typical examples of infinitely-valued
logics are the so-called fuzzy logics. Fuzzy logics are many-valued logics having
the interval [0, 1] as set of truth values; premise combination ◦ is modeled by
t-norms 1 . A binary operation → is a (right) residuation of ◦ if, for every
x, y, z ∈ [0, 1], y ◦ x ≤ z if and only if x ≤ y → z. Every continuous t-norm
◦ on [0, 1] has a unique right residuation →. By choosing the Gödel t-norm,
x ◦ y = min(x, y); the Lukasiewicz t-norm, x ◦ y = max(0, x + y − 1); or the
product t-norm, x ◦ y = x · y (product of reals), we can define the Gödel logic
G∞, the Lukasiewicz logic L, or the product logic LΠ, respectively.

For every n ∈ N, n-valued variants Ln and Gn of the propositional Lukasiewicz
and Gödel logics, with set of truth values {0, 1

n−1
, . . . , n−2

n−1
, 1}, can be defined:

premise combination ◦ is modeled by the Lukasiewicz t-norm and the Gödel
t-norm respectively, and → is again the unique right residuation of ◦. (Product
logic is only defined for the set of truth values [0, 1], since {0, 1

n−1
, . . . , n−2

n−1
, 1}

is not closed under product.)

First order versions of the above-mentioned fuzzy logics can be obtained by
defining the truth functions for quantifiers Q∀ = inf and Q∃ = sup.

1 A t-norm is a binary map ◦ : [0, 1] → [0, 1] such that ([0, 1], ◦, 1) is a commutative
semigroup with neutral element 1 and ◦ is monotone in both arguments.

5

Validity and satisfiability in propositional finitely-valued logics is obviously
decidable. It is easy to see that satisfiability of formulae is in NP and validity
is in co-NP. Obviously, first order many-valued logics are in general unde-
cidable (since first order classical logic is undecidable). While the complexity
of satisfiability and validity in propositional Gödel, Lukasiewicz, and product
logic is the same as for two-valued logic, the situation is different in the first
order case. The following results are well-known (for proofs we refer e.g. to
[Mun87], [Háj98] and [Häh03]):

Theorem 3.2 [Mun87, Háj98, Häh03]

(1) Satisfiability is NP-complete and validity is co-NP-complete for the propo-
sitional Lukasiewicz logics Ln and the propositional Gödel logics Gn; for
the propositional Lukasiewicz logic L; for the propositional Gödel logic
G∞; and for the propositional product logic LΠ.

(2) Validity in the first order Gödel logic is Σ1-complete, validity in the first
order Lukasiewicz logic is Π2-complete, and validity in the first order
product logic is Π2-hard.

3.2 Propositional non-classical logics

Many-valued logics are special logics, characterized by one given algebra of
truth values, with a relatively simple structure. In general however, many
non-classical logics are defined by describing the properties of premise combi-
nation and entailment by means of logical calculi (e.g. Gentzen-style calculi,
Hilbert-style calculi, natural deduction systems). Logics defined this way usu-
ally have a natural algebraic model, namely their Lindenbaum algebra, which
can be constructed by identifying provably equivalent formulae. The equiva-
lence classes of the theorems can be regarded as designated elements. Thus,
most of the known propositional non-classical logics can be regarded as many-
valued logics with an infinite algebra of truth values, and a suitably defined
set of designated elements. It is usually more convenient to identify classes
of algebraic models for these logics, often classes of bounded lattices or semi-
lattices with additional operators which are usually interpretations of logical
connectives such as:

• the modal connectives for necessity (2) or possibility (3), or
• various types of negation (∼) or
• various types of implication (→).

The operators that correspond to these connectives often commute with part
of the lattice structure, i.e. satisfy equations such as, for instance:

6

2(1) = 1, 2(x ∧ y) = 2(x) ∧ 2(y), (1)

3(0) = 0, 3(x ∨ y) = 3(x) ∨ 3(y), (2)

∼0 = 1, ∼(x ∨ y) = ∼x ∧ ∼y, (3)

∼1 = 0, ∼(x ∧ y) = ∼x ∨ ∼y, (4)

(0 ⇒ z) = 1, ((x ∨ y) ⇒ z) = (x ⇒ z) ∧ (y ⇒ z), (5)

(x ⇒ 1) = 1, (x ⇒ (y ∧ z)) = (x ⇒ y) ∧ (x ⇒ z). (6)

Operators which, like 2, preserve 1 and ∧ are called meet hemimorphisms;
operators like 3, which preserve 0 and ∨ are called join hemimorphisms; oper-
ators like ∼ which “reverse” all the lattice structure are called antimorphisms.
The operator ⇒ above is a meet hemimorphism in the second argument, and
a join antihemimorphism in the first argument.

Some non-classical logics which have as algebraic models lattices or semilat-
tices with additional operators (in particular: Boolean algebras with operators,
Heyting algebras with operators, or (distributive) lattices or semilattices with
operators) are presented below. We first mention well-studied logics, such as
modal logics, intuitionistic logic, fuzzy logics, relevant logics and other sub-
structural logics. We then present in some detail some newer results related to
TBox reasoning in description logics. The presentation focuses on the algebraic
semantics. In particular we point out that:

• checking validity in non-classical logics having an algebraic semantics can
often be reduced to checking whether corresponding word problems hold in
the class of algebraic models [Ras74, ANS01, BRV01];

• checking subsumption with respect to TBoxes can often be reduced to
checking whether suitably defined uniform word problems hold in classes
of Boolean algebras, distributive lattices or semilattices with operators.

3.2.1 Logics based on classes of distributive lattices with operators

Most of the well-studied non-classical logics fall into this class. We mention
some well known examples:

• Modal logics are in general sound and complete with respect to classes of
Boolean algebras with operators B = (B,∨,∧,¬, 0, 1, 2, 3), where 3 is
a join hemimorphism, 2 is a meet hemimorphism, and for every x ∈ B,
2x = ¬3¬x.

• Intuitionistic logic has as class of algebraic models the class of Heyting
algebras. Various types of intuitionistic modal logics are sound and complete
with respect to classes of Heyting algebras with operators.

• Gödel’s logic (or LC or Dummet’s logic) [Dum59] has as class of algebraic
models the class of linear Heyting algebras (Heyting algebras satisfying
a ⇒ b ∨ b ⇒ a = 1).

7

Checking whether a formula φ is a theorem in such a logic can usually be
reduced to checking whether A |= φ = 1, where A is a class of algebraic
models of the logic.

• Positive logics (cf. also the so-called binary logics [Gol93] Ch.2, or the sim-
ilar concept in [Dun95]) do not have the implication symbol as a logical
connective. Their algebraic models are usually lattices with operators.

In positive logics, logical consequence can only be expressed by using the
provability relation `. Checking whether φ1 ` φ2 can usually be reduced to
checking whether A |= φ1 ≤ φ2, where A is a class of algebraic models of the
logic.

3.2.2 Logics based on residuated (semi)lattices

Residuated distributive lattices occur in a natural way as algebraic models for
fuzzy, relevant and substructural logics.

Many fuzzy logics are sound and complete with respect to classes of residuated
distributive lattices.

• The basic fuzzy logic (BL), for instance, has as algebraic models the class
of all linearly ordered BL-algebras. BL-algebras [Háj98] are linearly ordered
bounded lattices with two binary operators ◦ and →, (L,∨,∧, 0, 1, ◦,→),
where (L, ◦, 1) is a commutative semigroup with 1, ◦ is monotone in both
arguments, and where for all x, y, z ∈ L,

x ◦ z ≤ y iff z ≤ (x → y) and x ∧ y = x ◦ (x → y).

• The Gödel logic has as algebraic models the class of all linearly ordered
Heyting algebras. The Lukasiewicz logics [Luk30] have as algebraic models
the class of linearly ordered MV -algebras. MV -algebras are BL-algebras in
which the identity x = ((x → 0) → 0) holds.

• The product logic has as algebraic models the class of all (linearly ordered)
product algebras, i.e. BL-algebras that satisfy

(z → 0) → 0 ≤ ((x ◦ z → y ◦ z) → (x → y)) and x ∩ (x → 0) = 0.

The relevant logic RL introduced by Urquhart in [Urq96] has as class of al-
gebraic models the class of relevant algebras (bounded distributive lattices
(L,∨,∧, 0, 1) with a lattice antimorphism ¬ and a binary join hemimorphism
◦, with neutral element e, and residuation →).

Other examples are BCC and related logics [OK85], sound and complete with
respect to classes of lattice-ordered residuated monoids.

8

In many of these logics, checking whether a formula φ is a theorem can be
reduced to checking whether A |= φ ≥ e, where e is a designated element in
their algebraic models A, usually the neutral element with respect to a monoid
operation (see Anderson and Belnap [AB75] p.364, [Ono93], p.272).

3.3 Logics based on DLOs in applications

Many non-classical logics which occur in a natural way in practical applications
have as algebraic models lattices, distributive lattices, or Heyting algebras with
operators.

• Multimodal logics are often used to model knowledge and belief in multi-
agent systems.

• Logics for reasoning about resources have often as algebraic models residu-
ated distributive lattices. As the notion of resource is quite general, logics
based on residuated lattices occur in a natural way in many applications:
• Subtype entailment. In [DCF02] a relevant logic is proposed for modelling

“subtype” relationships between types. Under a certain interpretation
of types and type constructors (cf. [DCF02]), subtype checking can be
expressed, in algebraic terms, as a uniform word problem with respect
to a class of distributive lattices with an additional binary operator, →:
L × L → L, which is a join-hemimorphism in the second argument and
maps joins to meets in the first argument.

• Shape analysis. Bunched implication (BI) logics are used e.g. in shape
analysis, for modeling allocation and deallocation of resources. Their al-
gebraic models are BI-algebras, i.e. Heyting algebras equipped with an
additional residuated commutative monoid structure [IO01, Pym02].

• Description logics provide a logical basis for modeling, and reasoning about
concepts (classes of objects) and rôles (relationships between objects). One
of the important algorithmic problems in description logics, testing sub-
sumption between concepts, can often be expressed as a uniform word prob-
lem for classes of lattices and semilattices with operators.

In what follows we present some details on description logics.

3.3.1 Description logics

Description logics are a family of logics for knowledge representation that
have been studied extensively in Artificial Intelligence. They provide a logical
basis for modeling, and reasoning about objects, classes (or concepts), and
relationships (or links, or rôles) between them.

Concepts are one of the central notions in description logics. They are defined

9

Table 1
Constructors for ALC

Constructor name Syntax Semantics

negation ¬C DI\CI

conjunction C1 u C2 CI
1 ∩ CI

2

disjunction C1 t C2 CI
1 ∪ CI

2

existential restriction ∃R.C {x | ∃y((x, y) ∈ RI and y ∈ CI)}

universal restriction ∀R.C {x | ∀y((x, y) ∈ RI =⇒ y ∈ CI)}

with the help of a set of concept constructors, starting with a set NC of con-
cept names and a set NR of rôles. The available constructors determine the
expressive power of a description logic. For instance, in the description logic
ALC, the constructors used are negation (¬), conjunction (u), disjunction (t),
existential restriction (∃R) and universal restriction (∀R). A terminology (or
TBox, for short) is a finite set of concept definitions of the form A ≡ C, where
A is a concept name and C a concept description. (In description logics it is
usually required that TBoxes do not contain multiple definitions.)

The semantics of description logics is defined in terms of interpretations I =
(DI, ·I), where DI is a non-empty set, and the function ·I maps each concept
name C ∈ NC to a set CI ⊆ DI and each rôle name R ∈ NR to a binary
relation RI ⊆ DI×DI . Table 3.3.1 shows the constructor names used in ALC
and their semantics. The extension of ·I to concept descriptions is inductively
defined using the semantics of the constructors described in Table 3.3.1. An
interpretation I is a model of the TBox T if it satisfies all the concept defini-
tions in T , i.e. AI = CI for all definitions A ≡ C in T .

Definition 3.3 Let T be a TBox, and C1, C2 two concept descriptions. C1 is
subsumed by C2 with respect to T (for short, C1 vT C2) if and only if CI

1 ⊆ CI
2

for every model I of T .

In practical applications also description logics which are not closed under all
Boolean connectives occur in a natural way. If we allow, for instance, only in-
tersection and existential restriction as concept constructors, we obtain the
description logic EL, a logic used in terminological reasoning in medicine
[Baa03b]. If we allow only intersection and universal restriction as concept
constructors, we obtain the description logic FL0.

We show that deciding the subsumption problem in the description logics
ALC, EL and FL0 can be reduced to deciding a uniform word problem with
respect to the class of all Boolean algebras (resp. distributive lattices, or semi-
lattices) with operators. To prove this, we first give a translation of concept

10

descriptions into terms in a signature naturally associated with the set of con-
structors. For every rôle name R, we introduce two unary function symbols,
f∃R and f∀R. The renaming function is inductively defined by:

• C = C for every concept name C,
• ¬C = ¬C,
• C1 u C2 = C1 ∧ C2, C1 t C2 = C1 ∨ C2,
• ∃R.C = f∃R(C), ∀R.C = f∀R(C).

It is easy to see that there exists a one-to-one correspondence between in-
terpretations of description logics, I = (D, ·I) and Boolean algebras of sets
(P(D),∪,∩,¬, ∅, D, {f∃R, f∀R}R∈NR

), together with valuations for the v : NC →
P(D), where the additional operations are defined, for every U ⊆ D, by:

f∃R(U) = {x | ∃y((x, y) ∈ RI and y ∈ U)}

f∀R(U) = {x | ∀y((x, y) ∈ RI =⇒ y ∈ U)}.

We define the following classes of algebras:

• BAONR
, the class of all Boolean algebras with operators

B = (B,∨,∧,¬, 0, 1, {f∃R, f∀R}R∈NR
) where f∃R is a join hemimorphism,

f∀R is a meet hemimorphism, and f∀R(x) = ¬f∃R(¬x) for every x ∈ B;
• DLO∀

NR
, the class of all bounded distributive lattices with operators

L = (L,∨,∧, 0, 1, {f∀R}R∈NR
) such that f∀R is a meet hemimorphism;

• DLO∃

NR
, the class of all bounded distributive lattices with operators

L = (L,∨,∧, 0, 1, {f∃R}R∈NR
) such that f∃R is a join hemimorphism;

• SLO∀

NR
, the class of all bounded meet-semilattices with operators

S = (S,∧, 1, {f∀R}R∈NR
) such that f∀R is a meet hemimorphism;

• SLO∃

NR
, the class of all bounded meet-semilattices with operators

S = (S,∧, 0, 1, {f∃R}R∈NR
) such that f∃R is monotone and f∃R(0) = 0.

Theorem 3.4 For all concept descriptions C1, C2 and every TBox T , the
following hold:

(1) If all the constructors of ALC are allowed then C1 vT C2 if and only if

BAONR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2.

(2) If the only constructors are intersection, union, and existential restriction

then C1 vT C2 if and only if DLO∃

NR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2.

(3) If the only constructors are intersection and existential restriction then

C1 vT C2 if and only if SLO∃

NR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2.

(4) If the only constructors are intersection, union, and universal restriction

then C1 vT C2 if and only if DLO∀

NR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2.

(5) If the only constructors are intersection and universal restriction then

11

C1 vT C2 if and only if SLO∀

NR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2.

Proof: The proof is given in Appendix A. 2

Theorem 3.5 The uniform word problem for BAONR
is exptime-complete.

The uniform word problem for SLO∃

NR
is decidable in polynomial time.

Proof: The proof is given in Appendix B. 2

Corollary 3.6 Concept subsumption with respect to TBoxes in ALC and FL0

can be tested in exponential time. Concept subsumption with respect to TBoxes
in EL can be tested in polynomial time.

The exptime-completeness of concept subsumption in ALC is well-known.
Recently, Kazakov and de Nivelle proved that concept subsumption with re-
spect to TBoxes in FL0 is pspace-complete [KN03]. The polynomial time
complexity of concept subsumption with respect to TBoxes in EL was first
proved by Baader [Baa03a]. Theorem 3.5 provides a much simpler proof of
this fact, and shows, in addition, that the restriction imposed in [Baa03a]
that TBoxes do not contain multiple definitions is not really necessary for
polynomial time decidability of concept subsumption in EL .

4 Automated theorem proving

We present several approaches to automated theorem proving in non-classical
logic based on translations to classical logic, which allow the use of (various
refinements of) resolution. Because of space limitations, neither tableau nor
proof-theoretic methods are discussed, although they often provide optimal
time and space complexity bounds.

We first show that various versions of many-valued resolution for finitely-
valued logics can be reconstructed by using general saturation-based tech-
niques for first order theories of transitive relations. The inference systems
which we obtain this way are much more restricted, in particular by order-
ing constraints and selection functions. We then consider other non-classical
logics which are not finitely valued, but for which nevertheless such embed-
dings into classical logics are possible. We present, for instance, a translation
to clause form for prenex first order Gödel logics [BFC01] which allowed the
use of saturation-based techniques for dense total orderings, and then focus
on propositional logics based on distributive lattices with operators (possi-
bly many-sorted). We show that resolution-based decision procedures can be
obtained in many interesting cases.

12

4.1 Resolution in finitely-valued logics

Propositional finitely-valued logics are very similar to propositional classical
logics, and checking the validity of fomulae in finitely-valued logics can be
reduced in a natural way to satisfiability checking in propositional classical
logic. Reductions of validity testing in many-valued logics to SAT checking in
propositional logics - including a study of various possible optimizations, and
various complexity studied - were studied in various papers, among which we
mention e.g. [BHM99, Man00, BHM00, BHM01].
In what follows we will refer to automated theorem proving in first order
finitely-valued logics. Several papers on many-valued logics present methods
for automated theorem proving which are similar to classical resolution. As
classical resolution, they are based on two steps: (i) translation to clause form
(usually called, in this context, signed clause form), and (ii) resolution. Here we
only mention a few such results. (The list below is far from being exhaustive: it
does not mention all results of historical interest; for an overview of automated
deduction in many-valued logic we refer to [Häh93, Häh97a, BFS99, Häh01].)

• In [BF95], Baaz and Fermüller extended the resolution procedure to ar-
bitrary finitely-valued logics. They describe methods for translation to a
many-valued clause form (many-valued literals, Lv, are atomic formulae su-
perscripted by truth values; many-valued clauses are disjunctions of many-
valued literals), formulate a sound and complete many-valued resolution
calculus, and show that the completeness of the calculus is preserved when
applying simplification rules such as subsumption and deletion of certain
types of tautologies.

• Many-valued resolution has also been extended to signed literals S : L,
where S is a set of truth values, in [Häh94b], also see [BFS99].

• A special kind of signs (when the set A of truth values is ordered by a
total order ≤) are regular signs [Häh94b, Häh96], i.e. signs of the form
↑vj := {v | v ≥ vj} or ↓vj := {v | v ≤ vj}.

• A notion of regular signs has also been introduced in the context of anno-
tated logics [KL92, LMR98] when the set A of truth values is a complete
lattice with respect to an order ≤, with greatest element > and least ele-
ment ⊥. In this context, a regular literal is a literal with a sign of the form
↑v or A\↑v (notation: ∼↑v), where v ∈ A; a regular clause is a disjunction of
regular literals. An inference system consisting of annotated resolution, an-
notated reduction and elimination was shown to be sound and refutationally
complete [KL92, LMR98].

The completeness proofs of these resolution-like calculi for many-valued logics
are, in all cases, very similar to the completeness proof of classical resolution. A
simple explanation for this fact is given in [GS00]: we show that unsatisfiability
of a set of many-valued (or regular) clauses can be checked by using a simple

13

translation to classical logic: many-valued literals are translated by replacing
Lv with L ≈ v; regular (signed) literals are translated by replacing ↑v : L with
L ≥ v and ∼↑v : L with L 6≥ v.

In addition, clauses which describe the properties of the set of truth values
have to be added. We also need to explicitly express the fact that ≈ is a congru-
ence (or, respectively, that ≤ is reflexive and transitive). However, congruence
or transitivity axioms are extremely prolific in the context of resolution-based
theorem proving. Refinements of resolution such as superposition and ordered
chaining (calculi which encode inferences with the congruence, resp. transi-
tivity axioms), have been devised by Bachmair and Ganzinger [BG94, BG98].
The main idea in [GS00] is to specialize superposition, resp. ordered chaining
to the type of literals generated using the encoding above. This allows to re-
construct known completeness results (e.g. the calculi of Baaz and Fermüller,
Kifer and Lozinskii, and Hähnle) mentioned at the beginning of this section.
We describe these ideas in what follows.

As a convention, we assume that the set of truth values is A = {v1, . . . , vn}.
We call the constants in A truth values (and denote them by u, v, w, s, t), and
the terms of the form R(t1, . . . , tn), with R a predicate symbol in the language
of the many-valued logic under consideration, predicate terms (and denote
them by L). As usual, the symbols ∨ and ¬ denote disjunction and negation,
respectively. Formal equality is denoted by ≈, and atoms of the form s≈ t are
called equations. The symmetry of equality is built into the notation: we do
not distinguish between s≈ t and t≈ s. Negative (in)equations are also written
as s 6≈ t, resp. s 6≤ t. Orderings on syntactic expressions play an important rôle
in theorem proving. Any ordering on ground terms can be extended to ground
literals, and then to ground clauses (by taking the multiset extension). We
say that a literal L is maximal with respect to a clause C (denoted L � C) if
L′ � L for no literal L′ in C; and that L is strictly maximal with respect to C

(denoted L � C) if L′ � L for no L′ in C. In what follows let � be a noetherian
ordering on ground literals. In order to avoid unnecessary complication in the
presentation we will only deal with the propositional variants of the various
inference systems. That is, unless explicitly stated otherwise, all expressions
(terms, literals, formulas) are assumed to be ground, that is, to not contain
any variables. As the various completeness results also hold for infinite sets
of clauses, lifting can be done in the standard manner by viewing non-ground
expressions to represent the set of their ground instances and by employing
unification to avoid their explicit enumeration.

4.1.1 Many-valued clauses

With every set of many-valued clauses Φ, consisting of literals Lv signed by
truth values, we associate a set Φ1 of first order clauses by replacing every

14

signed literal Lv in Φ by the equation L≈ v. In what follows, literals of the
form L≈ v are called MV -literals, and clauses consisting of MV -literals are
called MV -clauses.

Semantically, equality is a congruence. A formula is called equationally sat-
isfied in an interpretation I whenever the formula is satisfied in I, and the
interpretation of ≈ in I is a congruence over the given signature, satisfying
the corresponding set of congruence axioms Eq .

Proposition 4.1 [GS00] A set Φ of many-valued clauses is satisfiable if and
only if Φ1 ∪ ΦA ∪ Fin is equationally satisfiable, where

ΦA = {u 6≈ v | u, v ∈ A, u 6= v},

Fin = {s≈ v1 ∨ . . . ∨ s≈ vn | s a term of sort for}

are sets of clauses which express that there are exactly n pairwise different
(congruence classes of) truth values v1, . . . , vn in any equality Herbrand inter-
pretation satisfying ΦA ∪ Fin.

Satisfiability of Φ1 ∪ ΦA ∪ Fin can for instance be checked by using superposi-
tion [BG94]. When applied to sets of MV -clauses, the superposition calculus
specializes to the following calculus, SMV :

Positive MV -superposition.

L≈ t ∨ C L≈ v ∨ D

C ∨ D

provided that t 6= v and (i) L≈ t � C; (ii) L≈ v � D; (iii) L≈ v � L≈ t.

Ordered factoring.

L≈ t ∨ L≈ t ∨ C

L≈ t ∨ C

provided that L≈ t is maximal with respect to C.

In fact, if a suitable notion of Eq∪ΦA-redundancy is exploited, inferences with
clauses in ΦA can be avoided; also inferences with clauses in Fin can safely be
ignored. This means that in order to check whether the set Φ of many-valued
clauses is satisfiable, it is sufficient to check if the empty clause can be derived
by MV -resolution from Φ1 only (not from Φ1 ∪ ΦA ∪ Fin).

Theorem 4.2 [GS00] Let Φ be a set of many-valued clauses and let Φ1 ∪
ΦA ∪ Fin be the encoding of Φ in first order logic. Then Φ is unsatisfiable if

15

and only if the empty clause can be derived from Φ1 by a finite number of
applications of inference rules in MV .

As superposition into subterms is not possible for MV -clauses, � needs not be
a reduction ordering on terms. In conclusion, the calculus SMV is an order-
refinement of the many-valued resolution method of Baaz and Fermüller. Its
compatibility with simplification techniques which redundancy justifies follows
from results on superposition and Theorem 4.2 (for further details we refer to
[GS00]).

4.1.2 Annotated and regular clauses

Let (A,≤A) be a finite partially ordered set, and Min(A) the set of minimal
elements in A. Let Φ be a set of regular clauses, i.e. clauses containing only
literals of the form ↑v:L or ∼↑v:L, where v ∈ A. The encoding of Φ in first
order logic, Φ1, is the set of clauses obtained from Φ by replacing ↑v:L by v≤L

and ∼↑v:L by v 6≤L, where v 6≤L is an abbreviation for ¬(v≤L). Consider the
following additional sets of clauses:

ΦA = {u � v | u, v ∈ A, u �A v, � ∈ {≤, 6≤, 6≈}}

Sup = {(u 6≤ s) ∨ (v 6≤ s) ∨ (sup(u, v)≤ s) | sup(u, v) exists in A,

s a term of sort for}

Min = {
∨

m∈Min(A)

(m≤s) | s a term of sort for}.

In the following we will only consider clauses with inequalities s≤t as atoms.
Equalities s≈ t will be used on the meta-level as an abbreviation for conjunc-
tions (s≤t) ∧ (t≤s). Fin will again denote the set of clauses (represented by)
{s≈ v1 ∨ . . . ∨ s≈ vn | s a term of sort for}.

By Tr we denote the transitivity axiom for ≤: (x≤ y) ∧ (y≤ z) → (x≤ z).
By a transitivity interpretation we mean a model of Tr . We say that a set of
clauses N is Tr-satisfiable if there exists a transitivity interpretation I that
satisfies N . Otherwise N is Tr-unsatisfiable.

Proposition 4.3 [GS00] If Φ be a set of regular clauses then:

(1) If (A,≤A) is a partially ordered set, then Φ is satisfiable if and only if
Φ1 ∪ ΦA ∪ Fin is (classically) Tr-satisfiable.

(2) If (A,≤A) is a sup-semilattice, then Φ is satisfiable if and only if Φ1 ∪
ΦA ∪ Sup ∪ Min is (classically) Tr-satisfiable.

(3) If (A,≤A) is a totally-ordered set with minimal element ⊥ then Φ is satis-
fiable if and only if Φ1∪ΦA ∪{⊥≤s | s a term of sort for} is (classically)
Tr-satisfiable.

16

In what follows we refer to literals of the form v≤L or v 6≤L, where L is a
predicate term and v is a truth value, as ≤-literals. A ≤-clause is a disjunction
of ≤-literals. When applied to ≤-clauses, the chaining calculus of Bachmair
and Ganzinger [BG98] specializes to the following calculus, CS :

Negative chaining for ≤-clauses.

(u≤L) ∨ C (v 6≤L) ∨ D

C ∨ D

provided that v ≤A u and (i) holds.

Sup-reduction.

(u≤L) ∨ C (v ≤L) ∨ D

(sup(u, v)≤L) ∨ C ∨ D

provided that u and v are incomparable, and (ii) holds.

Ordered (positive) factoring.

B ∨ B ∨ C

B ∨ C

provided that B is maximal with respect to C.

The restrictions are: (i) (u≤L)�C and (v 6≤L)�D; (ii) (u≤L)�C and (v≤L)�D.

Theorem 4.4 [GS00] Let Φ be a set of regular clauses over a finite set A

truth values, and let Φ1 be the encoding of Φ in first order logic.

(1) If A is a sup-semilattice with minimal elements Min(A) then Φ is unsat-
isfiable if and only if the empty clause can be derived from Φ1 ∪Min by a
finite number of applications of inference rules in CS.

(2) Assume that A is a complete lattice with minimal element ⊥. Let Φ2 be
obtained from Φ1 by removing all literals of the form ⊥ 6≤L and all clauses
containing a literal of the form ⊥≤L. Then Φ is unsatisfiable if and only
if there exists a derivation in CS of the empty clause from Φ2.

As chaining into subterms is not possible for ≤-clauses, � needs not be a
reduction ordering on terms. Thus, the calculus CS is an order-refinement of
the annotated resolution calculus in [LMR98]. If (A,≤A) is a totally ordered set
then sup-reduction never applies. Let CT be the inference system consisting of
all inference rules in CS except sup-reduction. The refutational completeness
of the CT calculus in the case when (A,≤A) is a totally ordered set is a direct

17

consequence of Theorem 4.4.

Since first order many-valued logics are undecidable, in general we cannot
hope to obtain decision procedures based on the calculi above. It can however
be seen that, in the propositional case, they yield exponential time decision
procedures in the length of the input.

4.2 Resolution for infinitely-valued logics

The method for translation to clause form for finitely valued logics of Baaz
and Fermüller cannot be applied in general when the set of truth values is
infinite, nor for logics whose semantics is given in terms of a class of algebras.
There have been several attempts for giving methods for automated theorem
proving in infinitely-valued logics. A resolution-like calculus for the infinitely-
valued sentential calculus of Lukasiewicz based on a different representation of
clauses was given, for instance, by Mundici and Olivetti in [MO98]. We do not
discuss this approach here in detail. Instead we present methods which in our
opinion are natural extensions of the methods used in the finitely-valued case,
namely approaches which rely on reductions to mixed integer programming,
on reductions of infinitely-valued to finitely-valued logics, or on embeddings
into theories of dense total orderings.

4.2.1 Propositional Lukasiewicz and Gödel logics

One of the possibilities of checking validity in infinitely-valued logic is to
reduce the problem to checking validity in a suitable finitely-valued logic 2 .
Aguzzoli and Ciabattoni [AC00] did this for the infinitely valued proposi-
tional Lukasiewicz logic L. They proved that a formula φ is valid in L if and
only if it is valid in a suitable m-valued Lukasiewicz logic Lm, where m only
depends on the length of the formula to be proved (in fact, m = 2lenght(φ) + 1).
Thus, in this case, the methods discussed in Section 4.1 may still be used, but
could be highly inefficient, since the size of the algebra Lm is exponential in
the length of the formula φ.

An alternative approach, proposed by Hähnle in [Häh94a, Häh97b] is based
on a reduction to mixed integer programming. This method uses ideas similar
to those used for the translation to regular clauses for regular (finitely-valued)
logics: CNF translations are obtained which allow reductions to mixed integer
programming (MIP) in the case of infinitely-valued propositional Lukasiewicz

2 Similar ideas were used also in other contexts. For instance, Caferra and Zabel
[CZ90] give a translation from the propositional modal logic S5, viewed as an
infinite-valued logic, into finite-valued logics.

18

logic and Gödel logics. (The connectives of the product logic, however, lead
outside MIP, and into non-linear programming.) The method is applicable for
a whole class of many-valued logics, namely for “MIP”-representable logics,
i.e. propositional many-valued logics whose connectives have the property that
their graphs can be represented as solutions of mixed integer programs, i.e.
are of the form

Γ ⊆ [0, 1]k, where there exists a system J of linear inequations over variables
{x1, . . . , xk, xk+1, . . . xn}, where the first k variables have domain [0, 1] and the
remaining ones have domain {0, 1}, and

Γ = {(ρ(x1), . . . , ρ(xk)) | ρ solution of Jσ for some σ : {xk+1, . . . , xn} → {0, 1}}.

The infinitely-valued Lukasiewicz logic is “MIP”-representable. For instance,
the graph z = ◦ L(x, y) := max{0, x + y − 1} is the solution of the following
system of linear inequations:























































x+y+t−z ≥ 1

−x−y+t+z ≥ −1

−x−y−t ≥ −2

x+y+t ≥ 1

−t−z ≥ −1

Theorem 4.5 [Häh94a, Häh97b]

(1) If φ(p) is a formula of an MIP-representable logic then there is an mixed
integer program Jφ (in fact, a system of linear inequations of size linear
in the size of φ) with argument variables p and output variable y whose
solutions restricted to (p, y) are completely described by the [0,1]-function
associated 3 with φ, fϕ(p).

(2) Let J be a system of linear inequations over variables P . Then there exists
a formula in propositional Lukasiewicz logic with variables P which is
satisfiable if and only if J has a solution.

Proof: (1) follows from the fact that the composition of MIP representable
functions is again MIP representable; (2) uses a theorem of McNaughton. 2

As in the case of infinitely-valued Lukasiewicz logics the translation above
was proved to be polynomial [Häh94a], the reduction to mixed integer pro-
gramming in Theorem 4.5 justifies the NP-easiness (and therefore, the NP-
completeness) of satisfiability checking in infinitely-valued Lukasiewicz logic.

3 Every formula φ of L over r variables {p1, . . . , pr} defines an r-ary function
fφ : [0, 1]r → [0, 1] defined for every (x1, . . . , xr) ∈ [0, 1]r by v(φ), where v :
{p1, . . . , pr} → [0, 1] is defined by v(pi) = xi.

19

4.2.2 First order Lukasiewicz and Gödel logics

First order fuzzy logics are more complicated than propositional fuzzy logics;
they are also more complicated than first order classical logic. Usually it is
difficult, or even impossible, to construct a prenex normal form. Therefore the
theory of automated theorem proving in these logics is not so well developed.

In what follows we present a method for automated theorem proving for a
fragment of first order Gödel logic (with projection modalities) proposed by
Baaz, Fermüller and Ciabattoni [BFC01] . The method uses a translation into
the first order theory of dense total orderings with endpoints, and can be seen
as a natural extension – to the first order case – of the translation to mixed
integer programming for propositional Lukasiewicz and Gödel logics described
in the previous section.

Semantically, first order Gödel logic G∞ is viewed as an infinitely-valued logic,
with the real interval [0, 1] as set of truth values, equipped with the Gödel
t-norm ◦ : [0, 1]2 → [0, 1], x ◦ y := min(x, y), and its residuation →; the
semantics of the quantifiers is given by supremum (for ∃) and infimum (for
∀). In [BFC01] the logic G∆

∞ is studied. G∆
∞ is obtained by extending G∞ with

projection modalities ∇, ∆, interpreted by the maps ∇, ∆ : [0, 1] → {0, 1},
where ∇(x) = 1 if and only if x = 0, and ∆(x) = 1 if and only if x = 1.

Theorem 4.6 [BFC01] For each prenex formula of G∆
∞, of the form ϕ =

Q1y1 . . . Qnynφ(y1, . . . , yn), there exists a set CF d(∃xφ(x)) of order clauses 4

(which can be computed in linear time), such that Q1y1 . . . Qnynφ(y1, . . . , yn)
is valid in G∆

∞ if and only if CF d(∃xφ(x)) is unsatisfiable with respect to the
theory of dense total orderings with endpoints.

The embedding is, up to a certain extent, similar to that described in Sec-
tion 4.1 in the case of finitely-valued logics based on partially ordered, or
totally ordered sets. A chaining calculus for dense total orderings with end-
points [BG98] is then used for efficient deduction with such sets of clauses.
However, since G∆

∞ is undecidable, one cannot hope to use chaining for dense
total orderings with endpoints as a decision procedure in this case.

In order to be able to use resolution as a decision procedure, in what follows
we focus on propositional non-classical logics.

4 Order clauses are classical clauses with predicate symbols < and ≤ interpreted
as total dense orderings (strict and reflexive, respectively).

20

4.3 Resolution-based decision procedures for modal logics

In the attempt of understanding why so many modal logics are decidable
many authors noticed that the definition of the Kripke-style semantics justifies
an embedding into (decidable fragments of) classical logic. For instance, in
[ABN98] Andréka, Van Benthem and Németi introduced the so-called guarded
fragment (GF) of classical logic, which abstracts many of the properties of
formulae obtained from the structure-preserving translation to clause form for
many modal logics. The main advantage of the embedding into first order
logic is that it is very suitable to use for automated theorem proving, since
proof techniques developed for classical logic can be used for free. Refinements
of resolution such as ordered resolution, the use of selection functions, and
specially devised calculi to deal with equivalence (or congruence) relations,
or with transitive relations proved to be extremely useful in this context. For
instance, ordered resolution was used as a decision procedure for modal logics
such as K in [Ohl93, Sch99], ordered chaining with selection was used to obtain
(doubly exponential 5) decision procedures for the relational translation of
propositional modal logics with modal operators satisfying the axioms D, T

or 4 in [GHM01]. A doubly-exponential decision procedure for the guarded
fragment with equality, that uses superposition, was given in [GN99].

The embedding into classical logic for modal logics mentioned above is a spe-
cial instance of a more general result, which we present in the next section.

4.4 Resolution and uniform word problems in DLO

Uniform word problems are relevant and important in mathematics and com-
puter science. On the one hand, as pointed out already in Section 3.2, most
of the validity problems in logics whose algebraic semantics can be given in
terms of distributive lattices with operators, can be formulated as word prob-
lems with respect to classes of algebras. More complex problems, such as the
problem of checking concept subsumption in terminological databases can be
formulated as uniform word problems. On the other hand, the study of uni-
form word problems has a great theoretical importance, because, for every
quasi-variety V of algebras, the decidability of the uniform word problem of
V implies the decidability of the universal theory of V.

In the previous sections on automated theorem proving in many-valued logics,
the information about the algebra of truth values was directly used, both in

5 In [GHM01] it is actually showed that a single-exponential space representation
can be obtained by splitting the clauses into their variable-disjoint regions and
connecting them with the help of auxiliary monadic predicates.

21

the translation to clause form, and - sometimes - for the resolution process.
A similar approach would theoretically be possible also in this case: Given a
(quasi-)variety V presented by a finite set E of equations (resp. implications),
one possibility of proving

V |=
n
∧

i=1

ti = t′i → t = t′ (7)

would be to show that
∧n

i=1 ti = t′i → t = t′ is a consequence, in equational
logic, of the axioms E of V. However, if V is a class of (distributive) lattices
with operators then equational reasoning modulo E may be quite inefficient,
due to the necessity of handling, for instance, axioms such as associativity,
commutativity and idempotence of the lattice axioms.

In many cases, it is possible to avoid equational reasoning in lattice theory.
In what follows we show that checking implications of the form (7) can often
be reduced to checking whether they hold in certain specific algebras of sets.
All terms occurring in a problem of type (7) can then be encoded as sets;
the lattice operations are be encoded by the usual set operations: suprema
are unions and infima are intersections. Further, sets are encoded as unary
predicates, and unions resp. intersections are expressed using logical disjunc-
tion resp. conjunction. This remark can be used for obtaining embeddings
into decidable fragments of first order logic (without equality). These results
justify, in particular, existing embeddings into classical logic for many-valued
logics over finite distributive lattices with operators [Sof01], but also for modal
logics, and, in many cases yield optimal resolution-based decision procedures.

4.4.1 Distributive lattices with operators

We want to make the class of algebras we consider broad enough to encompass
operations which satisfy equations such as (1)–(6) presented in Section 3.2,
but also operations between different lattices, such as Galois connections, i.e.
pairs (f, g) of maps f : L1 → L2, g : L2 → L1, with the property that

f(x ∨ y) = f(x) ∨ f(y), f(0) = 0, (8)

g(x ∧ y) = g(x) ∧ g(y), g(1) = 1, (9)

f(x) ≤ y iff x ≤ g(y) for all x ∈ L1, y ∈ L2. (10)

or operators which take numeric values, for instance (assuming that c is some
cost function) maxcost, mincost : P(X) → N, where maxcost(U) = max{c(u) |
u ∈ U}, and mincost(U) = min{c(u) | u ∈ U}. It is easy to see that:

maxcost(U1 ∪ U2) = max(maxcost(U1), maxcost(U2)),

mincost(U1 ∪ U2) = min(mincost(U1), mincost(U2)).

22

Therefore, we consider classes of many-sorted algebraic structures, with many-
sorted operations. We now formally define operators that have properties such
as (1)–(9) above.

Definition 4.7 Let S be a set of sorts, {Ls}s∈S be an S-sorted family of
bounded lattices Ls = (Ls,∨,∧, 0, 1) and let s1, . . . , sn, s ∈ S. A join hemi-
morphism of type s1 . . . sn → s is a function f : Ls1

× · · · × Lsn
→ Ls such

that for every i, 1 ≤ i ≤ n,

(1) f(a1, . . . , ai−1, 0, ai+1, . . . , an) = 0,

(2) f(a1, . . . , ai−1, b1 ∨ b2, ai+1, . . . , an) =
= f(a1, . . . , ai−1, b1, ai+1, . . . , an) ∨ f(a1, . . . , ai−1, b2, ai+1, . . . , an).

We say that a map f : Ls1
× · · · × Lsn

→ Ls is a join hemimorphism of type
sε1

1 . . . sεn
n → sε, where ε1, . . . , εn, ε ∈ {−1, +1}, if f : Lε1

s1
× · · · × Lεn

sn
→ Lε

s

is a join hemimorphism, where L+1 := L and L−1 := Ld, the order dual of
L = (L,∨,∧, 0, 1), i.e. the lattice (L,∨d,∧d, 0d, 1d), where for every x, y ∈ L,
x ∨d y = x ∧ y, x ∧d y = x ∨ y; 0d = 1; and 1d = 0.

Definition 4.8 Let {Ls}s∈S be an S-sorted family of bounded lattices and let
f, g be two n-ary operators such that f : Lε1

s1
× · · · ×Lsi

× · · · ×Lεn
sn

→ Ls and
g : Lε1

s1
× · · ·×Ld

s × · · ·×Lεn
sn

→ Ld
si

are join hemimorphisms. We say that g is
an i-residuation 6 associated with f if for all a1 ∈ Ls1

, . . . , an ∈ Lsn
, a ∈ Ls:

f(a1, . . . , an) ≤ a if and only if ai ≤ g(a1, . . . , ai−1, a, ai+1, . . . , an).

Examples:

(1) The operator 3 on a modal algebra B is a join hemimorphism. The
operator 2 on B is a join hemimorphism on the dual Bd of B.

(2) A binary lattice operation ⇒ satisfying conditions (5) and (6) is a join
hemimorphism of type lat, latd → latd.

(3) Let L1,L2 be two lattices and let f : L1 → L2 and g : L2 → L1

be a Galois connection. Let (L1,L2) be the 2-sorted algebra with sorts
S = {l1, l2}. Then f is a join hemimorphism of type l1 → l2, g is a join
hemimorphism of type ld2 → ld1; g is the 1-residuation associated with f .

(4) Let (L,Cn+1) be the 2-sorted algebra with sorts S = {lat, num}, where
L is a bounded lattice, and Cn+1 = ({0, 1, . . . , n},∨,∧, 0, n) is the n + 1-
element chain. A function f : L → Cn+1 that associates with every
element of L an element of {0, 1, . . . , n} such that f(x∨ y) = f(x)∨ f(y)
and f(0) = 0 is a join hemimorphism of type lat → num.

6 It can be seen that two i-residuations associated with the same operator coincide.

23

4.4.2 Algebraic and relational models

We establish a link between truth of universal sentences in classes of S-sorted
distributive lattices with operators and truth in S-sorted relational structures.

Definition 4.9 An S-sorted RT Σ-relational structure ({(Xs,≤)}s∈S , {RX}R∈Σ)
is an S-sorted family of sets, each endowed with a reflexive and transitive
relation ≤ and with additional maps and relations indexed by Σ, where, if
ε1, . . . , εn, ε ∈ {−1, +1}, s1, . . . , sn, s ∈ S then: if R ∈ Σ is of type sε1

1 . . . sεn
n →

sε, RX ⊆
∏n

i=1 Xsi
× Xs is increasing if ε = +1 and decreasing if ε = −1.

We denote by DLOS
Σ, BAOS

Σ, and HAOS
Σ the class of all S-sorted bounded dis-

tributive lattices, Boolean algebras, and resp. Heyting algebras, with operators
in Σ, and by RT S

Σ the class of all S-sorted RT Σ-relational structures.

If L ∈ DLOS
Σ, let D(L) = ({(Fp(Ls),⊆)}s∈S, {Rf}f∈Σ), where if f :

∏n
i=1 Lεi

si
→

Lε
s is a join hemimorphism, where ε1, . . . , εn, ε ∈ {−1, +1}, then we define

Rf(F1, . . . , Fn, F) if and only if f(F ε1

1 , . . . , F εn
n) ⊆ F ε,

where F +1 := F and F−1 is the complement of F .

Conversely, for every X ∈ RT S
Σ , let O(X) = ({O(Xs)}s∈S, {fR}R∈Σ), where,

for every s ∈ S, O(Xs) = (O(Xs),∪,∩, ∅, Xs) is the bounded distributive
lattice of all upwards-closed subsets of Xs, and if R ⊆

∏n
i=1 Xsi

× Xs is of
type sε1

1 . . . sεn
n → sε then fR :

∏n
i=1 O(Xsi

) → O(Xs) is defined, for every
(U1, . . . Un) ∈

∏n
i=1 O(Xsi

) by

fR(U1, . . . , Un) =
(

R−1(U ε1

1 , . . . , U ε1

n)
)ε

, (11)

where R−1(U1, . . . , Un) = {x | ∃x1 . . . xn(x1 ∈ U1, . . . , xn ∈ Un, R(x1, . . . , xn, x))},
and U+1 := U and U−1 is the complement of U .

Theorem 4.10 [Sof02] For every L = ({Ls}s∈S, {fL}f∈Σ) ∈ DLOS
Σ, D(L) ∈

RT S
Σ , and ηL : L → O(D(L)) defined for every s ∈ S and every x ∈ Ls by

ηs
L(x) = {F ∈ Fp(Ls) | x ∈ F} is an injective homomorphism between algebras

in DLOS
Σ.

Similar correspondences can be established for (possibly many-sorted) Boolean
algebras or Heyting algebras with operators. Note that in the case of Boolean
algebras, the dual spaces are discretely ordered (i.e. x ≤ y if and only if x = y).

Also, note that for every preordered set X = (X,≤), a Heyting implication
(⇒) and a Heyting negation (¬) can be defined on O(X) by:

U ⇒ V := {x | ∀y((x ≤ y, y ∈ U) → y ∈ V }; ¬U := U ⇒ ∅.

24

We consider subclasses V of DLOS
Σ, BAOS

Σ or HAOS
Σ that satisfy the condition:

(K) There exists a K ⊆ RT S
Σ such that (i) for every A ∈ V, D(A) ∈ K;

(ii) for every X ∈ K, O(X) ∈ V.

Example 4.11 Condition (K) holds in the following cases:

(1) V = DLOS
Σ; K = RT S

Σ .

(2) V = RDLOS
Σ,Res the class of all algebras in DLOS

Σ satisfying the residua-
tion conditions in Res;

K = RT S
Σ,Res the class of those spaces in RT S

Σ which satisfy in addition:
{Rf (x1, . . . , xn, x) ↔ Rg(x1, . . . , x, . . . , xn, xi) | “g i-residuation of f” ∈ Res}.

(3) V = BAOS
Σ; K = RS

Σ the subclass of RT S
Σ consisting only of discretely-

ordered spaces.

If A ∈ D01 is a fixed finite lattice and S = {lat, a}, then condition (K) holds
in the following cases:

(4) V = DLOA
Σ = {(L,A, {f}f∈ΣL

, {g}g∈ΣA
) | L ∈ D01; f : Lk → L join

hemimorphism if f ∈ ΣL; g :Lm→A join hemimorphism if g ∈ ΣA};
K = KA = {(X, D(A), {Rf}f∈ΣL

, {Rg}g∈ΣA
) | (X, {Rf}f∈ΣL

) ∈ RTΣL
;

Rg ⊆ Xm × D(A) increasing for all g ∈ ΣA with arity m}.

(5) V = RDLOA
Σ,Res the subclass of all algebras in DLOA

Σ in which the opera-
tors in ΣL satisfy the residuation conditions in Res;

K the class of those spaces in KA which satisfy:
{Rf (x1, . . . , xn, x) ↔ Rg(x1, . . . , x, . . . , xn, xi) | “g i-residuation of f” ∈ Res}.

(6) V = BAOA
Σ = {(B,A, {f}f∈ΣB

, {g}g∈ΣA
) | B ∈ Bool; f : Bk → B k-ary

join hemimorphism for all f ∈ ΣB; and g : Bm → A m-ary join
hemimorphism for all g ∈ ΣA};

K the class of those spaces in KA with the support of sort lat discretely
ordered.

(7) V = H, the class of all Heyting algebras; K the family of all preordered
spaces.

For automated theorem proving it is important to find subclasses of RT S
Σ with

good theoretical and logical properties, for instance subclasses which are first
order definable.

25

4.4.3 Structure-preserving translation to clause form

Theorem 4.12 [Sof03] If V satisfies condition (K) then, for every formula
φ = ∀x1, . . . , xk(

∧n
i=1 si1 = si2 →

∨m
j=1 tj1 = tj2), V |= φ if and only if for

every X ∈ K,O(X) |= φ.

Theorem 4.12 allows to encode all terms occurring in φ as sets. The lattice
operations can be encoded simply as set operations: suprema are unions and
infima are intersections, and the additional operators are defined, using an
inverse-image construction for the relations (cf. the definition of fR in (11)).
Let ST (φ) be the set of all subterms of sil and tjp, 1 ≤ i ≤ n, 1 ≤ j ≤ m, l, p ∈
{1, 2} (including the variables and sil, tjp themselves).

4.4.3.1 Distributive lattices and Boolean algebras with operators.
We first consider the situation when the only operations besides conjunction
and disjunction are many-sorted hemimorphisms.

Proposition 4.13 Let K ⊆ RT S
Σ . The following are equivalent:

(1) For every X ∈ K, O(X) |= φ.
(2) For every X = ({(Xs,≤)}s∈S , {R}R∈Σ) ∈ RT S

Σ and every family of subsets
of X indexed by all subterms of φ, {Ie ⊆ Xs | e ∈ ST (φ) of sort s ∈ S}, if:


































































(Doms) X ∈ K,

(Hers) Ie ∈ O(Xs) ∀e ∈ ST (φ) of sort s,

(Rens) (1, 0) I1s = Xs, I0s = ∅,

(∧) Ie1∧e2
= Ie1

∩ Ie2
,

(∨) Ie1∨e2
= Ie1

∪ Ie2
,

(Σs1...sn→s) If(e1,...,en) = R−1
f (Ie1

, . . . , Ien) ,

(Ps) Isi1
= Isi2

for i = 1, . . . , n,

then

(Cs) for some j ∈ {1, . . . ,m} Itj1 = Itj2 ,

where the rules in (Σ) range over all terms in ST (φ) starting with an oper-
ator in Σs1...sn→s. (We used the abbreviation R−1(U1, . . . , Un) := {x | ∃x1 ∈
U1 . . .∃xn ∈ Un : R(x1, . . . , xn, x)}.)

If the class K is first order definable, Proposition 4.13 justifies a structure-
preserving translation of universal formulae to sets of clauses.

Theorem 4.14 [Sof02] Assume that V and K satisfy condition (K), where K
is a class of RT Σ-structures definable by a finite set C of first order sentences.
The following are equivalent:

26

(1) V |= φ.
(2) The conjunction of (Dom) ∪ (Her) ∪ (Ren) ∪ (P) ∪ (N1) ∪ · · · ∪ (Nm)

is unsatisfiable, where:

(Dom) C,

≤⊆ Xs × Xs is reflexive and transitive for every sort s ∈ S,

Rf ⊆
∏n+1

i=1 Xsi
is increasing for f ∈ Σs1...sn→sn+1

,

(Her) ∀x, y (x ≤ y ∧ Pe(x) → Pe(y))

(Ren) (1) ∀x P1s(x) for every sort s ∈ S,

(0) ∀x ¬P0s(x) for every sort s ∈ S,

(∧) ∀x (Pe1∧e2
(x) ↔ Pe1

(x) ∧ Pe2
(x))

(∨) ∀x (Pe1∨e2
(x) ↔ Pe1

(x) ∨ Pe2
(x))

(Σ) ∀x (Pf(e1,...,en)(x)ε ↔ ∃x1 . . . xn(
∧n

i=1 Pei
(xi)

εi ∧ Rf (x1, . . . , xn, x)))

(P) ∀x (
∧n

i=1 Psi1
(x) ↔ Psi2

(x))

(N1) ∃x1 (Pt11(x1) 6↔ Pt12(x1))

.

(Nm) ∃xm (Ptm1
(xm) 6↔ Ptm2

(xm))

where the unary predicates Pe are indexed by elements in ST (φ), and the for-
mulae in Σ range over all operators f ∈ Σ such that f is a join hemimorphism
of type sε1

1 . . . sεn
n → sε, where εi, ε ∈ {−1, +1}, and L+1 := L and L−1 := ¬L.

Similar ideas can be used for obtaining translations to clause form for formulae
of the form

∧n
i=1 si1≤si2 →

∧m
j=1 tj1≤tj2. Then only the direct implications are

necessary in (P) and (N).

If V = RDLOS
Σ,Res or V = RDLOA

Σ,Res, where Res is a set of generalized residu-
ation rules, then the set C of formulae contains the conditions:

Rf (x1, . . . , xi, . . . , xn, x) ↔ Rg(x1, . . . , x, . . . , xn, xi)

for all n-ary operators f, g such that “g is an i-residuation of f” ∈ Res.

4.4.3.2 Heyting algebras. If V = H, the class of Heyting algebras, then
the set C contains only the preorder axioms for the relation ≤. In this case Ren

contains additional rules for the Heyting implication and negation, namely:

(Ren) (⇒) ∀x (Pe1⇒e2
(x) ↔ ∀y(x ≤ y ∧ Pe1

(y) → Pe2
(y))),

(¬) ∀x (P¬e(x) ↔ ∀y(x ≤ y → ¬Pe(y))).

27

4.4.4 Some decidability results

We now present some examples in which decidability results can be obtained.

Theorem 4.15 [Sof02] Ordered resolution with selection decides, in time ex-
ponential in the size of the input if the arity of operators in Σ has an upper
bound, and exponential in the square of the size of the input in general, the
universal clause theory of DLOS

Σ, and RDLOS
Σ.

Proof: (Idea) The results of [Sof03], Section 5.1 can easily be adapted to prove
this theorem. As pointed out in [Sof03], the selection strategy we adopt for
this purpose shows that in this case inferences with the clauses containing the
≤ symbol are not needed for refutational completeness. 2

It can easily be seen that for uniform word problems which contain only con-
junction and join hemimorphisms, resolution yields a polynomial time decision
procedure 7 .

Theorem 4.16 [Sof02] Ordered resolution with selection decides, in time ex-
ponential in the size of the input if the arity of operators in Σ has an upper
bound, and exponential in the square of the size of the input in general, the
universal clause theory of DLOA

Σ, and RDLOA
Σ, where A is a finite distributive

lattice.

Proof: (Idea) We can show that inferences with the clauses containing the ≤
symbol applied to arguments of sort lat are not needed in the case of DLOA

Σ.
Since D(A) is finite, the monotonicity and heredity rules for sort a, can be
replaced with their instances with elements in D(A). For instance the mono-
tonicity and heredity rules can alternatively be expressed by:

Rf (x1, . . . , xn, a)→Rf (x1, . . . , xn, b) for all a, b ∈ D(A), a ≤ b (12)

Pe(a)→Pe(b) for all a, b ∈ D(A), a ≤ b (13)

We can now introduce D(A) copies for every predicate symbol with last ar-
gument of sort a, e.g. by replacing, for every a ∈ D(A), Rf (x1, . . . , xn, a) with
Ra

f (x1, . . . , xn) and Pe(a) with P a
e . Arguments in [Sof03], Section 5.1 can now

be applied and also in this case yield the desired complexity results. 2

Similar arguments can be also used for (many sorted) Boolean algebras with
operators, by considering, in addition, the renaming rules for Boolean nega-
tion. Also in this case we obtain exponential time resolution-based decision
procedures, i.e. decision procedures with optimal time complexity.

7 Y. Kazakov, personal communication

28

The renaming rules Ren(⇒,¬) for Heyting algebras contain the predicate ≤,
and in this situation inferences with the clauses containing the ≤ symbol are
needed. ≤ is a preorder, i.e. reflexive and transitive, so we can use ordered
chaining with selection for checking the satisfiability of the conjunction of
formulae in (Dom) ∪ (Her) ∪ (Ren) ∪ (P) ∪ (N).

Theorem 4.17 [Sof03] For every formula φ = ∀x1, . . . , xk(
∧n

i=1 si1 = si2 →
∨m

j=1 tj1 = tj2), ordered chaining with eager condensation and selection decides
(in at most doubly exponential time and exponential space with respect to the
length of φ) whether H |= φ.

4.4.5 A special case: Finitely-valued logics based on DLO.

The results above can be applied to automated theorem proving in proposi-
tional many-valued logics based on finite distributive lattices with operators.
Let A = (A,∨,∧, 0, 1, {fA}f∈Σ) be a finite distributive lattice with operators,
and let D(A) be the Priestley dual of A. Since A is finite, D(A) = ({↑ j | j ∈
A, join irreducible},⊆), and A is isomorphic to O(D(A)). In this case V =
{A} and K = {D(A)} satisfy condition (K). Let φ := ∀x1, . . . , xk(

∧n
i=1 si1 =

si2 →
∨m

j=1 tj1 = tj2) be a formula in the signature of A:

Corollary 4.18 Let A = (A,∨,∧, 0, 1, {fA}f∈Σ) be a finite distributive lattice
with operators. The following are equivalent:

(1) A |= φ.
(2) The conjunction of (Dom) ∪ (Her) ∪ (Ren) ∪ (P) ∪ (N1) ∪ · · · ∪ (Nm)

is unsatisfiable, where:

(Dom) ∀x(x = ↑j1∨. . .∨x = ↑jk) where D(A) = ({↑j1, . . . , ↑jk},⊆)

↑ji ≤ ↑jk; Rf (↑ji1 , . . . , ↑jil , ↑jil+1
) whenever it holds in D(A)

(Her) ∀x, y (x ≤ y ∧ Pe(x)→Pe(y))

(Ren) (1, 0) ∀xP1(x) ∀x¬P0(x)

(∧)∀x (Pe1∧e2
(x)↔Pe1

(x) ∧ Pe2
(x))

(∨)∀x (Pe1∨e2
(x)↔Pe1

(x) ∨ Pe2
(x))

(Σ)∀x(Pf(e1,...,en)(x)ε ↔∃x1 . . . xn(
∧n

i=1 Pei
(xi)

εi ∧ Rf (x1, . . . , xn, x)))

(P) ∀x (
∧n

i=1 Psi1
(x)↔Psi2

(x))

(N1) ∃x1 (Pt11(x1) 6↔Pt12(x1))
· · · · · ·

(Nm) ∃xm (Ptm1
(xm) 6↔Ptm2

(xm))

where the unary predicates Pe are indexed by elements in ST (φ), and the for-

29

mulae in Σ range over all operators f ∈ Σ such that f is a join hemimorphism
of type ε1 . . . εn → ε, where εi, ε ∈ {−1, +1}, and L+1 := L and L−1 := ¬L.

It is easy to see that the conjunction above is unsatisfiable if and only if
the set of all its ground instances, where the variables are instantiated with
elements in D(A), is satisfiable. We thus recover some of the results in [Sof01].

(The labeled literals of the form ↑j Pe used in [Sof01] correspond to ground

literals of the form Pe(↑j) in the present setting.)

For an extension to automated theorem proving in first order many-valued
logics based on distributive lattices with operators, where the truth functions
for quantifiers are defined by Q∀ = inf and Q∃ = sup, we refer to [Sof01],
where, in addition, we illustrate on several examples the effectivity of the
method, in particular the fact that using the Priestley dual of the algebra of
truth values instead of the algebra of truth values itself helps to drastically
reduce the number of generated clauses.

5 Conclusions

The main goal of this paper was to show that, in many situations, efficient
methods for automated theorem proving can be obtained if we can find suitable
embeddings into first order classical logic. We illustrated the ideas by means
of various examples, ranging from many-valued logics to description logics.

In the case of many-valued logics, such embeddings into classical logic allow
to reconstruct known completeness results for existing methods for automated
theorem proving. Apart from this, the inference systems we obtain are much
more restricted, in particular with ordering constraints and selection functions.
In addition, general results in first order logic for simplification and for elimi-
nating redundancies can then be used for free in the derived calculi. Both in
many-valued logics and in more general logics, such as modal logic, intuitionis-
tic logic and generalizations thereof, such embeddings into classical logic allow
to use existing efficient theorem provers for first order logic; there is no need to
devise specialized theorem provers for particular non-classical logics. In many
cases – for instance in the case of the uniform word problem for Boolean alge-
bras with operators, or for Heyting algebras – the complexity of the decision
procedures obtained this way is in EXPTIME, hence (time-)optimal.

30

References

[AB75] A.R. Anderson and N.D. Belnap. Entailment: The Logic of Rele-
vance and Necessity, volume 1. Princeton University Press, 1975.

[ABN98] H. Andréka, J. van Benthem, and I. Németi. Modal languages
and bounded fragments of predicate logic. Journal of Philosoph-
ical Logic, 27:217–274, 1998.

[AC00] S. Aguzzoli and A. Ciabattoni. Finiteness of infinite-valued
 Lukasiewicz logic. Journal of Logic, Language and Information,
9:5–29, 2000.

[ANS01] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In Handbook
of Philosophical Logic, volume 2. Kluwer, Dordrecht, 2nd edition
edition, 2001.

[Baa03a] F. Baader. Terminological cycles in a description logic with existen-
tial restrictions. In G. Gottlob and T. Walsh, editors, Proceedings
of the 18th International Joint Conference on Artificial Intelligence,
(IJCAR 2003), pages 325–330. Morgan Kaufmann, 2003.

[Baa03b] F. Baader. The instance problem and the most specific concept in
the description logic EL w.r.t. terminological cycles with descrip-
tive semantics. In A. Günter, R. Kruse and B. Neumann, editors,
Proceedings of the 26th Annual German Conference on Artificial
Intelligence, (KI 2003), LNAI 2821, pages 64–78. Springer, 2003.

[BF95] M. Baaz and C.G. Fermüller. Resolution-based theorem proving for
many-valued logics. Journal of Symbolic Computation, 19:353–391,
1995.

[BFC01] M. Baaz, C.G. Fermüller, and A. Ciabattoni. Herbrand’s theo-
rem for prenex Gödel logic and its consequences for theorem prov-
ing. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings of
LPAR’2001, LNCS 2250, pages 201–215. Springer, 2001.

[BFS99] M. Baaz, C.G. Fermüller, and G. Salzer. Automated deduction for
many-valued logics. In A. Robinson and A. Voronkov, editors, Hand-
book of Automated Reasoning, volume II, pages 1355–1402. Elsevier
Science 2001.

[BG94] L. Bachmair and H. Ganzinger. Rewrite-based equational theo-
rem proving with selection and simplification. Journal of Logic and
Computation, 4(3):217–247, 1994.

[BG98] L. Bachmair and H. Ganzinger. Ordered chaining calculi for
first-order theories of transitive relations. Journal of the ACM,
45(6):1007–1049, 1998.

[BHM99] B. Beckert, R. Hähnle, and F. Manyà. Transformations between
signed and classical clause logic. In Proceedings of the 29th Interna-
tional Symposium on Multiple-valued Logic (ISMVL’99), Freiburg,
Germany, pages 248–255. IEEE Press, 1999.

[BHM00] B. Beckert, , R. Hähnle, and F. Manyà. The 2-SAT problem of
regular signed CNF formulas. In Proceedings of the 30th Interna-

31

tional Symposium on Multiple-valued Logic (ISMVL’2000), Port-
land, USA, pages 331–336. IEEE Press, 2000.

[BHM01] R. Béjar, R. Hähnle, and F. Manyà. A modular reduction of regu-
lar logic to classical logic. In Proceedings if the 31st International
Symposium on Multiple-valued Logic (ISMVL’01), Warsaw, Poland,
pages 221–226. IEEE Press, 2001.

[BRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[BS81] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra.
Graduate Texts in Mathematics. Springer Verlag, 1981.

[Bur95] S. Burris. Polynomial time uniform word problems. Mathematical
Logic Quaterly, 41:173–182, 1995.

[CZ90] R. Caferra and N. Zabel. An application of many-valued logic to
decide propositional S5 formulae: A strategy designed for a para-
metric tableaux-based theorem prover. In Artificial Intelligence IV:
Methodology, Systems, Applications, pages 23–32, 1990. Elsevier.

[DCF02] M. Dezani-Ciangaglini, A. Frisch, E. Giovannetti, and Y. Moto-
hama. The relevance of semantic subtyping. Electronic Notes in
Theoretical Computer Science, 70(1), 2002.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[Dum59] M. Dummet. A propositional calculus with denumerable matrix.
Journal of Symbolic Logic, 24(2):97–106, 1959.

[Dun95] J.M. Dunn. Positive modal logic. Studia Logica, 55:301–317, 1995.
[GHM01] H. Ganzinger, U. Hustadt, C. Meyer, and R.A. Schmidt. A

resolution-based decision procedure for extensions of K4. In M. Za-
kharyaschev, K. Segerberg, M. de Rijke, and H. Wansing, editors,
Advances in Modal Logic, Volume 2, volume 119 of CSLI Lecture
Notes, chapter 9, pages 225–246. CSLI, Stanford, USA, 2001.

[GN99] H. Ganzinger and H. de Nivelle. A superposition decision proce-
dure for the guarded fragment with equality. In Proceedings of the
Fourteenth Annual IEEE Symposium on Logic in Computer Science
(LICS’99), pages 295–303. IEEE Computer Society Press, 1999.

[Gol93] R. Goldblatt. Mathematics of modality, volume 43 of Center for the
Study of Language and Information. Univ. of Chicago Press, 1993.

[GS00] H. Ganzinger and V. Sofronie-Stokkermans. Chaining techniques
for automated theorem proving in many-valued logics. In Proceed-
ings of the 30th International Symposium on Multiple-valued Logic
(ISMVL’2000), Portland, USA, pages 337–344. IEEE Computer So-
ciety Press, 2000.

[Häh93] R. Hähnle. Automated Theorem Proving in Multiple-Valued Logics.
Oxford University Press, 1993.

[Häh94a] R. Hähnle. Many-valued logic and mixed integer programming. An-
nals of Mathematics and Artificial Intelligence, 12(3,4):231–264, De-
cember 1994.

32

[Häh94b] R. Hähnle. Short conjunctive normal forms in finitely valued logics.
Journal of Logic and Computation, 4(6):905–927, 1994.

[Häh96] R. Hähnle. Exploiting data dependencies in many-valued logics.
Journal of Applied Non-Classical Logics, 6(1):49–69, 1996.

[Häh97a] R. Hähnle. Proof theory of many-valued logic – linear optimiza-
tion – logic design. Soft Computing – A Fusion of Foundations,
Methodologies and Applications, 1(3):107–119, 1997.

[Häh97b] R. Hähnle. Proof theory of many-valued logic—linear
optimization—logic design: Connections and interactions. Soft
Computing – A Fusion of Foundations, Methodologies and Applica-
tions, 1(3):107–119, September 1997.

[Häh01] R. Hähnle. Advanced many-valued logics. In Handbook of Philo-
sophical Logic, volume 2, pages 297–395. Kluwer, Dordrecht, 2nd
edition edition, 2001.

[Häh03] R. Hähnle. Complexity of many-valued logics. In M. Fitting and E.
Or lowska, editors, Beyond Two: Theory and Applications of Multiple
Valued Logic, volume 114 of Studies in Fuzziness and Soft Comput-
ing, chapter 3, pages 211–233. Springer, Berlin, 2003.

[Háj98] P. Hájek. Metamathematics of Fuzzy Logic. Trends in Logic, Volume
4. Kluwer Academic Publishers, Dordrecht, 1998.

[IO96] L. Iturrioz and E. Or lowska. A Kripke-style and relational semantics
for logics based on Lukasiewicz algebras. Conference in honour of
J. Lukasiewicz, Dublin, 1996.

[IO01] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable
data structures. In Proceedings of 28th Symposium on Principles of
Programming Languages (POPL’01), pages 14–26. ACM, 2001.

[Itu83] L. Iturrioz. Symmetrical Heyting algebras with operators.
Zeitschrift für Mathematische Logik und Grundlagen der Mathe-
matik, 29:33–70, 1983.

[KL92] M. Kifer and M. Lozinskii. A logic for reasoning with inconsistency.
Journal of Automated Reasoning, 9:179–215, 1992.

[KN03] Y. Kazakov and H. de Nivelle. Subsumption of concepts in FL0

for (cyclic) terminologies with respect to descriptive semantics is
PSPACE-complete. In D. Calvanese, G. De Giacomo, and E. Fran-
coni, editors, 2003 International Workshop on Description Logics
(DL-03), volume 81 of CEUR Workshop Proceedings, pages 56–64,
Rome, Italy, September 2003. University of Rome ”La Sapienza”
and Free University of Bolzano/Bozen, CEUR.

[LMR98] J. Lu, N.V. Murray, and E. Rosenthal. A framework for reasoning in
multiple-valued logics. Journal of Automated Reasoning, 21(1):39–
67, 1998.

[Luk30] J. Lukasiewicz. Philosophische Bemerkungen zu mehrwertigen Sys-
temen des Aussagenkalküls. Comptes rendus de la Société des Sci-
ences et Lettres de Varsovie, cl.iii, 23:51–77, 1930.

[Man00] F. Manyà. The 2-SAT problem in signed CNF formulas. Multiple-

33

Valued Logic. An International Journal, 5, 2000.
[MGK02] D. McAllester, R. Givan, D. Kozen, and C. Witty. Tarskian set

constraints. Information and Computation, 174:105–131, 2002.
[MO98] D. Mundici and N. Olivetti. Resolution and model building in the

infinite-valued calculus of Lukasiewicz. Theoretical Computer Sci-
ence, 200:335–366, 1998.

[Mun87] D. Mundici. Satisfiability of many-valued sentential logics is NP-
complete. Theoretical Computer Science, 52:145–153, 1987.

[Ohl93] H.J. Ohlbach. Translation methods for non-classical logics: An
overview. Bulletin of the IGPL, 1(1):69–89, 1993.

[OK85] H. Ono and Y. Komori. Logics without the contraction rule. Journal
of Symbolic Logic, 50:169–201, 1985.

[Ono93] H. Ono. Semantics for substructural logics. In P. Schroeder-Heister
and K. Došen, editors, Substructural Logics, pages 259–291. Oxford
University Press, 1993.

[Pym02] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications, volume 26 of Applied Logics Series. Kluwer, 2002.

[Ras74] H. Rasiowa. An Algebraic Approach to Non-Classical Logics, vol-
ume 78 of Studies in Logic and the Foundations of Mathematics.
North Holland, Amsterdam, 1974.

[Sch99] R. A. Schmidt. Decidability by resolution for propositional modal
logics. Journal of Automated Reasoning, 22(4):379–396, 1999.

[Sof01] V. Sofronie-Stokkermans. Automated theorem proving by resolution
for finitely-valued logics based on distributive lattices with opera-
tors. Multiple-Valued Logic - An International Journal, 6(3/4):289–
344, 2001.

[Sof02] V. Sofronie-Stokkermans. On uniform word problems involving
bridging operators on distributive lattices. In U. Egly and Ch.
Fermüller, editors, Proceedings of TABLEAUX 2002. LNAI 2381,
pages 235–250, Copenhagen, Denmark, 2002. Springer.

[Sof03] V. Sofronie-Stokkermans. Resolution-based decision procedures for
the universal theory of some classes of distributive lattices with
operators. Journal of Symbolic Computation, 36(6): 891–924, 2003.

[Urq86] A. Urquhart. Many-valued logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic Vol III, pages 71–116. D.
Reidel Publishing Company, 1986.

[Urq96] A. Urquhart. Duality for algebras of relevant logics. Studia Logica,
56(1,2):263–276, 1996.

Submitted to the Special Issue for JIM’03: October 10, 2003; Revised: January
7, 2005.

To appear in Annals of Mathematics and Artificial Intelligence, 2007.

34

A Appendix: Proof of Theorem 3.4

Proposition A.1 For all concept descriptions C1, C2, and every TBox T ,
C1 vT C2 if and only if BAONR

|=
(

∧

A≡C∈T A = C
)

→ C1 ≤ C2.

Proof: This follows from the fact that every algebra in BAONR
homomorphi-

cally embeds into a Boolean algebra of sets. 2

Lemma A.2 Every semilattice S ∈ SLO∃

NR
embeds into a lattice in DLO∃

NR
.

Proof: Let S = (S,∧, 0, 1, {fS}f∈Σ) be a semilattice with 0, 1, and with
monotone operators in Σ. Let OI∗(S) = (OI∗(S),∩,∪, {0}, S, {fS}f∈Σ) be
the lattice of all non-empty order-ideals of S, where join is set union, meet
is set intersection, and the additional operators in Σ are defined, for every
non-empty order ideal of S, U , by fS(U) = ↓fS(U). It is easy to see that
for every f ∈ Σ, fS({0}) = ↓fS({0}) = {0} and, for every U1, U2 ∈ OI∗(S),
fS(U1∪U2) = fS(U1)∪fS(U2). Obviously, (OI∗(S),∩,∪, {0}, S) is a bounded
distributive lattice. Thus, OI(S) ∈ DLO∃

NR
.

Let η : S → OI∗(S) defined by η(x) := ↓x. Obviously, η is an order embedding
(and, hence, injective), η(0) = {0}, η(1) = S and η(x∧y) = ↓(x∧y) = ↓x∩↓y.
We show that η(fS(x)) = ↓fS(x) = fS(↓x). If y ∈ ↓fS(x) then y ≤ fS(x), so
y ∈ ↓{fS(↓x). Conversely, if y ∈ ↓{fS(↓x) then y ≤ fS(z) for some z ≤ x,
hence, by the monotonicity of fS, y ≤ fS(x).) Thus, η is a homomorphism
with respect to the whole signature of S. 2

Lemma A.3 Every semilattice S ∈ SLO∀

NR
embeds into a lattice in DLO∀

NR
.

Proof: Let S = (S,∧, 1, {fS}f∈Σ) be a semilattice with 1, such that fS is a
unary meet homomorphism for every f ∈ Σ. Consider the lattice of all order-
ideals of S, OI(S) = (OI(S),∩,∪, ∅, S, {fS}f∈Σ), where join is set union, meet
is set intersection, and the additional operators in Σ are defined, for every non-
empty order ideal of S, U , by fS(U) = ↓fS(U). It is easy to see that for every
f ∈ Σ, fS(S) = ↓fS(S) = S (since fS(1) = 1). We show that if f is a meet
hemimorphism then for every U1, U2 ∈ OI(S), fS(U1∩U2) = fS(U1)∩fS(U2).
The direct inclusion is obvious. In order to prove the converse inclusion, let
x ∈ fS(U1) ∩ fS(U2). Then there exist y1 ∈ U1 and y2 ∈ U2 such that x ≤
fS(y1) and x ≤ fS(y2) Then x ≤ fS(y1) ∧ fS(y2) = fS(y1 ∧ y2) (since fS is a
meet hemimorphism). Let y = y1∧y2. Then y ≤ yi for i = 1, 2, so y ∈ U1∩U2.
This shows that x ≤ fS(y), with y ∈ U1 ∩ U2, so x ∈ fS(U1 ∩ U2).
The fact that η : S → OI(S) defined by η(x) := ↓x is an order-embedding
and a homomorphism with respect to the whole signature of S can be proved
as before. 2

Lemma A.4 Every bounded distributive lattice with operators in Σ homo-
morphically embeds into a Boolean lattice with (the same type of) operators in
Σ.

35

Proof: Consequence of results of Priestley duality for distributive lattices and
Stone duality for Boolean algebras. 2

Proposition A.5 Assume that the only concept constructors are intersection
and existential restriction. For all concept descriptions C1, C2, and every TBox
T , C1 vT C2 if and only if SLO∃

NR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2.

Proof: (⇒) Assume that C1 vT C2. Then we know, by Proposition A.1, that

BAONR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2. Let S = (S,∧, 0, 1, {f∃R}R∈NR
) ∈

SLO∃
NR

. Then there exists an injective homomorphism of bounded semilat-
tices, η : S → OI∗(S), and a homomorphic embedding h of the bounded
lattice with operators OI∗(S) into a Boolean lattice with operators B. Let
v : NC → S be an arbitrary valuation in S such that v(A) = v(C) for every
A ≡ C ∈ T . Then h ◦ η ◦ v : NC → B is an assignment into an alge-
bra in BAONR

with h(η(v(A))) = h ◦ η ◦ v(C) for every A ≡ C ∈ T . So,
h(η(v(C1 ∧ C2))) = h ◦ η ◦ v(C1 ∧ C2) = h ◦ η ◦ v(C1) = h(η(v(C1))), so, by
the injectivity of h ◦ η, v(C1 ∧ C2) = v(C1).
(⇐) The converse follows immediately from the fact that the reduct of every
algebra in BAONR

to the signature {∧, 0, 1, {f∃R}R∈NR
} is in SLO∃

NR
. 2

Proposition A.6 Assume that the only concept constructors are intersection
and universal restriction. For all concept descriptions C1, C2, and every TBox
T , C1 vT C2 if and only if SLO∀

NR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2.

Proof: (⇒) Assume that C1 vT C2. Then we know, by Proposition A.1, that

BAONR
|=

(

∧

A≡C∈T A = C
)

→ C1 ≤ C2. Let S = (S,∧, 1, {f∀R}R∈NR
) ∈

SLO∀
NR

. Then there exists an injective homomorphism of bounded semilat-
tices, η : S → OI(S), and a homomorphic embedding h of the bounded
lattice with operators OI(S) into a Boolean lattice with operators B. Let
v : NC → S be an arbitrary valuation in S such that v(A) = v(C) for every
A ≡ C ∈ T . Then h ◦ η ◦ v : NC → B is an assignment into an alge-
bra in BAONR

with h(η(v(A))) = h ◦ η ◦ v(C) for every A ≡ C ∈ T . So,
h(η(v(C1 ∧ C2))) = h ◦ η ◦ v(C1 ∧ C2) = h ◦ η ◦ v(C1) = h(η(v(C1))), so, by
the injectivity of h ◦ η, v(C1 ∧ C2) = v(C1).
(⇐) The converse follows immediately from the fact that the reduct of every
algebra in BAONR

to the signature {∧, 1, {f∀R}R∈NR
} is in SLO∀

NR
. 2

B Appendix: Proof of Theorem 3.5

Theorem B.1 The uniform word problem for BAONR
is exptime-complete.

Proof: (Sketch) A resolution-based exponential time algorithm for the uni-
form word problem for BAONR

is obtained e.g. in [Sof03]. exptime-hardness
(even for word problems which only contain conjunction and universal and
existential restriction) can be proved using arguments similar to those used in

36

[MGK02], Theorem 1. 2

Lemma B.2 Every partial SLO∃

NR
-algebra weakly embeds into a total SLO∃

NR
-

algebra.

Proof: Let P = (P,∧, 0, 1, {f∃R}R∈NR
) be a partial SLO∃

NR
-algebra. Then:

• ∧ is a partially defined binary operation and for every R ∈ NR, f∃R is a
partially defined unary operation;

• x ∧ x is defined in P for every x ∈ P ;
x ∧ y is defined in P if and only if y ∧ x is defined in P and then they are
equal;
if x ∧ y is defined in P and x ∧ (y ∧ z) is defined in P then also (x ∧ y) ∧ z

is defined in P and x ∧ (y ∧ z) = (x ∧ y) ∧ z;
• f∃R(0) is defined in P and equal to 0 for every R ∈ NR;

if x ∧ y is defined in P and x ∧ y = x, and f∃R(x), f∃R(y) are defined in P

then f∃R(x) ∧ f∃R(y) is defined in P and equals f∃R(x), for every R ∈ NR.

A partial order ≤ can be defined by x ≤ y if and only if x ∧ y is defined in P

and equals x. Let OI(P) := (OI(P,≤),∩, {0}, S, {f∃R}R∈NR
), where union is

join, intersection is meet, and the additional operators are defined, for every
order ideal of S, U , by f ∃R(U) = ↓{f∃R(x) | f∃R(x) defined in P, x ∈ U}. It is
easy to see that f∃R({0}) = ↓{f∃R(0)} = {0}; and f ∃R is monotone for every
R ∈ NR.

Let η : P → OI(P) be defined by η(x) = ↓x. η is obviously injective. We
show that η is a weak embedding, i.e., in addition, whenever fP (p1, . . . , pn) is
defined in P, η(fP (p1, . . . , pn)) = f(η(p1), . . . , η(pn)).

Obviously, η(1) = S, η(0) = {0}, and whenever x∧y is defined in P , η(x∧y) =
η(x) ∩ η(y). Assume that f∃R(x) is defined in P . We prove that η(f∃R(x)) =
↓f∃R(x) = ↓{f∃R(y) | f∃R(y) defined in P, y ≤ x} = f ∃R(↓x) = f∃R(η(x)).

If y ∈ η(f∃R(x)) then y ≤ f∃R(x), so y ∈ f∃R(↓x). If y ∈ f∃R(↓x) then
y ≤ f∃R(z) for some z such that f∃R(z) is defined and z ≤ x (i.e. such that
z ∧ x is defined in P and equals z). But then f∃R(z) ∧ f∃R(x) is defined in P

and equal to f∃R(z), so y ≤ f∃R(z) ≤ f∃R(x). Hence y ∈ η(f∃R(x)). 2

Proposition B.3 The uniform word problem for SLO∃

NR
is decidable in poly-

nomial time.

Proof: By a result of Burris [Bur95], a quasivariety K has a polynomial time
decidable uniform word problem if every finite partial algebra which weakly
satisfies the (quasi-)identities of K weakly embeds into a total algebra in K.
Lemma B.2 shows that this is the case for K = SLO∃

NR
. 2

37

