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Abstract. We present an overview of results on hierarchical and mod-
ular reasoning in complex theories. We show that for a special type of
extensions of a base theory, which we call local, hierarchic reasoning is
possible (i.e. proof tasks in the extension can be hierarchically reduced to
proof tasks w.r.t. the base theory). Many theories important for computer
science or mathematics fall into this class (typical examples are theories
of data structures, theories of free or monotone functions, but also func-
tions occurring in mathematical analysis). In fact, it is often necessary
to consider complex extensions, in which various types of functions or
data structures need to be taken into account at the same time. We show
how such local theory extensions can be identified and under which con-
ditions locality is preserved when combining theories, and we investigate
possibilities of efficient modular reasoning in such theory combinations.

We present several examples of application domains where local the-
ories and local theory extensions occur in a natural way. We show, in
particular, that various phenomena analyzed in the verification litera-
ture can be explained in a unified way using the notion of locality.

1 Introduction

Many problems in mathematics and computer science can be reduced to proving
the satisfiability of conjunctions of literals in a background theory (which can be
the extension of a base theory with additional functions – e.g., free, monotone, or
recursively defined – or a combination of theories). It is therefore very important
to identify situations where reasoning in complex theories can be done efficiently
and accurately. Efficiency can be achieved for instance by:

(1) reducing the search space (preferably without loosing completeness);
(2) modular reasoning, i.e., delegating some proof tasks which refer to a specific

theory to provers specialized in handling formulae of that theory.

Identifying situations where the search space can be controlled without loss of
completeness is of utmost importance, especially in applications where efficient
algorithms (in space, but also in time) are essential. To address this problem,
essentially very similar ideas occurred in various areas: proof theory and auto-
mated deduction, databases, algebra and verification.

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 47–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



48 V. Sofronie-Stokkermans

Local inference systems. Possibilities of restricting the search space in inference
systems without loss of completeness were studied by McAllester and Givan in
[17,21,18]. They introduced so-called “local inference systems”, which can be
modeled by sets of rules (or sets of Horn clauses N) with the property that for
any ground Horn clause G, it is guaranteed that if G can be proved using N then
G can already be proved by using only those instances N [G] of N containing
only ground terms occurring in G or in N . For local inference systems, validity of
ground Horn clauses can be checked in polynomial time. In [5,4], Ganzinger and
Basin define a more general notion, order locality, and establish links between
order-locality and saturation w.r.t. ordered resolution with a special notion of
redundancy. These results were used for automated complexity analysis.

The work on local inference systems and local theories can be seen as an
extension of ideas which occurred in the study of deductive databases. The in-
ference rules of a deductive database are usually of a special form (known as
datalog program): typically a set of universal Horn clauses which do not contain
function symbols. Any datalog program defines an inference relation for which
entailment of ground clauses is decidable in polynomial time [33,34].

Locality and algebra. Similar ideas also occurred in algebra. To prove that the
uniform word problem for lattices is decidable in polynomial time, Skolem [26]
used the following idea: replace the lattice operations ∨ and ∧ by ternary rela-
tions r∨ and r∧, required to be functional, but not necessarily total. The lattice
axioms were translated to a relational form, by flattening them and then replac-
ing every atom of the form x ∨ y ≈ z with r∨(x, y, z) (similarly for ∧-terms).
Additional axioms were added, stating that equality is an equivalence and that
the relations are compatible with equality and functional. This new presenta-
tion, consisting only of Horn, function-free clauses, can be used for deciding in
polynomial time the uniform word problem for lattices. The correctness and
completeness of the method relies on the fact that every partially-ordered set
(where ∨ and ∧ are partially defined) embeds into a lattice. A similar idea was
used by Evans in the study of classes of algebras with a PTIME decidable word
problem [12]. The idea was extended by Burris [8] to quasi-varieties of algebras.
He proved that if a quasi-variety axiomatized by a set K of Horn clauses has the
property that every finite partial algebra which is a partial model of the axioms
in K can be extended to a total algebra model of K then the uniform word prob-
lem for K is decidable in polynomial time. In [13], Ganzinger established a link
between the proof theoretic notion of locality and embeddability of partial into
total algebras. In [14,27] the notion of locality for Horn clauses is extended to
the notion of local extension of a base theory.

Locality and verification. Apparently independently, similar phenomena were
studied in the verification literature, mainly motivated by the necessity of devis-
ing methods for efficient reasoning in theories of data structures. In [23], McPeak
and Necula investigate local reasoning in pointer data structures, with the goal of
efficiently proving invariants in programs dealing with pointers. They present a
methodology of specifying shapes of data structures using a class of specifications
which they call local. It is then shown that the class of local specifications has
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the property that in order to disprove a (ground) formula, only certain ground
instances of the specification are needed, referring to a part of the data structure
which is situated in the “neighborhood” of the counterexample. The essence of
the method devised by McPeak and Necula is to perform case analysis based on
memory writes, and generate facts that must be proved unsatisfiable by using a
finite number of instantiations of the axioms defining the properties of the data
structures. They show that for local specifications finite sets of instances can be
found, without loss of completeness. Locality considerations also occur in the
study of a theory of arrays by Bradley, Manna and Sipma [6]. They identified a
fragment of the theory of arrays for which universal quantification over indices
can be replaced by taking a (well-determined) set of ground instances for the
index variables. We will show that all these phenomena are instances of a gen-
eral concept, and present possibilities of recognizing various types of locality of
theories and theory extensions.

It is equally important to be able to reason efficiently in complex theories.

Modular reasoning in combinations of theories. Modular methods for checking
satisfiability of conjunctions of ground literals in combinations of theories which
have disjoint signatures, or only share constants are well studied. The Nelson-
Oppen combination procedure [24] for instance, can be applied for combining
decision procedures of stably infinite theories over disjoint signatures. Resolution-
based methods have also been used in this context [2,1]. Recently, attempts have
been made to extend the Nelson-Oppen combination procedure to more general
theories. Extensions have been achieved either by relaxing the requirement that
the theories to be combined are stably-infinite [32]1; or by relaxing the require-
ment that the theories to be combined have disjoint signatures [3,31,15]. Note
that these extensions are still restrictive, as the conditions imposed on the base
theory and on the component theories are very strong, and of a model theoretic
nature. For instance, due to the limitations on the shared theory for decidability
transfer in combinations of theories as studied in [15], only locally finite shared
theories (hence no numerical domains) can be handled when applying these re-
sults to verification in [16]. In contrast, the notion of local extensions we studied
[27] imposes no restrictions on using numerical domains as a base theory.

The notion of locality of a theory extension allows us to address at the same
time the two aspects important for efficient reasoning mentioned above, namely
restricting the search space and modular reasoning. Locality is used for restrict-
ing the search space, but as a side-effect it allows to reduce proof tasks in the
extension, hierarchically, to proof tasks w.r.t. the base theory. We will present
these results here. We will also present recent results on preservation of locality
of theories (resp. theory extensions) under theory combination, and on possibil-
ities of modular reasoning in such combinations. In particular, we are interested
in characterizing the type of information which needs to be exchanged between
1 It is interesting that, although the approach of [32] is orthogonal to the notion of

locality of a theory extension [27], many of the examples considered there can also
be explained using semantical characterizations of locality.
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provers for the component theories in order to guarantee completeness of the
procedure. This last problem is strongly related to the problem of studying the
form of interpolants in theory combinations. This is why we will also mention
some of our results on interpolation in local theory extensions.

Structure of the paper: The paper is structured as follows: Section 2 contains
generalities on theories, local theories, partial algebras, weak validity and em-
beddability of partial algebras into total algebras. In Section 3 the notion of
local theory extension is introduced, and a method for hierarchical reasoning in
such extensions is presented. Section 4 presents two possibilities of identifying
local theory extensions: one based on links between embeddability and locality
(Section 4.1) and one which in addition allows to use resolution-based methods
(Section 4.2). These methods are used in Section 5 to provide various examples
of local theory extensions. We illustrate the method for hierarchical reasoning
in Section 3.1 on several examples. In Section 6 we investigate conditions under
which locality is preserved when combining theories, and in Section 7 we inves-
tigate possibilities of efficient modular reasoning in such theory combinations.

2 Preliminaries

Theories. Theories can be regarded as sets of formulae or as sets of models. Let
T be a Π-theory and φ, ψ be Π-formulae. We say that T ∧ φ |= ψ (written also
φ |=T ψ) if ψ is true in all models of T which satisfy φ.

In what follows we consider extensions of theories, in which the signature
is extended by new function symbols (i.e. we assume that the set of predicate
symbols remains unchanged in the extension). If a theory is regarded as a set of
formulae, then its extension with a set of formulae is set union. If T is regarded
as a collection of models then its extension with a set K of formulae consists
of all structures (in the extended signature) which are models of K and whose
reduct to the signature of T0 is in T0.

Let T0 be an arbitrary theory with signature Π0 = (S0, Σ0, Pred), where S0 is
a set of sorts, Σ0 a set of function symbols, and Pred a set of predicate symbols.
We consider extensions T1 of T0 with signature Π = (S, Σ, Pred), where the set
of sorts is S = S0 ∪ S1 and the set of function symbols is Σ = Σ0 ∪ Σ1 (i.e. the
signature is extended by new sorts and function symbols). We assume that T1
is obtained from T0 by adding a set K of (universally quantified) clauses in the
signature Π . Thus, Mod(T1) consists of all Π-structures which are models of K
and whose reduct to Π0 is a model of T0.

Local theories. This notion was introduced by Givan and McAllester in [17,21].
A local theory is a set of Horn clauses K such that, for any ground Horn clause
C, K |= C only if already K[C] |= C (where K[C] is the set of instances of K in
which all terms are subterms of ground terms in either K or C).

The size of K[G] is polynomial in the size of G for a fixed K. Since satisfiability
of sets of ground Horn clauses can be checked in linear time [11], it follows that
for local theories, validity of ground Horn clauses can be checked in polynomial
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time. Givan and McAllester proved that every problem which is decidable in
PTIME can be encoded as an entailment problem of ground clauses w.r.t. a
local theory [18]. An example of a local theory (cf. [18]) is the set of axioms of
a monotone function w.r.t. a transitive relation ≤:

K = {x ≤ y ∧ y ≤ z → x ≤ z, x ≤ y → f(x) ≤ f(y)}.

Another example provided in [18] is a local axiom set for reasoning about a
lattice (similar to that proposed by Skolem in [26]). In [5,4], Ganzinger and Basin
defined the more general notion of order locality and showed how to recognize
(order-)local theories and how to use these results for automated complexity
analysis. Given a term ordering �, we say that a set K of clauses entails a clause
C bounded by � (notation: K |=� C), if and only if there is a proof of K |= C
from those ground instances of clauses in K in which (under 	) each term is
smaller than or equal to some term in C.

Definition 1 ([5,4]). A set of clauses K is local with respect to � if whenever
K |= C for a ground clause C, then K |=� C.

Theorem 1 ([5,4]). Let � be a (possibly partial) term ordering and K be a set
of clauses. Assume that K is saturated with respect to �-ordered resolution, and
let C be a ground clause. Then K |= C for a ground clause C if and only if
K |=� C, i.e. K is local with respect to �.

The converse of this theorem is not true in general. Ganzinger and Basin estab-
lished conditions under which the converse holds – they use a hyperresolution
calculus and identify conditions when for Horn clauses order locality is equiv-
alent to so-called peak saturation (Theorems 4.4–4.7 in [4]). These results are
obtained for first-order logic without equality. In [13], Ganzinger established a
link between proof theoretic and semantic concepts for polynomial time decid-
ability of uniform word problems which had already been studied in algebra
[26,12,8]. He defined two notions of locality for equational Horn theories, and
established relationships between these notions of locality and corresponding
semantic conditions, referring to embeddability of partial algebras into total al-
gebras. Theorem 1 also can be used for recognizing equational Horn theories:

Theorem 2 ([13]). Let K be a set of Horn clauses. Then K is a local theory in
logic with equality if and only if K∪EQ is a local theory in logic without equality,
where EQ denotes the set of equality axioms consisting of reflexivity, symmetry,
transitivity, and of congruence axioms for each function symbol in the signature.

Theorems 2 and 1 were used in [13] for proving the locality of the following pre-
sentation Int of the set of integers with successor and predecessor by saturation:

(1) p(x) ≈ y → s(y) ≈ x (3) p(x) ≈ p(y) → y ≈ x
(2) s(x) ≈ y → p(y) ≈ x (4) s(x) ≈ s(y) → y ≈ x

The presentation Int′ of integers with successor and predecessor consisting of the
axioms (1) and (2) alone (without the injectivity conditions (3) and (4)) is not
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local but it is stably local: in order to disprove a ground set G of clauses only
those ground instances Int′[G] of Int′ are needed where variables are mapped to
subterms occurring in G. (Note that Int′ ∪ EQ is not saturated under ordered
resolution; when saturating it the injectivity axioms are generated.)

In [14,27] the notion of locality for Horn clauses is extended to the notion
of local extension of a base theory (cf. Section 3). In the study of local theory
extensions we will refer to total models of a theory and to partial models of a
theory. The necessary notions on partial structures are defined below.

Partial structures. Let Π = (S, Σ, Pred) be a S-sorted signature where Σ
is a set of function symbols and Pred a set of predicate symbols. A partial Π-
structure is a structure A = ({As}s∈S , {fA}f∈Σ, {PA}P∈Pred), where for every
s ∈ S, As is a non-empty set and for every f ∈ Σ with arity s1 . . . sn → s,
fA is a partial function from

∏n
i=1 Asi to As. A is called a total structure if all

functions fA are total. (In the one-sorted case we will denote both an algebra
and its support with the same symbol.) Details on partial algebras can be found
in [7]. The notion of evaluating a term t with variables X = {Xs | s ∈ S} w.r.t.
an assignment {βs:Xs → As | s ∈ S} for its variables in a partial structure
A is the same as for total many-sorted algebras, except that the evaluation is
undefined if t = f(t1, . . . , tn) with a(f) = (s1 . . . sn → s), and at least one of
βsi(ti) is undefined, or else (βs1(t1), . . . , βsn(tn)) is not in the domain of fA.

A weak Π-embedding between the partial structures A = ({As}s∈S, {fA}f∈Σ,
{PA}P∈Pred) and B = ({Bs}s∈S , {fB}f∈Σ, {PB}P∈Pred) is a (many-sorted) family
i = (is)s∈S of total maps is : As → Bs such that

– if fA(a1, . . . , an) is defined then also fB(is1(a1), . . . , isn(an)) is defined and
is(fA(a1, . . . , an)) = fB(is1(a1), . . . , isn(an)), provided a(f) = s1 . . . sn → s;

– for each s, is is injective and an embedding w.r.t. Pred i.e. for every P ∈ Pred
with arity s1 . . . sn and every a1, . . . , an where ai ∈ Asi , PA(a1, . . . , an) if and
only if PB(is1(a1), . . . , isn(an)).

In this case we say that A weakly embeds into B.
In what follows we will denote a many-sorted variable assignment {βs:Xs →

As | s ∈ S} as β : X → A. For the sake of simplicity all definitions below
are given for the one-sorted case. They extend in a natural way to many-sorted
structures.

Definition 2 (Weak validity). Let (A, {fA}f∈Σ, {PA}P∈Pred) be a partial
structure and β : X→A.

(1) (A, β) |=w t ≈ s if and only if (a) β(t) and β(s) are both defined and equal;
or (b) at least one of β(s) and β(t) is undefined.

(2) (A, β) |=w t �≈ s if and only if (a) β(t) and β(s) are both defined and different;
or (b) at least one of β(s) and β(t) is undefined.

(3) (A, β) |=w P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn))∈PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(4) (A, β)|=w¬P (t1, . . . , tn) if and only if (a) β(t1), . . ., β(tn) are all defined and
(β(t1), . . . , β(tn))�∈PA; or (b) at least one of β(t1), . . ., β(tn) is undefined.
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(A, β) weakly satisfies a clause C (notation: (A, β) |=w C) if (A, β) |=w L for at
least one literal L in C. A weakly satisfies C (notation: A |=w C) if (A, β) |=w C
for all assignments β. A weakly satisfies a set of clauses K (notation: A |=w K)
if A |=w C for all C ∈ K.

Definition 3 (Evans validity). Evans validity is defined similarly, with the
difference that (1) is replaced with:

(1’) (A, β) |= t ≈ s if and only if (a) β(t) and β(s) are both defined and equal; or
(b) β(s) is defined, t = f(t1, . . . , tn) and β(ti) is undefined for at least one
of the direct subterms of t; or (c) both β(s) and β(t) are undefined.

Evans validity extends to (sets of) clauses in the usual way. We use the notation:
(A, β) |= L for a literal L; (A, β) |= C and A |= C for a clause C, etc.

Example 1. Let A be a partial Σ-algebra, where Σ = {car/1, nil/0}. Assume
that nilA is defined and carA(nilA) is not defined. Then:

– A �|= car(nil) ≈ nil (since carA(nil) is undefined in A, but nil is defined in A);
– A |= car(nil) �≈ nil;
– A |=w car(nil) ≈ nil, A |=w car(nil) �≈ nil (since car(nil) is not defined in A).

Definition 4. A partial Π-algebra A is a weak partial model (resp. partial
model) of T1 with totally defined Σ0-function symbols if (i) A|Π0 is a model
of T0 and (ii) A |=w K (resp. A |= K).

If the base theory T0 and its signature are clear from the context, we will refer
to (weak) partial models of T1. We will use the following notation:

– PMod(Σ1, T1) is the class of all partial models of T1 in which the functions
in Σ1 are partial, and all other function symbols are total;

– PModw(Σ1, T1) is the class of all weak partial models of T1 in which the
Σ1-functions are partial and all the other function symbols are total;

– Mod(T1) denotes the class of all total models of T1.

We will also consider small variations of the notion of weak partial model:

– PModf
w(Σ1, T1) is the class of all finite weak partial models of T1 in which

the Σ1-functions are partial and all the other function symbols are total;
– PModfd

w (Σ1, T1) is the class of all weak partial models of T1 in which the
Σ1-functions are partial and their definition domain is a finite set, and all
the other function symbols are total.

and similar variations PModf(Σ1, T1), PModfd(Σ1, T1) of the notion of partial
model.

Embeddability. For theory extensions T0 ⊆ T1 = T0 ∪ K, where K is a set of
clauses, we consider the following conditions:

(Emb) Every A ∈ PMod(Σ1, T1) weakly embeds into a total model of T1.
(Embw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model of T1.
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We also define a stronger notion of embeddability, which we call completability:

(Compw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model B of
T1 such that A|Π0 and B|Π0 are isomorphic.

(Comp) is defined analogously (w.r.t. PMod(Σ1, T1)).

Conditions which only refer to embeddability of finite partial models are denoted
by (Embf

w), (Compf
w), resp. (Embf), (Compf). Conditions referring to embeddabil-

ity of partial models in which the extension functions have a finite definition
domain (i.e. in PModfd

w (Σ1, T1)) are denoted by (Embfd
w ), resp. (Compfd

w ).

3 Local Theory Extensions

The notion of local theories introduced and studied by Givan and McAllester
[17,21,18] can be extended in a natural way to extensions of a base theory with
a set of additional function symbols constrained by a set K if clauses.

Let K be a set of clauses in the signature Π = (S, Σ, Pred), where S = S0 ∪S1
and Σ = Σ0 ∪Σ1. In what follows, when we refer to sets G of ground clauses we
assume that they are in the signature Πc = (S, Σ ∪ Σc, Pred), where Σc is a set
of new constants. If Ψ is a set of ground Σ0∪Σ1∪Σc-terms, we denote by KΨ the
set of all instances of K in which all terms starting with a Σ1-function symbol
are ground terms in the set Ψ . We denote by KΨ the set of all instances of K in
which all variables occurring below a Σ1-function symbol are instantiated with
ground terms in the set TΣ0(Ψ) of Σ0-terms generated by Ψ .

If G is a set of ground clauses and Ψ = st(K, G) is the set of ground subterms
occurring in either K or G then we write K[G] := KΨ , and K[G] := KΨ .

We will focus on the following type of locality of a theory extension T0 ⊆ T1,
where T1 = T0 ∪ K with K a set of (universally quantified) clauses:

(Loc) For every set G of ground clauses T1 ∪ G |=⊥ iff T0 ∪ K[G] ∪ G has
no weak partial model in which all terms in st(K, G) are defined.

(SLoc) For every set G of ground clauses T1 ∪ G |=⊥ iff T0 ∪ K[G] ∪ G has
no partial model in which all terms in st(K, G) are defined.

Weaker notions (Locf), resp. (SLocf) can be defined if we require that the re-
spective conditions only hold for finite sets G of ground clauses. An intermediate
notion of locality (Locfd) can be defined if we require that the respective condi-
tions only hold for sets G of ground clauses containing only a finite set of terms
starting with a function symbol in Σ1. A more general notion of locality (ELoc)
is presented at the end of Section 4.1.

An extension T0 ⊆ T1 is local (stably local) if it satisfies condition (Locf) (resp.
(SLocf)). A local (stably local) theory [13] is a local extension of the empty
theory. In (stably) local theory extensions hierarchical reasoning is possible.
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3.1 Hierarchical Reasoning in Local Theory Extensions

Consider a local theory extension T0 ⊆ T0 ∪ K. The locality conditions defined
above require that, for every set G of ground clauses, T1 ∪ G is satisfiable if and
only if T0 ∪ K∗[G] ∪ G has a (Evans, weak, finite) partial model with additional
properties, where, depending on the notion of locality, K ∗ [G] is K[G] or K[G].
All clauses in K ∗ [G] ∪ G have the property that the function symbols in Σ1
have as arguments only ground terms. Therefore, K ∗ [G] ∪ G can be flattened
and purified (i.e. the function symbols in Σ1 are separated from the other sym-
bols) by introducing, in a bottom-up manner, new constants ct for subterms
t = f(g1, . . . , gn) with f ∈ Σ1, gi ground Σ0 ∪ Σc-terms (where Σc is a set of
constants which contains the constants introduced by flattening, resp. purifica-
tion), together with corresponding definitions ct ≈ t. The set of clauses thus
obtained has the form K0 ∪ G0 ∪ D, where D is a set of ground unit clauses of
the form f(g1, . . . , gn)≈c, where f ∈ Σ1, c is a constant, g1, . . . , gn are ground
terms without function symbols in Σ1, and K0 and G0 are clauses without func-
tion symbols in Σ1. Flattening and purification preserve both satisfiability and
unsatisfiability with respect to total algebras, and also with respect to partial
algebras in which all ground subterms which are flattened are defined [27].

For the sake of simplicity in what follows we will always flatten and then
purify K ∗ [G] ∪ G. Thus we ensure that D consists of ground unit clauses of the
form f(c1, . . . , cn)≈c, where f ∈ Σ1, and c1, . . . , cn, c are constants.

Lemma 3 ([27]). Let K be a set of clauses and G a set of ground clauses, and
let K0 ∪ G0 ∪ D be obtained from K ∗ [G] ∪ G by flattening and purification, as
explained above. Assume that T0 ⊆ T0 ∪ K is a local theory extension. Then the
following are equivalent:

(1) T0∪K∗ [G]∪G has a partial model in which all terms in st(K, G) are defined.
(2) T0∪K0∪G0∪D has a partial model with all terms in st(K0, G0, D) defined.
(3) T0 ∪ K0 ∪ G0 ∪ N0 has a (total) model, where

N0 = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

Theorem 4 ([27]). Assume that the theory extension T0 ⊆ T1 either (1) sat-
isfies condition (Locf), or (2) satisfies condition (SLocf) and T0 is locally finite.
Then:
(a) If all variables in the clauses in K occur below some function symbol from

Σ1 and if the universal theory of T0 is decidable, then the universal theory
of T1 is decidable.

(b) Assume some variables in K do not occur below any function symbol in Σ1.
If the ∀∃ theory of T0 is decidable then the universal theory of T1 is decidable.

In case (a) above locality allows to reduce reasoning in T1 to reasoning in an
extension of T0 with free function symbols (for this an SMT procedure can be
used). In case (b) this is not possible, as K ∗ [G] is not a set of ground clauses.
We will illustrate the applicability of Lemma 3 and Theorem 4 for specific ex-
amples of local theory extensions in Section 5.
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4 Identifying Local Theory Extensions

We discuss two different ways of recognizing the locality of a theory extension.
The first is semantical, based on possibilities of embedding partial models of a
theory extension into total models. The second is proof theoretical, and at the
moment part of work in progress: we present some results based on possibilities
of saturating the extension axioms with respect to ordered resolution.

4.1 Locality and Embeddability

Links between locality of a theory and embeddability were established by
Ganzinger in [13]. Similar results can also be obtained for local theory extensions.

In what follows we say that a non-ground clause is Σ1-flat if function symbols
(including constants) do not occur as arguments of function symbols in Σ1. A
Σ1-flat non-ground clause is called Σ1-linear if whenever a variable occurs in
two terms in the clause which start with function symbols in Σ1, the two terms
are identical, and if no term which starts with a function symbol in Σ1 contains
two occurrences of the same variable.

For sets of Σ1-flat clauses locality implies embeddability. This generalizes
results presented in the case of local theories in [13].

Theorem 5. Assume that K is a family of Σ1-flat clauses in the signature Π.

(1) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Loc) then it satisfies (Embw).
(2) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Locf) then it satisfies (Embf

w).
(3) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Locfd) then it satisfies (Embfd

w ).
(4) If T0 is compact and the extension T0 ⊆ T1 satisfies (Locf), then T0 ⊆ T1

satisfies (Embw).

Conversely, embeddability implies locality. The following results appear in [27],
[30] and allow us to give several examples of local theory extensions (cf. Sect. 5).

Theorem 6 ([27,30]). Let K be a set of Σ1-flat and Σ1-linear clauses.

(1) If the extension T0 ⊆ T1 satisfies (Embw) then it satisfies (Loc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embf
w),

then T0 ⊆ T1 satisfies (Locf).
(3) T0 ⊆ T1 satisfies (Embfd

w ). Then T0 ⊆ T1 satisfies (Locfd).

Theorem 7 ([27]). Let T0 be a universal theory and K be a set of clauses.
Then:

(1) If the extension T0 ⊆ T1 satisfies (Emb) then it satisfies (SLoc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embf),
then T0 ⊆ T1 satisfies (SLocf).
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Analyzing the proofs of Theorems 6 and 7 we notice that the embeddability con-
ditions (Comp) and (Compw) imply, in fact, stronger locality conditions. Con-
sider a theory extension T0 ⊆ T0 ∪ K with a set K of formulae of the form
∀x1 . . . xn(Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)), where Φ(x1, . . . , xn) is an arbitrary
first-order formula in the base signature Π0 with free variables x1, . . . , xn, and
C(x1, . . . , xn) is a clause in the signature Π .

We can extend the notion of locality of an extension accordingly:

(ELoc) For every formula Γ = Γ0 ∪ G, where Γ0 is a Π0-sentence and G is
a set of ground clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ ] ∪ Γ has no weak
partial model in which all terms in st(K, G) are defined.

A stable locality condition (ESLoc) can be defined similarly. The proofs of The-
orems 6 and 7 can be adapted with minimal changes to prove a stronger result:

Theorem 8 ([27]). (1) Assume all terms of K starting with a Σ1-function are
flat and linear. If the extension T0 ⊆ T1 satisfies (Compw) then it satisfies (ELoc).

(2) Assume that T0 is a universal theory. If the extension T0 ⊆ T1 satisfies
(Comp) then it satisfies (ESLoc).

4.2 Locality and Saturation

In Section 2, the results of Basin and Ganzinger [5,4] were mentioned, in which
links between saturation w.r.t. ordered resolution of a set of clauses K and the
(order)-locality of K were established. It is natural to ask if similar results can
be obtained for local theory extensions. Local theory extensions are extensions
T1 of a base theory T0 by means of a set of new sorts S1 and a set of new function
symbols Σ1 constrained by a set of clauses K. We investigate the link between
the locality of the set K of clauses and the locality of the extension T0 ⊆ T0 ∪K.
This is work in progress, from which we present a first result:

Theorem 9. Let T0 be a first-order theory with signature Π0 = (S0, Σ0, Pred).
Let T1 = T0 ∪ K with signature Π = (S0 ∪ S1, Σ0 ∪ Σ1, Pred). Assume that:

– all functions in Σ1 occurring in K have their output sort in S1;
– K is a set of clauses which only contain function symbols in Σ1;
– the set K of clauses is local (resp. stably local).

Then the extension T0 ⊆ T0 ∪ K is also local (resp. stably local).

Proof : (Sketch) Let P = ({Ps}s∈S0∪S1 , {fP }f∈Σ0∪Σ1 , {RP }R∈Pred) be a weak
partial model of T0 ∪ K in which all Σ0-functions are totally defined. We will
denote by P|Σ1 the partial structure obtained from P by forgetting all operation
symbols in Σ0. P (hence also P|Σ1) is a weak partial model of K. By the locality
of K, P|Σ1 = ({Ps}s∈S0∪S1 , {fP }f∈Σ1, {RA}R∈Pred) weakly embeds (via an em-
bedding i) into a total model A = ({As}s∈S0∪S1 , {fA}f∈Σ1, {RA}R∈Pred) of K.
Let A∗ be the substructure of A having the same supports as A for the sorts in
S1 and support is(Ps) for each sort s ∈ S0. (Since we assumed that all function
symbols in Σ1 have output sort in S1, A∗ is closed under all Σ1-operations.)



58 V. Sofronie-Stokkermans

Let B = ({Bs}s∈S0∪S1 , {fB}f∈Σ0∪Σ1 , {RB}R∈Pred), where for s ∈ S0, Bs =
is(Ps), for s ∈ S1, Bs = As, for f ∈ Σ0, fB coincides with fP , for f ∈ Σ1, fB

coincides with fA∗ , and all predicate symbols coincide with those in A∗. Then
B|Π0 is isomorphic to P|Π0 , hence is a model of T0 and B|Σ1 = A∗, hence B |= K.

��
The locality of K can be checked e.g. by testing whether K ∪ EQ is saturated
under ordered resolution (w.r.t. the (strict) subterm ordering) using Theorems 1
and 2 (cf. also [5,4,13]) but now extended to a many-sorted framework. The
advantage is that even if K is not saturated, if K∗ is a finite saturation of K∪EQ
under ordered resolution, then T0∪K∗ can be used to extract a presentation which
defines a (local) theory extension which has the same total models as T0 ∪ K.

Note: The idea in the proof of Theorem 9 can also be used to show that (under
the assumptions in Theorem 9) if K satisfies Comp (resp. (Compw)) then the
extension T0 ⊆ T0 ∪ K also satisfies Comp (resp. (Compw)).

5 Examples of Local Theory Extensions

We present several examples of theory extensions for which embedding condi-
tions among those mentioned above hold and are thus local, and illustrate the
possibilities of local reasoning in such extensions.

5.1 Extensions with Free Functions

Any extension T0 ∪ Free(Σ) of a theory T0 with a set Σ of free function symbols
satisfies condition (Compw).

Example 2. Let T0 be the theory LI(Q) of linear rational arithmetic, and let
T1 = LI(Q)∪Free({f, g, h}) be the extension of T0 with the free functions f, g, h,
and let G = g(a) = c+5 ∧ f(g(a)) ≥ c+1 ∧ h(b) = d+4 ∧ d = c+1 ∧ f(h(b)) <
c + 1. We show that G is unsatisfiable in LI(Q) ∪ Free({f, g, h}) as follows:

Step 1: Flattening; purification. G is purified and flattened by replacing the terms
starting with f, g, h with new variables. We obtain the following purified form:

G0 : a1 = c + 5 ∧ a2 ≥ c + 1 ∧ b1 = d + 4 ∧ d = c + 1 ∧ b2 < c + 1,
Def : a1 = g(a) ∧ a2 = f(a1) ∧ b1 = h(b) ∧ b2 = f(b1).

Step 2: Hierarchical reasoning. By Lemma 3, G is unsatisfiable in LI(Q) ∪
Free({f, g, h}) iff G0 ∧ N0 is unsatisfiable in LI(Q), where N0 corresponds to
the consequences of the congruence axioms for those ground terms which occur
in the definitions Def for the newly introduced variables.

Def G0 N0

a1=g(a) ∧ a2=f(a1) a1 = c + 5 ∧ a2 ≥ c + 1 N0 : b1=a1 → b2=a2

b1=h(b) ∧ b2=f(b1) b1 = d + 4 ∧ d = c + 1 ∧ b2 < c + 1

To prove that G0 ∧ N0 is unsatisfiable in LI(Q), note that G0 |=LI(Q) a1 = b1.
Hence, G0 ∧ N0 entails a2 = b2 ∧ a2 ≥ c + 1 ∧ b2 < c + 1, which is inconsistent.
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5.2 Shallow Theory Extensions

We now consider the case of shallow extensions of a base theory T0 first consid-
ered in [14]. Let Π be the signature of the theory extension. We assume that all
extension functions have a codomain in the set S0 of (base) sorts. A Π-clause
is called shallow if extension function symbols in Σ1 occur in C only positively
and only at the root of terms. The theory extension T0 ⊆ T0 ∪ K is shallow
if K consists only of shallow clauses. Typical examples of shallow clauses are
tail-recursive definitions of an extension function.

Theorem 10 ([14]). Assume that T0 ⊆ T0 ∪ K is a theory extension by a set
K of shallow clauses w.r.t. the family of all extension functions with a codomain
in S0. Then the extension satisfies condition Comp and hence is stably local.

5.3 Extensions with Monotone Functions

In [27] and [30] we analyzed extensions with monotonicity conditions for an n-ary
function f w.r.t. a subset I ⊆ {1, . . . , n} of its arguments:

(MonI
f )

∧

i∈I

xi ≤i yi ∧
∧

i
∈I

xi = yi → f(x1, .., xn) ≤ f(y1, .., yn).

If I ={1, . . . , n} we speak of monotonicity in all arguments; we denote Mon{1,...,n}
f

by Monf . If I = ∅, Mon∅f is equivalent to the congruence axiom for f . Monotonic-
ity in some arguments and antitonicity in other arguments is modeled by consid-
ering functions f :

∏
i∈I P σi

i ×
∏

j 
∈I Pj → P with σi ∈ {−, +}, where P+
i =Pi and

P−
i =P ∂

i , the order dual of the poset Pi. The corresponding axioms are denoted
by Monσ

f , where for i ∈ I, σ(i)=σi∈{−, +}, and for i �∈ I, σ(i)=0.

Theorem 11 ([27,30]). The following hold:

1. Let T0 be a class of (many-sorted) bounded semilattice-ordered Σ0-structures.
Let Σ1 be disjoint from Σ0 and T1 = T0∪{Monσ

f |f ∈ Σ1}. Then the extension
T0 ⊆ T1 satisfies (Compfd

w ), hence is local.
2. Any extension of the theory of posets with functions in a set Σ1 satisfying

{Monσ
f | f ∈ Σ1} satisfies condition (Embw), hence is local.

This provides us with a large number of concrete examples.

Corollary 12 ([27,30]). The extensions with functions satisfying monotonicity
axioms Monσ

f of the following classes of algebras are local:

(1) any class of algebras with a bounded (semi)lattice reduct, a bounded distri-
butive lattice reduct, or a Boolean algebra reduct ((Compfd

w ) holds);
(2) T , the class of totally-ordered sets; DO, the theory of dense totally-ordered

sets ((Compfd
w ) holds);

(3) the class P of partially-ordered sets ((Embw) holds).
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Corollary 13 ([27,30]). Any (possibly many-sorted) extension of a class of
algebras with a semilattice reduct, a (distributive) lattice reduct, or a Boolean
algebra reduct, as well as any extension of the theory of reals (integers) with
functions satisfying Monσ

f into an infinite numeric domain is local ((Compfd
w )

holds).

Example 3. Let T0 be a theory (with a binary predicate ≤), and T1 a local ex-
tension of T0 with two monotone functions f, g. Consider the following problem:

T0 ∪ Monf ∪ Mong |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v))

The problem reduces to the problem of checking whether T0 ∪ Monf ∪ Mong ∪
G |=⊥, where G = c0 ≤ c1 ∧ f(c1 ∨ c2) ≤ g(c3 ∧ c4) ∧ f(c0) �≤ g(c4).

The locality of the extension T0 ⊆ T1 means that, in order to test if T0∪Monf ∪
Mong ∪G |=⊥, it is sufficient to test whether T0 ∪Monf [G]∪Mong[G]∪G |=w⊥,
where Monf [G], Mong[G] consist of those instances of the monotonicity axioms
for f and g in which the terms starting with f and g already occur in G:

Monf [G] = c0≤c1∨c2 → f(c0)≤f(c1∨c2) Mong[G] = c4≤c3∧c4 → g(c4)≤g(c3∧c4)
c1∨c2≤c0 → f(c1∨c2)≤f(c0) c3∧c4≤c4 → g(c3∧c4)≤g(c4)

In order to check the satisfiability of the latter formula, we purify it, intro-
ducing definitions for the terms below the extension functions d1 = c1 ∨ c2, d2 =
c3 ∧ c4 as well as for the terms starting with the extension functions themselves:
f(d1) = e1, f(c0) = e3, g(c4, e4), g(d2, e2), and add the following (purified) in-
stances of the congruence axioms: d1 = c0 → e1 = e3 and c4 = d2 → e4 = e2.
We obtain the following set of clauses:

Def G0 N0 K0

f(d1) = e1 c0 ≤ c1 d1 = c0 → e1 = e3 d1 ≤ c0 → e1 ≤ e3

f(c0) = e3 d1 = c1 ∨ c2 d2 = c4 → e2 = e4 c0 ≤ d1 → e3 ≤ e1

g(c4) = e4 d2 = c3 ∧ c4 d2 ≤ c4 → e2 ≤ e4

g(d2) = e2 e1 ≤ e2 ∧ e3 �≤ e4 d4 ≤ d2 → e4 ≤ e2

We illustrate the hierarchical reduction to testing satisfiability in the base
theory for the following examples of local extensions:

(1) Let T0 = DL, the theory of distributive lattices or T0 = B, the theory of
Boolean algebras. The universal clause theory of DL (resp. B) is the theory of
the two element lattice (resp. two element Boolean algebra), so testing Boolean
satisfiability is sufficient (this is in NP); any SAT solver can be used for this.
(2) If T0 = L we can reduce the problem above to the problem of checking the
satisfiability of a set of ground Horn clauses. This can be checked in ptime.

(3) If T0 = R we first need to explain what ∨ and ∧ are. For this, we replace
d1 = c1 ∨ c2 with (c1 ≤ c2 → d1 = c2) ∧ (c2 < c1 → d1 = c2) and similarly for
d2 = c3 ∧ c4. We proved unsatisfiability using the redlog demo [10].

We can therefore conclude that in all cases above:
T1 |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v)). �
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Blockwise and piecewise monotonicity also define local theory extensions if the
base theory (for indices) T0 is a theory endowed with a total order relation ≤.
The extensions below are similar to some examples considered in [6] but slightly
more general since we do not restrict T0 to be Presburger arithmetic.

Theorem 14. Let T0 be a theory endowed with a total order relation ≤.

Piecewise monotonicity. Assume that l1, . . . , lm, u1, . . . , um are constants
such that l1 ≤ u1 < l2 ≤ u2 < · · · < lm ≤ um. Let f be a unary func-
tion symbol. Any piecewise-monotone extension T0 ∧ (GMonf ) of T0 is local.
Here (GMonf ) = (GMon[l1,u1]

f ) ∧ · · · ∧ (GMon[lm,um]
f ), where:

(GMon[li,ui]
f ) ∀x, y(li ≤ x ≤ y ≤ ui → f(x) ≤ f(y)).

Blockwise monotonicity. Assume that l1, . . . , lm, u1, . . . , um are given con-
stants such that l1 ≤ u1 < l2 ≤ u2 < · · · < lm ≤ um. Let f be a unary
function. Any blockwise-monotone extension T0 ∧ (BMonf ) of T0 is local.
Here (BMonf ) =

∧m−1
i=1 (BMon[li,ui],[li+1,ui+1]

f ), where:

(BMon[li,ui],[li+1,ui+1]
f ) ∀x, y(li≤x≤ui<li+1≤y ≤ ui+1 → f(x) ≤ f(y)).

Similar conditions can be defined for n-ary functions and/or many-sorted func-
tions bridging several theories endowed with total orders.

Strict monotonicity. Strict monotonicity can be handled too, under the as-
sumption of density of the codomain of the functions [20].

5.4 Boundedness Conditions

Any extension of a theory for which ≤ is reflexive with functions satisfying
(Monσ

f ) and boundedness (Boundt
f ) conditions is local [28,30].

(Boundt
f ) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a term in the base signature Π0 with variables among
x1, . . . , xn (such that in any model the associated function has the same
monotonicity as f). Similar results can be established for guarded monotonicity
conditions with mutually disjoint guards [28].

Theorem 15. Any extension of T0 with a function f �∈ Σ0 satisfying bounded-
ness (Boundt

f ) or guarded boundedness (GBoundt
f ) conditions is local.

(Boundt
f ) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))

(GBoundt
f ) ∀x1, . . . , xn(φ(x1, . . . , xn) → f(x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a term in the base signature Π0 with variables among
x1, . . . , xn and φ(x1, . . . , xn) a conjunction of literals in signature Π0 with vari-
ables among x1, . . . , xn.
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Theorem 16 (Piecewise boundedness for free functions). Let m ∈ N. For
i ∈ {1, . . . , m}, let ti(x1, . . . , xn) and si(x1, . . . , xn) be terms in the signature
Π0 with variables among x1, . . . , xn, and let φi(x1, . . . , xn), i ∈ {1, . . . , m} be
conjunctions of literals in the base signature Π0, with variables among x1, . . . , xn,
i.e. such that for every i �= j, φi ∧ φj |=T0⊥. Any “piecewise-bounded” extension
T0∧(GBoundf ), where f �∈ Σ0, is local. Here (GBoundf ) =

∧m
i=1(GBound[si,ti],φi

f );

(GBound[si,ti],φi

f ) ∀x(φi(x) → si(x) ≤ f(x) ≤ ti(x)).

Combinations of (strict) monotonicity with (guarder) boundedness often occur in
applications. We present a simple example in the verification of a train controller
(for details and more realistic rules we refer to [20]).

Example 4 ([20]). We consider a controller which communicates with all the
trains on a given linear track. Trains report their position in given time intervals
(Δt) and the controller then communicates them how they can move. The trains
adjust their speed accordingly (between given minimum and maximum speeds).
These update rules can be described by the following set of clauses where the
positions of trains are stored in arrays a (for the current moment of time) and
a′ for their positions at the next evaluation point (after Δt seconds).
(F1) ∀i (i = 0 → a(i) + Δt∗min ≤R a′(i) ≤R a(i) + Δt∗max)
(F2) ∀i (0 < i < n ∧ a(p(i)) >R 0 ∧ a(p(i)) − a(i) ≥R lalarm

→ a(i) + Δt ∗ min ≤R a′(i) ≤R a(i) + Δt∗max)
(F3) ∀i (0 < i < n ∧ a(p(i)) >R 0 ∧ a(p(i)) − a(i) <R lalarm

→ a′(i) = a(i) + Δt∗min)
(F4) ∀i (0 < i < n ∧ a(p(i)) ≤R 0 → a′(i) = a(i)).

The following constants are considered either given or parameters: Δt > 0 (time
between evaluations of the system); minimum/maximum speed of trains 0 ≤
min ≤ max; lalarm (the distance between trains which is deemed secure); n (the
number of trains). An example of an invariant to be checked is collision freeness.
At a very abstract level, this can be expressed as a monotonicity axiom,

CF(a) ∀i, j (0 ≤ i < j ≤ n → a(i) >R a(j)),

where < is an ordering which expresses train precedence and >R is the usual
ordering on the real numbers (i.e. for all trains i, j on the track, if i precedes j
then i should be positioned strictly ahead of j). For a more realistic encoding of
collision freeness which takes into account the length of trains cf. [20]. To check
that collision freeness is an invariant, we check that the initial state is collision
free and that collision freeness is preserved by the updating rules K = {F1, ..., F4}.

Let T0 be a many-sorted combination of real arithmetic – for reasoning about
positions, sort num – with an index theory – for describing precedence between
trains, sort i. Let T be the extension of T0 with the two functions a and a′. We
need to check that T |= K ∧ CF(a) → CF(a′), i.e.

T ∧ K ∧ CF(a) ∧ ¬CF(a′) |=⊥ .

For this, in [20] we considered two successive extensions of the base theory T0:

– the extension T1 of T0 with a strictly monotone function a, of sort i → num,
– the extension T2 of T1 with a function a′ satisfying the update axioms K.
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By using the previous results we can prove that both these extensions are local.
We can theorefore reduce successively, in a hierarchical way (using Lemma 3)
the test of satisfiability of a set G of ground clauses w.r.t. T2 first to a satisfi-
ability test for a set G′ of ground clauses w.r.t. T1, and then to a satisfiability
test for a set G′′ of ground clauses w.r.t. T0. This hierarchical approach can
also be used for determining constraints between the parameters of the system
(Δt, min, max, n, lalarm) which guarantee collision freeness.

5.5 Data Structures: Theories of Constructors/Selectors

Many data structures important in verification have local or stably local axiom-
atizations, or can be defined by using chains of local theory extensions. Some
examples are given below.

Extensions with selector functions [27]. Let T0 be a theory with signature
Π0 = (Σ0, Pred), let c ∈ Σ0 with arity n, and let Σ1 = {s1, . . . , sn} consist
of n unary function symbols. Let T1 = T0 ∪ Selc (a theory with signature Π =
(Σ0∪Σ1, Pred)) be the extension of T0 with the set Selc of clauses below. Assume
that T0 satisfies the (universally quantified) formula Injc (i.e. c is injective in T0)
then the extension T0 ⊆ T1 satisfies condition (Compw) [27].

(Selc) si(c(x1, . . . , xn)) ≈ xi i ∈ {1, . . . , n}
x ≈ c(x1, . . . , xn) → c(s1(x), . . . , sn(x)) ≈ x

(Injc) c(x1, . . . , xn) ≈ c(y1, . . . , yn) → (
n�

i=1

xi ≈ yi)

A general study of the locality of various presentations of theories of constructors
and selectors, as well as of theories of arrays is subject of ongoing work jointly
with Swen Jacobs and Carsten Ihlemann [19]; it will not be mentioned here. Be-
low, we present a simple example concerning an axiomatization of doubly-linked
lists with additional information fields. Then we analyze a class of alternative
axiomatizations of pointer structures (studied by Necula and McPeak [23]) and
show that these also define stably local theory extensions.
Example 5. Let T1 be the theory of doubly-linked lists with information on
elements, with sorts cell (list cell) and s (scalar, referring to the information
stored in the cells). The signature contains the functions s and p (arity cell →
cell) and a family of functions {infoi}i∈I (arity cell → s). We assume that s
and p satisfy the axioms (1)–(4) in Section 2 (listed directly after Theorem 2
as an axiomatization for Int) and {infoi | i ∈ I} are not constrained by any
other axioms. We can view the theory T1 as the extension of the theory Int in
Section 2 with an additional sort s and free function symbols {infoi | i ∈ I}. Thus,
satisfiability tests for ground clauses w.r.t. T1 can be reduced in a hierarchical
way, in one step to satisfiability tests for ground clauses w.r.t. Int (a local theory).
A direct locality proof can also be given. By imposing additional axioms on the
infoi functions we still define local extensions: this would for instance be the case
if adding guarded boundedness constraints on some of the infoi’s, or local sets
of axioms K on {infoi | i ∈ I} subject to the conditions in Theorem 9.
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5.6 Verification of Pointer Programs: Local Data Structures

In [23], McPeak and Necula investigate reasoning in pointer data structures. The
language used has two sorts (a pointer sort p and a scalar sort s). Sets Σp and
Σs of pointer resp. scalar fields are given. They can be modeled by functions of
sort p → p and p → s, respectively. A constant null of sort p exists. The only
predicate of sort p is equality between pointers; predicates of scalar sort can have
any arity. In this language one can define pointer (dis)equalities and arbitrary
scalar constraints. The local axioms considered in [23] are of the form

∀p E ∨ C (1)

where E contains disjunctions of pointer equalities and C contains scalar con-
straints (sets of both positive and negative literals). It is assumed that for all
terms f1(f2(. . . fn(p))) occurring in the body of an axiom, the axiom also con-
tains the disjunction p = null∨ fn(p) = null∨ · · · ∨ f2(. . . fn(p))) = null. This has
the rôle of excluding null pointer errors. Examples of axioms (for doubly linked
data structures with state and priorities) which are considered there are:

∀p p �= null ∧ next(p) �= null → prev(next(p)) = p
∀p p �= null ∧ next(p) �= null → state(p) = state(next(p))
∀p p �= null ∧ next(p) �= null ∧state(p) = RUN → priority(p) ≥ priority(next(p))

(the first axiom states that prev is a left inverse for next, the second axiom tells
how a state can be updated; the third axiom is a monotonicity condition on the
function priority with values in a partially ordered domain).

For the sake of simplicity, in what follows we assume that in (1) the disjunc-
tions contain also definedness guards on the scalar fields. The special form of
the axioms ensures that all partial models can be embedded into total models.

Theorem 17. Let T1 be the two-sorted extension T0 ∪ K of a Π0-theory T0 (or
sort s, the theory of scalars), with signature Π = (S, Σ, Pred), where S = {p, s},
Σ = Σp ∪ Σs ∪ Σ0 axiomatized by a set K of axioms ∀p(E ∨C) of type (1). Then
T is a stably local extension of T0.

Proof : Let P = (Pp, Ps, {fP }f∈Σp∪Σs ∪ {gP }g∈Σ0 , {RP }R∈Pred) ∈ PMod(Σp ∪
Σs, T1). We construct a total model A starting from P as follows. The universes
of A are the same as those of P . For every f ∈ Σp and every p ∈ Pp, we
define fA(p) := fP (p) if fP (p) is defined, and fA(p) := null otherwise. For every
f ∈ Σs and every q ∈ Pp we define fA(q) := fP (q) if fP (q) is defined, and
fA(p) := nulls otherwise. We show that B is a model of T1: Clearly, B|Π0 =
P|Π0 = (Ps, {gP }g∈Σ0 , {RP }R∈Pred) is a total model of T0. We show that B |= K.
Let C = ∀p(E ∨C) ∈ K and let β : Xp → Bp. If there exists any t = null in E with
any β(t) = null, β |= C. Assume now that β(t) �= null for all terms occurring
below a function symbol in Σp or Σs in C. This means that β(t) is defined also
in P for all such terms. As (P, β) |= C, there exists a literal L in C such that
(P, β) |= L. We distinguish the following cases: (a) L = t ≈ s and both β(t), β(s)
are defined in P . Then they are defined and equal also in B, so (B, β) |= C. (b)
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L = t ≈ s, β(s) is defined, t = f(t1, . . . , tn), where f ∈ Σp ∪ Σs, and β(ti) is
undefined for at least one of t1, . . . , tn. This case cannot occur since we assumed
that β(ti) �= null for all i; if they were undefined in P the value assigned to them
in B would have been null. (c) L = t ≈ s, β(t) and β(s) are both undefined.
Then the value assigned to them in B is either null if they are of pointer sort,
or nulls if they are of scalar sort. Therefore (B, β) |= C also in this case. (d)
L = (¬)R(t1, . . . , tn), where t1, . . . , tn are terms of scalar sort. An argument
similar to that used in (b) shows that (if clauses are guarded by definedness
conditions for the scalar terms) β(ti) is defined in P for all i so (P, β) |= L, i.e.
(B, β) |= C. Thus, (B, β) |= C for all β : Xp → Bp and all C ∈ K. This shows
that B ∈ Mod(T1).2 �

6 Combinations of Local Extensions

In this section we study the locality of combinations of local theory extensions.
In the light of the results in Section 4.1 we concentrate on studying which em-
beddability properties are preserved under combinations of theories. For the sake
of simplicity, in what follows we only consider conditions (Embw) and (Compw).
Analogous results can be given for conditions (Embf

w), (Compf
w), resp. (Embfd

w ),
(Compfd

w ) and combinations thereof. Full proofs are contained in [29].
We first consider the situation when both components satisfy the embeddabil-

ity condition (Compw).

Theorem 18. Let T0 be a first order theory with signature Π0 = (Σ0, Pred) and
(for i ∈ {1, 2}) Ti = T0 ∪ Ki be an extension of T0 with signature Πi = (Σ0 ∪
Σi, Pred). Assume that both extensions T0 ⊆ T1 and T0 ⊆ T2 satisfy condition
(Compw), and that Σ1∩Σ2 = ∅. Then the extension T0 ⊆ T =T0∪K1∪K2 satisfies
condition (Compw). If, additionally, in Ki all terms starting with a function
symbol in Σi are flat and linear, for i = 1, 2, then the extension is local.

Example 6. The following combinations of theories (seen as extensions of a
first-order theory T0) satisfy condition (Compw) (in case (4) condition (Compfd

w )):
(1) T0 ∪ Free(Σ1) and T0 ∪ Selc if T0 is a theory and c ∈ Σ0 is injective in T0.
(2) R∪Free(Σ1) and R∪Lipλ

c (f), where f �∈ Σ1. Here Lipλ
c (f) is the λ-Lipschitz

condition3 for f at point c ∈ R (for λ > 0):
(Lipλ

c (f)) ∀x |f(x) − f(c)| ≤ λ · |x − c|.

(3) R ∪ Lipλ1
c1

(f) and R ∪ Lipλ2
c2

(g), where f �= g.

2 Analyzing the proof of Theorem 7 (embeddability implies stable locality), one can see
that for any valuation β and set Ψ of ground terms of sort p closed under subterms
the proof only uses embeddability into total models of a special type of partial models
P , namely those for which for f ∈ Σp ∪ Σs, fP (p1, . . . , pn) is defined iff there exist
terms t1, . . . tn in Ψ which evaluate to p1, . . . , pn w.r.t. β. With such restrictions the
definedness guards on scalar terms are not necessary for proving stable locality.

3 We proved in [27] that for every function f and constants c and λ with λ > 0 the
extension R ⊆ R ∪ (Lipλ

c (f)) satisfies (Compw), hence it is local.
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(4) T0 ∪ Free(Σ1) and T0 ∪ Monσ
f , where f �∈ Σ1 has arity n, σ : {1, . . . , n} →

{−1, 1, 0}, if T0 is, e.g., a theory of algebras with a bounded semilattice reduct.

This result can be extended to the more general situation in which one extension
satisfies condition (Embw) and the other satisfies (Compw) or (Embw).

Theorem 19. Let T0 be a first order theory with signature Π0 = (Σ0, Pred),
and let T1 = T0 ∪ K1 and T2 = T0 ∪ K2 be two extensions of T0 with signatures
Π1 = (Σ0 ∪ Σ1, Pred) and Π2 = (Σ0 ∪ Σ2, Pred), respectively. Assume that:

(1) T0 ⊆ T1 satisfies condition (Compw),
(2) T0 ⊆ T2 satisfies condition (Embw),
(3) K1 is a set of Σ1-flat clauses in which all variables occur below a Σ1-function.

Then the extension T0 ⊆ T0∪K1∪K2 satisfies (Embw). If in Ki all terms starting
with a function symbol in Σi are flat and linear (for i=1, 2) the extension is local.

Theorem 20. Let T0 be an arbitrary theory in signature Π0 = (Σ0, Pred). Let
K1 and K2 be two sets of clauses over signatures Πi = (Σ0 ∪ Σi, Pred), where
Σ1 and Σ2 are disjoint. We make the following assumptions:

(A1) The class of models of T0 is closed under direct limits of diagrams in
which all maps are embeddings (or, equivalently, T0 is a ∀∃ theory).

(A2) Ki is Σi-flat and Σi-linear for i = 1, 2, and T0 ⊆ T0 ∪ Ki, i = 1, 2
are both local extensions of T0.

(A3) For all clauses in K1 and K2, every variable occurs below some ex-
tension function.

Then T0 ∪ K1 ∪ K2 is a local extension of T0.

Example 7. The following combinations of theories (seen as extensions of the
theory T0) satisfy condition (Embw), hence are local:

(1) Eq ⊆ Free(Σ1) ∪ L, where Eq is the pure theory of equality, without function
symbols, and L the theory of lattices.

(2) T0 ⊆ (T0 ∪ Free(Σ1)) ∪ (T0 ∪ Mon(Σ2)), where Σ1 ∩ Σ2 = ∅, Mon(Σ2) =
∧

f∈Σ2
Monσ(f)

f and T0 is, e.g., the theory of posets.
(3) The combination of the theory of lattices and the theory of integers with

injective successor and predecessor is local (local extension of the theory of
pure equality).

7 Modular Reasoning

In what follows we discuss some issues related to modular reasoning in combina-
tions of local theory extensions. We analyze, in particular, the form of informa-
tion which needs to be exchanged between provers for the component theories
when reasoning in combinations of local theory extensions.
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7.1 Reasoning in Local Combinations of Theory Extensions

Let T1 = T0 ∪ K1 and T2 = T0 ∪ K2 be theories with signatures Π1 = (Σ0 ∪
Σ1, Pred) and Π2 = (Σ0 ∪ Σ2, Pred), and G a set of ground clauses in the joint
signature with additional constants Πc = (Σ0∪Σ1∪Σ2∪Σc, Pred). We want to
decide whether T1 ∪ T2 ∪ G |=⊥.

The set G of ground clauses can be flattened and purified as explained above. For
the sake of simplicity, everywhere in what follows we will assume w.l.o.g. that
G = G1 ∧ G2, where G1, G2 are flat and linear sets of clauses in the signatures
Π1, Π2 respectively, i.e. for i = 1, 2, Gi = G0

i ∧ G0 ∧ Di, where G0
i and G0

are clauses in the base theory and Di a conjunction of unit clauses of the form
f(c1, . . . , cn) = c, f ∈ Σi.

Corollary 21. Assume that T1 = T0 ∪K1 and T2 = T0 ∪K2 are local extensions
of a theory T0 with signature Π0 = (Σ0, Pred), and that the extension T0 ⊆
T0 ∪K1 ∪K2 is local. Let G = G1 ∧G2 be a set of flat, linear are purified ground
clauses, such that Gi = G0

i ∧G0 ∧Di are as explained above. Then the following
are equivalent:

(1) T1 ∪ T2 ∪ (G1 ∧ G2) |=⊥,
(2) T0 ∪ (K1 ∪ K2)[G1 ∧ G2] ∪ (G0

1 ∧ G0 ∧ D1) ∧ (G0
2 ∧ G0 ∧ D2) |=⊥,

(3) T0 ∪ K0
1 ∪ K0

2 ∪ (G0
1 ∪ G0) ∪ (G0

2 ∪ G0) ∪ N1 ∪ N2 |=⊥, where

Ni = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ Di}, i = 1, 2,

and K0
i is the formula obtained from Ki[Gi] after purification and flattening,

taking into account the definitions from Di.

A more precise characterization of the formulae that need to be exchanged be-
tween provers for the components is provided by results on interpolation.

7.2 Interpolation in Local Theory Extensions

A theory T has interpolation if, for all formulae φ and ψ in the signature of T ,
if φ |=T ψ then there exists a formula I containing only symbols which occur in
both φ and ψ such that φ |=T I and I |=T ψ. First order logic has interpolation
[9], but for an arbitrary first order theory T , the interpolants may contain (al-
ternations of) quantifiers even for very simple formulae φ and ψ. It is important
to identify situations in which ground clauses have ground interpolants.

A theory T has the ground interpolation property if for all ground clauses
A(c, d) and B(c, e), if A(c, d) ∧ B(c, e) |=T ⊥ then there exists a ground
formula I(c), containing only the constants c occurring both in A and
B, such that A(c, d) |=T I(c) and B(c, e) ∧ I(c) |=T ⊥ .

In [28] we identify a class of theory extensions T0 ⊆ T1 for which interpolants
can be computed hierarchically using a procedure for generating interpolants in
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the base theory T0. This allows to exploit specific properties of T0 for obtaining
simple interpolants in T1. We make the following assumptions4 about T0 and T1:

Assumption 1: T0 is convex w.r.t. the set Pred of all predicates (including
equality ≈), i.e., for all conjunctions Γ of ground atoms, relations
R1, . . . , Rm ∈ Pred and ground tuples of corresponding arity t1, . . . , tn, if
Γ |=T0

∨m
i=1 Ri(ti) then there exists a j ∈ {1, . . . , m} such that Γ |=T0

Rj(tj).
Assumption 2: T0 is P -interpolating, i.e. for all conjunctions A and B of

ground literals, all binary predicates R ∈ P and all constants a and b such
that a occurs in A and b occurs in B (or vice versa), if A ∧ B |=T0 aRb then
there exists a term t containing only constants common to A and B with
A ∧ B |=T0 aRt ∧ tRb.

Assumption 3: T0 has ground interpolation.
Assumption 4: T1=T0∪K, where K consists of the combinations of clauses:

{
x1 R1 s1 ∧ · · · ∧ xn Rn sn → f(x1, . . . , xn)R g(y1, . . . , yn)
x1 R1 y1 ∧ · · · ∧ xn Rn yn → f(x1, . . . , xn)R f(y1, . . . , yn) (2)

where n ≥ 1, x1, . . . , xn are variables, R1, . . . , Rn, R are binary relations with
R1, . . . , Rn ∈ P and R transitive, and each si is either a variable among the
arguments of g, or a term of the form fi(z1, . . . , zk), where fi ∈ Σ1 and all
the arguments of fi are variables occurring among the arguments of g.

Theorem 22 ([28]). If the theory extension T0 ⊆ T1 satisfies the assumptions
above then ground interpolants for T1 exist and can be computed hierarchically.

In [25] we adapt and apply the idea of Theorem 22 for efficiently computing
interpolants with a simple form for extensions of linear arithmetic with free
function symbols, as an alternative to the method proposed by McMillan [22].

As a consequence of the results in [28], the following theory extensions have
ground interpolation, and interpolants can be computed hierarchically.

(a) Extensions with free function symbols of any of the base theories: Eq (pure
equality), P (posets), LI(Q), LI(R) (linear rational, resp. real arithmetic), S
(semilattices), DL (lattices), B Boolean algebras.

(b) Extensions with monotone functions of any of the base theories: P (posets),
S (semilattices), DL (lattices), B Boolean algebras.

(c) Extensions of any of the base theories in (b) with Leq(f, g) ∧ Monf .
(d) Extensions of any of the base theories in (b) with SGc(f, g1) ∧ Mon(f, g1).
(e) Extensions of any of the base theories in (a) with Boundt

f or GBoundt
f (where

t is a term and φ a set of literals in the base theory).
(f) Extensions of any base theory in (b) with Monf ∧ Boundt

f , if t is monotone.

7.3 Application: Information Exchange in Combinations of Theories

The method for hierarchic reasoning described in Corollary 21 is modular, in the
sense that once the information about Σ1 ∪ Σ2-functions was separated into a

4 Examples of theories which have these properties are provided in [28].
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Σ1-part and a Σ2-part, it does not need to be recombined again. For reasoning
in the combined theory one can proceed as follows:

– Purify (and flatten) the goal G, and thus transform it into an equisatisfiable
conjunction G1 ∧ G2, where Gi consists of clauses in the signature Πi, for
i = 1, 2, and Gi = G0

i ∧ G0 ∧ Di, as in Corollary 21.
– The problem of testing the validity of the formulae containing extension

functions in the signature Σi, Ki[Gi] ∧ Gi are reduced (using Lemma 3) to
testing the validity of the formula K0

i ∧ G0
i ∧ G0 ∧ Ni in the base theory.

– The conjunction of all the formulae obtained this way, for all component
theories, is used as input for a decision procedure for the base theory.

We show that, in fact, only information exchange over the shared signature (i.e.
shared functions and constants) is necessary.

Theorem 23 ([28]). Let T0 ⊆ T0 ∪ Ki be local extensions, i = 1, 2 where Ki

are Σi-flat and Σi-linear and all variables in clauses in Ki occur below a Σi-
symbol. Assume the extension T0 ⊆ T0 ∪ K1 ∪ K2 is local. Let G = G1∧G2 be
as constructed before with T0∪(K1 ∧G1)∧(K2 ∧ G2) |=⊥. Then we can construct
a ground formula I which contains only function symbols in Σ0 = Σ1 ∩ Σ2 and
constants shared by G1, G2 such that (T0∪K1)∧G1 |= I and (T0∪K2)∧G2∧I |=⊥ .

8 Conclusions

We presented an overview of results on hierarchical and modular reasoning in
complex theories. We show that for local and stably local theory extensions hier-
archic reasoning is possible (i.e. proof tasks in the extension can be hierarchically
reduced to proof tasks w.r.t. the base theory). We showed how local theory ex-
tensions can be identified and provided various examples from mathematics and
verification. In particular, we identified phenomena analyzed in the verification
literature which can be explained using the notion of locality.

We then presented criteria for recognizing situations in which combinations of
theory extensions of a base theory are again local extensions of the base theory.
These results allow to recognize even wider classes of local theory extensions, and
open the way for studying possibilities of modular reasoning in such extensions.
For this, it is interesting to analyze the exact amount of information which needs
to be exchanged between provers for the component theories. We characterized
the form of this information in the case of local combinations of local extensions.
We plan to investigate whether there are any links between the results described
in this paper and other methods for reasoning in combinations of theories over
non-disjoint signatures e.g. by Ghilardi [15].
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