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Abstract

We give a uniform method for automated reasoning in sev-
eral types of extensions of ordered algebraic structures (def-
initional extensions, extensions with boundedness axioms or
with monotonicity axioms). We show that such extensions
are local and, hence, efficient methods for hierarchical rea-
soning exist in all these cases.

1 Introduction

We present a uniform method for automated reasoning in
(i) extensions with functions which can be uniquely defined
in terms of existing operations (definitional extensions),
(ii) extensions with functions which satisfy general mono-
tonicity laws and (iii) extensions with functions satisfying
boundedness conditions (and possibly also monotonicity).

In previous work [19] we gave a resolution-based deci-
sion procedure for the universal fragment of the class of
distributive lattices (or Boolean algebras) with join/meet
hemimorphisms satisfying certain residuation conditions.
For this, we used extensions of representation theorems for
Boolean algebras [23] or distributive lattices [16] (cf. e.g.
[8, 17]). This allowed us to use, instead of algebraic mod-
els, relational structures (usually much simpler). The main
obstacle we faced when attempting to extend these methods
to lattice-based structures or to monotone operators is that,
although representation theorems exist, the dual spaces are
quite complex: in the case of representation theorems for
lattices [24, 13] they are doubly-ordered spaces (with a clo-
sure operator); in representation theorems for distributive
lattices with monotone operators [4] they are endowed with
maps having as values sets of elements.

In this paper we use a different approach: We show that
extensions with monotone functions (and also several other
theory extensions) satisfy an embeddability property of par-
tial into total algebras, and thus are local (cf. [20]). In [20]
we showed that in a local extension T1 of a theory T0 test-
ing satisfiability of ground clauses w.r.t. T1 can be reduced
to testing satisfiability of certain types of formulae w.r.t. T0.

This also allows to express, parametrically, the decidability
and complexity for the universal theory of T1 in terms of the
decidability (complexity) of a certain fragment of T0.

For this, we use a generalization of ideas of Burris [2]
and Ganzinger [5] which we proposed in [20]. Burris [2]
proved that if a quasi-variety axiomatized by a set K of
Horn clauses has the property that every finite partial alge-
bra which is a partial model of the axioms in K can be ex-
tended to a total algebra model of K, then the uniform word
problem for K is decidable in polynomial time (this gener-
alizes previous results by Skolem and Evans). A link be-
tween these embeddability properties and a proof theoretic
concept (local theories) was established by Ganzinger [5].
In [20], we extend these results to special types of theory
extensions, which we call local (cf. definitions in Sect.3).

In this paper we analyze the applications of the results
on local theory extensions in [20] to automated reasoning
in algebraic structures related to non-classical logics. The
main contributions of the paper are summarized below:

• We give a new criterion for recognizing locality of a
theory extension (Sect. 3.1, Thm. 3).

• We show that extensions with functions defined in
terms of existing operators are local. As an illustra-
tion, we obtain a new decision procedure for the uni-
versal fragment of the class MV of MV-algebras, and
show that the problem of deciding validity of sets of
clauses w.r.t. MV is co-NP complete (Sect. 4).

• We prove that certain extensions with functions satis-
fying generalized monotonicity laws and/or bounded-
ness conditions are also local (Sect. 5 and Sect. 6).

We illustrate the ideas (and the hierarchical reasoning
method) for the case of MV-algebras with a monotone op-
erator satisfying a boundedness condition (Sect. 6.1).

2 Preliminaries

Posets and lattices. We assume known standard notions,
such as partially ordered set and lattice. For definitions and
further information we refer to [3].

We denote the dual of a partially ordered set P = (X,≤)
by P ∂ = (X,≤∂) = (X,≥). For x ∈ P , x↓ := {y ∈ P |



y ≤ x} and x↑ := {y ∈ P | y ≥ x}. For A ⊆ P , Au =
{x | ∀a ∈ A(x ≥ a)} and Al = {x | ∀a ∈ A(x ≤ a)}
denote the set of upper and resp. lower bounds of A.

The Dedekind-MacNeille completion DM(P ) of a poset
P consists of all subsets of P satisfying Aul = A, ordered
by inclusion. The map x 7→ x↓ embeds P into DM(P )
and preserves infima and suprema if they exist. The map
l : DM(P ∂) → DM(P )∂ , sending a set to the set of its
lower bounds, is an isomorphism; its inverse is the map u.

Theories and models. Let Π = (S, Σ, Pred) be a signature
where S is a set of sorts, Σ is a set of function symbols and
Pred a set of predicate symbols. A Π-structure is a tuple

M = ({Ms}s∈S, {fM}f∈Σ, {PM}P∈Pred),

where for every s ∈ S, Ms 6= ∅, for all f ∈ Σ with ar-
ity a(f)=s1×. . .×sn→s, fM :

∏n

i=1 Msi
→Ms and for

all P ∈ Pred with arity a(P ) = s1×. . .×sn, PM ⊆∏n
i=1 Msi

. We consider formulae over variables in a
(many-sorted) family X = {Xs | s ∈ S}, where for ev-
ery s ∈ S, Xs is a set of variables of sort s. Theories can
be regarded as sets of formulae or as sets of models. A
model of a set T of Π-formulae is a Π-structure satisfying
all formulae of T . In this paper, whenever we speak about
a theory T we implicitly refer to the set of all models of T .

A partial Π-structure ({Ms}s∈S , {fM}f∈Σ, {PM}P∈Pred)
is a structure where for every s ∈ S, Ms 6= ∅ and for every
f ∈ Σ with arity s1×. . .×sn→s, fM is a partial function
from

∏n
i=1 Msi

to Ms. The notion of evaluating a term t
with variables X = {Xs | s ∈ S} w.r.t. an assignment
{βs:Xs → Ms | s ∈ S} (notation: β : X → M) in a par-
tial structure M is the same as for total structures, except
that the evaluation is undefined if t = f(t1, . . . , tn) with
a(f)=s1×. . .×sn→s, and at least one of βsi

(ti) is unde-
fined, or else (βs1

(t1), . . . , βsn
(tn)) is not in the domain

of fM. Let M be a partial Π-structure, C a clause and
β : X → M. We say that (M, β) |=w C iff either

(i) for some term t in C, β(t) is undefined, or else

(ii) β(t) is defined for all terms t of C, and there exists a
literal L in C s.t. β(L) is true in M.

M weakly satisfies C (notation M|=wC) if (M, β)|=wC
for all β : X → M. M is a weak partial model of a set of
clauses K (notation M|=wK) if M|=wC for all C ∈ K.

3 Local theory extensions

Let T0 be a theory with signature Π0 = (S0, Σ0, Pred).
We consider extensions T1 of T0 with signature Π =
(S, Σ, Pred), where S = S0∪S1, Σ = Σ0∪Σ1 (i.e. the sig-
nature is extended by new sorts and function symbols) ob-
tained by adding a set K of (universally quantified) clauses.
Let PModw(Σ1, T1) be the class of all weak partial models
P of K, in which the Σ1-functions are partial and such that

P|Π0
is a total model of T0. In what follows, when refer-

ring to sets G of ground clauses we assume they are in the
signature Πc = (S, Σ ∪ Σc, Pred) where Σc is a set of new
constants.

An extension T0 ⊆ T1=T0∪K is local if satisfiability of any
set G of ground clauses w.r.t. T0∪K only depends on T0 and
those instances K[G] of K in which the terms starting with
extension functions are in the set st(K, G) of ground terms
which already occur in G or K. Formally, T0 ⊆ T1=T0 ∪K
is a local extension if it satisfies condition (Loc):

(Loc) For every set G of ground clauses G |=T1
⊥ iff

there is no partial Πc-structure P such that P|Π0

is a total model of T0, all terms in st(K, G) are
defined in P , and P weakly satisfies K[G] ∧ G.

Embeddability and locality. In [20] we show that embed-
dability of weak partial models into total models (Embw)
implies locality of an extension.

(Embw) Every A ∈ PModw(Σ1, T1) weakly embeds
into a total model of T1.

A non-ground clause is Σ1-flat if function symbols (includ-
ing constants) do not occur as arguments of functions in Σ1.
A Σ1-flat non-ground clause is called Σ1-linear if whenever
a variable occurs in two terms in the clause which start with
a function symbol in Σ1, the two terms are identical, and
if no term which starts with a function in Σ1 contains two
occurrences of the same variable.

Theorem 1 ([20]) Let K be a set of clauses which are Σ1-
flat and Σ1-linear, and let T1 = T0 ∪K. If T0 ⊆ T1 satisfies
(Embw) then it satisfies (Loc).

Examples of local theory extensions were given in [20, 21].
In this paper we give other examples, including extensions
with general monotonicity conditions.

Hierarchic reasoning in local theory extensions. Let
T0 ⊆ T1=T0 ∪ K be a local theory extension. To check
the satisfiability of a set G of ground clauses w.r.t. T1 we
can proceed as follows (for details cf. [20]):

Step 1: Use locality. By the locality condition, G is unsat-
isfiable w.r.t. T1 iff K[G] ∧ G has no weak partial model in
which all the subterms of K[G] ∧G are defined, and whose
restriction to Π0 is a total model of T0.

Step 2: Flattening and purification. We purify and flatten
K[G] ∧ G by introducing new constants for the arguments
of the extension functions as well as for the (sub)terms t =
f(g1, . . . , gn) starting with extension functions f ∈ Σ1, to-
gether with new corresponding definitions ct ≈ t. The set of
clauses thus obtained has the form K0∧G0∧D, where D is
a set of ground unit clauses of the form f(c1, . . . , cn) ≈ c,



where f ∈ Σ1 and c1, . . . , cn, c are constants, and K0, G0

are clause sets without function symbols in Σ1.

Step 3: Reduction to testing satisfiability in T0. We reduce
the problem to testing satisfiability in T0 by replacing D
with the following set of clauses:

Con[D] =
^

{
n̂

i=1

ci = di → c = d | f(c1, . . . , cn) = c ∈ D,

f(d1, . . . , dn) = d ∈ D}.

Theorem 2 ([20]) If T0 ⊆ T1 = T0∪K satisfies (Loc) then
(with the notations above) the following are equivalent:
(1) T0 ∧ K ∧ G has a model.
(2) T0∧K[G]∧G has a partial model in PModw(Σ1, T1)

(where all terms in st(K, G) are defined).
(3) T0∧K0∧G0∧D has a partial model inPModw(Σ1, T1)

(where all terms in st(K, G) are defined).
(4) T0 ∧ K0 ∧ G0 ∧ Con[D] has a (total) Π0-model.

3.1 A finite locality criterion

Note that (Loc) refers to satisfiability of arbitrary sets G of
ground clauses. We are however interested in finite locality
(Locf) (the same as (Loc), except it has to hold for finite
sets G of clauses) [20]. We say that the extension T0 ⊆
T1 is finitely local (T1 is a finitely local extension of T0) if
T0⊆T1 satisfies condition (Locf). In [20] we showed that
finite locality is guaranteed if (i) T0 is universal and locally
finite, (ii) K contains finitely many ground terms, and (iii)
all finite models in PMod(Σ1, T1) embed into total models.

An easy change in the proof of Theorem 1 yields an al-
ternative criterion for recognizing finite locality.

Let PModfd
w
(Σ1, T1) be the subclass of PModw(Σ1, T1)

in which the Σ1-functions are defined on a finite set.

(Embfd
w
) Every A ∈ PModfd

w
(Σ1, T1) weakly embeds

into a total model of T1.

Theorem 3 Let K be a set of clauses which are Σ1-flat and
Σ1-linear, and let T1 = T0 ∪ K. Assume that T0 ⊆ T1

satisfies (Embfd
w ). Then T0 ⊆ T1 satisfies (Locf).

Theorem 4 (Decidability) Assume that the theory exten-
sion T0 ⊆ T1 satisfies condition (Locf). Then:
(a) If all variables in the clauses in K occur below some

Σ1-function symbol and if the universal theory of T0 is
decidable, then the universal theory of T1 is decidable.

(b) If the ∀∃ theory of T0 is decidable then the universal
theory of T1 is decidable.

Theorem 5 (Complexity) Let T0 be a theory for which the
satisfiability of a set of ground clauses of size n can be
checked in time at most g(n), and let T0 ⊆ T0∪K be a local
theory extension where in every clause in K each variable
occurs below some extension function. The validity of a set
of clauses in the extension can be checked in time g(c · nk),
where c is a constant and k is the maximum number of ex-
tension terms in a clause in K or in a congruence axiom.

4 Definitional extensions

We start by studying extensions of a Σ0-theory T0 (i.e. a
class of Σ0-algebras) with operators in a set Σ which are
defined in terms of the operations in Σ0.

Theorem 6 Let T0 be a Σ0-theory and Σ1 be a set of op-
eration symbols. Assume that for every f ∈ Σ1 we have a
definition of f , i.e. a conjunction Def(f) of formulae:

k̂

i=1

∀x(φi(x1, . . . , xn) → f(x1, . . . , xn) = ti(x1, . . . , tn))

where ti are Σ0-terms, and φi are Π0-clauses such that for
i 6= j, φi ∧ φj is unsatisfiable w.r.t. T0. Then the extension
T0 ⊆ T1 = T0 ∪ {Deff | f ∈ Σ1} is local.

Proof : Any (A, {fA}f∈Σ0∪Σ1
) ∈ PModw(Σ1, T1) can

be completed to a total model of T1 by fixing an ele-
ment a0∈A and defining (if f(a1, . . . , an) is undefined)
f(a1, . . . , an)=ti(a1, . . . , an) whenever φi(a1, . . . , an) is
true, and f(a1, . . . , an)=a0 if φi(a1, . . . , an) are all false.

Example: MV-algebras (universal theory). Methods
for automatically testing validity of formulae in (in)finite-
valued propositional Lukasiewicz and G ödel logics, and in
propositional product logic are known (cf. e.g. [11]). It has
been proved that in all cases above the problem of testing
validity is co-NP complete [15, 9, 10, 12].

Theorems 2 and 6 yield a simple and easy to implement
alternative decision procedure for the universal theory of
the class MV of MV-algebras. As a consequence, we show
that the problem of testing the validity of (sets of) clauses
w.r.t. the class MV of all MV-algebras is co-NP complete.

As MV is closed under products, it is sufficient to
give a decision procedure for the universal Horn theory
of MV (then its clause theory, and hence the universal
theory is decidable). For this, note first that MV is the
quasi-variety generated by the real unit interval [0, 1] with
the Lukasiewicz connectives {∨,∧, ◦,⇒}, i.e. the algebra
[0, 1]L = ([0, 1],∨,∧, ◦,⇒) (cf. [7], Corollary 7.2). There-
fore, the following are equivalent:

(1) MV |= ∀x
∧n

i=1 si(x) = ti(x) → s(x) = t(x)

(2) [0, 1]L |= ∀x
∧n

i=1 si(x) = ti(x) → s(x) = t(x)

(3) T0 ∪ DefL ∧
∧n

i=1 si(c) = ti(c) ∧ s(c) 6= t(c) |=⊥,

where T0 consists of the real unit interval [0, 1] with the op-
erations +,− and predicate symbol ≤, and DefL is the fol-
lowing set of definitions for the Lukasiewicz connectives:

(Def∨) x≤y → x∨y=y x>y → x∨y=x
(Def∧) x≤y → x∧y = x x>y → x∧y = y
(Def◦L

) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1
(Def⇒L

) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y



To check (3), we proceed as follows. Let G be the set of
clauses

∧n

i=1 si(c) = ti(c) ∧ s(c) 6= t(c).

Step 1: By the locality of the extension T0 ⊆ T0 ∪ DefL,
we only need to consider those instances DefL[G] of DefL

which correspond to the ground instances occurring in G.

Step 2: We flatten DefL[G] ∧ G by introducing new con-
stants for the arguments of Lukasiewicz connectives as well
as for the subterms starting with such connectives, together
with corresponding definitions ct = t (stored in a set D).
We thus obtain a set Def

0
L ∧ G0 ∧ D of ground clauses.

Step 3: D is replaced by the set Con[D] of functionality
axioms corresponding to the instances f(c1, . . . , cn) = c
in D. By Theorem 2 it is sufficient to check that Def

0
L ∧

G0∧Con[D] (a conjunction of ground Horn clauses in linear
arithmetic over [0, 1]) has a T0-model. For this, one can use,
for instance, a DPLL(T ) method for SAT-solving modulo
the theory of reals or rationals [6].

As the problem of testing satisfiability of arbitrary disjunc-
tions of linear constraints over the reals (or rationals) is NP-
complete [22], testing the validity of (sets of) clauses w.r.t.
the class MV of all MV-algebras is co-NP complete.

Note: Reasoning in [0, 1]G = ([0, 1],∧,∨, ◦G,⇒G) where
◦G,⇒G are the G ödel connectives is similar. In this case,
the signature of T0 only needs to contain ≤; we obtain a re-
duction to testing the satisfiability of a set of ground Horn
clauses in a restricted fragment of linear arithmetic over
[0, 1], where the atoms have the form c ≤ d or c = d.
For [0, 1]Π = ([0, 1],∧,∨, ◦Π,⇒Π) where ◦Π,⇒Π are the
product logic operations one can proceed similarly. In this
case, the signature of T0 needs to contain {≤, ∗, /}. Similar
methods can be used for extensions with projection opera-
tors ∆,∇, defined by (∆(1) = 1) ∧ ∀x(x < 1 → ∆(x) =
0); resp. (∇(0) = 0) ∧ ∀x(x > 0 → ∇(x) = 1), and can,
in principle, be used for other subclasses of BL-logic [14]
whose connectives are definable by terms in real arithmetic.

5 Extensions with monotone functions

We are interested in monotonicity axioms for n-ary func-
tions w.r.t. a subset I ⊆ {1, . . . , n} of their arguments:

(Mon
I
f )

∧

i∈I

xi≤iyi∧
∧

i6∈I

xi=yi→f(x1, .., xn)≤f(y1, .., yn).

Notation. Mon
∅
f is the congruence axiom for f . If I =

{1, . . . , n} we speak of monotonicity in all arguments; we
denote Mon

{1,...,n}
f by Monf . Monotonicity in some ar-

guments and antitonicity in other arguments is modeled by
considering functions f :

∏
i∈I P σi

i ×
∏

j 6∈I Pj → P with

σi ∈ {−, +}, where P +
i = Pi and P−

i = P ∂
i , the dual of

Pi. The corresponding axioms are denoted by Mon
σ
f , where

for i ∈ I , σ(i) = σi ∈ {−, +}, and for i 6∈ I , σ(i) = 0.

We identify extensions T0 ⊆ T0 ∪
∧

f∈Σ1
Mon

σ(f)
f with

property Embw or Embfd
w and which are, therefore, local.

Theorem 7 Let (P1, P2, . . . , Pn, P, f) be a weak partial
model of Mon

σ
f , i.e. such that f :

∏
i∈I P σi

i ×
∏

j 6∈I Pi→P

is a partial function weakly satisfying Mon
I
f .

(1) If P is a ∨-semilattice with 0 (or dually) and the defini-
tion domain of f is finite, then f has a total extension,
f :

∏
i∈I P σi

i ×
∏

j 6∈I Pi→P satisfying Mon
σ
f .

(2) If P is a poset (not necessarily a semilattice) then there
exists a total function f :

∏n

i=1 DM(Pi)
σi → DM(P )

satisfying Mon
I
f and a (many-sorted) weak embedding

ι:(P1, ..Pn, P, f) ↪→ (DM(P1), ..DM(Pn), DM(P ), f).

Proof : (1) Assume that P is a ∨-semilattice with 0. Then
the extension f : P1 × · · · × Pn → P of f defined by
f(x1, . . . , xn)=

∨
{f(y1, . . . , yn)|yi≤σixi, f(y1, . . . , yn)

defined} (where yi ≤
+ xi means yi ≤ xi, yi ≤

− xi means
yi ≥ xi, and yi ≤0 xi means yi = xi) has the desired
properties. The case when P is a ∧-semilattice is similar.

(2) For each j 6∈I let aj be an arbitrary but fixed element
of Pj , and let maxj : DM(Pj)→Pj be such that maxi(A)
is a maximal element of A if A has one, and ai other-
wise. Let f :

∏n

i=1 DM(Pi)
σi→DM(P ) be defined by

f(A1, . . . , An) = [f(u1(A1), . . . , un(An))]ul, where for
i∈I , ui(A) = A if σi = + and ui(A) = Au otherwise; and
if i6∈I then ui(A) = maxi(A). f has the desired properties.

Theorem 8 (1) Let T0 be a class of (many-sorted)
bounded semilattice-ordered Σ0-structures. Let Σ1 be
disjoint from Σ0, and T1 = T0∪{Mon

σ(f)|f ∈ Σ1}.
The extension T0 ⊆ T1 is finitely local.

(2) Any extension of the theory of posets with functions in
a set Σ1 satisfying {Mon

σ(f) | f ∈ Σ1} is local.

Proof : Direct consequence of Theorems 3, 1, and 7. 2

Example 1 As a consequence of Theorem 7(1), and of
the fact that in this case the support of the algebra does
not change when extending f to a total function, we can
prove finite locality of the extensions with functions satis-
fying monotonicity axioms of the following (possibly many-
sorted) classes of algebras:
(1) Any class of bounded (semi)lattices, distributive lat-

tices, or Boolean algebras with operators.
(2) Any extension of a class of semilattices, (distribu-

tive) lattices, or Boolean algebras with operators, with
monotone functions into a bounded numeric domain1.

(3) T , the class of totally-ordered sets; DO, the theory of
dense totally-ordered sets.

(4) Any extension of the theory of reals (integers) with
monotone functions into a fixed numerical domain2.

1Of interest in non-classical logics (e.g. description logics) [18].
2Such extensions may be useful for reasoning about fuzzy notions.



Theorem 9 Assume that in T0 the satisfiability of a set of
ground clauses of size n can be checked in time at most
g(n). Let T1 = T0 ∪ {Mon

σ(f)
f | f ∈ Σ1} be an extension

of T0 with monotone functions. The satisfiability of a set
of ground clauses of size n w.r.t. T1 can be checked in time
g(c · n2), where c is a constant.

Example 2 With the notation in Theorem 9, we have:

(1) If T0 is the theory SL (semilattices) or L (lattices), the
complexity of the universal clause theory of T1 is in
co-NP; that of the universal Horn theory is in PTIME.3

(2) If T0 is the theory DL (distributive lattices) or B
(Boolean algebras) the complexity of the universal
clause theory of T1 is in co-NP.

(3) If T0 is the theory DLO or BAO (distributive lat-
tices resp. Boolean algebras with join/meet hemimor-
phisms) the complexity of the universal clause theory
of T1 is in EXPTIME.

6 Boundedness conditions

We now consider extensions with functions satisfying
boundedness conditions and possibly also monotonicity.

Theorem 10 Let T0 be a Π0-theory with a reflexive binary
predicate symbol ≤, and Σ1 be a set of operation symbols.
The extension T0 ⊆ T0 ∪ {GBound(f) | f ∈ Σ1} is local,
where (GBound(f)) specifies piecewise boundedness of f :

(GBound(f))

k∧

i=1

∀x(φi(x) → ti(x) ≤ f(x) ≤ t′i(x))

where ti, t
′
i are Σ0-terms and φi are Π0-clauses such that if

i 6= j then φi ∧ φj is unsatisfiable w.r.t. T0.

Theorem 11 Let T0 be a Σ0-theory of bounded ∨-
semilattice-ordered (possibly many-sorted) structures, and
let Σ1 be a set of new function symbols. Then the extension
T0 ⊆ T0 ∪ Mon

σ
f ∪ Bound

σ
f is finitely local.

(Bound
t
f ) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn)),

where t(x1, . . . , xn) is a term in the base signature Π0 with
the same monotonicity as f , i.e. satisfying

∀x(
n∧

i=1

xi ≤
σi yi → t(x1, . . . , xn) ≤ t(y1, . . . , yn)).

Example 3 Let T0 be one of the theories in Example 1. By
using finite chains of theory extensions, we can devise step-
wise methods for reasoning in extensions of T0 with function
symbols satisfying a set K of axioms consisting of mono-
tonicity axioms and axioms of one of the forms:

∀x(f(x) = g(x)) ∀x(h(x) ≤ k(x)).

3This explains why checking subsumption w.r.t. TBOXES in the de-
scription logic EL [1] (having as algebraic models semilattices with mono-
tone operators) is decidable in PTIME. An alternative proof is given in [1].

6.1 Example

Let T1 = MV be the theory of MV-algebras, and T2 be the
extension of T1 with a binary function f , decreasing in the
first and increasing in the second argument, and bounded by
⇒, i.e. satisfying:

(Mon
−+
f ) x1 ≥ x2 ∧ y1 ≤ y2 →f(x1, y1) ≤ f(x2, y2)

(Bound
⇒
f ) f(x, y) ≤ (x ⇒ y).

We want to prove that

T2 |= ∀x, x′, y, y′, z(z≤f(x, y)∧x′≤x∧ y≤y′ →x′◦z≤y′),

or equivalently, that the (skolemized, i.e. ground) negation
of the formula above is unsatisfiable w.r.t. T2:

G : c ≤ f(a, b) ∧ a′ ≤ a ∧ b ≤ b′ ∧ a′ ◦ c 6≤ b′.

As f and ⇒ satisfy the same type of monotonicity, the ex-
tension T1 = MV ⊆ MV∪(Mon

−+
f )∪(Bound

⇒
f ) = T2 is

local. Therefore we only need to consider those instances of
(Mon

−+
f )∪(Bound

⇒
f ) which only contain the ground terms

occurring in G. These are trivial instances of monotonicity
of f and the following instance of (Bound

⇒
f ):

(Bound
⇒
f )[G] f(a, b) ≤ a ⇒ b.

By Theorem 2, it is sufficient to check the satisfiability of
T1 ∧ G ∧ (Bound

⇒
f )[G]. We flatten G ∧ (Bound

⇒
f )[G]

by introducing a new constant e for the extension term
f(a, b), together with its definition e = f(a, b). We
thus obtain a conjunction of a formula in the base theory
G0∧(Bound

⇒
f )[G]0 and a formula D, containing the defini-

tions of extension terms (this conjunction is, by Theorem 2,
equisatisfiable w.r.t. partial models in PModw({f}, T2)).

D G0 ∧ (Bound
⇒

f )[G]0
e = f(a, b) c ≤ e ∧ a′ ≤ a ∧ b ≤ b′ ∧ a′ ◦ c 6≤ b′

e ≤ (a ⇒ b)

D is now replaced by the set Con[D] of functionality ax-
ioms corresponding to the instances f(c1, . . . , cn) = c in
D. As only one extension term occurs in D, Con[D] con-
tains only redundant clauses. By Theorem 2 it is sufficient
to check that G0 ∧ (Bound

⇒
f )[G]0 is satisfiable in the the-

ory of MV -algebras. For this, we use the method pre-
sented in Section 4. Note that checking the satisfiability
of G0 ∧ (Bound

⇒
f )[G]0 w.r.t. the theory of MV -algebras is

equivalent to checking whether

MV |= z≤u ∧ x
′≤x ∧ y≤y

′ ∧ u ≤ (x ⇒ y) → x
′◦z≤y

′
.

As in Section 4, we can check this by checking whether

T0 ∪ DefL ∧ G0 ∧ (Bound
⇒
f )[G]0 |=⊥,

where T0 is the theory of the unit interval [0, 1] with the op-
eration + and the predicate ≤ inherited from the real num-
bers, and DefL is the set of definitions for the Lukasiewicz



connectives. We introduce new constants denoting the
terms starting with the Lukasiewicz connectives, and add
the appropriate (flattened and purified) instances DefL0 of
DefL and functionality axioms:

DL (G0 ∧ (Bound
⇒

f )[G]0)0 ∧ DefL0

p = a′ ◦ c c ≤ e ∧ a′ ≤ a ∧ b ≤ b′ ∧ p 6≤ b′

q = (a ⇒ b) e ≤ q ∧ (a′ + c < 1 → p = 0)
(a′ + c ≥ 1 → p = a′ + c − 1)

(a ≤ b → q = 1)
(a > b → q = 1 − a + b)

The satisfiability of (G0 ∧ (Bound
⇒
f )[G]0)0 ∧DefL0 w.r.t.

T0 can be checked, e.g., with a DPLL(T ) method for SAT-
solving modulo the theory of reals.

7 Conclusion

We presented a uniform method for automated reason-
ing in local extensions of theories of ordered structures. We
analyzed definitional extensions, extensions with bounded-
ness axioms and extensions with (generalized) monotonic-
ity axioms and showed that they are local. This allowed
us to use efficient methods for hierarchical reasoning in all
these cases. We illustrated these methods by presenting a
decision procedure for the universal theory of MV-algebras,
and for an extension of this theory with monotone functions
satisfying a boundedness condition.
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