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We give a uniform method for automated reasoning in several
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1 INTRODUCTION

We present a uniform method for automated reasoning in (i) extensions with
functions which can be uniquely defined in terms of existing operations (defi-
nitional extensions), (ii) extensions with functions which satisfy general mono-
tonicity laws and (iii) extensions with functions satisfying boundedness con-
ditions (and possibly also monotonicity).

In previous work [24] we gave a resolution-based decision procedure for
the universal fragment of the class of distributive lattices (or Boolean al-
gebras) with join/meet hemimorphisms satisfying certain residuation condi-
tions. For this, we used extensions of representation theorems for Boolean
algebras [29] or distributive lattices [20] (cf. e.g. [11, 22]). This allowed us
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to use, instead of algebraic models, relational structures (usually much sim-
pler). The main obstacle we faced when attempting to extend these methods
to lattice-based structures or to monotone operators is that, although repre-
sentation theorems exist, the dual spaces are quite complex: in the case of
representation theorems for lattices [30, 16] they are doubly-ordered spaces
(with a closure operator); in representation theorems for distributive lattices
with monotone operators [7] they are endowed with maps having as values
sets of elements.

In this paper we use a different approach: We show that extensions with
monotone functions (and also several other theory extensions) satisfy an em-
beddability property of partial into total algebras, and thus are local (cf. [25]).
In [25] we showed that in a local extension T1 of a theory T0 testing satis-
fiability of ground clauses w.r.t. T1 can be reduced to testing satisfiability of
certain types of formulae w.r.t. T0. This also allows us to express, parametri-
cally, the decidability and complexity of the universal theory of T1 in terms
of the decidability (complexity) of a certain fragment of T0.

For this, we use a generalization of ideas of Burris [2] and Ganzinger [8]
which we proposed in [25]. Burris [2] proved that if a quasi-variety axiom-
atized by a set K of Horn clauses has the property that every finite partial
algebra which is a partial model of the axioms in K can be extended to a total
algebra model of K, then the uniform word problem for K is decidable in
polynomial time (this generalizes previous results by Skolem [21] and Evans
[6]). A link between these embeddability properties and a proof theoretic con-
cept (local theories) was established by Ganzinger [8]. In [25], we extended
these results to special types of theory extensions, which we call local.

In this paper we analyze the applications of the results on hierarchical
reasoning in local theory extensions presented in [25] to automated reasoning
in algebraic structures related to non-classical logics. The main contributions
of the paper are summarized below:

(1) We give a new criterion for recognizing locality of a theory extension
(Sect. 3.3, Thm. 3.4).

(2) We show that extensions with functions defined in terms of existing op-
erators are local. As an illustration, we give a new decision procedure
for the universal fragment of the class MV of MV-algebras, and show
that the problem of deciding validity of sets of clauses w.r.t. MV is
co-NP complete (Sect. 4). We show that similar ideas can be used also
for other classes of algebras, including the class of Gödel algebras.

(3) We prove that certain extensions with functions satisfying generalized
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monotonicity laws and/or boundedness conditions are also local (Sect. 5
and Sect. 6).

(4) We illustrate these ideas (and, in particular, the hierarchical reasoning
method) for the case of MV-algebras with a monotone operator satisfy-
ing a boundedness condition (Sect. 6.1).

2 PRELIMINARIES

Posets and lattices. We assume that standard notions, such as partially or-
dered set (poset) and lattice are known. For further information we refer to
[4]. The dual of a poset P = (X,≤) is P ∂ = (X,≤∂) = (X,≥). For x ∈ P ,
x↓ := {y ∈ X | y ≤ x} and x↑ := {y ∈ X | y ≥ x}. For A ⊆ X ,
Au = {x | ∀a ∈ A(x ≥ a)} and Al = {x | ∀a ∈ A(x ≤ a)} denote the
set of upper resp. lower bounds of A. The Dedekind-MacNeille completion
DM(P ) of a poset P consists of all subsets of P satisfying Aul = A, ordered
by inclusion. The map x 7→ x↓ embeds P into DM(P ) and preserves infima
and suprema if they exist. The map l : DM(P ∂) → DM(P )∂ , sending a set
to the set of its lower bounds, is an isomorphism; its inverse is the map u.

Theories and models. Let Π = (S, Σ, Pred) be a signature where S is a set
of sorts, Σ is a set of function symbols and Pred a set of predicate symbols.
A Π-structure is a tuple

M = ({Ms}s∈S , {fM}f∈Σ, {PM}P∈Pred),

where for every s ∈ S, Ms 6= ∅, for all f ∈ Σ with arity a(f)=s1×. . .×sn→s,
fM :

∏n

i=1
Msi

→ Ms and for all P ∈ Pred with arity a(P ) = s1×. . .×sn,
PM ⊆

∏n
i=1

Msi
. We consider formulae over variables in a (many-sorted)

family X = {Xs | s ∈ S}, where for every s ∈ S, Xs is a set of variables of
sort s. Theories can be regarded as sets of formulae or as sets of models. A
model of a set T of Π-formulae is a Π-structure satisfying all formulae of T .
In this paper, whenever we speak of a theory T we implicitly refer to the set
of all models of T .

Definition 2.1 A partial Π-structure ({Ms}s∈S, {fM}f∈Σ, {PM}P∈Pred) is
a structure where for every s ∈ S, Ms 6= ∅ and for every f ∈ Σ with arity
s1×. . .×sn→s, fM is a partial function from

∏n

i=1
Msi

to Ms.

The notion of evaluating a term t with variables X = {Xs | s ∈ S} w.r.t.
an assignment {βs:Xs → Ms | s ∈ S} (which we denote by β : X → M)
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in a partial structure M is the same as for total structures, except that the
evaluation is undefined if t = f(t1, . . . , tn) with a(f)=s1×. . .×sn→s, and
at least one of βsi

(ti) is undefined, or else (βs1
(t1), . . . , βsn

(tn)) is not in
the domain of fM.

Definition 2.2 Let M be a partial Π-structure, C a clause and β : X → M.
Then (M, β) |=w C if and only if either

(i) for some term t in C, β(t) is undefined, or else

(ii) β(t) is defined for all terms t of C, and there exists a literal L in C s.t.
β(L) is true in M.

M weakly satisfies C (notation M|=wC) if (M, β)|=wC for all β : X →

M. M is a weak partial model of a set of clauses K (notation M|=wK) if
M|=wC for all C ∈ K.

Definition 2.3 A partial Π-structure A weakly embeds into a Π-structure B if
there exists an injective total map h : A → B which is an embedding with re-
spect to Pred and has the property that whenever fA(a1, . . . , an) is defined in
A, then also fB(h(a1), . . . , h(an)) is defined in B and h(fA(a1, . . . , an)) =

fB(h(a1), . . . , h(an)) (i.e. it is a weak homomorphism).

3 LOCAL THEORY EXTENSIONS

Let T0 be a theory with signature Π0 = (S0, Σ0, Pred). We consider exten-
sions T1 of T0 with signature Π = (S, Σ, Pred), where S = S0∪S1, Σ = Σ0∪

Σ1 (i.e. the signature is extended by new sorts and function symbols) obtained
by adding a set K of (universally quantified) clauses. Let PModw(Σ1, T1) be
the class of all weak partial models P of K, in which the Σ1-functions are
partial and such that P|Π0

is a total model of T0. In what follows, when re-
ferring to sets G of ground clauses we assume that they are in the signature
Πc = (S, Σ ∪ Σc, Pred) where Σc is a set of new constants.

An extension T0 ⊆ T1=T0∪K is local if satisfiability of any set G of
ground clauses w.r.t. T0 ∪ K only depends on T0 and those instances K[G] of
K in which the terms starting with extension functions are in the set st(K, G)

of ground terms which already occur in G or K.

Definition 3.1 T0 ⊆ T1=T0 ∪ K is a local extension if it satisfies (Loc):

(Loc) For every set G of ground clauses G |=T1
⊥ iff there is no partial

Πc-structure P such that P|Π0
is a total model of T0, all terms

in st(K, G) are defined in P , and P weakly satisfies K[G] ∧ G.
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3.1 Embeddability and locality
In [25] we showed that embeddability of weak partial models into total mod-
els (Embw) implies locality of an extension.

(Embw) Every A∈PModw(Σ1, T1) weakly embeds into a total model of T1.

A non-ground clause is Σ1-flat if function symbols (including constants) do
not occur as arguments of functions in Σ1. A Σ1-flat non-ground clause is
called Σ1-linear if whenever a variable occurs in two terms in the clause
which start with a function symbol in Σ1, the two terms are identical, and if
no term which starts with a function in Σ1 contains two occurrences of the
same variable.

Theorem 3.2 ([25]) Let K be a set of Σ1-flat and Σ1-linear clauses, and let
T1 = T0 ∪ K. If T0 ⊆ T1 satisfies (Embw) then it satisfies (Loc).

Examples of local theory extensions were given in [25, 26]. In this paper we
give other examples, including extensions with various monotonicity axioms.

3.2 Hierarchic reasoning in local theory extensions
Let T0 ⊆ T1=T0 ∪ K be a local theory extension. To check the satisfiability
of a set G of ground clauses w.r.t. T1 we can proceed as follows (cf. [25]):

Step 1: Use locality. By the locality condition, G is unsatisfiable w.r.t. T1 iff
K[G] ∧ G has no weak partial model in which all the subterms of K[G] ∧ G

are defined, and whose restriction to Π0 is a total model of T0.

Step 2: Flattening and purification. We purify and flatten K[G] ∧ G by in-
troducing new constants for the arguments of the extension functions as well
as for the (sub)terms t = f(g1, . . . , gn) starting with extension functions
f ∈ Σ1, together with new corresponding definitions ct ≈ t. The set of
clauses thus obtained has the form K0 ∧ G0 ∧ D, where D is a set of ground
unit clauses of the form f(c1, . . . , cn) ≈ c (where f ∈ Σ1 and c1, . . . , cn, c

are constants) and K0, G0 are clause sets without function symbols in Σ1.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to
testing satisfiability in T0 by replacing D with the following set of clauses:

Con[D] =
^

{

n^

i=1

ci = di → c = d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ D}.

Theorem 3.3 ([25]) If T0 ⊆ T1 = T0 ∪ K satisfies (Loc) then (with the
notations above) the following are equivalent:

(1) T0 ∧ K ∧ G has a model.
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(2) T0 ∧K[G]∧G has a partial model in PModw(Σ1, T1) (where all terms
in st(K, G) are defined).

(3) T0 ∧ K0 ∧ G0 ∧ D has a partial model in PModw(Σ1, T1) (where all
terms in st(K, G) are defined).

(4) T0 ∧ K0 ∧ G0 ∧ Con[D] has a (total) Π0-model.

3.3 A finite locality criterion
Note that (Loc) refers to satisfiability of arbitrary sets G of ground clauses.
Here, we also consider finite locality (Locf) (the same as (Loc), except it has
to hold for finite sets G of clauses) [25]. We say that the extension T0 ⊆

T1 is finitely local (T1 is a finitely local extension of T0) if T0⊆T1 satisfies
condition (Locf). In [25] we showed that finite locality is guaranteed if (i) T0

is universal and locally finite, (ii) K contains finitely many ground terms, and
(iii) all finite models in PMod(Σ1, T1) embed into total models.

An easy change in the proof of Theorem 3.2 yields an alternative crite-
rion for recognizing finite locality. Let PModfd

w
(Σ1, T1) be the subclass of

PModw(Σ1, T1) in which the Σ1-functions are defined on a finite set.

(Embfd
w
) Every A∈PModfd

w
(Σ1, T1) weakly embeds into a total model of T1.

Theorem 3.4 Let K be a set of clauses which are Σ1-flat and Σ1-linear, and
let T1 = T0 ∪ K. Assume that T0 ⊆ T1 satisfies (Embfd

w
). Then T0 ⊆ T1

satisfies (Locf).

Proof. Assume that T0 ∪ K is not a local extension of T0. Then there exists
a finite set G of ground clauses (with additional constants) such that T0 ∪

K ∪ G |=⊥ but T0 ∪ K[G] ∪ G has a weak partial model in which all terms
in st(K, G) are defined. By results in [25] we can assume w.l.o.g. that G =

G0 ∪ G1, where G0 contains no function symbols in Σ1 and G1 consists of
ground unit clauses of the form f(c1, . . . , cn) ≈ c, where c1, . . . , cn, c are
constants in Σ0 ∪ Σc and f ∈ Σ1.

Let P be a weak partial model of T0 ∪ K[G] ∪ G in which all terms in
st(K, G) are defined. We construct a structure A having the same support
as P , which inherits all relations in Pred and all maps in Σ0 ∪ Σc from P ,
but on which the domains of definition of the Σ1-functions are restricted as
follows: for every f ∈ Σ1, fA(a1, . . . , an) is defined if and only if there exist
constants c1, . . . , cn such that f(c1, . . . , cn) is in st(K, G) and ai = ci

P for
all i ∈ {1, . . . , n}. In this case we define fA(a1, . . . , an) := fP (c1

P , . . . , cn
P ).

As K is flat, it contains no Σ1-terms f(c1, ..., cn) for n ≥ 1, and since G was
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finite, the definition domains of the functions on Σ1 are finite in A. The reduct
of A to Σ0 ∪Σc coincides with that of P . Thus, A is a model of T0 ∪G0. By
the way the operations in Σ1 are defined in A it is clear that A satisfies G1,
so A satisfies G.

We prove that A |=w K. Let D ∈ K, and β : X → A. If for some
term t occurring in D, β(t) is undefined then, by the definition of weak sat-
isfiability, (A, β) |=w D. Assume that for every term t occurring in D, β(t)

is defined. As all terms in D starting with a function symbol in Σ1 are flat
and linear, every variable x in D either does not occur below a function sym-
bol in Σ1 or it occurs in a (unique) term of the form f(x1, . . . , xm) with
f ∈ Σ1 (as, say, x = xi). In the latter case, as β(f(x1, . . . , xm)) is defined,
there exist constants c1, . . . , cn with β(x1) = c1

P , . . . , β(xm) = cm
P , and

f(c1, . . . , cm) ∈ st(K, G). We define a substitution σ : X → TΣ(X) by:

σ(x) =





x if x does not occur below a function symbol in Σ1 in D

ci if x = xi occurs in f(x1, . . . , xm) with f ∈ Σ1, f(c1, . . . , cm)

∈ st(K, G) and β(f(x1, . . . , xm)) = fP (c1
P , . . . , cm

P ).

All terms in σ(D) starting with a Σ1-function are (flat and linear) ground
subterms of G or K, so σ(D) ∈ K[G]. Therefore (P, β) |=w σ(D), and as,
by construction β ◦ σ = β, (A, β) |=w D.

As A weakly satisfies K and the domain of definition of all functions in Σ1

in A is finite, by (Embfd
w
), A weakly embeds into a total algebra B satisfying

T0 ∪ K. But then B |= G, so B |= T0 ∪ K ∪ G, which is a contradiction. �

Theorem 3.5 (Decidability [25]) Assume that the theory extension T0 ⊆ T1

satisfies condition (Locf). Then:
(a) If all variables in the clauses in K occur below some Σ1-function sym-

bol and if the universal theory of T0 is decidable, then the universal
theory of T1 is decidable.

(b) If the ∀∃ theory of T0 is decidable then the universal theory of T1 is
decidable.

Corollary 3.6 (Complexity [25]) Let T0 be a theory for which the satisfia-
bility of a set of ground clauses of size n can be checked in time at most g(n),
and let T0 ⊆ T0 ∪ K be a local theory extension where in every clause in K

each variable occurs below some extension function. The validity of a set of
clauses in the extension can be checked in time g(c · nk), where c is a con-
stant and k is the maximum number of extension terms in a clause in K or in
a congruence axiom.
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4 DEFINITIONAL EXTENSIONS

We start by studying extensions of a Π0-theory T0, where Π0 = (Σ0, Pred),
with operators in a set Σ which are defined in terms of the operations in Σ0.

Theorem 4.1 Let T0 be a Π0-theory and Σ1 be a set of operation symbols.
Let K = {Deff | f ∈ Σ1}, where for every f ∈ Σ1, Deff is a conjunction of
formulae (which can be seen as a definition of f ) of the form:

k∧

i=1

∀x(φi(x1, . . . , xn) → f(x1, . . . , xn) = ti(x1, . . . , xn))

where ti are Σ0-terms, and φi are Π0-clauses such that for i 6= j, φi ∧ φj is
unsatisfiable w.r.t. T0. Then the extension T0 ⊆ T1 = T0 ∪ K is local.

Proof. Any (A, {fA}f∈Σ0∪Σ1
) ∈ PModw(Σ1, T1) can be completed to a

total model of T1 by fixing an element a0∈A and defining (if f(a1, . . . , an) is
undefined) f(a1, . . . , an) = ti(a1, . . . , an) whenever φi(a1, . . . , an) is true,
and f(a1, . . . , an) = a0 if for every i∈{1, . . . , k} φi(a1, . . . , an) is false. �

4.1 Examples
Methods for automatically testing validity of formulae in (in)finite-valued
propositional Łukasiewicz and Gödel logics, and in propositional product
logic are known (cf. e.g. [14]). It has been proved that in all cases above
the problem of testing validity is co-NP complete [19, 12, 13, 15].

We now show that Theorems 3.3 and 4.1 yield a simple and easy to imple-
ment alternative decision procedure for the universal theory of the class MV

of MV-algebras. As a consequence, we show that the problem of testing the
validity of (sets of) clauses w.r.t. the class MV of all MV-algebras is co-NP
complete. We argue that similar results hold for a wider class of algebras
including e.g. the class of Gödel algebras.

Decision procedure for the universal theory of MV-algebras. An MV-
algebra (as originally defined by Chang [3]) (A, 0,¬,⊕) is an abelian monoid
(A, 0,⊕) equipped with a unary operation¬ such that ¬¬x = x, x⊕¬0 = ¬0

and y ⊕ ¬(y ⊕ ¬x) = x ⊕ ¬(x ⊕ ¬y).
The structure of every MV -algebra (A, 0,¬,⊕) can be enriched as fol-

lows: Let 1 denote ¬0. We define x ≤ y iff ¬x ⊕ y = 1. Then ≤ induces a
partial order relation on A which endows A with a bounded distributive lat-
tice structure, where x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y). Let
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x◦y = ¬(¬x⊕¬y) and x ⇒ y = ¬x⊕y. We thus can regard any MV-algebra
as a structure (A,∨,∧, 0, 1, ◦,⇒) where: (M1) (A,∨,∧, 0, 1) is a bounded
distributive lattice; (M2) (A, ◦, 1) is a commutative semigroup with 1; (M3)
◦ is monotone in both arguments; and for all x, y, z ∈ A: (M4) x ◦ z ≤ y

iff z ≤ (x ⇒ y), (M5) x ∧ y = x ◦ (x ⇒ y), and (M6) (x ⇒ 0) ⇒ 0.
A converse correspondence between structures satisfying conditions (M1)-
(M6) and MV-algebras exists cf. e.g. [15]. Accordingly, following [15], we
will regard the class MV of all MV -algebras as the class of all structures
(A,∨,∧, 0, 1, ◦,⇒) which satisfy conditions (M1)-(M6) above.

As MV is closed under products, it is sufficient to give a decision proce-
dure for the universal Horn theory of MV (then its clause theory and, hence,
the universal theory is decidable [18]). For giving a decision procedure for the
universal Horn theory of MV, note that MV is the quasi-variety generated
by the real unit interval [0, 1] with the Łukasiewicz connectives {∨,∧, ◦,⇒},
i.e. the algebra [0, 1]Ł = ([0, 1],∨,∧, ◦,⇒) (cf. [10], Corollary 7.2). In par-
ticular, [0, 1]Ł and MV satisfy the same universal Horn sentences. Therefore,
the following are equivalent:

(1) MV |= ∀x
∧n

i=1
si(x) = ti(x) → s(x) = t(x)

(2) [0, 1]Ł |= ∀x
∧n

i=1
si(x) = ti(x) → s(x) = t(x)

(3) T0 ∪ DefŁ ∧
∧n

i=1
si(c) = ti(c) ∧ s(c) 6= t(c) |=⊥,

where T0 consists of the real unit interval [0, 1] with the operations +,−

and predicate symbol ≤, and DefŁ is the following set of definitions for the
Łukasiewicz connectives:

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def◦Ł) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def⇒Ł) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

To check (3), we proceed as follows. Let G be the set of clauses
∧n

i=1
si(c) =

ti(c) ∧ s(c) 6= t(c).

Step 1: By the locality of the extension T0 ⊆ T0 ∪ DefŁ, we only need to
consider those instances DefŁ[G] of DefŁ which correspond to the ground
instances occurring in G.

Step 2: We flatten DefŁ[G] ∧ G by introducing new constants for the argu-
ments of Łukasiewicz connectives as well as for the subterms starting with
such connectives, together with corresponding definitions ct = t (stored in a
set D). We thus obtain a set (DefŁ)0 ∧ G0 ∧ D of ground clauses.
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Step 3: We replace D by the set Con[D] corresponding to the instances
f(c1, . . . , cn) = c in D. By Theorem 3.3 it is sufficient to check that (DefŁ)0∧

G0 ∧ Con[D] (a conjunction of ground Horn clauses in linear arithmetic over
[0, 1]) has a T0-model. For this, one can use, for instance, a DPLL(T )

method for SAT-solving modulo the theory of reals or rationals [9].

As the problem of testing satisfiability of arbitrary disjunctions of linear con-
straints over the reals (or rationals) is NP-complete [28], testing the validity of
(sets of) clauses w.r.t. the class MV of all MV-algebras is co-NP complete.

Decision procedure for the universal theory of Gödel algebras. A Gödel
algebra is a Heyting algebra (A,∧,∨, 0, 1,⇒) satisfying the linearity axiom
(x ⇒ y) ∨ (y ⇒ x) = 1.

By Herbrand’s theorem, a Horn formula is true in the class of Gödel al-
gebras iff it is true in the class of all finite or countable Gödel algebras.
Every (finite, countable) Gödel algebra is isomorphic to a subdirect prod-
uct of (finite, countable) subdirectly irreducible Gödel algebras. It is well-
known that every subdirectly irreducible Gödel algebra is linearly ordered.
Thus, a Horn formula is true in the class of all Gödel algebras iff it is true
in the class of all finite or countable linearly ordered Gödel algebras. On
the other hand, every finite or countable linearly ordered Gödel algebra em-
beds into an ultrapower of the Gödel t-norm algebra on the unit interval,
[0, 1]G = ([0, 1],∧,∨, ◦G,⇒G), where ◦G,⇒G are the Gödel connectives
[5]. Thus, a universal formula is true in the class of linearly ordered Gödel
algebras iff it is true in the Gödel t-norm algebra on the unit interval [0, 1]G.

Therefore a reduction similar to that used in the case of MV-algebras can
also be used for Gödel algebras. Reasoning in [0, 1]G is similar to reasoning
in [0, 1]Ł. In this case, the signature of T0 only needs to contain ≤; we obtain
a reduction to testing the satisfiability of a set of ground Horn clauses in a
restricted fragment of linear arithmetic over [0, 1], where the atoms have the
form c ≤ d or c = d.

Further examples. For [0, 1]Π = ([0, 1],∧,∨, ◦Π,⇒Π) where ◦Π,⇒Π are
the product logic operations one can proceed similarly. In this case, the sig-
nature of T0 needs to contain {≤, ∗, /}. Similar methods can be used for
extensions with projection operators ∆,∇, defined by (∆(1) = 1) ∧ ∀x(x <

1 → ∆(x) = 0); resp. (∇(0) = 0) ∧ ∀x(x > 0 → ∇(x) = 1), and can in
principle be used for other subclasses of BL-logic [17] whose connectives are
definable using terms in real arithmetic.
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5 EXTENSIONS WITH MONOTONE FUNCTIONS

We are interested in extensions of a theory with additional functions, subject
to monotonicity axioms w.r.t. a subset I ⊆ {1, . . . , n} of their arguments:

(Mon
I
f )

∧

i∈I

xi ≤i yi ∧
∧

i6∈I

xi = yi −→ f(x1, . . . , xn) ≤ f(y1, . . . , yn).

Remarks and notation: Mon
∅
f is equivalent to the congruence axiom for

f . If I = {1, . . . , n} we speak of monotonicity in all arguments; we de-
note Mon

{1,...,n}
f by Monf . Monotonicity in some arguments and antitonic-

ity in other arguments is modeled by considering functions f :
∏

i∈I P σi

i ×∏
j 6∈I Pj → P with σi ∈ {−, +}, where P +

i = Pi and P−
i = P ∂

i , the dual
of the poset Pi. The corresponding axioms are denoted by Mon

σ
f , where for

i ∈ I , σ(i) = σi ∈ {−, +}, and for i 6∈ I , σ(i) = 0.

We show that in numerous cases, theory extensions T0 ⊆ T0 ∪
∧

f∈Σ1
Mon

σf

f

satisfy the embeddability condition (Embw) or (Embfd
w
) and thus are local.

Theorem 5.1 Let (P1, P2, . . . , Pn, P, f) be a weak partial model of Mon
σ
f ,

i.e. such that P1, . . . , Pn, P are structures over a signature containing a
binary predicate ≤, and f :

∏
i∈I P σi

i ×
∏

i6∈I Pi→P is a partial function
weakly satisfying Mon

I
f .

(1) If P is a ∨-semilattice with 0 (or dually) or a totally ordered set and
the definition domain of f is finite, then f has a total extension f :∏

i∈I P σi

i ×
∏

i6∈I Pi→P satisfying Mon
I
f .

(2) If P is a poset (not necessarily a semilattice) then there exists a total
function f :

∏
i∈I DM(Pi)

σi ×
∏

i6∈I DM(Pi) → DM(P ) satisfying
Mon

I
f and a many-sorted weak embedding

ι : (P1, . . . , Pn, P, f) ↪→ (DM(P1), . . . , DM(Pn), DM(P ), f).

Proof. (1) Assume that P is a ∨-semilattice with 0. Then the extension
f : P1 × · · · × Pn → P of f defined by

f(x1, . . . , xn)=
∨

{f(y1, . . . , yn)|yi≤
σixi, f(y1, . . . , yn) defined}

(where yi ≤+ xi means yi ≤ xi, yi ≤− xi means yi ≥ xi, and yi ≤0

xi means yi = xi) has the desired properties. If P is a ∨-semilattice with
0 the supremum always exists (it is 0 if f(y1, . . . , yn) is undefined for all
yi≤σixi). If P is totally ordered, let c ∈ P be arbitrary (but fixed) if f
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is nowhere defined and c = min{f(x1, . . . , xn) | f(x1, . . . , xn) defined}
otherwise. We define f(x1, . . . , xn) = c in case f(y1, . . . , yn) is undefined
for all yi≤σixi. The identity id : (P1, . . . , Pn, P, f) → (P1, . . . , Pn, P, f) is
a weak embedding. Indeed, if f(x1, ..., xn) is defined then, by monotonicity,
f(x1, . . . , xn) = f(x1, ..., xn).

The case when P is a ∧-semilattice with 1 is dual; we define:

f(x1, . . . , xn) =
∧

{f(y1, . . . , yn)|yi≤
−σixi, f(y1, . . . , yn) defined}.

(2) Let f̂ :
∏n

i∈I DM(P σi

i ) ×
∏

j 6∈I Pj → DM(P ) be defined by

f̂((Ci)i∈I , (xj)j 6∈I ) = f((Ci)i∈I , (xj)j 6∈I )
ul.

f̂ is clearly monotone. We construct f : for every j 6∈ I let aj ∈ Pj be arbi-
trary but fixed, and let maxj : DM(Pj) → Pj be such that maxi(A) is a max-
imal element of A if A has one, and ai otherwise. Let f :

∏n
i=1

DM(Pi)
σi →

DM(P ) be the unique function which makes the following diagram commute:

Y

i∈I

DM(P σi
i ) ×

Y

j 6∈I

Pj

bf - DM(P )

Y

i∈I

DM(Pi)
σi ×

Y

j 6∈I

DM(Pj)

(u1, ..., un) 6

f - DM(P )

id

?

Here ui(A)=





Au if i∈I and σi=−
A if i∈I and σi=+
maxi(A) if i6∈I.

. We show that f is monotone.

Let Ai⊆σj A′
i for i ∈ {1, . . . , n}. As u is antitone, ui(Ai) ⊆ ui(A

′
i) for all

i ∈ {1, . . . , n}. Hence, f(u1(A1), ..., un(An)) ⊆ f(u1(A
′
1), ..., un(A′

n)).
Moreover, as ul is monotone:

f(A1, ..., An) = [(f(u1(A1), ..., un(An))]ul ⊆ [(f(u1(A
′
1), ..., un(A′

n))]ul

= f(A′
1, ..., A

′
n).

Let ιi:Pi↪→DM(Pi), ι0:P→DM(P ) be the Dedekind-MacNeille embeddings
ιi(x) = x↓. Let ι : (P1, . . . , Pn, P ) ↪→ (DM(P1), . . . , DM(Pn), DM(P ))

be the many-sorted map agreeing with ιi on the corresponding sorts. We show
that ι is a weak embedding. Assume that f(x1, ..., xn) is defined. We show
that f(x1, ..., xn)↓ = f(x↓

1, ..., x
↓
n).

First note that ui(x
↓
i ) = x↓

i if i ∈ I and σi = +; ui(x
↓
i ) = x↑

i if i ∈ I

and σi = −; and ui(x
↓
i ) = xi if i 6∈ I . By definition, f(x↓

1, . . . , x
↓
n) =

12



f̂(u1(x
↓
1), . . . , un(x↓

n)) = {f(y1, . . . , yn) | yi ≤σi xi}ul. It is easy to
check that if the supremum of A exists in P then Aul = (

∨
A)↓. By mono-

tonicity,
∨
{f(y1, . . . , yn) | yi ≤σi xi} = f(x1, ..., xn) (we assumed that

f(x1, . . . , xn) is defined). Therefore, f(x↓
1, . . . , x

↓
n) = f(x1, . . . , xn)↓. �

Theorem 5.2 The following hold:

(1) Let T0 be a class of (many-sorted) bounded semilattice-ordered Σ0-
structures. Let Σ1 be disjoint from Σ0 and T1 = T0∪{Mon

σf

f |f ∈ Σ1}.
Then the extension T0 ⊆ T1 is finitely local.

(2) Any extension of the theory of posets with functions in a set Σ1 satisfy-
ing {Mon

σf

f | f ∈ Σ1} is local.

Proof. Direct consequence of Theorems 3.4, 3.2, and 5.1. �

This theorem allows us to give a large number of useful examples.

Corollary 5.3 The extensions with functions satisfying monotonicity axioms
of the following (possibly many-sorted) classes of algebras are finitely local:

(1) Any class of algebras with a bounded (semi)lattice reduct, a bounded
distributive lattice reduct, or a Boolean algebra reduct.

(2) Any extension of a class of algebras with a semilattice reduct, a (dis-
tributive) lattice reduct, or a Boolean algebra reduct, with monotone
functions into an infinite numeric domain? .

(3) T , the class of totally-ordered sets; DO, the theory of dense totally-
ordered sets.

(4) Any extension of the theory of reals (integers) with monotone functions
into a fixed infinite numerical domain† .

Proof. (1) and (3) are immediate consequences of Theorem 5.1(1) and of
the fact that in this case the support of the algebra does not change when
extending a partial monotone function f to a total function.
(2) and (4) are also consequences of Theorem 5.1(1), taking into account that
(with the notations in Theorem 5.1) if P is an infinite numerical domain, then
it is in particular totally ordered, so there exists an element c ∈ P such that
c ≤ f(x1, . . . , xn) for all (x1, . . . , xn) in the (finite) definition domain of f .
Thus, we can choose c instead of 0 in the arguments of Theorem 5.1. �

? Of interest in non-classical logics (e.g. description logics) [23].
† Such extensions may be useful for reasoning about fuzzy notions.
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Theorem 5.4 Assume that in T0 the satisfiability of a set of ground clauses of
size n can be checked in time at most g(n). Let T1 = T0∪{Mon

σf

f | f ∈ Σ1}

be an extension of T0 with monotone functions. The satisfiability of a set of
ground clauses of size n w.r.t. T1 can be checked in time g(c · n2), where c is
a constant.

Corollary 5.5 With the notation in Theorem 5.4, we have:
(1) If T0 is the theory SL (bounded semilattices) or L (bounded lattices),

the complexity of the universal clause theory of T1 is in co-NP; that of
the universal Horn theory is in PTIME.‡

(2) If T0 is the theory of bounded distributive lattices or the theory of
Boolean algebras, then the complexity of the universal clause theory
of T1 is in co-NP.

(3) If T0 is the theory DLO or BAO (bounded distributive lattices resp.
Boolean algebras with join/meet hemimorphisms) the complexity of the
universal clause theory of T1 is in EXPTIME.

6 BOUNDEDNESS CONDITIONS

We now consider extensions with functions satisfying boundedness condi-
tions and possibly also monotonicity.

Theorem 6.1 Let T0 be a Π0-theory with a reflexive binary predicate sym-
bol ≤, and Σ1 be a set of operation symbols. The extension T0 ⊆ T0 ∪

{GBoundf | f ∈ Σ1} is local, where (GBoundf ) specifies piecewise bound-
edness of f :

(GBoundf )

k∧

i=1

∀x(φi(x) → ti(x) ≤ f(x) ≤ t′i(x))

where ti, t
′
i are Σ0-terms and φi are Π0-clauses such that if i 6= j then φi∧φj

is unsatisfiable w.r.t. T0.

Theorem 6.2 Let T0 be a Σ0-theory of bounded ∨-semilattice-ordered (pos-
sibly many-sorted) structures, and let f be a new function symbol. Then the
extension T0 ⊆ T0 ∪ Mon

σ
f ∪ Bound

t
f is finitely local.

(Bound
t
f ) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn)),

‡ This explains why checking subsumption w.r.t. TBOXES in the description logic EL [1]
(having as algebraic models bounded semilattices with monotone operators; see [27]) is decid-
able in PTIME. An alternative proof is given in [1].
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where t(x1, . . . , xn) is a term in the base signature Π0 with the same mono-
tonicity as f , i.e. satisfying

∀x(
n∧

i=1

xi ≤
σi yi → t(x1, . . . , xn) ≤ t(y1, . . . , yn)).

Proof. By Theorem 3.4, in order to prove locality it is sufficient to prove that
condition (Embfd

w
) holds. Let (P1, P2, . . . , Pn, P, f) be a weak partial model

of (Mon
σ
f ) ∪ (Bound

t
f ) such that the definition domain of f is finite.

By Theorem 5.1(1), we can extend f to the total function f defined by
f(x1, . . . , xn) =

∨
{f(u1, . . . , un) | ui≤σixi, f(u1, . . . , un) defined}.

Let ui ≤σi xi, i = 1, . . . , n with f(u1, . . . , un) defined. Then, as f

weakly satisfies (Bound
t
f ), f(u1, . . . , un) ≤ t(u1, . . . , un). From the mono-

tonicity assumption for t we know that t(u1, . . . , un) ≤ t(x1, . . . , xn). Thus
for all ui ≤σi xi, i = 1, . . . , n with f(u1, . . . , un) defined, f(u1, . . . , un) ≤

t(x1, . . . , xn). Therefore, f(x1, . . . , xn) =
∨
{f(u1, . . . , un) | ui ≤σi

xi, f(u1, . . . , un) defined} ≤ t(x1, . . . , xn). �

Corollary 6.3 Let T0 be one of the theories in Example 5.3. By using finite
chains of theory extensions, we can devise stepwise methods for reasoning in
extensions of T0 with function symbols satisfying a set K of axioms consisting
of monotonicity axioms and axioms of one of the forms:

∀x(f(x) = g(x)) ∀x(h(x) ≤ k(x)).

6.1 Example
Let T1 = MV be the theory of MV-algebras, and T2 be the extension of T1

with a binary function f , decreasing in the first and increasing in the second
argument, and bounded by ⇒, i.e. satisfying:

(Mon
−+

f ) x1 ≥ x2 ∧ y1 ≤ y2 →f(x1, y1) ≤ f(x2, y2)

(Bound
⇒
f ) f(x, y) ≤ (x ⇒ y).

We prove that T2 |= ∀x, x′, y, y′, z(z≤f(x, y)∧x′≤x∧ y≤y′ →x′◦z≤y′), or
equivalently, that the (skolemized, i.e. ground) negation of the formula above
is unsatisfiable w.r.t. T2:

G : c ≤ f(a, b) ∧ a′ ≤ a ∧ b ≤ b′ ∧ a′ ◦ c 6≤ b′.

As f and⇒ satisfy the same type of monotonicity, the extension T1 = MV ⊆

MV ∪ (Mon
−+

f ) ∪ (Bound
⇒
f ) = T2 is local. Therefore we only need to
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consider those instances of (Mon
−+

f ) ∪ (Bound
⇒
f ) which only contain the

ground terms occurring in G. These are trivial instances of monotonicity of
f and the following instance of (Bound

⇒
f ):

(Bound
⇒
f )[G] f(a, b) ≤ a ⇒ b.

Thus, it is sufficient to check the satisfiability of T1 ∧ (Bound
⇒
f )[G] ∧ G.

We flatten (Bound
⇒
f )[G] ∧ G by introducing a new constant e for the exten-

sion term f(a, b), together with its definition e = f(a, b). We thus obtain a
conjunction of a formula in the base theory (Bound

⇒
f )[G]0 ∧ G0 and a for-

mula D, containing the definitions of extension terms (this conjunction is, by
Theorem 3.3, equisatisfiable w.r.t. partial models in PModw({f}, T2)).

D (Bound
⇒
f )[G]0 ∧ G0

e = f(a, b) e ≤ (a ⇒ b) ∧ c ≤ e ∧ a′ ≤ a ∧ b ≤ b′ ∧ a′ ◦ c 6≤ b′

D is now replaced by the set Con[D] of functionality axioms corresponding
to the instances f(c1, . . . , cn) = c in D. As only one extension term oc-
curs in D, Con[D] contains only redundant clauses. By Theorem 3.3 it is
sufficient to check that (Bound

⇒
f )[G]0 ∧ G0 is satisfiable in the theory of

MV -algebras. For this, we use the method presented in Section 4. Note that
checking the satisfiability of (Bound

⇒
f )[G]0 ∧ G0 w.r.t. the theory of MV -

algebras is equivalent to checking whether

MV |= u ≤ (x ⇒ y) ∧ z ≤ u ∧ x′ ≤ x ∧ y ≤ y′ → x′◦z ≤ y′.

As in Section 4, we can check this by checking whether

T0 ∪ DefŁ ∧ (Bound
⇒
f )[G]0 ∧ G0 |=⊥,

where T0 is the theory of the unit interval [0, 1] with the operation + and the
predicate ≤ inherited from the real numbers, and DefŁ is the set of defini-
tions for the Łukasiewicz connectives. We introduce new constants denoting
the terms starting with the Łukasiewicz connectives, and add the appropriate
(flattened and purified) instances (DefŁ)

0
of DefŁ and functionality axioms:

D′ ((Bound
⇒
f )[G]0 ∧ G0)0 ∧ (DefŁ)

0

p = a′ ◦ c e ≤ q ∧ c ≤ e ∧ a′ ≤ a ∧ b ≤ b′ ∧ p 6≤ b′

q = (a ⇒ b) (a′ + c < 1 → p = 0)

(a′ + c ≥ 1 → p = a′ + c − 1)

(a ≤ b → q = 1)

(a > b → q = 1 − a + b)

The satisfiability of ((Bound
⇒
f )[G]0∧G0)0∧(DefŁ)

0
w.r.t. T0 can be checked,

e.g., with a DPLL(T ) method for SAT-solving modulo the theory of reals.
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7 CONCLUSION

We presented a uniform method for automated reasoning in local extensions
of theories of ordered structures. We analyzed definitional extensions, ex-
tensions with boundedness axioms and extensions with (generalized) mono-
tonicity axioms and showed that they are local. This allowed us to use ef-
ficient methods for hierarchical reasoning in all these cases. We illustrated
these methods by presenting a decision procedure for the universal theory of
MV-algebras, and for an extension of this theory with monotone functions
satisfying a boundedness condition.
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