
Local reasoning in verification

Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, Saarbrücken, Germany
e-mail: sofronie@mpi-sb.mpg.de

Abstract. The goal of this paper is to illustrate the wide applicability
in verification of results on local reasoning, and especially on hierarchi-
cal reasoning in local theory extensions. The paper contains a survey of
our results on reasoning in local theory extensions, ranging from charac-
terizations of locality to interpolation. In addition, several examples are
provided, emphasizing theories occurring in a natural way in verification.
We give several examples – some already existing in the literature, others
obtained during the work in the AVACS project – of application domains
where such theories occur in a natural way.

1 Introduction

Many problems in mathematics and computer science (and, especially, many
problems occurring in the verification of complex systems) can be reduced to
proving the satisfiability of conjunctions of literals in a background theory. This
theory can be a concrete theory (e.g. the theory of real or rational numbers),
the extension of a base theory with additional functions (free, monotone, or
recursively defined) or a combination of theories. It is therefore very important
to identify situations when reasoning in extensions and combinations of theories
can be done efficiently.

In [6] and [15] we identified classes of theory extensions, which we called
local extensions, for which efficient reasoning is possible. In a local extension of
a theory T0 by a set K of clauses, unsatisfiability of any set G of ground clauses
depends only of T0 and those instances of the extension clauses K which are
’similar’ to the clauses in G, i.e. in which the extension terms are instantiated
with ground terms already occurring in G. This is very helpful in several ways:

– First, it helps to limit search, since not all instances of K are needed to derive
a contradiction.

– Second, locality often allows to reduce satisfiability checking for clauses with
variables to testing satisfiability of ground clauses.

– In addition, in [6,15] we showed, as a by-product, that in local theory ex-
tensions hierarchical reasoning is possible (that is, for reasoning in a theory
extension a prover for the base theory can be used as a black-box).

Many theories important for computer science or mathematics are local exten-
sions of a base theory: several examples are presented in Sections 4–8 cf. also
[15,16]. Results which allow to identify situations in which a combination of local



2 Viorica Sofronie-Stokkermans

extensions of a base theory is guaranteed to be itself a local extension of the base
theory [17] are discussed in Section 9.

These methods for reasoning in extensions and combinations of theories turn
out to be very useful e.g. in invariant checking or bounded model checking. How-
ever, in the verification of complex systems we may need to automatically gener-
ate invariants, or to prove safety for all runs. For this we may need to use a goal-
directed overapproximation for achieving faster termination, or to use abstrac-
tion (and apply methods from abstraction refinement). An idea which proved
very useful is to use ground interpolants for abstraction refinement [10,11,12,18].
McMillan recently used interpolation also for invariant generation. As the results
in [10,11,12] were restricted to a special class of data types, in [16] we investi-
gated possibilities of obtaining simple interpolants in more expressive theory
extensions. We identified situations in which it is possible to do this in a hierar-
chical manner, by using a prover and a procedure for generating interpolants in
the base theory as “black-boxes”.

The main goal of this paper is to show how widely applicable these results
are in verification. The contribution of the paper has three aspects:

– First, we present a survey of our most recent results on reasoning in local
theory extensions [6,15,17,16].

– Second, we give some new examples of classes of theories which occur in a
natural way in verification which turn out to be local extensions of a simple
base theory.

– Finally, we identify several examples from verification – some already exist-
ing in the literature, and others which we obtained during the work in the
AVACS project – where these theories occur in a natural way.

We show that hierarchical, local reasoning can be used for proving certain invari-
ants and in bounded model checking, and offers general theoretical arguments
for possibilities limiting the search to neighborhoods of counterexamples with-
out losing completeness, or for systematic slicing. We also present implications
of efficient interpolation to abstraction refinement based verification.

The paper is structured as follows: Section 2 contains the definitions needed in
the paper. Section 3 surveys our results on local theory extensions obtained in
[15]. Sections 4–8 contain several examples of theories in this class, some already
presented in [15,17,16], and some new. The theoretical results are illustrated with
examples from verification where such theories occur in a natural way. Section 9
surveys our results on combinations of local theory extebsions in [17]. Section 10
contains some results on interpolation in local theory extensions [16].

2 Preliminaries

Partial algebras. A partial Σ-algebra is a structure (A, {fA}f∈Σ), where A
is a non-empty set and for every f ∈ Σ with arity n, fA is a partial function
from An to A. The structure is a (total) algebra if all functions fA are total. (In



Local reasoning in verification 3

what follows we usually denote both an algebra and its support with the same
symbol.) Details on partial algebras can be found in [3].

The notion of evaluating a term t with respect to a variable assignment
β : X → A for its variables in a partial algebra A is the same as for total
algebras, except that this evaluation is undefined if t = f(t1, . . . , tn) and either
one of β(ti) is undefined, or else (β(t1), . . . , β(tn)) is not in the domain of fA.

Weak homomorphisms. A total map h : A → B between partial Σ-algebras
A and B is called a weak Σ-homomorphism if whenever fA(a1, . . . , an) is defined
(in A), then fB(h(a1), . . . , h(an)) is defined (in B) and h(fA(a1, . . . , an)) =
fB(h(a1), . . . , h(an)). Let Pred be a set of predicate symbols, and let Π =
(Σ,Pred). A weak Π-embedding between two structures whose restrictions to Σ
are partial algebras, (A, {fA}f∈Σ, {PA}P∈Pred) and (B, {fB}f∈Σ, {PB}P∈Pred),
is an injective weak Σ-homomorphism i : A → B which is an embedding
w.r.t. Pred, i.e. for every P ∈ Pred with arity n and every a1, . . . , an ∈ A,
PA(a1, . . . , an) if and only if PB(i(a1), . . . , i(an)).

Weak validity. We define weak validity in structures (A, {fA}f∈Σ, {PA}P∈Pred),
where Pred is a set of predicate symbols and (A, {fA}f∈Σ) is a partial Σ-algebra.
Let β : X → A.

(1) (A, β) |=w t ≈ s if and only if (a) β(t) and β(s) are both defined and equal;
or (b) at least one of β(s) and β(t) is undefined.

(2) (A, β) |=w t 6≈ s if and only if (a) β(t) and β(s) are both defined and different;
or (b) at least one of β(s) and β(t) is undefined.

(3) (A, β) |=w P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn))∈PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(4) (A, β) |=w ¬P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn)) 6∈ PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(A, β) weakly satisfies a clause C (notation: (A, β) |=w C) if (A, β) |=w L for at
least one literal L in C. A weakly satisfies C (notation: A |=w C) if (A, β) |=w C
for all assignments β. A weakly satisfies a set of clauses K (notation: A |=w K)
if A |=w C for all C ∈ K.

Example 1 Let A be a partial Σ-algebra, where Σ = {car/1, nil/0}. Assume
that nilA is defined and carA(nilA) is not defined. Then A |=w car(nil) ≈ nil and
A |=w car(nil) 6≈ nil (because one term is not defined in A).

Theories and extensions of theories. In what follows we will consider ex-
tensions of theories, in which the signature is extended by new function symbols.
For the sake of simplicity we assume that the set of predicate symbols remains
unchanged in the extension. A theory can be regarded as a set of formulae. Then
extension with a set of formulae is set union. Alternatively, a theory T0 can be
regarded as a collection of models. Then its extension with a set K of formulae
consists of all structures (in the extended signature) which are models of K and
whose reduct to the signature of T0 is in T0.

In what follows we regard theories as sets of formulae, if not otherwise specified.
All the results of this paper can easily be reformulated to a setting in which T0



4 Viorica Sofronie-Stokkermans

is a collection of models. (In a few cases in this paper we will explicitly refer to
collections of models only; this will simplify the presentation.)

Let T0 be an arbitrary theory with signature Π0 = (Σ0,Pred), where the set
of function symbols is Σ0. We consider extensions T1 of T0 with signature Π =
(Σ,Pred), where the set of function symbols is Σ = Σ0 ∪ Σ1. We assume that
T1 is obtained from T0 by adding a set K of (universally quantified) clauses.

Weak partial model of a theory. A partial Π-algebra A is a weak partial
model of T1 with totally defined Σ0-function symbols if (i) A|Π0

is a model of T0

and (ii) A weakly satisfies all clauses in K.

In what follows, if the base theory T0 and its signature are clear from the context,
we will refer to weak partial models of T1. We will use the following notation:

– PModw(Σ1, T1) denotes the class of all weak partial models of T1 in which
the Σ1-functions are partial and all other function symbols are total;

– Mod(T1) denotes the class of all models of T1 in which all functions in Σ0∪Σ1

are totally defined.

Embeddability. For theory extensions T0 ⊆ T1 = T0 ∪ K, where K is a set of
clauses, and for the classes of partial algebras mentioned above, we consider the
following condition:

(Embw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model of T1.

We also define a stronger notion of embeddability, which we call completability:

(Compw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model B
of T1 such that A|Π0

and B|Π0
are isomorphic.

Corresponding weaker conditions, which only refer to embeddability of finite
partial models, will be denoted by (Embf

w), resp. (Compf
w).

3 Local theory extensions

Local theories were introduced by McAllester and Givan in [7,9], and further
studied by Ganzinger and Basin [1,5]. A local theory is a set of Horn clauses
K such that, for any ground Horn clause C, K |= C only if already K[C] |= C
(where K[C] is the set of instances of K in which all terms are subterms of
ground terms in either K or C). The notion of locality in equational theories was
studied by Ganzinger [5], who also related it to a semantical property, namely
embeddability of partial algebras into total algebras. In [15] the notion of locality
for Horn clauses is extended to the notion of local extension of a base theory.

Let K be a set of clauses in the signature Π = (Σ0 ∪ Σ1,Pred). In what
follows, when we refer to sets G of ground clauses we assume that they are in
the signature Πc = (Σ ∪ Σc,Pred), where Σ = Σ0 ∪ Σ1 and Σc is a set of new
constants. If Ψ is a set of ground Σ0 ∪Σ1 ∪Σc-terms, we denote by KΨ the set
of all instances of K in which all terms starting with a Σ1-function symbol are
ground terms in the set Ψ . If G is a set of ground clauses and Ψ = st(K, G) is the
set of ground subterms occurring in either K or G then we write K[G] := KΨ .



Local reasoning in verification 5

We will focus on the following type of locality of a theory extension T0 ⊆ T1,
where T1 = T0 ∪ K with K a set of (universally quantified) clauses:

(Loc) For every set G of ground clauses T1 ∪G |=⊥ iff T0 ∪ K[G] ∪G has
no weak partial model in which all terms in st(K, G) are defined.

A weaker notion (Locf) can be defined if we require that the respective conditions
only hold for finite sets G of ground clauses. We say that an extension T0 ⊆ T1

is local if it satisfies condition (Locf). (A local theory [5] is a local extension of
the empty theory.)

Let T0 ⊆ T1=T0 ∪ K be a local theory extension. To check the satisfiability
of a set G of ground clauses w.r.t. T1 we can proceed as follows (cf. [15]):

Step 1: Locality. By the locality condition, G is unsatisfiable w.r.t. T1 iff K[G]∧G
has no weak partial model in which all the subterms of K[G] ∧ G are defined,
and whose restriction to Π0 is a total model of T0.

Step 2: Reduction to testing satisfiability in T0. We purify and flatten K[G] ∧G
by introducing new constants for the arguments of the extension functions as
well as for the (sub)terms t = f(g1, . . . , gn) starting with extension functions
f ∈ Σ1, together with new corresponding definitions ct ≈ t. The set of clauses
thus obtained has the form K0 ∧G0 ∧D, where D is a set of ground unit clauses
of the form f(c1, . . . , cn) ≈ c, where f ∈ Σ1 and c1, . . . , cn, c are constants, and
K0, G0 are clause sets without function symbols in Σ1. We reduce the problem
to testing satisfiability in T0 by replacing D with the following set of clauses:

N0 =
^

{
n̂

i=1

ci≈di→c≈d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ D}.

Theorem 1 ([15]) With the notations above, the following are equivalent:

(1) T0 ∧ K ∧G has a model.
(2) T0∧K[G]∧G has a w.p.model (where all terms in st(K,G) are defined).
(3) T0∧K0∧G0∧D has a w.p.model (with all terms in st(K,G) defined).
(4) T0∧K0∧G0∧N0 has a (total) Σ0-model.

3.1 Example

Let T0 be a theory (with a binary predicate ≤), and T1 a local extension of T0

with two monotone functions f and g. Consider the following problem:

T0 ∪ Monf ∪ Mong |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v))

The problem reduces to the problem of checking whether T0 ∪ Monf ∪ Mong ∪
G |=⊥, where G = c0 ≤ c1 ∧ f(c1 ∨ c2) ≤ g(c3 ∧ c4) ∧ f(c0) 6≤ g(c4).

The locality of the extension T0 ⊆ T1 means that, in order to test if T0∪Monf∪
Mong ∪G |=⊥, it is sufficient to test whether T0 ∪Monf [G]∪Mong [G]∪G |=w⊥,
where Monf [G],Mong [G] consist of those instances of the monotonicity axioms
for f and g in which the terms starting with the function symbols f and g occur
already in G:



6 Viorica Sofronie-Stokkermans

Monf [G] = c0≤c1∨c2 → f(c0)≤f(c1∨c2) Mong[G] = c4≤c3∧c4 → g(c4)≤g(c3∧c4)
c1∨c2≤c0 → f(c1∨c2)≤f(c0) c3∧c4≤c4 → g(c3∧c4)≤g(c4)

In order to check the satisfiability of the latter formula, we purify it, introducing
definitions for the terms below the extension functions d1=c1∨c2, d2=c3∧c4 as
well as for the terms starting with the extension functions themeslves: f(d1)=e1,
f(c0)=e3, g(c4)=e4, g(d2)=e2. As totality of the extension functions is not re-
quired, we can use a relational notation, and add the functionality axioms:
d1=c0 → e1=e3 and c4=d2 → e4=e2. We obtain the following set of clauses:

rf (d1, e1) d1 = c1 ∨ c2 c0 ≤ c1 d1 = c0 → e1 = e3 d1 ≤ c0 → e1 ≤ e3

rf (c0, e3) d2 = c3 ∧ c4 e1 ≤ e2 d2 = c4 → e2 = e4 c0 ≤ d1 → e3 ≤ e1

rg(c4, e4) e3 6≤ e4 d2 ≤ c4 → e2 ≤ e4

rg(d2, e2) d4 ≤ d2 → e4 ≤ e2

The following extensions are proved to be local in Theorem 7. We illustrate the
hierarchical reduction to testing satisfiability in the base theory in each case.

(1) Assume T0 is DL, the theory of distributive lattices or B, the theory of
Boolean algebras. The universal clause theory of DL (resp. B) is the theory of
the two element lattice (resp. two element Boolean algebra), so testing Boolean
satisfiability is sufficient. (This is in NP.) We proved unsatisfiability using spass

(http://spass.mpi-sb.mpg.de/), but SAT solvers such as for instance Chaff

(http://www.princeton.edu/∼chaff/software.html) can be used as well.

(2) If T0 = L is the theory of lattices, then we can reduce the problem above to
the problem of checking the satisfiability of a set of ground Horn clauses [14].
This can be checked in polynomial time.

(3) If T0 = R we first need to explain what ∨ and ∧ are. For this, we re-
place d1 = c1 ∨ c2 with (c1 ≤ c2 → d1 = c2) ∧ (c2 < c1 → d1 = c1) and
similarly for d2 = c3 ∧ c4. We proved unsatisfiability using the redlog demo
(http://www.fmi.uni-passau.de/∼sturm/software/redlog/).

We can therefore conclude that in all cases above:

T1 |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v)).

3.2 Identifying local theory extensions

There is a strong link between locality of a theory extension and embeddability
of partial models into total ones. In [15] we proved that embeddability implies
locality of an extension. This allows to identify several local theory extensions.

In what follows we say that a non-ground clause is Σ1-flat if function symbols
(including constants) do not occur as arguments of function symbols in Σ1. A
Σ1-flat non-ground clause is called Σ1-linear if whenever a variable occurs in
two terms in the clause which start with function symbols in Σ1, the two terms
are identical, and if no term which starts with a function in Σ1 contains two
occurrences of the same variable.



Local reasoning in verification 7

Theorem 2 ([15]) Let K be a set of clauses in which all terms starting with
a function symbol in Σ1 are flat and linear. If the extension T0 ⊆ T1 satisfies
(Embw) then it satisfies (Loc).

Let T0 ⊆ T1=T0∪K be a local theory extension. We can reduce testing satisfiabil-
ity of a set of ground clauses w.r.t. T1, hierarchically, to testing the satisfiability
of a formula w.r.t. T0 as shown in Section 3. If all variables in K occur below
extension functions then this formula is guaranteed to be again ground.

Note: All the results above can be extended without problems to a many-sorted
framework. We here chose a sort-neutral presentation for the sake of simplicity.

We present several examples of theory extensions for which embedding condi-
tions among those mentioned above hold. Some examples first appear in [15,16],
other examples are new – they occurred in our work on verification in the frame
of the AVACS project. In particular, we present new general boundedness condi-
tions which define local theory extensions relevant in verification. As illustration
for the types of theory extensions we prove to be local, we present some examples
from verification where the respective local theory extensions occur in a natural
way. We show that hierarchical, local reasoning can be used for proving certain
invariants and in bounded model checking, and offers general theoretical argu-
ments for possibilities of systematically limiting the search to neighborhoods of
counterexamples without losing completeness, or for systematic slicing.

4 Extensions with free and bounded functions

Any extension T0 ∪ Free(Σ) of a theory T0 with a set Σ of free function symbols
satisfies condition (Compw) [6,15].

In applications however, one often needs to consider additional constraints
on free functions, e.g. boundedness or definedness constraints. Let T0 be a theory
with signature Π0 = (Σ0,Pred) endowed with a reflexive partial ordering ≤.

Theorem 3 (Boundedness for free functions [16]) Any extension of T0 with
a function f 6∈ Σ0 satisfying boundedness (Boundt

f ) or guarded boundedness

(GBoundt
f ) conditions is local.

(Boundt
f ) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))

(GBoundt
f ) ∀x1, . . . , xn(φ(x1, . . . , xn) → f(x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a term in the base signature Π0 with variables among
x1, . . . , xn and φ(x1, . . . , xn) a conjunction of literals in signature Π0 with vari-
ables among x1, . . . , xn.

Theorem 4 (Piecewise boundedness for free functions) For i ∈ {1, . . . ,m},
let ti(x1, . . . , xn) and si(x1, . . . , xn) be terms in the signature Π0 with variables
among x1, . . . , xn, and let φi(x1, . . . , xn), i ∈ {1, . . . ,m} be conjunctions of liter-
als in the base signature Π0, with variables among x1, . . . , xn, i.e. such that for
every i 6= j, φi ∧ φj |=T0

⊥. Any “piecewise-bounded” extension T0 ∧ (GBoundf ),

where f 6∈ Σ0, is local. Here (GBoundf ) =
∧m

i=1(GBound
[si,ti],φi

f );

(GBound
[si,ti],φi

f ) ∀x(φi(x) → si(x) ≤ f(x) ≤ ti(x)).



8 Viorica Sofronie-Stokkermans

4.1 Example: Water tank controller

Consider a water level controller modeled as follows: Assume that one can check,
with the help of two sensors, whether the water level is above or below an alarm
level Lalarm, and whether it is above or below an overflow level Loverflow, where
Lalarm < Loverflow. Changes in the water level by inflow/outflow are represented
as functions in, out, depending on current time t and water level L.

valve := 0

valve := 1

L > L
alarm

L > L 
alarm

L:= in(out(L, t), g(t)) 

t:= h(g(t)) 

L:= in(L, k(t)) 

t:= k(t) 

• If L ≥ Lalarm then a valve is opened until time g(t),
the water level changes by L′ := in(out(L, t), g(t))
and time by t′ := h(g(t)).

• If L < Lalarm then the valve is closed; the water le-
vel changes by L′ := in(L, t) and time by t′ := k(t).

We want to show that if initially L < Lalarm then
the water level always remains below Loverflow.

We impose the following restrictions on the functions in and out:

∀T (k(T ) > 0) ∀T (g(T ) > 0) ∀T (h(T ) > 0) (1)

∀L, T (in(L, T ) > L) ∀L, T (out(L, T ) < L) (2)

∀L, T (L<Lalarm→in(L, T )<Loverflow) ∀L, T (L<Loverflow→out(L, T )<Lalarm) (3)

By results in Section 4, the set of axioms (1)–(3) defines a local extension of
linear real arithmetic. We prove that if initially L < Lalarm then

(1) Inv L < Loverflow is an invariant of the system.
(2) Inv(2) In state 2, always Lalarm < L < Loverflow.
(3) Inv(3) In state 3, always L ≤ Lalarm.

This can be done automatically as follows: As Lalarm < Loverflow, obviously, in
the initial state L < Lalarm < Loverflow, hence the invariant is fulfilled. Assume
that the invariant is fulfilled at state 1, i.e. L < Loverflow. There are two possible
transitions from state 1, according to the current water level.

– If L > Lalarm then the system passes to state 2, with valve := 1. It is easy to
check that the invariants are also fulfilled in state 2.

– If ¬(L > Lalarm) then the system passes to state 3, with valve := 0. It is easy
to check that the invariants are also fulfilled in state 3.

Assume that the invariants are fulfilled at state 2. Then Lalarm < L < Loverflow.
The only possible transition is from state 2 to state 1; the change in water level is
given by Tr(21): L′ = in(out(L, t), g(t)). We show, using the hierarchical method
proposed in [15] that R ∪ K ∪ Inv(2) ∪ Tr(21) ∪ ¬Inv(1) is unsatisfiable, where:

K : ∀L, T (L<Lalarm→in(L, T )<Loverflow)
∀L, T (L<Loverflow→out(L, T )<Lalarm)

Inv(2) : Lalarm < L < L < Loverflow

Tr(21) : L′ := in(out(L, t), g(t))
¬Inv(1) : ¬L′ < Loverflow.



Local reasoning in verification 9

Assume that the invariants are fulfilled at state 3. Then L < Lalarm. The only
possible transition is to state 1; the change in water level is given by Tr(31):
L′ = in(L, k(t)). We show, using the hierarchical method in [15], that R ∪ K ∪
Inv(3) ∪ Tr(31) ∪ ¬Inv(1) is unsatisfiable, where:

K : ∀L, T (L<Lalarm→in(L, T )<Loverflow)
∀L, T (L<Loverflow→out(L, T )<Lalarm)

Inv(3) : L ≤ Lalarm

Tr(31) : L′ = in(L, k(t))
¬Inv(1) : ¬L′ < Loverflow.

5 Definedness restrictions

We now consider extensions with sets of clauses in which additionally definedness
restrictions are taken into account. Let K be a set of clauses of the form

∧

f(t)∈Subterm(
W

m

i=1
ti=si)

Def(f(t)) →
m
∨

i=1

ti = si.

Let Kf be the set of clauses obtained from K by flattening, with the remark that
the terms under Def are not completely replaced with variables, but only terms
of the form f(x1, . . . , xn) can occur below Def.

Example 2 Assume that K consists of the clause C:

Def(car(x)) ∧ Def(cdr(x)) ∧ Def(cons(car(x), cdr(x))) → cons(car(x), cdr(x))=x.

Then Kf consists of the clause Cf :

car(x)=y∧cdr(x)=z∧Def(car(x))∧Def(cdr(x))∧Def(cons(y, z)) → cons(y, z)=x.

Theorem 5 With the notations above, Kf is a local theory.

Proof : Let P be a partial model of Kf . We embed P into a total model A of
Kf with support P ∪ {⊥} as follows: for f ∈ Σ and p ∈ P , if fP (p) is undefined
we define fA(p) :=⊥, and fA(⊥) =⊥. We define Def(⊥) = false. Let C = Kf ,
and let β : X → A. If β(t) is defined in P for all terms occurring in C then as
(P, β) |= C also (A, β) |= C. If β(f(x)) is undefined in P for some subterm f(x)
in C then β(f(x)) = fA(β(x)) =⊥, As ¬Def(f(x)) is in C, (A, β) |= C.

5.1 Verification of pointer programs: Local data structures

In [13], McPeak and Necula investigate local reasoning in pointer data structures,
with the goal of efficiently proving invariants in programs dealing with pointers.
The logic used has two sorts (a pointer sort p and a scalar sort s). Sets Σp and
Σs of pointer resp. scalar fields are given. They can be modeled by functions
of sort p → p and p → s, respectively. The only predicate of sort p is equality
between pointers; predicates of scalar sort can have any arity. In this language
one can define pointer (dis)equalities and arbitrary scalar constraints. The local
axioms considered in [13] are of the form

∀p E ∧ C (4)

where E contains disjunctions of pointer equalities and C contains scalar con-
straints (sets of both positive and negative literals). It is assumed that for all



10 Viorica Sofronie-Stokkermans

pointer terms f1(f2(. . . fn(p))) occurring in the body of an axiom, the axiom
also contains the disjunction p = null ∨ fn(p) = null ∨ · · · ∨ f2(. . . fn(p))) = null.
This disjunction has the rôle of excluding null pointer errors. In addition, we
assume that the disjunction contains f1(f2(. . . fn(p))) = null if f1 ∈ Σp resp.
f1(f2(. . . fn(p))) = nulls if f1 ∈ Σs.

Examples of axioms (for doubly linked data structures with state and prior-
ities) which are considered there are:

∀p p 6= null ∧ next(p) 6= null → prev(next(p)) = p
∀p p 6= null ∧ next(p) 6= null → state(p) = state(next(p))
∀p p 6= null ∧ next(p) 6= null ∧state(p) = RUN → priority(p) ≥ priority(next(p))

(the first axiom states that prev is a left inverse for next, the second axiom tells
how a state is updated; the third axiom is a monotonicity condition on the
function priority with values in a partially ordered domain).
The special form (4) of the axioms ensures that all partial models can be em-
bedded into total models.

Theorem 6 Let T0 be the union of a two-sorted combination of a pointer theory
without any function symbols and a given scalar theory. Any set of axioms of
type (4) defines a local extension T1 of T0.

Proof : Let T1 = T0 ∪K be the extension of T0 with clauses of the form ∀p E ∧C.
Let P ∈ PModw(Σp ∪Σs, T1). We embed P into a total model A of T1 with the
same support as follows: for f ∈ Σp, if fP (p) is undefined we define fA(p) :=
null, for every f ∈ Σs, if fP (p) is undefined we define fA(p) = nulls. Let now
C = E ∨C ∈ K, and let β : X → A. If β(t) is defined in P for all terms occurring
in C then as (P, β) |= C also (A, β) |= C. If β(t) is undefined in P for some term
in C then β(t) = null, hence the literal t = null in C is true, so (A, β) |= C. 2

The results on local theory extensions can thus be used as well in this context.

6 Extensions with constructors and selectors

Let T0 be a theory with signature Π0 = (Σ0,Pred), let c ∈ Σ0 with arity n,
and let Σ1 = {s1, . . . , sn} consist of n unary function symbols. Let T1 = T0 ∪
Selc (a theory with signature Π = (Σ0 ∪ Σ1,Pred)) be the extension of T0

with the set Selc of clauses below. Assume that T0 satisfies the (universally
quantified) formula Injc (i.e. c is injective in T0), then the extension T0 ⊆ T1

satisfies condition (Compw) [15].

(Selc) s1(c(x1, . . . , xn)) ≈ x1

· · ·

sn(c(x1, . . . , xn)) ≈ xn

x ≈ c(x1, . . . , xn) → c(s1(x), . . . , sn(x)) ≈ x

(Injc) c(x1, . . . , xn) ≈ c(y1, . . . , yn) → (
n̂

i=1

xi ≈ yi)

Such extensions are used e.g. in programming, but also in cryptography (for
encoding/decoding with given keys).



Local reasoning in verification 11

7 Extensions with monotone functions

Extensions with monotonicity axioms often are local as well.

Theorem 7 (Monotone functions [15]) Let T0 be one of the theories in the
class Ord consisting of: (1) P (posets), (2) T (totally-ordered sets), (3) DO
(dense totally-ordered sets), (4) S (semilattices), (5) L (lattices), (6) DL (dis-
tributive lattices), (7) B (Boolean algebras), (8) R (theory of reals). Let Monf

be the monotonicity axiom of an n-ary function f :

(Monf )
n
∧

i=1

xi ≤ yi → f(x1, . . . , xn) ≤ f(y1, . . . , yn).

The extension T0 ⊆ T0 ∪Monf satisfies condition (Embw) in cases (1)–(5); con-
dition (Compf

w) in cases (6) and (7); and condition (Compw) in case (8).

Similar results can be obtained if we assume that the class of models of T0 is a
class of complete lattices (possibly with additional operators). Then the exten-
sion T0 ⊆ T0 ∪ Monf satisfies condition (Compw). (This is an easy consequence
of the fact that the Dedekind-MacNeille completion of any complete lattice is
isomorphic to the lattice.)

Adding boundedness does not destroy locality, provided that the bounding
terms have the same monotonicity as the extension function.

Theorem 8 (Bounded monotone functions [16]) Any extension of a the-
ory in Ord with Monf ∧Boundt

f is local, provided that t(x1, . . . , xn) is monotone
in the variables x1, . . . , xn.

Blockwise and piecewise monotonicity also define local theory extensions if the
base theory (for indices) T0 is the theory of integers or natural numbers. The
extensions below are among the examples considered in [2].

Theorem 9 (Piecewise monotonicity) Let T0 be the theory of integers or
natural numbers. Assume that l1, . . . , lm, u1, . . . , um are given constants such that
l1 ≤ u1 < l2 ≤ u2 < · · · < lm ≤ um. Let f be a unary function. Any piecewise-

monotone extension T0 ∧ GMonf ) is local. Here (GMonf ) = (GMon
[l1,u1]
f )∧ · · · ∧

GMon
[lm,um]
f ), where:

(GMon
[li,ui]
f ) ∀x, y(li ≤ x ≤ y ≤ ui → f(x) ≤ f(y)).

Theorem 10 (Blockwise monotonicity) Let T0 be the theory of integers or
natural numbers. Assume that l1, . . . , lm, u1, . . . , um are given constants such
that l1 ≤ u1 < l2 ≤ u2 < · · · < lm ≤ um. Let f be a unary function.
Any blockwise-monotone extension T0 ∧ (BMonf ) is local. Here (BMonf ) =
∧m−1

i=1 (BMon
[li,ui],[li+1,ui+1]
f ), where:

(BMon
[li,ui],[li+1,ui+1]
f ) ∀x, y(li ≤ x ≤ ui < li+1 ≤ y ≤ ui+1 → f(x) ≤ f(y)).



12 Viorica Sofronie-Stokkermans

Similar conditions can be defined for n-ary functions with integer arguments.
Strict inequality in the conclusion of boundedness rules (both in the case of free
and in the case of monotone functions) and strict monotonicity can be handled
too, under the assumption of density of the codomain of the functions.

Limits of decidability in reasoning about sorted arrays were explored in [2]. The
decidability of satisfiability of ground clauses in the fragment of the theory of
sorted arrays which we consider above is an easy consequence of the locality of
such extensions.

7.1 Case study: Train controller

We present a simple example in the verification of a train controller (for details
and more realistic rules we refer to [8]). We consider a controller which commu-
nicates with all the trains on a given linear track. Every train reports its position
to the controller in given time intervals and the controller communicates to every
train how far it can safely move, based on the position of the preceding train.
The trains adjust their speed accordingly – the speed is supposed to range be-
tween given minimum and maximum speeds. A simple way in which this can be
done can be described by the following rules1, where the positions of trains are
stored in two arrays a (for the current moment of time) and a′ for their positions
at the next evaluation point (after ∆t seconds).

(F1) ∀i (i = 0 → a(i) + ∆t∗min ≤R a′(i) ≤R a(i) + ∆t∗max)

(F2) ∀i (0 < i < n ∧ a(p(i)) >R 0 ∧ a(p(i)) − a(i) ≥R lalarm
→ a(i) + ∆t ∗ min ≤R a′(i) ≤R a(i) + ∆t∗max)

(F3) ∀i (0 < i < n ∧ a(p(i)) >R 0 ∧ a(p(i)) − a(i) <R lalarm
→ a′(i) = a(i) + ∆t∗min)

(F4) ∀i (0 < i < n ∧ a(p(i)) ≤R 0 → a′(i) = a(i)),

where the following constants are considered given: ∆t > 0 (the time between
evaluations of the system), min and max (the minimum and maximum speed of
trains; we assume that 0 ≤ min ≤ max), lalarm (the distance between trains which
is deemed secure), n (the number of trains).

An example of an invariant to be checked is collision-freeness. At a very
abstract level, this can be expressed as a monotonicity axiom,

CF(a) ∀i, j (0 ≤ i < j ≤ n→ a(i) >R a(j)),

where < is an ordering which expresses train precedence and >R is the usual
ordering on the real numbers. CF(a) expresses the condition that for all trains
i, j on the track, if i precedes j then i should be positioned strictly ahead of j.

1 Axiom F1 states that the first train may always move at any speed between min and
max. F2 states that the other trains can do so if their predecessor has already started
and the distance to it is larger than lalarm. If the predecessor of a train has started,
but is less than lalarm away, then the train may only move at speed min (axiom F3).
F4 requires that a train may not move at all if its predecessor has not started.



Local reasoning in verification 13

A more precise model (for the case when the length of trains is given) can be
obtained by replacing the monotonicity axiom for a with the following axiom:

∀i, j, k (first ≤ j ≤ i ≤ last ∧ i− j = k → a(j) − a(i) ≥ k ∗ LengthTrain),

where LengthTrain is the standard (resp. maximal) length of a train.
To check that collision-freeness is an invariant of the system, we check that

the initial state is collision free and that collision freeness is preserved by the
updating rules K = {F1, ...,F4}, i.e. that in the extension T of a the base theory
T0 (a many-sorted combination of real arithmetic – for reasoning about positions,
sort num – with an index theory – for describing precedence between trains, sort
i) with the two functions a and a′ the following hold:

T |= K ∧ CF(a) → CF(a′), i.e. T ∧ K ∧ CF(a) ∧ ¬CF(a′) |=⊥ .

For this, in [8] we considered two successive extensions of the base theory T0:

– the extension T1 of T0 with a monotone function a, of sort i → num,
– the extension T2 of T1 with a function a′ satisfying the update axioms K.

The results in Sections 4 and 7 show that both these extensions are local. This
allows us to choose only appropriate instances of the axioms in K and CF(a)
representing the behavior of trains which are in a close neighborhood of the
trains which would violate the safety condition. Similar methods can also be
used for bounded model checking.

8 Comparisons between functions

Also theory extensions with clauses which specify relationships between exten-
sion functions often turn out to be local:

Theorem 11 (Comparisons between functions [16])

(1) Any theory extension T0 ⊆ T1 with functions f, g (possibly with output of
a different sort, in a theory endowed with a reflexive predicate symbol ≤)
satisfying condition (Leq(f, g)) is local.
(Leq(f, g)) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ g(x1, . . . , xn))

(2) Extensions of any theory in Ord with functions satisfying Leq(f, g) ∧ Monf

are local.

(Leq(f, g)) ∀x1, . . . , xn(
∧n

i=1 xi ≤ yi → f(x1, . . . , xn) ≤ g(y1, . . . , yn))

Theorem 12 (Comparisons of monotone functions) Extensions of any sub-
theory of a theory in Ord whose models are complete lattices w.r.t. the ordering
≤, with functions satisfying Leq(f, g) ∧ Monf ∧ Mong are local.

Theorem 13 (Semi-Galois connections [16]) The following are local:

(1) Extensions of any totally-ordered theory in Ord with functions satisfying the
axioms SGc(f, g1, . . . , gn) ∧ Mon(f, g1, . . . , gn).

(SGc(f, g1, . . . , gn)) ∀x1, . . . , xn, x(
∧n

i=1 xi ≤ gi(x) → f(x1, . . . , xn) ≤ x)

(2) Extensions of theories in Ord with functions satisfying SGc(f, g1)∧Mon(f, g1).



14 Viorica Sofronie-Stokkermans

8.1 Example: Water tank controller (variant 2)

An alternative axiomatization of the desired relationship between the input and
the output function (for the sake of simplicity, we here ignore time) is pre-
sented below: We assume that in, out are monotone, satisfy ∀L(in(L) > L) and
∀L(out(L) < L), and

∀L,L′ (L′ ≤ out(L) → in(L′) ≤ L),

By results in Theorem 13, these axioms again define a local theory extension.

9 Local combinations of theories

In [17] we proved the following results on combinations of local theory extensions:

Theorem 14 (Combinations of local theory extensions [17]) Let T0 be a
first-order theory with signature Π0 = (Σ0,Pred) and T1 = T0 ∪ K1 and T2 =
T0 ∪ K2 two extensions of T0 with signatures Π1 = (Σ0 ∪ Σ1,Pred) and Π2 =
(Σ0 ∪Σ2,Pred), respectively, where Σ1 ∩Σ2 = ∅.

(1) Assume that both extensions T0 ⊆ T1 and T0 ⊆ T2 satisfy condition (Compw).
Then the extension T0 ⊆ T = T0 ∪ K1 ∪ K2 satisfies condition (Compw). If,
additionally, in Ki all terms starting with a function symbol in Σi are flat
and linear, for i = 1, 2, then the extension is local.

(2) Assume that (i) T0 ⊆ T1 satisfies condition (Compw); (ii) T0 ⊆ T2 satisfies
(Embw); (iii) K1 is a set of Σ1-flat clauses in which all variables occur below
a function symbol in Σ1. Then the extension T0 ⊆ T0 ∪ K1 ∪ K2 satisfies
condition (Embw). If, additionally, in Ki all terms starting with a function
symbol in Σi are flat and linear, for i = 1, 2, then the extension is local.

(3) Assume that (i) both extensions T0 ⊆ T1 and T0 ⊆ T2 satisfy condition
(Embw); (ii) K1 and K2 are sets of Σ1-flat clauses in which every variable
occurs below some extension function; (iii) the class of models of T0 is closed
under directed limits (or, equivalently, T0 is a ∀∃ theory). Then the extension
T0 ⊆ T0∪K1∪K2 satisfies condition (Embw). If, additionally, in Ki all terms
starting with a function symbol in Σi are flat and linear, for i = 1, 2, then
the extension is local.

Theorem 14 allows us to combine several of the extensions above and still obtain
local extensions of the base theory. For instance, we can directly infer that the
following combinations of theories (seen as extensions of a first-order theory T0)
satisfy condition (Compw):

Example 3 The combination of T0 ∪ Free(Σ1) and T0 ∪ Selc if T0 is a theory
and c ∈ Σ0 is injective in T0; the combination of R ∪ Free(Σ1) and R∪Mon(f),
where f 6∈ Σ1.

The theory extension T0 ⊆ (L∪Free(Σ1))∪(T0∪Mon(Σ2)) – where Σ1∩Σ2 =
∅, and T0 is a theory in Ord (e.g., the theory of lattices or of semilattices) –
satisfies condition (Embw), and is therefore local.



Local reasoning in verification 15

Similar results hold for combinations of extensions of a base theory with (piece-
wise) boundedness conditions for various function symbols in a set Σ1 and of
extensions of the same base theory with piece-wise monotone functions.

10 Interpolation and abstraction refinement

In verification it is often necessary to automatically generate invariants, or to
prove safety for all runs – for this one may need to use a goal-directed overap-
proximation for achieving faster termination, or to use abstraction (and possibly
refine it for ruling out spurious counterexamples). An idea which proved very
useful is to use ground interpolants for abstraction refinement [10,11,12,18].

A theory T has interpolation if, for all formulae φ and ψ in the signature
of T , if φ |=T ψ then there exists a formula I containing only symbols
which occur in both φ and ψ such that φ |=T I and I |=T ψ.

First order logic has interpolation [4], but the interpolants may contain (alterna-
tions of) quantifiers even for very simple formulae φ and ψ. It often is important
to identify situations in which ground clauses have ground interpolants.

A theory T has the ground interpolation property if for all ground clauses
A(c, d) and B(c, e), if A(c, d) ∧ B(c, e) |=T ⊥ then there exists a ground
formula I(c), containing only the constants c occurring both in A and
B, such that A(c, d) |=T I(c) and B(c, e) ∧ I(c) |=T ⊥ .

It is sufficient to know how to compute interpolants for sets of unit clauses, i.e.
conjunctions of ground literals: if interpolants for conjunctions of ground literals
can be obtained, then also interpolants for conjunctions of arbitrary clauses can
be constructed by using standard methods2, discussed e.g. in [11] or [18].
In [16] we identify a class of theory extensions T0 ⊆ T1 for which interpolants
can be computed hierarchically using a procedure for generating interpolants in
the base theory T0. This allows to exploit specific properties of T0 for obtaining
simple interpolants in T1. We make the following assumptions3 about T0 and T1:

Assumption 1: T0 is convex w.r.t. the set Pred of all predicates (including
equality ≈), i.e., for all conjunctions Γ of ground atoms, relationsR1, . . . , Rm ∈
Pred and ground tuples of corresponding arity t1, . . . , tn, if Γ |=T0

∨m

i=1Ri(ti)
then there exists j ∈ {1, . . . ,m} such that Γ |=T0

Rj(tj).
Assumption 2: T0 is P -interpolating, i.e. for all conjunctions A and B of

ground literals, all binary predicates R ∈ P and all constants a and b such
that a occurs in A and b occurs in B (or vice-versa), if A∧B |=T0

aRb then
there exists a term t containing only constants common to A and B with
A ∧ B |=T0

aRt ∧ tRb.
Assumption 3: T0 has ground interpolation.

2 E.g. in a DPLL-style procedure partial interpolants are generated for the unsatisfi-
able branches and then recombined using ideas of Pudlák.

3 Examples of theories which have these properties are provided in [16].



16 Viorica Sofronie-Stokkermans

Assumption 4: T1=T0∪K, where K consists of the combinations of clauses:

{

x1R1 s1 ∧ · · · ∧ xnRn sn → f(x1, . . . , xn)Rg(y1, . . . , yn)
x1R1 y1 ∧ · · · ∧ xnRn yn → f(x1, . . . , xn)Rf(y1, . . . , yn)

(5)

where n ≥ 1, x1, . . . , xn are variables, R1, . . . , Rn, R are binary relations with
R1, . . . , Rn ∈ P and R transitive, and each si is either a variable among the
arguments of g, or a term of the form fi(z1, . . . , zk), where fi ∈ Σ1 and all
the arguments of fi are variables occurring among the arguments of g.

Theorem 15 [16] Assume that the theory extension T0 ⊆ T1 satisfies the as-
sumptions above. Then ground interpolants for T1 exist and can be computed
hierarchically.

As an immediate consequence of the results in [16], the following theory exten-
sions have ground interpolation, and interpolants can be computed hierarchically.

(a) Extensions with free function symbols of any of the base theories: Eq (pure
equality), P (posets), LI(Q), LI(R) (linear rational, resp. real arithmetic), S
(semilattices), DL (lattices), B Boolean algebras.

(b) Extensions with monotone functions of any of the base theories: P (posets),
S (semilattices), DL (lattices), B Boolean algebras.

(c) Extensions of any of the base theories in (b) with Leq(f, g) ∧ Monf .
(d) Extensions of any of the base theories in (b) with SGc(f, g1) ∧ Mon(f, g1).
(e) Extensions of any of the base theories in (a) with Boundt

f or GBoundt
f (where

t is a term and φ a set of literals in the base theory).
(f) Extensions of any base theory in (b) with Monf ∧ Boundt

f , if t is monotone.

Example: Consider the first variant of the water tank example presented in Sec-
tion 4.1. Since the extension of linear real arithmetic with functions satisfying
axioms (1)–(3) satisfies Assumptions 1–4, we can generate interpolants in a hier-
archic way for such extensions. This opens possibilities for abstraction refinement
based model checking in this particular example and in similar situations.

Limitations. Because of Assumption 1 and of the fact that neither real linear
arithmetic, nor integer arithmetic, nor the theory of total orderings is convex
w.r.t. ≤, we cannot apply the method above for obtaining interpolants in a
hierarchical way in the presence of monotone functions over these domains. The
method can be applied in the presence of monotone functions in the theory of
partial orders, semilattices, (distributive) lattices, or Boolean algebras.

11 Conclusions

We identified several examples from verification where local theory extensions
occur in a natural way and where, therefore, hierarchical reasoning in local the-
ory extensions can be used successfully for proving certain invariants and in
bounded model checking. In addition, the notion of locality allows to use general
theoretical arguments for possibilities of limiting the search to neighborhoods of



Local reasoning in verification 17

counterexamples without losing completeness. We also briefly discussed implica-
tions of efficient interpolation to verification by abstraction refinement.

In all the examples considered in this paper, locality allows to pass whithout
loss of completeness, from testing satisfiability of quantified formulae to testing
satisfiability for suitably constructed ground formulae, problem which is much
easier. We illustrated this reduction by examples in verification. The applicability
of the method is however general: the challenge is, at the moment, to recognize
classes of local theories occurring in various areas of application.

The method can, in fact, be applied for arbitrary theories, even if locality was
not proved. When applied for arbitrary theory extensions, the method is sound
(we test satisfiability for a smaller subset of the instances of the extension axioms;
if unsatisfiability is proved this way then the initial set of clauses was unsatisfiable
w.r.t. the extended theory) but may be incomplete. In such situations, it can be
seen as a type of ’abstraction’; ideas from instantiation-based theorem proving
may be used in addition to add more instances of the extension clauses and thus
refine the abstraction. (The method is guaranteed to be sound and complete
and to terminate for local extensions, provided decision procedures for the base
theory exist.)

Acknowledgements. I thank Uwe Waldmann for bringing the contents of [13]
to my attention, and to Andreas Podelski for bringing [2] to my attention. I
thank Swen Jacobs, together with whom I analyzed the train example described
in Section 7.1 (cf. also [8]), and Andrey Rybalchenko for interesting discussions
on abstraction refinement model checking. I thank the other participants in the
AVACS project for providing examples and feedback.

This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for
more information.

References

1. D.A. Basin and H. Ganzinger. Complexity analysis based on ordered resolution.
In Proc. 11th IEEE Symposium on Logic in Computer Science (LICS’96), pages
456–465. IEEE Computer Society Press, 1996.

2. A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays?
In E.A. Emerson and K.S. Namjoshi, editors, Verification, Model-Checking, and
Abstract-Interpretation, 7th Int. Conf. (VMCAI 2006), LNCS 3855, pages 427–
442. Springer, 2006.

3. P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras: In-
troduction to Theory and Application of Partial Algebras, Part I, volume 31 of
Mathematical Research. Akademie-Verlag, Berlin, 1986.

4. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symb. Log., 22(3):250–268, 1957.

5. H. Ganzinger. Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In Proc. 16th IEEE Symposium on Logic in
Computer Science (LICS’01), pages 81–92. IEEE Computer Society Press, 2001.



18 Viorica Sofronie-Stokkermans

6. H. Ganzinger, V. Sofronie-Stokkermans, and U. Waldmann. Modular proof sys-
tems for partial functions with Evans equality. Information and Computation. To
appear.

7. R. Givan and D. McAllester. New results on local inference relations. In Principles
of Knowledge Representation and reasoning: Proceedings of the Third International
Conference (KR’92), pages 403–412. Morgan Kaufmann Press, 1992.

8. S. Jacobs and V. Sofronie-Stokkermans. Applications of hierarchical reasoning in
the verification of complex systems. Proceedings of the Fourth International Work-
shop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR’06),
To appear., 2006.

9. D. McAllester. Automatic recognition of tractability in inference relations. Journal
of the Association for Computing Machinery, 40(2):284–303, 1993.

10. K.L. McMillan. Interpolation and SAT-based model checking. In CAV’2003: Com-
puter Aided Verification, LNCS 2725, pages 1–13. Springer, 2003.

11. K.L. McMillan. An interpolating theorem prover. In TACAS’2004: Tools and
Algorithms for the Construction and Analysis of Systems, LNCS 2988, pages 16–
30. Springer, 2004.

12. K.L. McMillan. Applications of Craig interpolants in model checking. In
TACAS’2005: Tools and Algorithms for the Construction and Analysis of Systems,
LNCS 3440, pages 1–12. Springer, 2005.

13. S. McPeak and G.C. Necula. Data structure specifications via local equality ax-
ioms. In K. Etessami and S.K. Rajamani, editors, Computer Aided Verification,
17th International Conference, CAV 2005, LNCS 3576, pages 476–490, 2005.

14. T. Skolem. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und
Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen.
Skrifter utgit av Videnskabsselskapet i Kristiania, I. Matematisk-naturvidenskabelig
klasse, 4, pages 1–36, 1920. Reprinted as 1920a in Skolem 1970, pp. 103-136.

15. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
R. Nieuwenhuis, editor, 20th International Conference on Automated Deduction
(CADE-20), LNAI 3632, pages 219–234. Springer, 2005.

16. V. Sofronie-Stokkermans. Interpolation in local theory extensions. In Proceedings
of the International Joint Conference on Automated Reasoning (IJCAR 2006),
LNAI 4130, pages 235–250. Springer, 2006.

17. V. Sofronie-Stokkermans. On combinations of local theory extensions. Submitted,
2006.

18. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.
In R. Nieuwenhuis, editor, 20th International Conference on Automated Deduction
(CADE-20), LNAI 3632, pages 353–368. Springer, 2005.


