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Abstract. In this paper we analyze some fragments of the universal
theory of distributive lattices with many sorted bridging operators. Our
interest in such algebras is motivated by the fact that, in description log-
ics, numerical features are often expressed by using maps that associate
numerical values to sets (more generally, to lattice elements). We first
establish a link between satisfiability of universal sentences with respect
to algebraic models and satisfiability with respect to certain classes of
relational structures. We use these results for giving a method for transla-
tion to clause form of universal sentences, and provide some decidability
results based on the use of resolution or hyperresolution. Links between
hyperresolution and tableau methods are also discussed, and a tableau
procedure for checking satisfiability of formulae of type t1 ≤ t2 is ob-
tained by using a hyperresolution calculus.

1 Introduction

In description logics, numerical information is often associated to concepts. This
is achieved, for instance, by using so-called “bridging functions” (terminology
introduced in [Ohl01] in the context of set-description languages). An example
of a bridging function on a lattice (L,∪,∩, ∅, L) of sets, where L ⊆ P(X), is
maxcost : L → [0, n] defined, for every A ∈ L, by maxcost(A) = max{cost(a) |
a ∈ A}, where cost : X → [0, n] is a given map. Then, maxcost(∅) = 0 and,
for all A,B ∈ L maxcost(A ∪ B) = max(maxcost(A),maxcost(B)), i.e. maxcost
preserves all finite joins (i.e. it is a join hemimorphism). Note that maxcost does
not preserve all meets: in general maxcost(A∩B) �= min(maxcost(A),maxcost(B).

Bridging functions such as maxcost are special instances of the more general
concept of many sorted join hemimorphisms, which can be analyzed in a general
algebraic framework. This kind of operators encompass very general types of
bridging functions, not necessarily with numerical values.

The main contributions of this paper are the following:

– We formally define a class of many sorted bridging functions between
bounded distributive lattices, which we call many sorted join hemimor-
phisms.

– We show that the Priestley representation theorem can be extended in a
natural way to encompass such operators.
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– We show that the results in [SS01] can be adapted also to this more general
type of operators:
• we define a structure-preserving translation to clause form for uniform

word problems for such classes of lattices with operators, and
• obtain resolution-based decision procedures for several classes of algebras

of this type.
– We also analyze refinements of resolution such as hyperresolution and its

relationship with the definition of tableau calculi (cf. also [HS00]).

In what follows we briefly explain the links between the results presented
here and previous work. In [SS99] we gave a method for automated theorem
proving in the universal theory of varieties of distributive lattices with operators
that were either hemimorphisms or antimorphisms in every argument (hence,
generalizations of the modal operators  and ✷). In [SS01], the arguments were
extended to operators that are hemimorphisms in some arguments and antimor-
phisms in other arguments. This allowed us to deal in a simple and uniform way
with various classes of operators, including both generalizations of modal opera-
tors ✷ and , but also those obtained by considering e.g. weakened implications,
which satisfy identities such as:

0→ z = 1 (x ∨ y)→ z = (x→ z) ∧ (y → z), (1)
x→ 1 = 1, x→ (y ∧ z) = (x→ y) ∧ (x→ z). (2)

This allowed us to obtain resolution-based decision procedures for classes of dis-
tributive lattices with operators that satisfy generalized residuation conditions.
The main idea was to think of an operator that is a hemimorphism in some
arguments and antimorphism in other arguments as a map of type ε1 . . . εn → ε,
where ε1, . . . , εn, ε ∈ {−1,+1}, such that f : Lε1 × · · · × Lεn → Lε is a join
hemimorphism, where L1 = L and L−1 = Ld, the order-dual of L.

In the present paper we show that the results in [SS99,SS01] can be general-
ized in a very natural way to many sorted algebras ({Ls}s∈S , {σL}σ∈Σ) where,
for each sort s ∈ S Ls is a bounded distributive lattice, endowed with operators
which are many sorted join hemimorphisms f : Ls1 × · · · × Lsn

→ Ls. Some
“bridging functions” ([Ohl01]), such as maxcost : L → [0, n], are many sorted
join hemimorphisms; others, such as e.g. mincost are join hemimorphisms from
L into the order-dual, [0, n]d, of [0, n].

1.1 Idea

We illustrate the idea of the algorithm we propose on a simple example. Consider
the formula φ below:

(∀a, b : lat)(∀c, d : num) (maxcost(a) = c ∧ maxcost(b) = d → maxcost(a ∧ b) ≤ c ∧ d)

where the variables a and b are of sort lat (range over elements in lattices), the
variables c and d are of sort num (range over elements in a numeric domain),
and maxcost is a unary function symbol of type lat→ num.
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Let D01On, where n is an arbitrary but fixed natural number, be the class
of all algebras with two sorts S = {lat, num}, of the form (L,Cn,maxcost), with
the property that L = (L,∧,∨, 0, 1) is a bounded distributive lattice, Cn is
the n-element chain with elements {1, . . . , n}, and maxcost : L → Cn is a join
hemimorphism.

One possibility for proving that φ holds in D01On is to show that φ is a
consequence of the bounded distributive lattice axioms to which a description
of the lattice {1, . . . , n} is added. Hovever, complications may already arise for
one-sorted formulae: as shown in [SS99,SS01], there exist formulae for which
even powerful theorem provers such as Spass or Waldmeister could not find
reasonably short proofs by using equational resoning in distributive lattices.

Instead, we use the fact that every bounded distributive lattice L is isomor-
phic to a sublattice of the lattice of all upwards-closed subsets of a preordered
set XL (suprema are unions and infima intersections). In particular, the linearly
ordered finite lattice {0, . . . , n} is isomorphic to the lattice of all order-filters of
D(n) = ({↑i | 1 ≤ i ≤ n},⊆), where ↑i = {j | i ≤ j ≤ n}.

As a consequence, D01On |= φ iff for every preordered set (X,≤), φ holds
for every assignment that replaces its variables of sort lat with upwards-closed
subsets of (X,≤) and those of sort num with upwards-closed subsets of (D(n),⊆),
if ∨ is interpreted as union and ∧ as intersection, and an increasing relation
Rmaxcost ⊆ X×D(n) is associated with the map maxcost. We will show that φ is
true in all algebras in D01On if and only if the following family of set constraints
is unsatisfiable:




(Doms) (X, ≤) preordered set
(D(n), ≤) is a preordered set with n elements, ↑n ≤ · · · ≤ ↑1
(∀x : lat)(∀xi, xj : num)(xi ≤ xj ∧ Rmaxcost(x, xi) → Rmaxcost(x, xj))

(Hers) x1 ∈ Ie, x1 ≤ x2 → x2 ∈ Ie for all e ∈ ST (φ)
of sort lat or num

(Rens)(∧)Ia∧b = Ia ∩ Ib Ic∧d = Ic ∩ Id

(m)Imaxcost(e) = {↑i | ∃x1 ∈ Ie : Rmaxcost(x1, ↑i)} for e ∈ {a, b, a ∧ b}

(Ps) Imaxcost(a) = Ic

Imaxcost(b) = Id

(Ns) Imaxcost(a∧b) ⊆ Ic∧d

where ST (φ) is the set of all subterms occurring in φ. We encode every set Ie,
e ∈ ST (φ), by a unary predicate Pe. We obtain again a many-sorted structure
with sorts lat and num, where for every e ∈ ST (φ), the predicate Pe accepts
arguments of the same sort as the expression e.

With this encoding we can reduce the problem of testing the satisfiability of
the family of set constraints above to the problem of testing the satisfiability of
the following conjunction in first-order logic:
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(Dom)
∀x : s x ≤ x s ∈ {lat, num}
∀x, y, z : s x ≤ y, y ≤ z → x ≤ z

↑n ≤ · · · ≤ ↑1
∀x : num, ∀xi, xj : num xi ≤ xj , Rmaxcost(x, xi) → Rmaxcost(x, xj)

(Her)
∀x, y : s x ≤ y, Pe(x) → Pe(y) e ∈ ST (φ) of sort s
(Ren)
(∧)∀x : s Pe1∧e2(x) ↔ Pe1(x) ∧ Pe2(x) e1 ∧ e2 ∈ ST (φ) of sort s
(∨)∀x : s Pe1∨e2(x) ↔ Pe1(x) ∨ Pe2(x) e1 ∨ e2 ∈ ST (φ) of sort s
(m)∀xi : num Pmaxcost(e)(xi) ↔ (∃x : lat)(Pe(x) ∧ Rmaxcost(x, xi))

maxcost(e) ∈ ST (φ)
(P)

∀x : num Pmaxcost(a)(x) ↔ Pc(x)
∀x : num Pmaxcost(b)(x) ↔ Pd(x)

(N)
∃y : num Pmaxcost(a∧b)(y) ∧ ¬Pc∧d(y).

We obtain a structure-preserving translation to first-order logic, and, ultimately,
to clause form. The satisfiability of the set of clauses obtained this way can be
checked for instance by ordered resolution with selection.

In this paper we show that similar ideas can be used for many classes of many
sorted bounded distributive lattices with so-called bridging functions. Moreover,
we show that refinements of resolution can successfully be used to obtain decision
procedures for the universal Horn theories of many such classes, and show how
hyperresolution can be used to define a set of sound and complete tableau rules
for deciding validity of problems of the type s ≤ t.

2 Representation of Distributive Lattices with Operators

This section discusses an extension of representation theorems for distributive
lattices with bridging operators.

2.1 Distributive Lattices with Bridging Operators

A structure (L,∨,∧), consisting of a non-empty set L together with two binary
operations ∨ (join) and ∧ (meet) on L, is called lattice if ∨ and ∧ are associative,
commutative and idempotent and satisfy the absorption laws. A distributive
lattice is a lattice that satisfies either of the distributive laws (D∧) or (D∨),
which are equivalent in a lattice.

(D∧) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (D∨) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A lattice (L,∨,∧) has a first element if there is an element 0 ∈ L such that
0∧ x = 0 for every x ∈ L; it has a last element if there is an element 1 ∈ L such
that 1 ∧ x = x for every x ∈ L. A lattice having both a first and a last element
is called bounded. If L = (L,∨,∧, 0, 1) is a bounded lattice we denote by Ld

the order-dual of L, i.e. the lattice (L,∨d,∧d, 0d, 1d), where for every x, y ∈ L,
x ∨d y = x ∧ y, x ∧d y = x ∨ y; 0d = 1; and 1d = 0. A filter in a lattice (L,∨,∧)
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is a non-empty order-filter closed under meets. A filter F is said to be prime if
F �= L and for every x, y ∈ L, if x∨ y ∈ F then x ∈ F or y ∈ F . In what follows
the set of prime filters will be denoted by Fp(L).

Definition 1. Let {Ls}s∈S be a family of bounded lattices Ls = (Ls,∨,∧, 0, 1)
and let s1, . . . , sn, s ∈ S. A join hemimorphism of type s1 . . . sn → s is a function
f : Ls1 × · · · × Lsn → Ls such that for every i, 1 ≤ i ≤ n,
(1) f(a1, . . . , ai−1, 0, ai+1, . . . , an) = 0,
(2) f(a1, . . . , ai−1, b1 ∨ b2, ai+1, . . . , an) =

= f(a1, . . . , ai−1, b1, ai+1, . . . , an) ∨ f(a1, . . . , ai−1, b2, ai+1, . . . , an).

Example 1.

1. The modal operator  on a Boolean algebra B is a join hemimorphism. The
modal operator ✷ on B is a meet hemimorphism, i.e. a join hemimorphism
on the dual Bd of B. If we consider 2-sorted algebras (B,Bd) with sorts
S = {bool, boold},  is a join hemimorphism of type bool→ bool and ✷ is of
type boold → boold.

2. Let L be a lattice, and (L,Ld) the 2-sorted algebra with sorts S = {lat, latd}.
The operation → satisfying the conditions (1) and (2) on page 236 is a join
hemimorphism of type lat, latd → latd.

3. Let (L,Cn+1) be the 2-sorted algebra with sorts S = {lat, num}, where L is
a bounded lattice, and Cn+1 = ({0, 1, . . . , n},∨,∧, 0, n) is the n + 1-element
chain. A function f : L→ Cn+1 that associates with every element of L an
element of {0, 1, . . . , n} such that f(x ∨ y) = f(x) ∨ f(y) and f(0) = 0 is a
join hemimorphism of type lat→ num.

2.2 Representation Theorems

We now present a simplified version of Priestley’s representation theorem stating
that every bounded distributive lattice is isomorphic to a lattice of sets.

Theorem 1 ([Pri70]). Let L be a distributive lattice, let D(L) = (Fp(L),⊆)
be the partially-ordered set having as points the prime filters of L, ordered by
inclusion, and let H(D(L)) be the lattice of all upwards-closed subsets of D(L).
Then the map ηL : L → H(D(L)), defined for every x ∈ L by ηL(x) = {F ∈
Fp(L) | x ∈ F} is an injective lattice homomorphism.
In what follows we will refer to the space D(L) as the dual of L.

It was shown that operators on a bounded distributive lattice induce in a
canonical way maps resp. relations on D(L) [JT52,Gol89,SS00,SS01]. We now
show that these canonical definitions can be formulated in a very general way,
which enables us to extend them to many sorted join hemimorphisms. If f :
Ls1 × · · · × Lsn → Ls is a join hemimorphism, then a relation Rf ⊆ D(Ls1) ×
· · · ×D(Lsn

)×D(Ls) can be defined by:

Rf (F1, . . . , Fn, F ) iff f(F1, . . . , Fn) ⊆ F.
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Proposition 1. Let {Ls}s∈S be a family of bounded distributive lattices. Let
f : Ls1 × · · · × Lsn → Ls be a join hemimorphism of type s1 . . . sn → s. Then
Rf is an increasing relation1.

Proposition 1 justifies the definition of S-sorted RT Σ-relational structures.

Definition 2. An S-sorted RT Σ-relational structure ({(Xs,≤
)}s∈S , {RX}R∈Σ) is an S-sorted family of sets, each endowed with a re-
flexive and transitive relation ≤ and with additional maps and relations indexed
by Σ, where, if R ∈ Σ is of type s1 . . . sn → s, RX ⊆ Xs1 × · · · ×Xsn ×Xs is
increasing.

For every S-sorted RT Σ-relational structure X = ({(Xs,≤)}s∈S , {RX}R∈Σ), we
denote by H(X) the many sorted algebra ({(H(Xs),∪,∩, ∅, Xs)}s∈S , {fR}R∈Σ),
where, for every s ∈ S, (H(Xs),∪,∩, ∅, Xs) is the bounded distributive lattice
of all hereditary (i.e. upwards-closed with respect to ≤) subsets of Xs, and the
operators {fR}R∈Σ are defined as follows.

If R ⊆ Xs1×· · ·×Xsn
×Xs is an increasing relation then fR : H(Xs1)×· · ·×

H(Xsn)→ H(Xs) is defined, for every (U1, . . . Un) ∈ H(Xs1)× · · · ×H(Xsn) by

fR(U1, . . . , Un) = R−1(U1, . . . , Un),

where R−1(U1, . . . , Un) = {x | ∃x1 . . . xn(x1 ∈ U1, . . . , xn ∈ Un, R(x1, . . . ,
xn, x))}.
Proposition 2. Let X be an S-sorted RT Σ-relational structure. If R ∈ Σ is
of type s1 . . . sn → s then fR :

∏n
i=1H(Xsi)→ H(Xs) is a join hemimorphism.

We will denote the class of all S-sorted distributive lattices with operators in Σ
by DLOS

Σ . The class of S-sorted RT Σ-relational structures will be denoted by
RTS

Σ . In the one-sorted case the index S will usually be omitted. The following
result extends the representation theorems in [Gol89,SS00,SS02] to the more
general classes of operators we consider here.

Theorem 2. For every A = ({Ls}s∈S , {fA}f∈Σ) ∈ DLOS
Σ, D(A) ∈ RTS

Σ , and
ηA : A → H(D(A)) defined for every s ∈ S and every x ∈ Ls by ηs

A(x) = {F ∈
Fp(Ls) | x ∈ F} is an injective homomorphism between algebras in DLOS

Σ.

Proof : Similar to the proof of Theorem 14 in [SS02]. ✷

3 The Universal Theory of DLOS
Σ and Subclasses Thereof

In this section we show that the representation theorems discussed before allow,
under certain conditions, to avoid the explicit use of the full algebraic structure
of distributive lattices with S-sorted bridging operators and use, instead, lattices
of sets over structures in RTS

Σ . This justifies a structure-preserving translation to
clause form. The proofs, which we do not provide here, are easy generalizations
of those in [SS01,SS02].
1 A relation R ⊆ X1 × · · · × Xn × X is increasing if for every x ∈ X1 × · · · × Xn, and
every y, y′ ∈ X (if R(x, y) and y ≤ y′ then R(x, y′)).
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3.1 Generalities

Let V be a class of (many sorted) algebras. The universal theory of V is the
collection of those closed formulae valid in V which are of the form

∀x1 . . . ∀xk

(
m∧

i=1

((¬)ti1 = si1 ∨ · · · ∨ (¬)tini = sini)

)
. (3)

Since a conjunction is valid iff all its conjuncts are valid, we can restrict, without
loss of generality, to formulae of the type (

∧n
i=1 si1 = si2 →

∨m
j=1 tj1 = tj2).

The universal Horn theory of V is the collection of those closed formulae valid
in V which are of the form ∀x1 . . .∀xn(

∧n
i=1 si1 = si2 → tj1 = tj2).

If V is a class of algebras which is closed under direct products then, by a
result of McKinsey, the decidability of the universal Horn theory of V implies
the decidability of the universal theory of V.

3.2 A Link between Algebraic and Relational Models

We establish a link between truth of universal sentences in classes of distributive
lattices with operators and truth in classes of S-sorted RT Σ-relational struc-
tures. We consider subclasses V of DLOS

Σ that satisfy the following condition:

(K) There exists a K ⊆ RT S
Σ such that (i) for every A ∈ V, D(A) ∈ K;

(ii) for every X ∈ K, H(X) ∈ V.

Proposition 3 ([SS01]). Assume that V satisfies condition (K). Then for every
φ = ∀x1, . . . , xk(

∧n
i=1 si1 = si2 →

∨m
j=1 tj1 = tj2),

V |= φ if and only if for every X ∈ K,H(X) |= φ.

For automated theorem proving it is important to find subclasses of RTS
Σ with

good theoretical and logic properties, for instance subclasses which are first-
order definable. Although this is not always possible, such classes can often be
obtained by abstracting properties of the Priestley duals of algebras in V.

Lemma 1. Condition (K) holds in the following cases:

1. V = DLOS
Σ = {({Ls}s∈S , {f}f∈Σ) | Ls ∈ D01 for all s ∈ S; f :

∏n
i=1 Lsi →

Ls join hemimorphism, for every f ∈ Σs1...sn→s} and K = RTS
Σ .

2. V = BAOS
Σ = {({Bs}s∈S , {f}f∈Σ) | Bs ∈ Bool for all s ∈ S; f :∏n

i=1 Bsi → Bs join hemimorphism, for every f ∈ Σs1...sn→s} and
K = RS

Σ the subclass of RTS
Σ consisting only of those S-sorted spaces in

which all supports are discretely ordered.
3. If A ∈ D01 is an arbitrary but fixed finite lattice and S = {lat, num}:
V = DLOA

Σ = {(L,A, {fL}f∈ΣL
, {fb}f∈Σb

) | L ∈ D01; fL : Lk →
L join hemimorphism, for every f ∈ ΣL, of type latk → lat; fb : Lm →
A join hemimorphism for every f ∈ Σb, of type latm → num}, and

K = {(X,D(A), {Rf}f∈ΣL
, {Rg}g∈Σb

) | (X, {Rf}f∈ΣL
) ∈ RTΣL

and Rg ⊆
Xm ×D(A) increasing for all g ∈ Σb of type latm → num}.
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3.3 Structure-Preserving Translation to Clause Form

We show that, if a subclass V of DLOS
Σ satisfies condition (K) for some first-order

definable subclass K of RTS
Σ , then the problem of checking whether a formula

φ = ∀x1, . . . , xk(
∧n

i=1 si1 = si2 →
∨m

j=1 tj1 = tj2) holds in V can be reduced to
the problem of checking the satisfiability of a set of clauses.

Let ST (φ) be the set of all subterms of sil and tjp, 1 ≤ i ≤ n, 1 ≤ j ≤
m, l, p ∈ {1, 2} (including the variables and sil, tjp themselves).

Proposition 4. Let K ⊆ RTS
Σ . The following are equivalent:

(1) For every X ∈ K, H(X) |= φ.
(2) For every X = ({(Xs,≤)}s∈S , {R}R∈Σ) ∈ RTS

Σ and every family of subsets
of X indexed by all subterms of φ, {Ie ⊆ Xs | e ∈ ST (φ) of sort s ∈ S}, if:



(Doms) X ∈ K,
(Hers) Ie ∈ H(Xs) ∀e ∈ ST (φ) of sort s,
(Rens) (1, 0) I1s = Xs, I0s = ∅,

(∧) Ie1∧e2 = Ie1 ∩ Ie2 ,
(∨) Ie1∨e2 = Ie1 ∪ Ie2 ,
(Σs1...sn→s) If(e1,...,en) = R−1

f (Ie1 , . . . , Ien) ,
(Ps) Isi1 = Isi2 for all i = 1, . . . , n,

then
(Cs) for some j ∈ {1, . . . , m} Itj1 = Itj2 ,

where the rules in (Σ) range over all terms in ST (φ) starting with an opera-
tor in Σs1...sn→s. (We used the abbreviation R−1(U1, . . . , Un) := {x | ∃x1 ∈
U1 . . .∃xn ∈ Un : R(x1, . . . , xn, x)}.)

If the class K is first-order definable, Proposition 4 justifies a structure-
preserving translation of universal formulae to sets of clauses.

Proposition 5. Let K be a subclass of RTS
Σ which is definable by a finite set C

of first-order sentences. Then the following are equivalent:

(1) For every X ∈ K, H(X) |= φ.
(2) The conjunction of (Dom) ∪ (Her) ∪ (Ren) ∪ (P) ∪ (N1) ∪ · · · ∪ (Nm)

is unsatisfiable, where:

(Dom) C,
≤⊆ Xs × Xs is reflexive and transitive for every sort s ∈ S,

Rf ⊆∏n+1
i=1 Xsi is increasing for every f ∈ Σs1...sn→sn+1 ,

(Her) ∀x, y (x ≤ y ∧ Pe(x) → Pe(y))
(Ren)
(1) ∀x P1s(x) for every sort s ∈ S,
(0) ∀x ¬P0s(x) for every sort s ∈ S,
(∧) ∀x (Pe1∧e2(x) ↔ Pe1(x) ∧ Pe2(x))
(∨) ∀x (Pe1∨e2(x) ↔ Pe1(x) ∨ Pe2(x))
(Σ) ∀x (Pf(e1,...,en)(x) ↔ ∃x1 . . . xn(

∧n
i=1 Pei(xi) ∧ Rf (x1, . . . , xn, x)))

(P) ∀x (
∧n

i=1 Psi1(x) ↔ Psi2(x))
(N1) ∃x1 (Pt11(x1) ↔ Pt12(x1))

. . . . . .
(Nm) ∃xm (Ptm1(xm) ↔ Ptm2(xm))
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where the unary predicates Pe are indexed by elements in ST (φ), and the for-
mulae in Σ range over all operators f ∈ Σs1...sn→s.

In addition, polarity of subformulae can be used for using only one direction of
the implications in (Ren). Similar ideas can be used for obtaining translations
to clause form for formulae of the form

∧n
i=1 si1 ≤ si2 →

∧m
j=1 tj1 ≤ tj2. Then

only the direct implications are necessary in (P) and (N).

Theorem 3. Assume that V and K satisfy condition (K), where K is a class of
RT Σ-structures definable by a finite set C of first-order sentences. The following
are equivalent:
(1) V |= φ.
(2) The conjunction of (Dom)∪(Her)∪(Ren)∪(P)∪(N1)∪· · ·∪(Nm) (as defined

above) is unsatisfiable.

Proof : Direct consequence of Propositions 3, 4 and 5. ✷

4 Some Decidability Results

In the following sections we present some examples in which decidability results
can be obtained easily. We show that
– orderer resolution with selection decides in exponential time the universal

Horn theory of DLOS
Σ and of DLOA

Σ , where A ∈ D01 is finite;
– hyperresolution is a decision procedure for deciding whether t1 ≤ t2 holds in

the class DLOS
Σ and in the class DLOA

Σ , where A ∈ D01 is finite;
– hyperresolution can be used to synthesize tableau calculi.

4.1 Ordered Resolution with Selection

Let� be a total well-founded ordering on ground atoms, and let S be an arbitrary
selection function that assigns with every clause a multiset of negative selected
literals. Let R�

S be the following inference system for ground clauses, consisting
of ordered resolution with selection S and ordered factoring:

Ordered resolution:
C ∨A D ∨ ¬A

C ∨D

where (i) A is strictly maximal2 in C ∨ A, and C contains no selected atoms; (ii)
¬A is either selected by S in D ∨ ¬A or else D ∨ ¬A contains no selected literals
and ¬A is maximal in D ∨ ¬A.

Ordered (positive) factoring:

C ∨A ∨A

C ∨A

where A is a positive atom which is maximal in C, and no atom in C is selected.
2 We say that a literal L is maximal in a clause C if L′ � L for no literal L′ in C; and
that L is strictly maximal in C if L′ � L for no L′ = L in C.
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Ordered resolution with selection can be lifted to non-ground clauses by viewing
non-ground expressions to represent the set of their ground instances and by
employing unification to avoid the explicit enumeration of ground instances (for
details cf. e.g. [BG01]).

The results of [SS01] can be easily adapted to prove the following theorem.

Theorem 4. Ordered resolution with selection decides in time exponential in
the size of the input if the arity of operators in Σ has an upper bound, and
exponential in the square of the size of the input in general the universal Horn
theory of (1) DLOS

Σ, and (2) DLOA
Σ, where A is a finite distributive lattice.

Idea of the Proof: (1) The results of [SS01], Section 5.1 can be easily adapted
to prove (1). As pointed out in [SS01], the selection strategy we adopt for this
purpose shows, as a by-product, that in this case inferences with the clauses
containing the ≤ symbol are not needed for refutational completeness.
(2) In a similar way we can show that inferences with the clauses containing
the ≤ symbol applied to arguments of sort lat are not needed in the case of
DLOA

Σ . Since D(A) is finite, the monotonicity and heredity rules for sort num,
can be replaced with their instances with elements in D(A). For instance the
monotonicity and heredity rule can alternatively be expressed by:

Rf (x1, . . . , xn, a)→ Rf (x1, . . . , xn, b) for all a, b ∈ D(A), a ≤ b (4)
Pe(a)→ Pe(b) for all a, b ∈ D(A), a ≤ b (5)

We can now introduce D(A) copies for every predicate symbol with last argu-
ment of sort num, e.g. by replacing, for every a ∈ D(A), Rf (x1, . . . , xn, a) with
Ra

f (x1, . . . , xn) and Pe(a) with P a
e . Arguments in [SS01], Section 5.2 can now be

applied and also in this case yield the desired complexity results. ✷

Similar arguments can be also used for (many sorted) Boolean algebras with
operators, by considering, in addition, the renaming rules for Boolean negation.

4.2 Hyperresolution

Hyperresolution can be simulated by resolution with maximal selection. This
means that the selection function selects all the negative literals in any non-
positive clause. Let H be the calculus consisting of negative hyperresolution,
(positive) factoring, splitting and tautology deletion.

Negative hyperresolution:

C1 ∨A1 . . . Cn ∨An ¬A1 ∨ · · · ∨ ¬An ∨D

C1 ∨ · · · ∨ Cn ∨D

where D and Ci ∨ Ai, 1 ≤ i ≤ n are positive clauses; and no Ai occurs in Ci.

Hyperresolution can be combined with ordering restrictions, and can be lifted
to non-ground clauses by viewing non-ground expressions to represent the set
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of their ground instances and by employing unification to avoid the explicit
enumeration of ground instances (cf. e.g. [BG01]). Ordered resolution and hy-
perresolution can be combined with splitting: Suppose that a set N of clauses
contains a clause C = C1 ∨ C2, where C1 and C2 are non-trivial and have no
variables in common. In order to show that N is unsatisfiable, one proves that
(N\{C})∪{Ci}, i = 1, 2 are both unsatisfiable. The components in the variable
partition of a clause are called split components. Two split components do not
share variables. A clause that cannot be split is called a maximally split clause.

We now show that hyperresolution with splitting can be used for the simpler
problem of checking whether DLOS

Σ |= t1 ≤ t2 or DLOA
Σ |= t1 ≤ t2. Though

much more special than uniform word problems, problems of this type often
occur in non-classical logics. For instance, in some relevant logics [AB75] or in
variants of the (full) Lambek calculus [Ono93], it can be proved that a formula
φ is a theorem iff V |= φ ≥ e, where V is the class of all algebraic models of the
respective logic and e is a special constant.

Theorem 5. For all terms t1, t2, H decides whether DLOS
Σ |= t1 ≤ t2.

Proof : By Theorem 3 and Lemma 1 as well as the fact that, by the proof of
Theorem 4, in this case all clauses containing the symbol ≤ can be ignored,
DLOS

Σ |= t1 ≤ t2 iff the clause form of (Ren) ∪ (N) is unsatisfiable. Since the
premise of the formula φ is empty, there are no clauses in (P). (N) consists of
the unit clauses Pt1(c) and ¬Pt2(c) for some constant c.

We show that any H-derivation terminates on the set of clauses (Ren) ∪ (N)
associated with φ = (t1 ≤ t2), in which all predicates Pe are fully labeled, in the
sense that for every non-variable subterm e ∈ ST (φ), the precise occurrence π

of e in t1 or t2 is indicated (e.g. in the form P
tπ
i

e ).
All non-unit clauses of (Ren) contain a negative (hence selected) literal.

Therefore they can only be used as negative premises of resolution steps. (Ren)(1)
can only be used in inferences with the clause ¬Pt2(c) if t2 = 1, and (Ren)(0) only
in inferences with Pt1(c), if t1 = 0; in both cases the empty clause is obtained.

Except for (Ren)(1), at the beginning there is only one candidate for a positive
premise, namely the positive (ground) conjunct of (N), Pt1(c). It can be checked
that hyperresolution inferences with such unit ground clauses will, in a first step,
generate maximally split clauses of the form Pe(s) or Rf (c1(s), . . . , cn(s), s) for
some term s which contains only the constant c, and such that (i) the terms e
are subterms of t1, (ii) the Skolem functions introduced by (Ren)(Σ) that occur
in s are all labeled with subterms of t1, (iii) for every literal Pe(s) obtained this
way, the sum between the height of e and the height of s does not exceed the
height h(t1) of t1, and (iv) for every literal Rf (cf(e1,···en)

1 (s), . . . , cf(e1,···en)
n (s), s)

obtained this way, such that cf(e1,···en)
1 , . . . , c

f(e1,···en)
n are Skolem functions intro-

duced by (Ren)(Σ), the sum between the height of e and the height of s is does
not exceed h(t1)−1. Since the depth of the arguments can be bounded, this part
of the procedure obviously terminates. Moreover, it can be seen that for each
argument s generated this way, all labels of the Skolem functions occurring in
s correspond to subterms occurring along one branch in the tree representation
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of the term t1. This shows that the number of arguments of literals generated
this way is bounded by the number of subterms of t1. Hence, the number of
positive ground atoms generated in this part of the procedure is polynomial in
the size of t1. Note that in this phase only inferences with clause forms of direct
implications in Ren are possible.

After generating all unit clauses of the form Pp(s), where p is a propositional
variable (by the remarks above, in all such cases the height of s does not exceed
h(t1)), inferences with rules in (Ren) involving subformulae of t2 are possible.
Only inferences with clause forms of inverse implications in Ren lead to non-
redundant clauses. A similar argument as before shows that also in this case
the depth of the arguments can grow with at most h(t2). This shows that H
terminates on the set of clauses associated with φ = t1 ≤ t2. ✷

The termination proof above shows that the number of different literals in any
derivation tree is polynomial in the size of the input. The arguments in Theo-
rem 5 can be also adapted to many sorted Boolean algebras with operators for
which every term has a negation normal form (in particular, for modal algebras).

Theorem 6. Let A be an arbitrary, but fixed, finite bounded distributive lattice.
Then for all terms t1, t2, H decides whether DLOA

Σ |= t1 ≤ t2.

Idea of the proof: Without loss of generality we assume that t1 and t2 are formulae
of sort A (otherwise, as all bridging functions are of type lat . . . lat → num no
subterms of sort num occur in ST (t1 ≤ t2), and so Theorem 5 can be applied.).
The proof proceeds along the same lines as that of Theorem 5, with the following
differences. Instead of using a Skolem constant c for the negation of the premise,
we test unsatisfiability of (Dom) ∪ (Her) ∪ (Ren) ∪ (Na) for all variants of (N),
(Na) : Pt1(a)∧¬Pt2(a), where a ∈ D(A). Heredity clauses for A and monotonicity
conditions of the form (5) resp. (4) for bridging functions and predicates of sort
num have to be also taken into account. The inferences of Pt1(a) with the heredity
clauses for Pt1 yield all unit ground literals of the form Pt1(b), a ≤ b ∈ D(A).
The proof continues along the same lines as that of Theorem 5. ✷

4.3 Tableau Calculi

Selection refinements of resolution, and in particular hyperresolution, are closely
related to standard (modal) tableau calculi [HS99,HS00].

A tableau is a finitely branching tree whose nodes are sets of labeled formulae.
Tableaux are used for testing satisfiability of formulae. If φ is a formula to be
tested for satisfiability, the root node is the set {a : φ}. Successor nodes are
constructed according to a set (Exp) of expansion rules of the form

X

X1 | · · · | Xn

The expansion rule above can be applied for a formula F if F is an instance of
X. n successor nodes are created which contain the formulae of the current node
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and the appropriate instances of Xi. A branch in a semantic tableau is closed
if it contains ⊥ or labeled formulae of the form a : F and a : ¬F . Otherwise
the branch is called open. A tableau is closed if each of its branches is closed. A
formula φ is satisfiable (w.r.t. (Exp)) if a tableau can be constructed (with the
set (Exp) of expansion rules) which contains an open maximal branch.

In many papers in which tableau methods are given for modal or description
logics, the formula φ whose satisfiability is tested is supposed to be in negation
normal form. This ensures that all subformulae of φ that are not propositional
variables have positive polarity, hence only the direct implications of the renam-
ing rules need to be used in a hyperresolution procedure.

When checking satisfiability of formulae of type t1 �≤ t2, t1 (or, in clause form,
Pt1) has positive polarity and t2 (in clause form, Pt2) has negative polarity. In
what follows we show that tableau rules as used in modal and description logics
can be formulated when t2 is a constant k. In this case, the root node is the
set {a : t1, a : ¬k}. Successor nodes are constructed according to the set TS

Σ

of expansion rules below. We will also indicate how a (non-standard) variant
of tableaux with polarities can be used for checking satisfiability of formulae of
type t1 �≤ t2. In that case the root node is the set {a : tp1, a : ¬tn2}, and successor
nodes are constructed according to a set TS

Σ(ext) of rules.

Let TS
Σ be the following set of tableau rules:

(⊥) s : 0
⊥

s : ¬1
⊥

s : e, s : ¬e

⊥ (∧) s : e1 ∧ e2

s : e1, s : e2
(∨) s : e1 ∨ e2

s : e1 | s : e2

(f)
s : f(e1, . . . , en)

(s1, . . . , sn, s) : Rf , s1 : e1, . . . , sn : en
with s1, · · · sn new to the branch.

Theorem 7. The formula t1 �≤ k, where k is a constant, is unsatisfiable in
DLOS

Σ iff a tableau in which every branch is closed can be constructed from
{c:t1, c:¬k} using the set TS

Σ of tableau rules (and, in addition, s:¬k
s:¬Rk

or s:Rk

s:k ).

Proof : The proof uses ideas on the link between resolution and tableaux in [HS99,
HS00]. By the soundness, completeness and termination of the hyperresolution
calculus H, t1 �≤ k is unsatisfiable in DLOS

Σ iff on all split branches the empty
clause is derived from (Ren) and (N) in H.

Assume that t1 �≤ k is unsatisfiable in DLOS
Σ . Then the empty clause is

derived from (Ren) and (N) in H on all branches caused by splitting. By polarity
considerations, only the direct implications of the definitions of subterms of t1
in (Ren) are used. If k = 1, ¬Pk(c) produces the empty clause with P1(x). If
k = 0, ¬Pk(c) is subsumed by Ren(0). If k �∈ {0, 1} the inference of ¬Pk(c) with
(Ren)(k) produces ¬Rk(c). Since tableau rules are macro-inference steps of H
on the clause form of the direct implications of the definitions in (Ren), based
on the hyperresolution proof of the empty clause, a tableau can be constructed
from {c : t1, c : ¬k} in which every branch is closed.

Conversely, assume that a tableau can be constructed from {c : t1, c : ¬k}
in which every branch is closed. Let h be the map that associates literals to
labeled formulae defined by h(s : e) = h1(e)(h2(s)), where h1(e) = Pe for
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every subformula e of t1 ≤ t2, h1(Rf ) = Rf ; h2(si) = c
f(e1,...,em)
i (h(s)) if

si was introduced by (f), where c
f(e1,...,em)
i is the Skolem function associated

with ei and f(e1, · · · en); and h2(s) = s otherwise. Then derivations in H cor-
respond to the tableau rules above. For instance, the following derivation cor-
responds to rule (f). From Pf(e1,...,en)(s) derive Pei(c

f(e1,...,en)
i )(s), i = 1, . . . , n

and Rf (cf(e1,...,en)
1 (s), . . . , cf(e1,...,en)

n (s), s) using (Ren)(Σ) in n + 1 steps. ✷

A set of tableau rules for checking satisfiability in DLOA
Σ of formulae of the

form t1 ≤ k can be obtained from TS
Σ by adding the rules:

(HerA)
a : e∧

b∈D(A),b≥a b : e (Mong)
(s1, . . . , sn, a) : Rg∧

b∈D(A),b≥a(s1, . . . , sn, b) : Rg

for all elements a ∈ D(A), where the labels s1, . . . sn are of type lat, e is a formula
of type A and g a bridging function with values of type A.

Validity of formulae of the form t1 ≤ t2, where t2 is a term can be tested by
using a fairly unusual extension of the notion of tableaux to what we call tableaux
with polarities, in which the direction in which a rule is applied is determined
by the polarity of the formula. Both polarities are associated with propositional
variables. Let TS

Σ(ext) be the set of rules containing (⊥) and:

(∧p)
s : (e1 ∧ e2)p

s : ep
1, s : e

p
2

(∨p)
s : (e1 ∨ e2)p

s : ep
1 | s : ep

2
(∧n)

s : en
1 , s : en

2

s : (e1 ∧ e2)n
(∨n)

s : en
i

s : (e1 ∨ e2)n

(fp)
s : f(e1, . . . , en)p

(s1, . . . , sn, s) : Rf , s1 : ep
1, . . . , sn : ep

n
(fn)

(s1, . . . , sn, s) : Rf , s1 : en
1 , . . . , sn : en

n

s : f(e1, . . . , en)n

(with s1, · · · sn new to the branch)

These rules encode macro-inference steps of H with the clause form of direct
implications in (Ren) for subterms of t1 ((∧p), (∨p), (fp)) resp. the inverse impli-
cations in (Ren) for subterms of t2 ((∧n), (∨n), (fn)). Similar arguments as those
used in Theorem 7 can be used to show that the formula t1 �≤ t2 is unsatisfiable
in DLOS

Σ iff a tableau in which every branch is closed can be constructed starting
from the root {c : tp1, c : ¬tn2} and using the rules in TS

Σ(ext) , with the restriction
that (∧n), (∨n) and (fn) can only be applied if the result is a subexpression of
t2.

5 Conclusions

We formally defined a class of many sorted bridging functions between bounded
distributive lattices, showed that the Priestley representation theorem can be ex-
tended in a natural way to encompass such operators, and then analyzed some
fragments of the universal theory of distributive lattices with many sorted bridg-
ing operators. In particular, we showed that a structure-preserving translation to
clause form for uniform word problems for such classes of lattices with operators
can be defined also in this case using the same pattern used in [SS99] for join
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hemimorphisms. Using this translation, the results in [SS99] can be extended in
a straightforward way to prove that ordered resolution with selection is a deci-
sion procedure for the universal theory of many-sorted distributive lattices with
bridging operators. We then proved that hyperresolution can be used for simpler
problems such as the problem of checking validity of formulae of type t1 ≤ t2 in
DLOS

Σ and DLOA
Σ . Based on this we sketched a way of designing tableau calculi.

Bridging functions such as “cardinality” are, in general, not join hemimor-
phisms, but satisfy the subadditivity condition f(a ∨ b) ≥ f(a) ∨ f(b) or condi-
tional additivity axioms such as x ∧ y = 0⇒ f(x ∨ y) = f(x) + f(y). We would
like to extend the results presented here to such more general operators.
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