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KurzfassungDas Ziel dieser Dissertation ist die Untersuchung von Anwendungen vongefaserten Strukturen in der Informatik, genauer im automatischen Beweisensowie in der Modellierung kooperierender Systeme. Wir pr�asentieren und un-tersuchen Situationen, wo gefaserte Strukturen und Garben (m�oglicherweisebez�uglich Grothendieck Topologien auf gewissen Kategorien) auftreten.Die Dissertation umfa�t zwei Hauptarbeitszweige, die stark miteinanderzusammenh�angen.Die erste Richtung der Arbeit besch�aftigt sich mit dem Zerlegen von vorge-gebenen Strukturen in einfachere Strukturen und zwar so, da� gewisse Klassenvon Eigenschaften der gegebenen Struktur reduzierbar sind auf Eigenschaftender einfacheren Strukturen. Der Hauptbeitrag in dieser Richtung befa�t sichmit einer Priestley-artigen Darstellung f�ur distributive Verb�ande mit Opera-toren und der Anwendung zur Redizierung der Komplexit�at beim automati-schen Beweisen in einigen Klassen von mehrwertigen Logiken. Diese Methodenwerden zuerst f�ur den Fall von SHn-Logiken diskutiert und dann auf allge-meinere Klassen von Logiken erweitert. Eine Implementierung in Prolog wirdpr�asentiert und Vergleiche mit verwandten Ans�atzen werden gezogen.Die zweite Richtung der Arbeit besch�aftigt sich mit dem Zusammenbrin-gen von verschiedenen Strukturen und der Analyse der Eigenschaften solcherKompositionen; insbesondere mit dem Studium des Zusammenhangs zwischenden Eigenschaften der einzelnen Komponenten und ihrer Komposition. Wirpr�asentieren einen garbentheoretischen Ansatz des Begri�s \Concurrency". BeimStudium von komplexen Systemen, die aus mehreren kooperierenden \Agen-ten" zusammengesetzt sind, ist es von grundlegendem Interesse, das gesamteSystem durch die Eigenschaften seiner Teile auszudr�ucken. Wir schlagen einenBegri� von System vor, sowie verschiedene Varianten von entsprechenden Mor-phismen zwischen Systemen. Wir de�nieren dann Grothendieck Topologien aufden damit de�nierten Kategorien, welche \�Uberdeckungsbeziehungen" zwischenSystemen ausdr�ucken. Es stellt sich heraus, da� ein Gro�teil der Information zurBeschreibung von Systemeigenschaften ausgedr�uckt werden kann durch Garbenbez�uglich dieser Grothendieck Topologien: zum Beispiel Zust�ande (\states")und parallele Aktionen werden von Garben St bzw. Act modelliert; �Uberg�ange(\transitions") von einer Untergarbe von Act�St�St; das Verhalten �uber einer�xen Zeitskala (f0; 1; : : : ; ng; n 2 N oder N) wird von einer anderen Garbemodelliert. Wir ben�utzen geometrische Logik zur Erkl�arung des Zusammen-hangs zwischen gewissen Eigenschaften einer gegebenen Familie miteinanderverkn�upfter Systeme und der Eigenschaften des aus der Verkn�upfung resul-tierenden Systems.



AbstractThe goal of this thesis is to study the applications of �bered structures incomputer science, more precisely in automated theorem proving in many-valuedlogics, and in modeling cooperating systems. We present and study situationsin which �bered structures and sheaves (possibly with respect to Grothendiecktopologies on certain categories) arise.The thesis contains two main directions of work, strongly interrelated:The �rst direction of work is concerned with �nding decompositions of givenstructures in terms of simpler structures, in such a way that certain classes ofproperties of the given structure can be reduced to properties of the simplerstructures. The main contribution in this direction of work concerns Priestley-type representation of distributive lattices with operators, and its applicationfor reducing the complexity of automated theorem proving in classes of �nitely-valued logics. These methods are �rst discussed for the case of SHn-logics andthen extended to more general classes of logics. An implementation in Prologis given and comparisons with related approaches are made.The second direction of work is concerned with putting together (intercon-necting) di�erent structures and studying the properties of the result of thisinterconnection; in particular with studying the link between the properties ofthe component parts and the result of their interconnection. We give a sheaf-theoretic approach to the study of concurrency. In studying complex systemsconsisting of several interconnected \agents", given a class of agents (a de-scription of every agent, and a description of the way they interact) it is oftennecessary to study the properties of the system obtained by the interconnectionof the agents in this class. We propose a notion of system and several variantsof a corresponding notion of morphism, depending on the extent of the rela-tionship between systems that we want to express. We de�ne Grothendiecktopologies on the categories de�ned this way, that express \covering relation-ships" between systems. It turns out that much of the information relevant forexpressing properties about systems can be expressed by sheaves with respect tothese Grothendieck topologies: for instance states and parallel actions are mod-eled by sheaves St;Act; transitions are expressed by a subsheaf of Act�St�St;and behavior over a �xed range of time (of the form f0; 1; : : : ; ng; n 2 N or N)can be modeled as a sheaf too. We use geometric logic in order to explain thelink between certain properties of a given family of interconnected systems andthe properties of the system that results from their interconnection.
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Chapter 1IntroductionThe goal of this thesis is to study the applications of �bered structures in com-puter science, more precisely in automated theorem proving in many-valuedlogics, and in modeling cooperating systems.The notions of �ber bundle and sheaf were originally developed in geom-etry and topology. Sheaf theory is a particularly e�ective tool in those areaswhich ask for global solutions to problems whose hypotheses are local: it wasdeveloped in mathematics because of the necessity of studying such relation-ships between local and global phenomena. The concept of sheaf was formallyintroduced by Jean Leray and Henry Cartan in 1950. Originally, the theory ofsheaves was conceived as a tool in topology and algebraic geometry, for axiom-atizing notions such as \local coe�cient system". The inuence of sheaf theoryhas spread since then in many areas of mathematics: besides the �elds where itsorigins are, such as analysis, topology (the study of germs of holomorphic func-tions, see e.g. [Ler45, Car50]) and algebraic geometry ([Hir56, Zar56, God58]),it is now also used in algebra (representations of algebras by continuous sec-tions; global subdirect products see e.g. [Hof72], [Dav73], [Wer75], [KC79]), andlogic (for details see also [FS79], [MLM92]).In algebraic geometry it was soon discovered that the topological notion ofa sheaf was not entirely adequate: the Zariski topology on an abstract algebraicvariety turned out to not have \enough open sets" to provide a geometric notionof localization, and furthermore, it turned out that it was important to replacemonomorphisms between neighborhoods of points by more general mappings(not necessarily injective). For this reason A. Grothendieck introduced thenotion of \Grothendieck topology" on an arbitrary category, and a generalizednotion of sheaf for such a topology. For more information on the history anddevelopment of sheaf theory see [Gra79, Joh82, Gol84, MLM92].In the thesis we present and study situations in which sheaves (possibly withrespect to Grothendieck topologies on certain categories) or �bered structuresarise. The thesis contains two main directions of work, strongly interrelated:We use the Priestley representation theorem in order to reduce the complex-ity of automated theorem proving in �nitely-valued logics, and then we give asheaf-theoretic approach to the study of concurrency.1



2 1 IntroductionThe main topics of the thesis are the following:� Fibered structures in universal algebra.{ Sheaf representation theorems in universal algebra and applicationsto uni�cation in discriminator varieties,{ Priestley-type representations for distributive lattices with opera-tors, and applications to automated theorem proving in many-valuedlogics,� A sheaf-theoretical approach to modeling cooperating agents.The �rst direction of work is concerned with �nding decompositions of givenstructures in terms of simpler structures, in such a way that certain classes ofproperties of the given structure can be reduced to properties of the simplerstructures.The second direction of work is concerned with putting together (intercon-necting) di�erent structures and studying the properties of the result of thisinterconnection; in particular with studying the link between the properties ofthe component parts and the result of their interconnection.There is a strong link between these two main directions of work, as will beshown in what follows.1.1 Presentation of the Main ResultsIn what follows I give a succinct presentation of the main results and contribu-tions contained in the thesis.1. Fibered representations in algebra with applications in auto-mated theorem provingRepresentation theorems in universal algebra { such as sheaf representation andPriestley type representation theorems { are presented, and their applicationsare investigated, as explained in what follows.1a. Sheaf representation in Universal Algebra. Concerning sheaf repre-sentation theorems my contribution is only tangential: I prove that a theoremin [Bur92] { that shows that in discriminator varieties a most general uni�erof two terms can be constructed from a particular uni�er { can be extended tosystems of equations in discriminator varieties.A sheaf representation theorem in universal algebra due to [Dav73] is usedin the study of cooperating agents.1b. Priestley representation for distributive lattices with operatorsand applications in automated theorem proving. My main contributionin this direction of work concerns Priestley-type representation for distributivelattices with operators, and its application in automated theorem proving in



1.1 Presentation of the Main Results 3classes of �nitely-valued logics. The explanation of the notions used in whatfollows can be found in Chapter 5.I start with a study of the propositional SHn-logics (�rst introduced by L.Iturrioz in [Itu82]), as a motivating example, since the idea of using the Priestleydual of the algebra of truth values for automated theorem proving occured tome when studying SHn-logics. An algebraic as well as a Kripke semantics forthese logics are known [Itu83, IO96]. Additionally a topological representationtheorem induced by the Priestley representation theorem is proved in [Itu83]. Iextended the topological representation in [Itu83] to a dual equivalence betweenthe category of SHn-algebras and a suitable category SHnSp of Priestley spaceswith operators. I also made the properties of the additional operators on thesePriestley spaces explicit. It turned out that the objects of SHnSp are SHn-frames in the sense of [IO96]. The study also gave hints about the way ofde�ning morphisms between SHn-frames, and thus de�ning a category of SHn-frames.In [Itu83] it is proved that for every n 2 N , the SHn-logic is sound andcomplete with respect to the variety of SHn-algebras, which is generated bythe �nite algebra Sn2 . As a consequence, it turned out that a formula is aSHn-theorem if and only if it is valid in the �nite SHn-frame de�ned by thedual space D(Sn2) of Sn2 .Since the dual space D(Sn2) has 2(n � 1) elements whereas Sn2 has n2elements, the idea occurred to me that one might de�ne a more e�cient proofprocedure using the dual space. I begin by considering the propositional case: inthis case I de�ne positive and negative literals as being of the form x pt, resp.x pf , where x 2 D(Sn2) and p an atomic formula; clauses (sets of literals),and a notion of satis�ability. I give a procedure that for every formula � in thelanguage of SHn-logic constructs a set � of clauses such that � is a theorem ifand only if � is unsatis�able. The unsatis�ability of � can be checked with aprocedure called signed negative hyperresolution: it turns out that the proof of[AB70] can be adapted to this case without major modi�cations. This provesthe correctness of the procedure.Next, I consider a more general case, namely the case of logics L that aresound and complete with respect to a variety V of algebras that satis�es thefollowing properties:(i) V = HSP (A), where A is a �nite algebra;(ii) The algebras in V are distributive lattices with operators, andthe Priestley duality induces a dual equivalence between V anda suitable category VSp of Priestley spaces.The form of operations on the dual category in the case when the additionaloperators considered are morphisms, antimorphisms, join-hemimorphisms andmeet-hemimorphisms are analyzed.I show that the dual category VSp provides a class of topological Kripkemodels for the logic L; a way of de�ning notions such as satis�ability andvalidity in these models is discussed.



4 1 IntroductionThe isomorphism between the �nite algebra A and the set of order-�lters ofits dual D(A) induces a notion of satis�ability (resp. validity) of a formula inthe dual space D(A).I prove a similar result, namely that a formula in the logic L is a theoremin L if and only if it is valid in D(A). As in the case of the SHn-logics, I givea procedure for automated theorem proving (consisting of two steps, namelytransformation to clause form and negative hyperresolution). I also considerthe �rst-order logic having A as a set of truth values, and show that both thetranslation to clause form and the signed hyperresolution procedure can beextended to �rst-order formulas.2. A sheaf-theoretical approach to modeling cooperating agentsscenariosIn studying complex systems consisting of several interconnected \agents", theproblems that arise can be described as follows:Given: A family fSi j i 2 Ig of interconnected agents, i.e.{ a description of every agent, and{ a description of the way they interact.Task: Study the properties of the system obtained by their interconnection.The basic idea of my formalism is that even relatively simple agents, such asa robot that provides an assembly bench with pieces, is in fact a complex systemcomposed of interacting subsystems, like joints and wrists, a locomotion mod-ule, etc. Complex systems as well as their component parts can be essentiallydescribed in the same way; the level at which we \stop" the re�nement process,and consider a subsystem as being \atomic" depends on the given applicationand on the degree of accuracy needed1.Therefore instead of \individual" agents, a category of \systems" is consid-ered. I study in detail a subcategory of this category, where the objects aresystems and the morphisms describe the relation \is a subsystem of", and showthat under certain (non-restrictive) hypotheses a Grothendieck topology (de-scribing a \covering" relation between systems) can be de�ned on this category.In addition, within this framework, the states of systems as well as their admis-sible parallel actions can be modeled by sheaves. Then, I restrict to a categorySYSil having systems as objects and transition-connected inclusions as mor-phisms (in order to impose the condition that transitions in a system restrict tovalid transitions in its subsystems), and show that this category has pullbacksand colimits of families of systems that are all transition-connected subsystemsof a given system. In concrete applications we usually are interested only insome subcategory of SYSil, having as objects those systems relevant for the givenapplication. Therefore I continue by considering the category of those systems1This situation is somehow similar to the situation that arises in geometry, when de�ningthe notion of a point. Intuitively, a point can be de�ned as the \limit" of a family fUi j i 2 Igof \spots" that (informally said) get smaller and smaller (for instance, such that I = N andfor every i � j, Uj � Ui).



1.1 Presentation of the Main Results 5obtained by interconnecting a given family InSys of interacting systems, all con-tained in a given system SU (to enforce compatibility of models) and which isassumed to be closed under all subsystems by means of which communicationcan be done. A system obtained by interconnecting the elements of the familyInSys can be regarded either as a system on its own, or as the set of all elementsof InSys by whose interaction it arises (a downwards-closed subset of InSys).I show that on both categories de�ned this way, Sys(InSys) resp. 
(InSys),suitable Grothendieck topologies can be de�ned, expressing the way systemsarise from smaller subsystems. In both these approaches one can de�ne notionsas states and parallel actions, and show that these de�ne sheaves Sti, resp. Acti(i = 1; 2) with respect to the corresponding Grothendieck topologies. Moreover,transitions can be expressed in both cases by natural transformations Tri :Acti ! 
Sti�Sti (i = 1; 2) (or, alternatively, by subsheaves of Acti�Sti�Sti).The link between the categories Sys(InSys) and 
(InSys) is also investigated: Ishow that an adjunction between these two categories exists; additionally theright adjoint preserves covers, which implies that a geometric morphism betweenthe category of sheaves over Sys(InSys) and the category of sheaves over 
(InSys)(with the corresponding Grothendieck topologies) can be established.I continue by studying the behavior in time of systems. The starting pointof my approach is the formalism developed in [Gog92]. Assume that time isdiscrete and the execution of every action needs one unit of time. Let T bethe category of all subsets f1; : : : ; ng; n 2 N (and includes N itself), withinclusions as arrows. A result in [Gog92] states that the behavior of a systemcan be modeled as a sheaf over T . I show that actually two gluing propertieshold: one with respect to covers on the category T , and one with respect tocovers on the category Sys of systems (one of the two categories consideredabove). This is expressed by introducing two functors, B : Sysop ! Sh(T ), andB0 : T op ! Sh(Sys; J). A possible model for the behavior of interconnectedsystems by sheaves of partially commutative monoids is also considered.All these results are used in the last section of Chapter 8, where I useclassical results in sheaf theory and geometric logic to investigate the linksbetween the properties of the elements of InSys and the system obtained byinterconnecting them. These theoretical considerations are illustrated on threeexamples: deadlock freedom, determinism, and fairness of execution.These two directions of work are strongly interrelated, as will be shown inwhat follows.On the one hand, the Priestley representation for distributive lattices canbe regarded as follows: Let L be a set of truth values that has an underlyingdistributive lattice structure. In practical situations, e.g. in robotics, the di�er-ent truth values may be checked by sensors; it may also happen that the sensorscannot distinguish between all the values of L.Assume that the sensors can only return the values 0 (false) and 1 (true); andadditionally, that they respect the order of truth values (i.e., if x is perceivedas \true" and x � y in L then y will also be perceived as \true") as well as thelattice operations _ and ^. (For example, if L = f0; 1n�1 ; : : : ; n�2n�1 ; 1g, the truth



6 1 Introductionvalue (in L) of a parameter v can be completely reconstructed if we assumegiven an ordered set of n�1 2-valued sensors, S1 � : : : � Sn�1, such that forevery i, the sensor Si perceives as \true" a parameter if its value (in L) isgreater than or equal to in�1 and as false otherwise.)The set of 2-valued sensors necessary in order to recover the informationabout the values of parameters in L is then exactly the (ordered) set of allf0; 1g-lattice homomorphisms from L into f0; 1g, i.e. exactly the Priestley dualof the algebra L.On the other hand, in the study of agents (e.g. in robotics), the descriptionof states plays a fundamental rôle. The actions induce then transitions betweenstates. In a multi-modal logic approach to the study of agents, these states canbe seen for instance as possible worlds, and the transitions between states canbe expressed by corresponding relations between these worlds. Thus, Kripkemodels arise in a natural way.This is the idea dynamic logic (also known as the logic of programs) re-lies upon (for an introduction to dynamic logic we refer to [Har84]). In thepropositional case the algebraic models for dynamic logic are dynamic alge-bras (Boolean algebras endowed with operators that satisfy certain properties)and the Kripke models are sets endowed with families of relations that satisfysuitable properties.However, it seems that the same ideas can be applied in more general con-texts, for example in situations when the underlying logic is not classical (propo-sitional) logic.Finally, we point out one more link between the theoretical study of sheavesof algebras mentioned before and the theory of cooperating agents. The behav-ior of a given agent can be expressed for instance as the set of all sequences ofactions the agent can execute. Sometimes the order in which two actions areexecuted is not relevant. If we specify an independence relation on the set ofactions, this relation induces a congruence on the set of all �nite sequences ofactions of the given agent. When putting together a family S = fSi j i 2 Igof interacting agents, one of the problems that may occur is to decide if \localplans" can be glued together to a \global plan". That is, given a family ofsequences of actions fwigi2I , where each wi is a �nite sequence of actions forthe agent Si, such that the elements of this family are compatible on commonsubsystems (in a sense that will be explained in Section 7.2.4), the problem isto decide if there exists a �nite sequence of actions for the system S (obtainedby interconnecting the agents in S) that contains all the sequences fwigi2Ias substrings. It turns out that this problem can be formulated in terms ofsheaf theory; namely one has to decide whether the (partially commutative)monoids expressing the �nite sequences of actions of the systems in the familyfSi j i 2 Ig de�ne a sheaf of monoids, and whether the set of global sections ofthis sheaf is isomorphic to the (partially commutative) monoid expressing the�nite sequences of actions of S.



1.2 A Short Summary of Results 71.2 A Short Summary of ResultsThe thesis includes the following contributions:� A comparative study of the sheaf representation theorems and Priestleyrepresentation theorems: we show that both induce a notion of �bering.The similarities and the di�erences are analyzed, and some directions offuture work are indicated.� Sheaf representation theorems in universal algebras1. An extension of the construction of a most general uni�er in discrim-inator varieties to systems of equations.� Priestley representation for SHn-algebras.{ Theoretical Considerations:1. An extension of the topological representation for SHn-algebrasgiven in [Itu83] to a dual equivalence between the categories ofSHn-algebras and SHn-spaces,A restriction of the dual equivalence between the categories ofSHn-algebras and SHn-spaces to a dual equivalence betweenthe category of SHKn-algebras (which is the category of  Luka-siewicz-Moisil algebras) and the category of SHKn-spaces.2. The proof of the fact that SHn-spaces are in particular SHn-frames, according to the de�nition in [IO96],3. A possible way of de�ning morphisms between SHn-frames (andthus of de�ning a category of SHn-frames),4. The link between valuations in SHn-algebras and SHn-spaces,5. The link between provability in SHn-logics and validity in theSHn-frame D(Sn2).{ A procedure for automated theorem proving by resolution that usesthe dual space of a SHn-algebra:1. A procedure for transformation to clause form (also de�nitionsfor signed literals, clauses, satis�ability),2. A signed hyperresolution procedure (proof of correctness).� Extension to larger classes of logics{ We study logics L that are sound and complete with respect to vari-eties V of algebras with an underlying distributive lattice structure,that are generated by one �nite algebra, and with the property thatthe Priestley duality extends to a dual equivalence between V and acategory VSp of Priestley spaces with operators.1. We analyze the way the satis�ability relation aj= with respect toalgebras in V induces a satis�ability relation rcj= with respect toPriestley spaces in VSp.



8 1 Introduction2. We show that showing `L � reduces to testing whether D(A) rcj=�.{ We study the properties of distributive lattices with operators, inorder to obtain a better understanding of the link between algebraicand relational models.1. The starting point is the theory presented in [Gol89], where dis-tributive lattices endowed with join- and meet-hemimorphismsare considered. We additionally consider homomorphisms andantimorphisms.The corresponding operations (resp. relations) induced on thedual space are analyzed.2. We de�ne accordingly a notion of frames (partially-ordered setsendowed with operations and relations).3. We discuss a notion of satis�ability (resp. validity) in such frames.The link between satis�ability (validity) in these frames and sat-is�ability (validity) with respect to algebraic models is also dis-cussed.{ A procedure for automated theorem proving by resolution for logicsL (sound and complete with respect to varieties V of algebras withan underlying distributive lattice structure, such that V is generatedby one �nite algebra A and the Priestley duality extends to a dualequivalence between V and a category VSp of Priestley spaces withoperators). This automated theorem proving procedure uses the dualspace D(A) of A.1. De�nitions for signed literals, clauses, satis�ability,2. A procedure for transformation to clause form,3. A signed hyperresolution procedure (proof of correctness),4. Extension to �rst-order logics.{ An implementation in Prolog.Note that it turned out that the condition we imposed on the logic L,namely that it should be sound and complete with respect to a varietyV of algebras with an underlying distributive lattice structure, such thatV is generated by one �nite algebra A and the Priestley duality extendsto a dual equivalence between V and a category VSp of Priestley spaceswith operators, can be relaxed, as we now explain.In the description of the procedure for automated theorem proving (andin its proof of correctness) we only use the fact that the logic L is soundand complete with respect to a �nite Kripke frame endowed with an or-der relation and with additional relations associated to the operations inthe logic. We would like to investigate the degree of generality of thisapproach. We kept the initially imposed set of conditions on the logic Lbecause it furnishes an intuitive description of how such a Kripke framecan be constructed.



1.3 Structure of the Thesis 9� A sheaf-theoretic approach to cooperating robotics scenarios:1. de�nition of a system,2. de�nition of a morphism between systems; category of systems SYS;expressing states, parallel actions, transitions in this category,3. consider other types of morphisms depending on the extent of therelationship between systems to be expressed; we focus on categorieshaving inclusions as morphisms,4. de�nition of Grothendieck topologies on di�erent categories of sys-tems; study of states, transitions and behavior in these categories(gluing properties are satis�ed, which suggest that a sheaf-theoreticalapproach is appropriate in order to express the link local-global),5. the links between these categories are analyzed,6. classical results from sheaf theory (geometric logic) are used in orderto study properties of systems that are preserved by interconnection.1.3 Structure of the ThesisThe thesis is structured as follows:Chapter 2 begins with a look at the background and motivation of �beredstructures and their use in computer science. It continues with a brief presen-tation of related results, and the way these inuenced our work.In Chapter 3 we give a brief review of the main concepts from universalalgebra, logic, category theory and sheaf theory that will be used in our work.This is done in order to make the thesis self-contained.In Chapter 4 we review concepts and results that are directly linked to ourown results that will be presented in the thesis, as well as related work. Thisincludes sheaf representation theorems in universal algebra and the Priestleyrepresentation theorem for distributive lattices, as well as various models forconcurrency.In Chapter 5 we present an approach to automated theorem proving forcertain �nitely-valued logics, based on the Priestley dual of the algebra of truthvalues.In Chapter 6 we begin a study of distributed agents, having as goal a bettermodeling of the link between local and global properties in complex systems,composed by interconnecting intercommunicating agents. As a motivation forthis theoretical study, we illustrate the problems that appear on a simple exam-ple, adapted from [Pfa93]. This example leads to a formal de�nition of a system.We then de�ne morphisms between systems, and introduce a category SYS ofsystems, and study states, parallel actions and transitions in this category.In Chapter 7 we study the category SYSi (that has systems as objects andinclusions of systems as morphisms). In a �rst approximation we pay no atten-tion to the transitions between states induced by the actions. We show thatstates and parallel actions can nevertheless be modeled by sheaves with respect



10 1 Introductionto a suitable Grothendieck topology. In order to capture the dynamical as-pect of systems we then take into account also transitions induced by actions.We consider therefore SYSil, the subcategory of SYS having as objects systemsand as morphisms so-called transition-connected inclusions (which ensure thatvalid transitions in a system restrict to valid transitions in its subsystems). Theproperties of states, actions, transitions and behavior are studied also for thiscategory.In Chapter 8 we analyze the situation arising from interconnecting a givenfamily InSys of communicating systems. We can regard the system obtainedby interconnecting the elements of InSys either as a system on its own, oras the set of all elements of InSys by whose interaction they arise (i.e. as adownwards-closed subset of InSys). We analyze both these approaches, and thenthe relationship between them. We use these results for expressing propertiesof systems and reasoning about them. We show that results from sheaf theory,in particular geometric logic help us in deciding which properties are inheritedby the system obtained by interconnecting a family of given systems. Severalexamples are provided.Chapter 9 contains applications of the theoretical results above (presentedas algorithms).In Chapter 10 we summarize the main results and indicate the directionsfor future research.



Chapter 2MotivationThis chapter begins with a look at the background and motivation of �beredstructures and their use in computer science. It continues with a brief presen-tation of related results, and the way these inuenced our work.2.1 Background and MotivationThe goal of the thesis is to study some of the applications of so-called �beredstructures in computer science.Informally, a �ber bundle consists of a set B (called base space) and a familyof mutually disjoint sets E = fEb j b 2 Bg, together with a projection mapp : `b2B Eb ! B (where `b2B Eb is the disjoint union { i.e. the coproduct inSets { of the family fEb j b 2 Bg) that for every x 2 E = `b2B Eb associatesb 2 B if x 2 Eb; such a �ber bundle is denoted by (B;E; p). The sets Eb,b 2 B are called �bers or stalks. These notions originally were developed ingeometry and topology. The construction presented above is very general. Thesets E and B can be endowed for example with a topology, with relations, orwith an algebraic structure. For instance, we could just work in the categoryof topological spaces instead of sets, and impose that the projection map prespects the corresponding structure of the spaces, for example it has to be acontinuous map in the category of topological spaces (we can think in this caseof the family fEb j b 2 Bg as being \continuously indexed" by B). A �brebundle (B;E; p) where B and E are topological spaces is called a sheaf spaceif p : E ! B is a local homeomorphism, (i.e. for every point x 2 E there existsa neighborhood U of x in E such that p(U) is open and p : U ! p(U) is ahomeomorphism).Many of the representation theorems in universal algebra lead to the oc-curence of �ber bundles or even sheaves with the property that the stalks havea certain algebraic structure.The basic idea of representation theorems is to provide decompositions ofcertain structures in terms of simpler structures. In what follows we will refer totwo kinds of representation theorems, namely to sheaf representation theoremsfor discriminator varieties and to the Priestley duality for distributive lattices.11



12 2 MotivationAlso the inverse process, namely that of combining structures, that arisesfor example in modeling concurrency, can be modeled using �ber bundles, and{ as shown in this thesis { the link between local and global properties can beexpressed in certain situations using sheaf theory.Since in what follows we will make use of sheaf theory (including sheavesof algebras), we would like to point out the importance of sheaf theory (andgeometric logic) in universal algebra. The following considerations are inspiredby the ideas stated in [KC79], and turned out to be also a source of inspirationfor our approach to modeling concurrency.The basic idea behind representation theorems in universal algebra is to\decompose" a given structure into \simpler" structures in such a way thatthe properties of the given structure can be \reduced" to properties of thesimpler structures. The theorem of Birkho�, one of the best known theorems inuniversal algebra, asserts that every algebra is isomorphic to a subdirect productof subdirectly irreducible algebras. This theorem is however not a satisfactoryrepresentation theorem in universal algebra for two reasons: �rst, usually it isvery di�cult to determine the subdirectly irreducible factors; second, even whenthese factors are known, subdirect products are so \loose" that very little canbe inferred about an algebra from the properties of the factors. An exampleof \good" representation is the direct sum representation for abelian groups.That is because direct sums are special subdirect products which are \tight"enough such that signi�cant information can be obtained from the propertiesof the factors. Unfortunately, for important classes of rings interesting directsum representations are not known. This situation provided the motivationfor the development of sheaf representations for algebras, i.e. representations ofalgebras as sheaves of global sections over a certain topological space.One of the properties that make structures of global sections \tight" subdi-rect products is the \patchwork property": structures of global sections patchover the so-called equalizer topology. (However, unrestricted patching is usuallyhard to verify in applications. In some cases, unrestricted patching can usuallybe reduced to �nite patching via a compactness argument.)Another reason is the fact that the global section functor (an example of adirect image functor) preserves limits (but in general it does not preserve unionsand images); therefore it preserves the validity of cartesian formulae relative toa given theory T , i.e. the formulae constructed from atomic formulae using onlyconjunction and existential quanti�cation over \T -provably unique" variables.Sheaf representation theorems also have applications in solving algorithmi-cal problems, as for example uni�cation. In 1966 Dauns and Ho�mann studyalgebras of global sections of sheaves of algebras over Boolean spaces, namedBoolean products in 1979 by Burris and Werner. For such products one cananalyze not only equations but also positive primitive sentences (sentences ofthe form 9xV(pi(x) = qi(x))) in terms of the behavior of the stalks [BW79], i.e.we can solve a system of equations in a Boolean product if and only if we cansolve it in every stalk of the Boolean product, and a given sequence of elementsis a solution if and only if it provides a solution in each stalk. Based on theseresults, [Bur92] proves that discriminator varieties have unitary uni�cation and



2.1 Background and Motivation 13gives a method for constructing most general uni�ers starting from particularuni�ers.The Priestley representation theorem for distributive lattices states that ev-ery distributive lattice L is isomorphic to the set of continuous, order-preservingfunctions from the Priestley space D(L) of all prime �lters of L to the 2-elementchain f0; 1g. Thus, \�bered structures" appear also in this context; here thebase space is endowed { besides the topology { also with an order relation,and, in the case of extensions of the Priestley representation theorem to dis-tributive lattices with operators, with additional operations and relations thatcorrespond to these operators, whereas the \�bers" are all isomorphic to the2-element lattice. In the thesis we point out the relation between Kripke mod-els and this type of spaces and use the result for giving an automated theoremproving procedure in non-classical logics.The inverse process, namely that of combining structures, that arises forexample in modeling concurrency, can be also modeled using �ber bundles.Fibered models for cooperating agents scenarios have already been used by[Pfa91], see also [Pfa96], and developed in [PS92, PSS95, PSS96a, PSSS95,PSS96c, PSS96b]. The notion this model is based on is that of �ber bundle.The main idea is that the general concept of �berings allows to mix di�erentstructures (spaces of di�erent types) by taking them as �bers over a certainindex system (base space). This is important when looking for a unifyingmathematical framework for modeling complex and heterogenous interactingstructures. We also refer here to the extensive research of Gabbay on LabelledDeductive Systems and to his method for combining logics based on the notionof \�bred semantics" [Gab92, Gab94, Gab96].In [Sof96], when studying states and admissible parallel actions of systemsby interconnecting communicating systems, we noticed that they satisfy a gluingproperty similar to the property of a sheaf. Thus, the idea occurred that sheaftheory can be an appropriate tool for modeling cooperating agents scenarios.This is not surprising. In what follows we would like to explain why we thinkthat sheaf theory can be a useful framework for modeling cooperating agentsscenarios.As pointed out before, sheaf theory was developed in mathematics becauseof the necessity of studying the relationship between \local" and \global" phe-nomena. The same situation arises in the study of interacting systems: whenmodeling states or behavior it is often necessary to make a link between \local"properties (characteristic for given subsystems) and \global" properties (rele-vant for the whole system). The goal of our study is an analysis of subsysteminteraction, taking into account the contribution of subsystems to the behaviorof the whole system. The interaction between systems can be described throughcommon behavior (or states) at shared \locations".The alternance \local - global" that occurs in this case suggests that itwould be natural to use sheaf theory when studying systems of cooperatingagents (and in the study of concurrency in general).



14 2 MotivationMoreover, the tools of sheaf theory (and of topos theory in general, in par-ticular geometric logic cf. [MLM92]), should explain why some properties ofsystems are preserved when restricting to subsystems, and why there are caseswhen properties of subsystems are not transferred to the system obtained bytheir interconnection (we will illustrate this on several examples, among whichthe properties of deadlock freedom, determinism, and fairness of execution).2.2 Brief Overview of Related ResultsWe give a brief overview of previous work in the �elds considered in the the-sis, namely representation theorems in universal algebra (sheaf representationsin universal algebra and Priestley representation for distributive lattices withoperators); automated theorem proving in non-classical logics; and models forcooperating agents and concurrency. Details about those results and methodsthat are relevant to our work will be given in Chapter 4.Sheaf representation theorems in universal algebra as well as the Priestleyduality theorems can both be seen as \�berings". This link is discussed andillustrated in Section 4.1.5. We briey give here some historical milestones inthe development of the corresponding theories.Sheaf representation of algebras. The use of sheaf representations in var-ious parts of algebras have become popular in the late 60's and early 70's.There exist sheaf representation theorems for rings [AK48, DH66, Hof72], semi-groups [Kei70], l-groups (lattice-ordered groups) [Kei71], distributive lattices[Dav72] and universal algebras [Com71, Dav73, Wer75, KC79]. In 1953 Foster[Fos53a, Fos53b] proved that every n-valued Post algebra is isomorphic to thealgebra of global sections of a sheaf having as �bers the Post algebra Pn withn elements (so-called Boolean power of Pn). [Cig72] showed that  Lukasiewicz-Moisil algebras embed in algebras of global sections of sheaves (and that in thecase of Post algebras this embedding is an isomorphism). A sheaf representa-tion (up to isomorphism) for  Lukasiewicz-Moisil algebras follows as a particularcase of a theorem by Werner [Wer75]. In [BW79], elementary properties ofsheaf constructions are investigated, and in [Bur92] these results are used inorder to study the uni�cation problem in discriminator varieties. These resultsgeneralize methods already known for the variety of Boolean algebras. (For thedescription of a program that uses these methods for solving systems of Booleanequations we refer to [Sof89].)In the thesis we show that one of the results in [Bur92] { concerning theconstruction of most general uni�ers for discriminator varieties from a givenuni�er of two given terms { can be extended to systems of equations.Priestley duality for distributive lattices with operators. The Priestleyduality theorem for distributive lattices is due to Priestley [Pri70, Pri72]. It hasbeen extended to duality theorems between various classes of distributive lat-tices with operators and corresponding categories of Priestley spaces endowed



2.2 Brief Overview of Related Results 15with additional operations: we refer e.g. to [CF77] that establishes a Priest-ley duality for de Morgan algebras; to [Urq79] and [Gol81] that establish sucha dual equivalence for varieties of Ockham algebras; to [BP90] where relativeOckham lattices are studied and their order-theoretic and algebraic character-ization is given (see also [BP94] for further results); to [Tra77] that establishesa Priestley duality for Post algebras; to [Fil80] that gives a duality theorem for�-valued  Lukasiewicz algebras without negation; to [Ior84] that gives a dualitytheorem for �-valued  Lukasiewicz algebras with negation; and to [Mar90] thatgives a Priestley duality theorem for Wajsberg algebras. We especially refer to[Itu83] where a topological (Priestley-type) representation theorem for SHn-algebras is given. Note that in [Itu83] only the objects are considered; in thisthesis we extend the representation theorem given in [Itu83] to a dual equiva-lence theorem between suitable categories, and show that the dual equivalencebetween the category of SHn-algebras and the category of SHn-spaces re-stricts to a dual equivalence between the category of so-called SHKn-algebras( Lukasiewicz-Moisil algebras of order n) and a suitable category of Priestleyspaces with operators. We also refer to [CLP91] for some further remarks onthe Priestley duality for distributive lattices with unary operators that are join-respectively meet-hemimorphisms, and to [Cig91], where distributive latticeswith quanti�ers are analyzed and a Priestley duality theorem for this type ofstructures is given. Goldblatt [Gol89] studies such representation theorems ina more general framework, i.e. for distributive lattices endowed with operatorsthat are join- and meet-hemimorphisms (i.e. maps with arbitrary (�nite) aritythat preserve joins (resp. meets) in all the components). His research is mainlymotivated by the study of algebraic and set-theoretical (Kripke) semantics forpropositional modal logics. A modal algebra is a single unary operation ona Boolean algebra, while a Kripke model is a particularly simple kind of re-lational structure: a single binary relation. J�onsson and Tarski [JT51, JT52]studied varieties of Boolean algebras with operators and the link between thesevarieties and classes of relational structures. Inspired by J�onsson and Tarski'swork, [Gol89] considers distributive lattices endowed with a family of join- andmeet-hemimorphisms, and establishes a Priestley duality theorem between thecategory of distributive lattices with operators and a suitable category of Priest-ley spaces endowed with relations. Then, relational structures (similar to theKripke frames in modal logic) are introduced. They are in this case spacesendowed with a family of binary relations with certain properties. The goalof [Gol89] is to explain the extent to which the \modal case" can be seen asthe simplest illustration of a general theory that forms a chapter of universalalgebra.Since the research of [Gol89] makes reference to Kripke models, we presentthe main idea behind this type of models.Kripke models. Kripke frames were introduced by Kripke for the study ofmodal logic [Kri63]. A Kripke frame is a set (of \possible worlds") endowed withone relation (called also \accessibility relation") between the possible worlds.Kripke models are Kripke frames endowed additionally with valuations (ormeaning functions). It turned out that Kripke-style semantics can be given



16 2 Motivationalso for other types of logics { like for instance intuitionistic logic and temporallogic. Generalizations of Kripke frames and models (in the sense that several re-lations are de�ned on the set of possible worlds) are used for giving a semanticsfor the dynamic logic of programs: the relations can be seen as \accessibilityrelations" between possible worlds, induced by corresponding \programs".Kripke models can be seen as �bered structures. Usually, one assumes that,given a meaning function, the \local logic" at every possible world (used forevaluating formulae) is classical. There exist attempts of mixing logics by usingtheir Kripke models, in the following sense: given two logics say L1 and L2, oneconsiders a Kripke model K1 of L1, and at every possible world in K1, a Kripkemodel for L2. This principle is presented in [Gab92, Gab94] and further usedfor combining logics. A more general approach to combining logics (in a moregeneral framework) appears in [Gab96].Automated theorem proving in non-classical logic We begin by sayingsome words about automated theorem proving in classical logic. For proposi-tional logic this reduces to testing all the combinations of truth values 1 (true)and 0 (false) for the variables. In the case of classical �rst-order logic a classi-cal method for automated theorem proving is the resolution principle, due toRobinson [Rob65]. For some re�nements of the resolution principle that helpin reducing the number of clauses that are generated we refer to [CL73]. Alsorewriting techniques have been applied for automated theorem proving. We re-fer here to the well-known algorithm due to Buchberger [Buc65] for computingGr�obner bases in polynomial ideal theory. This algorithm provides algorithmicsolutions to a whole class of problems in polynomial ideal theory and also in var-ious other �elds where polynomial ideal theory can be used; the algorithm hasbeen extended also to more general reduction rings [Buc83] and non-associativereduction structures [Sti93].Also based on the notion of rewriting is the algorithm due to Knuth andBendix, for solving word problems in equational theories [KB67]. For some ofits extensions and re�nements we refer to [Hue80, PS81, JK86].Ideas of rewriting have been applied in automated theorem proving in clas-sical logic. A good overview of the di�erent methods developed can be foundin [HKLR92]. The fundamental idea behind the term rewriting approach toequational theorem proving based on resolution is to treat boolean formulaeas rewriting rules, and then to apply suitable superposition inferences in orderto produce new rules. By means of certain reduction inferences the booleanterms are then simpli�ed using the boolean rules discovered and the process iscontinued until the contradictory rule 1! 0 is generated.A �rst approach based on this idea, due to Hsiang and Dershowitz, appearedin [HD83], and it was followed by the approaches of Kapur and Narendran[KN85], and Hsiang [Hsi87]. In [Buc85], Buchberger presents for the �rst timethe resolution procedure in the framework of general \critical-pair/completion"algorithms, together with the algorithm for computing Gr�obner bases and withthe Knuth-Bendix completion algorithm. We refer also to the work of Winkler[Win84], where the connection between Buchberger's algorithm for computingGr�obner bases and the Peterson-Stickel algorithm for �rst-order terms mod-



2.2 Brief Overview of Related Results 17ulo a equational theory is analyzed, and to the work of Stokkermans [Sto95],where the \critical-pair/completion" algorithms are analyzed in a unifying waywith the tools of category theory, and where a generic (categorical) \critical-pair/completion" algorithm is proposed.There exist various attempts to automated theorem proving in non-classicallogic. Since non-classical logics are so di�erent in nature, it is natural that thesemethods are adapted to the speci�c characteristics of the respective logics. For�nitely-valued propositional logics the problem is simple: test all combinationsof truth values for the variables that appear. There are however some attemptsto improve the e�ciency of these methods. [CRAB91] for instance presents anapproach where polynomials are associated to formulae in many-valued logicsand the proof of validity of a formula reduces to proving that 1 belongs to theideal generated by the corresoponding set of polynomials.Concerning non-classical �rst-order logics, there are various approaches toautomated theorem proving. There is no uniform method, and it is not possibleto say that there is a \best approach", due to the diversity of non-classical logics.We distinguish clausal and non-clausal methods of automated theorem prov-ing. (The methods based on tableaux systems are non-clausal, whereas themethods based on resolution are clausal.)The formal proof system called semantic (or analytic) tableaux was intro-duced by Beth [Bet55, Bet59] (see also [Bet86]) and Hintikka [Hin55], its ances-tors being Gentzen systems. Smullyan [Smu68] de�ned a particularly elegantnotion of tableaux which largely increased their popularity. We refer also to[H�ah93] for more details on analytic tableaux and tableaux-based provers.From the approaches based on tableaux systems we would like to mentionhere the approach of Surma [Sur84], further developed by Carnielli [Car87] (seealso [Car91]), the method due to Sucho�n [Suc74] for the special case of n-valuedlogics (which has the advantage of yielding much shorter proofs than the onesobtained by Surma's approach) and the method of H�ahnle who de�ned a gener-alized notion of signs in tableaux that makes it possible to speak concisely aboutthe truth values a formula can take at a certain stage during the constructionof the tableau [H�ah90, H�ah91, H�ah93].A very active research group in the �eld of automated theorem proving innon-classical logics (and a former partner of RISC in the MEDLAR project) isthe group led by Ricardo Caferra at Leibnitz IMAG in Grenoble. An implemen-tation of a theorem prover based on Carnielli and Surma's approach for proposi-tional logic was developed in [CZ90a]; the propositional part of Carnielli's workis used to implement a theorem prover for some modal logics. From the work ofthis group we would also like to mention [CZ90b, CHZ91, CZ92, CDH93]. (Thediversity of the methods for automated theorem proving in non-classical logicsis reected very well in the work of this group, which has as goal to combinee�ciency with generality and user-friendliness, in order to build a large set ofuser-oriented inference tools.)Automated theorem proving by resolution in non-classical logic consists oftwo steps: the �rst step, clause generation takes into account the properties



18 2 Motivationof the given logis, and the second step, proof by resolution is a \logic-free"approach, that reduces to a simple manipulation of symbols.There are two general directions in theorem proving by resolution in non-classical logics, depending on the way the given logic is described: the logic canfor instance be described by giving the semantics, or by providing a (Gentzen-type) calculus.The simplest example of logics described by their semantics are the many-valued logics. These logics are supposed to be sound and complete with respectto a given model (seen as a set of truth values). A method for automatedtheorem proving in �rst-order �nitely-valued logics, due to Baaz and Ferm�uller[BF92, BF95] uses (many-valued) resolution. This method is very general, beingsuitable for all �nitely-valued logics; for clause generation only the truth-tablesof the operators and the de�nition of the quanti�ers are used. Results alongsimilar lines appear in the work of H�ahnle, [H�ah94, H�ah96b]. Other approachesto automated theorem proving based on resolution (in which a di�erent view istaken) appear in [Mor76] and [Orl78]. Orlowska was the �rst (to our knowledge)to introduce the notion of \resolution-interpretability of a logic in another logic"and applied it for constructing theorem proving systems for algorithmic and m-valued Post logics [Orl79, Orl80].There are however situations when a logic is not characterized by a singlemodel, but by a class of models. A method for clause-generation for Gentzen-type logical systems, as well as for the generation of resolution rules is due toMaslov and Mints [Mas64, Min90].Similar problems also arise in modal logics. Modal logics have two typesof models: modal algebras and Kripke models. Among methods that use theKripke models in automated theorem proving we refer to a method due toOhlbach [Ohl93], who uses possible worlds semantics to express the validity offormulas, and then encodes the semantics into (classical) �rst-order logic.A method for automated theorem proving in several systems of propositionalmodal logic by rewriting in the equational theories corresponding to the classesof modal algebras that characterize those logics, as well as an implementation,can be found in [Sof88]. However, there are systems of propositional modal logicfor which this method cannot be applied because in the process of completionin�nitely many rules are generated.In this thesis we de�ne an automated proof procedure by resolution forlogics that are sound and complete with respect to a variety V of algebras (allwith an underlying distributive lattice structure) that has the property that(i) V is generated by a single �nite algebra A,(ii) the Priestley duality induces a dual equivalence between thevariety V and a suitable category of ordered topological spacesendowed with functions and possibly also relations.This means that the logic is sound and complete with respect to the algebraA, which can be seen as a set of truth values. We show that instead of thealgebraic model A its dual, which usually has less elements, can be used. Thus,



2.2 Brief Overview of Related Results 19in this case, less clauses will be generated than with the very general proceduredescribed in [BF95].Models for Cooperating Agents and Concurrency There exist severalmodels for concurency and distributed computation that are used and stud-ied within theoretical computer science. Among these we mention transitionsystems (which provide the basic operational semantics for Milner's Calcu-lus of Communicating Systems (CSS) [Mil80, Mil89]; for a presentation cf.[WN93]), Petri nets (cf. [Pet62a, Pet62b], [WN93]), trace languages (notion dueto Mazurkiewicz [Maz77], cf. also [Die90]), and event structures. Common toall these models is the fact that they rest on the central idea of atomic actions,over which the behavior of the system is de�ned. The models di�er mainlywith respect to what behavioral features of the systems are represented. Somemodels are more abstract than others, and this fact is often used in informalclassi�cations of the models with respect to expressibility.In [WN93], category theory is used as a common language for the studyof the relationships between the models for concurrency mentioned above. Byusing adjunctions, it is possible to study the links between these models andtransfer techniques speci�c to one model to other models.We briey mention some newer approaches: higher dimensional automata[Pra91], partially ordered multisets [Pra82, Pra86, Gis88, Cre91, Cas91], geo-metric automata (for a brief presentation see [Gup94]), and Chu spaces [Pra94,Gup94].There also exist approaches to multi-agent systems based on modal logic.We refer for example to [Cos90].In addition, there already exist a number of approaches based on \�berings",presheaf and sheaf theory. Among them, [Pfa91], [Gog92], [Mal94], [Lil93],[MP86], [JNW94], [Win96], [CW96]. We will now briey point out the mainideas of the approaches based on �ber bundles and (pre-)sheaf theory.Since the starting point, as well as the main motivation, of our work inthis direction came from the idea of logical �berings due to Jochen Pfalzgraf,we start by presenting his approach to modeling cooperating agents scenariosbased on logical �berings.Approaches to Concurency Based on Fibered Structures. The ideaof \logical �berings" originates from J. Pfalzgraf's work on polycontexturallogics, cf. also [Pfa91], [PS95], [Pfa96]. In [PS92], Pfalzgraf sketches a novelapproach characterized by a so-called \logical controller" for robotics scenarioscf. also [DPSS91], [PS92]. That approach is based on so-called logical �ber-ings introduced in [Pfa91] as a concept for mathematical modeling of a systemof (possibly di�erent) logical spaces (the �bers) residing over a base manifold(index system), forming as a whole the logical �bering. In a series of papers,Pfalzgraf develops the idea of \logical �berings", having as goal the develop-ment of a (non-classical) \�bered logical calculus", by means of which one couldconstruct logical controllers for multi-tasking scenarios in a formal way; in laterpapers space- and time-depencency of formulas is taken into account (for de-tails see e.g. [Pfa93], [Pfa96], [PS95], [PSS95], [PSS96a], [PSSS95], [PSS96c],



20 2 Motivation[PSS96b]). In [Pfa96], he points out that the notion of a �bering is closelyrelated to indexed systems (indexed categories).These methods and concepts arose from concrete scenario modeling prob-lems (see [Pfa91]) and have been illustrated, in the frame of the MEDLARproject, on concrete toy examples (see for example [PSS95], [PSS96a], [PS95]).Presheaf and Sheaf-Theoretical Approaches to Concurrency. Concern-ing the existing approaches to concurrency based on sheaf semantics, we wouldlike to point out the approach due to Goguen [Gog92], further developed byLilius [Lil93], Malcolm [Mal94] and Ĉ�rstea [Ĉ�r95]; the approach of Monteiroand Pereira [MP86]; and the approach of Winskel and Cattani [Win96, CW96].In [Gog92], a sheaf semantics aimed at modeling the behavior of concurrentinteracting objects is presented. The approach is based on an earlier paper[Gog75]. These ideas have been applied to Petri nets by Lilius [Lil93]. Theideas from [Gog92] have been developed further by Malcolm in [Mal94], wherea formalization of object classes and systems of objects is given, in order tostudy basic properties of ways in which systems of objects may be intercon-nected. He de�nes an adjunction between PO-systems (functors S : Cop ! Obj,where C is a partially ordered set) and sheaves of objects (PO-systems S : Cop !Obj where C is a complete Heyting algebra), and expresses the hope that, byusing a more general notion of sheaf as a functor on a category with a Gro-thendieck topology, an adjunction between system speci�cations and sheavesof objects can be obtained. In this thesis we show that (for our de�nition ofa system) a similar adjunction can be de�ned; moreover we show that this ad-junction preserves the covering relation and thus induces a geometric morphismbetween the corresponding topoi of sheaves over the respective sites. In [Ĉ�r95]Ĉ�rstea shows how transition systems and sheaves can be related by means ofan adjunction between the corresponding categories and uses this in giving asheaf-theoretic formalization of the distributed semantics for the programminglanguage FOOPS developed in [Ĉ�r95].In [MP86] the authors aim at developing a structural theory of concurrencyin which the locality of interaction between subsystems is described with themathematical tools of sheaf theory. They show that the behavior of a givenfamily of interconnected systems can be modeled by so-called behavior monoids(which form sheaves of monoids). Also possible behaviors are analyzed (pre�x-closed languages contained in these free monoids).[Win96] investigates presheaf models for process calculi with value passing;denotational semantics in presheaf models are shown to correspond to oper-ational semantics in the sense that bisimulation obtained from the so-called\open maps" is proved to coincide with bisimulation as de�ned traditionallyfrom the operational semantics. A presheaf model and denotational semanticsare proposed for a language allowing process-passing. [CW96] is concerned withmodeling process constructions on presheaves, showing that these preserve openmaps, and with transferring such results to traditional models for processes.Approaches to logic and the study of modularity. There are severalapproaches to modularity in logic and automated theorem proving. Among



2.2 Brief Overview of Related Results 21them we mention [BHK90, DGS91, Fia96]. These approaches are intrinsicallylinked to concurrency, although they are not always presented as approachesto concurrency; the motivation for these approaches came from programminglanguages and speci�cations for parallelism. However we were inuenced (andhelped) in our work by the results presented there. In [BHK90] an axiomatic al-gebraic calculus of modules is given, based on operators \combination/union",\export", \renaming" and \taking visible signature". Reusability of modulesis discussed. In [DGS91] properties of logical systems that support the def-inition, combination, parametrization and reuse of modules are investigated.Links between the preservation of various kinds of conservative extensions un-der pushouts, various distributive laws for information hiding over sums, andCraig-style interpolation properties are established. The logical systems arerepresented by institutions. In [Fia96] a categorical semantics of parallel pro-gram design is given.The starting point and the main motivation of our own work comes from theidea of logical �berings due to Jochen Pfalzgraf. The notion of logical �beringsintroduced by [Pfa91], as well as the general modeling principle based on logical�berings are very general: to each point of the basis set (corresponding to anagent) the logical system of that agent is associated; communication betweendi�erent �bers is modeled by so-called transjunctions.In our approach, we specialize this very general notion, by pointing out apossibility of describing the way information and actions are represented for ev-ery agent, as well as a possible way in which interaction between di�erent agentscan be modeled. This o�ers us the possibility of obtaining a general frameworkin which several of the existing sheaf-theoretic approaches to concurrency �t inin a natural way.Due to the fact that we allow the existence of some relationships between thecontrol variables (described by a set of formulae) it turnes out that some of thecategories of systems we de�ne (such as SYSi;SYSil;Sys(InSys); all partially-ordered sets) do not satisfy a distributivity of meets over joins (when theseexist). Therefore, we have to introduce a more general notion of Grothendiecktopology on these categories (they cannot be seen as locales).It turns out that much of the information relevant when expressing proper-ties about systems can be expressed by sheaves with respect to this Grothen-dieck topology:� states and parallel actions are modeled by sheaves St;Act,� transitions are expressed by a subsheaf of Act� St� St,� time (e.g. N) can be expressed internally as a sheaf (allowing also toexpress the fact that independent systems may have independent timecycles),� behavior in a �xed interval of time (e.g. N) can be modeled as a sheaf.



22 2 MotivationBehavior of systems in time can be expressed either by observations over a\basis of observations" over time (as done in [Gog92]) or as sheaves of monoids[MP86] or partially-commutative monoids [Die90] (we give a sheaf-theoreticformulation and a new proof to the results from [Die90] concerning the studyof the partially-commutative monoids and interacting systems).The possibility of applying general results from topos theory to the study ofconcurrency is pointed out in [Gog92] as a topic for future research. Since manyproperties of systems involve statements about their states, actions, transitions,we decided to express these properties in a many-sorted language L havingamong its sorts St (for states) and Act (for actions), relations like =X� X�X,Tr � Act�St�St etc. We give interpretations of L in the topoi discussed in theprevious chapters, E = Sh(InSys) and F = Sh(Sys(InSys); J), and use geometriclogic in order to explain the link between certain properties of a given family ofinterconnected systems and the properties of the system that results from theirinterconnection.



Chapter 3BackgroundWe will now briey review the main concepts that will be used in our work. Inthe beginning we present basic notions on universal algebra and (many-sorted)�rst-order logic. We also present the basic ideas concerning the resolution prin-ciple. We continue by giving an overview of the basic de�nitions in categorytheory and sheaf theory, and then give the more general de�nitions for a Gro-thendieck topology on a category and for sheaves on a site. Finally, we recallsome basic properties of topoi and geometric logic. Further details can be foundin [ML71], [Joh82], and [MLM92] among others.3.1 Universal Algebra | Basic NotionsWe begin by a brief presentation of lattices. Then we continue by a briefpresentation of the basic results in universal algebra: the isomorphism theorem,basic constructions in universal algebras, de�nitions for varieties and equationalclasses. We continue then with some brief remarks concerning polynomial andalgebraic functions, and then we de�ne discriminator varieties and give someexamples. For more details we refer to [BS81] and [MMT87].3.1.1 LatticesThere are two ways of de�ning lattices: the �rst is algebraic, namely as setsendowed with a family of operations that satisfy certain identities, and the otheras ordered sets.We �rst present the algebraic de�nition.De�nition 3.1 (Lattice) A non-empty set L together with two binary opera-tionns _ and ^ on L is called lattice if it satis�es the following identities:(L1) x _ y = y _ x (L10) x ^ y = y ^ x(L2) x _ (y _ z) = (x _ y) _ z (L20) x ^ (y ^ z) = (x ^ y) ^ z(L3) x = x _ (x ^ y) (L30) x = x ^ (x _ y)(L4) x _ x = x (L40) x ^ x = xNote that (L4) and (L40) are consequences of (L1), (L10), (L2), (L20), (L3),(L30). 23



24 3 BackgroundThe second de�nition is based on the notion of partial order.De�nition 3.2 (Partial Order) A binary relation � on a set P is a partialorder on P if the following conditions hold for every x; y; z 2 P :(i) x � x,(ii) x � y and y � x implies x = y,(iii) x � y and y � z implies x � z.A set P endowed with a partial order is called partially ordered set, or forshort poset.Let P be a poset and S � P . An element p 2 P is an upper bound for Sif x � p for every x 2 S. An element p 2 P is the least upper bound of S (orsupremum of S) if p is an upper bound, and x � y for every x 2 S implies p � y(i.e. p is the smallest among the upper bounds of S). In this case we denotep = sup S or p = l:u:b(S). Similarly we can de�ne the notion of lower bound ofS and greatest lower bound (or in�mum) of S. If p is the greatest lower boundof S we write p = inf S or p = g:l:b(S).De�nition 3.3 A poset L is a lattice if and only if for every elements x; y 2 Lboth sup fx; yg and inf fx; yg exist (in L).It is easy to see that the two de�nitions are equivalent. For more details seealso [BS81], pp.3-21.De�nition 3.4 (Distributive Lattice) A distributive lattice is a lattice thatsatis�es either of the distributive laws (which are equivalent in a lattice):(D1) x ^ (y _ z) = (x ^ y) _ (x ^ z)(D2) x _ (y ^ z) = (x _ y) ^ (x _ z)De�nition 3.5 (Modular Lattice) A modular lattice is a lattice that satis-�es the modular law:(M) If x � y then x _ (y ^ z) = y ^ (x _ z).Every distributive lattice is modular, but there exist modular lattices thatare not distributive. There also exist lattices that are not even modular. Cri-teria for distributivity and modularity in terms of forbidden substructures, aswell as further details concerning complete and algebraic lattices can be foundin [BS81], pp.11-21.De�nition 3.6 (Complete Lattice) A lattice L is complete if suprema andin�ma of arbitrary families of elements exist in L.We say that a lattice L has a �rst (least) element if there is an element0 2 L such that 0 � x for every x 2 L. A lattice L has a last (greatest) elementif there is an element 1 2 L such that x � 1 for every x 2 L.



3.1.1 Lattices 25De�nition 3.7 (Pseudocomplement) Let L be a lattice with �rst element0. For x 2 L an element x^ is called pseudocomplement of x if it is the largestelement in L such that x ^ x^ = 0.De�nition 3.8 (Complement with respect to _) Let L be a lattice withlast element 1. The complement of x with respect to _, denoted by x_ is thesmallest element in L with the property that x _ x_ = 1.In general it can happen that both the pseudocomplement, x^, and thecomplement x_ of x with respect to _ exist and are di�erent. If L is distributive,then x^ � x_. If the two complements are equal, say x^ = x_ = x0 we say thatx has a complement, namely x0. In this case,x0 _ x = 1 and x0 ^ x = 0:De�nition 3.9 (Boolean Algebra) A Boolean algebra B = (B;_;^; 0; 1;:)is a complemented distributive lattice, i.e. (B;_;^) is a distributive lattice with�rst and last elements 0 resp. 1, and such that for every x 2 B, :x is thecomplement of x.De�nition 3.10 (Relative pseudo-complement) Let L be a lattice and x; ytwo elements of L. The pseudo-complement of x relative to y is the largest el-ement z 2 L such that x ^ z � y. The pseudocomplement of x relative to y isdenoted by x! y.De�nition 3.11 (Relatively pseudo-complemented lattice) A lattice Lis relatively pseudo-complemented if for every x; y 2 L the pseudo-complementof x relative to y, x! y, exists.Every relatively pseudo-complemented lattice includes a greatest element, 1.For every x 2 L, 1 = x ! x. Moreover, every relatively pseudocomplementedlattice is distributive. For more details we refer to [Ras74] and the literaturequoted there.De�nition 3.12 (Heyting Algebra) A lattice L is a Heyting algebra (alsocalled pseudo-Boolean algebra or pseudo-complemented lattice) if it is a rela-tively pseudocomplemented lattice with a smallest and a greatest element 0 and1. Then for every x 2 L the pseudocomplement x^ of x exists and x^ = x! 0.The de�nition of the relative pseudocomplement is characterized byz � (x! y) if and only if z ^ x � y:De�nition 3.13 (Complete Heyting Algebra) A complete Heyting alge-bra is a Heyting algebra which is complete as a lattice, i.e. suprema and in�maof arbitrary families of elements exist.If A is a complete Heyting algebra and fai j i 2 Ig is a family of elementsin A and b 2 A, then the in�nite distributive law holds in A:_i2I(b ^ ai) = b ^_i2I ai:



26 3 BackgroundDe�nition 3.14 (De Morgan Algebra) A distributive lattice L = (L;_;^)endowed with an additional operation � is a de Morgan algebra if � satis�esthe following conditions:(DM1) �� x = x(DM2) � (x _ y) =� x^ � yThe de Morgan algebras are called also quasi-boolean algebras in [Ras74].We present two more examples of classes of lattices with operators, namelythe class of  Lukasiewicz-Moisil algebras and the class of Post algebras.The  Lukasiewicz-Moisil algebras (sometimes called  Lukasiewicz algebras)were created by Moisil in 1940 (n = 3) and 1960 (arbitrary n) [Moi63, Moi65]as an algebraic counterpart for the many-valued logics of Lukasiewicz. How-ever, it turned out that n-valued  Lukasiewicz-Moisil algebras are models forthe n-valued logics of Lukasiewicz only for n = 3 and n = 4. Nevertheless, Lukasiewicz-Moisil algebras are an interesting subject of study in themselves,and are models for another class of many-valued logics (SHKn-logics) as will bepointed out in Section 5.4.2. In what follows we present an equational de�nitionfor  Lukasiewicz-Moisil algebras due to Cignoli.De�nition 3.15 ( Lukasiewicz-Moisil Algebra) A  Lukasiewicz-Moisil alge-bra of order n is an algebra L = (L;_;^;�; S1; : : : ; Sn�1; 0; 1) satisfying thefollowing properties:(L0) (L;_;^; 0; 1) is a distributive lattice,(L1) �� x = x;� (x ^ y) =� (x)_ � (y) (De Morgan Laws),(L2) Si(x^y) = Si(x)^Si(y);Si(x_y) = Si(x)_Si(y), for every 1 � i � n�1,(L3) Si(x) � Sj(x), for every 1 � i � j � n� 1,(L4) Si(x)_ � (Si(x)) = 1; Si(x)^ � (Si(x)) = 0; for every 1 � i � n� 1,(L5) Si(� (x)) =� (Sn�i(x)), for every 1 � i � n� 1,(L6) Si(Sj(x)) = Sj(x), for every 1 � i; j � n� 1,(L7) S1(x) � x � Sn�1(x),(L8) � (x) ^ S1(x) = 0, � (x) _ Sn�1(x) = 1,(L9) Si(0) = 0; Si(1) = 1, for every 1 � i � n� 1,(L10) y � x^ � (Si(x)) ^ Si+1(y), for every 1 � i � n� 2.Example 3.1 (Ln) The n-element  Lukasiewicz-Moisil algebra is the algebraLn = (f0; 1n� 1 ; : : : ; n� 2n� 1 ; 1g;_;^;�; S1; : : : ; Sn�1; 0; 1);where x _ y = max(x; y); x ^ y = min(x; y);� (x) = 1 � x, and for everyi 2 f1; : : : ; n� 1g, Si( jn�1 ) = ( 1 if i+ j � n0 if i+ j < n .



3.1.1 Lattices 27The n-element Post algebras have been introduced by Rosenbloom in 1942as an algebraic counterpart of Post logics. The initial de�nition involved avery small number of axioms, and was quite di�cult to use. In 1963 Traczykgave another de�nition, by means of equations. In what follows we presenta de�nition due to Cignoli, that showed that Post algebras are  Lukasiewicz-Moisil algebras endowed with a chain such that some additional conditions aresatis�ed.De�nition 3.16 (Post Algebra) A Post algebra is an algebraP = (P;_;^;�; S1; : : : ; Sn�1; 0; 1; e1; : : : ; en�2)such that (P;_;^;�; S1; : : : ; Sn�1; 0; 1) is a  Lukasiewicz algebra and e1 � : : : �en�2 are n distinguished constants, such that for every 1 � i � n� 1 and every0 � j � n� 1, Si(ej) = ( 1 if i+ j � n0 if i+ j < n . It is convenient to de�ne e0 = 0and en�1 = 1.Example 3.2 (n-element Post Algebra) The n-element Post algebra is thealgebra Pn = (f0; 1n� 1 ; : : : ; n� 2n� 1 ; 1g;_;^;0 ; 0; 1);where x_y = max(x; y); x^y = min(x; y), and for every x 2 f0; 1n�1 ; : : : ; n�2n�1 ; 1g,x0 = ( x� 1n�1 if x 6= 01 if x = 0 .It can be seen that every �nitary map h : P kn ! Pn can be expressed in termsof the operations f_;^;0 ; 0; 1g. In particular, the constants f0; 1n�1 : : : ; n�2n�1 ; 1g,as well as the operations � x = 1 � x, � ( jn�1) = 1 � jn�1 and for everyi 2 f1; : : : ; n� 1g, Si( jn�1) = ( 1 if i+ j � n0 if i+ j < n can be expressed in terms ofthe signature f_;^;0 ; 0; 1g.It can also be shown that x0 can be expressed in function of the operations�,Si, i 2 f1; : : : ; n� 1g, and the constants f0; 1n�1 : : : ; n�2n�1 ; 1g. Therefore we canregard the n-valued Post algebra as a Post algebra according to de�nition 3.16Pn = (f0; 1n� 1 ; : : : ; n� 2n� 1 ; 1g;_;^;�; S1; : : : ; Sn�1; 0; 1; 1n� 1 ; : : : ; n� 2n� 1):The relationships between di�erent lattices can be expressed by lattice ho-momorphisms.De�nition 3.17 (Lattice homomorphism) Let L1; L2 be two lattices. Amap h : L1 ! L2 is a lattice homomorphism if h is join-preserving and meet-preserving, i.e. if for every x; y 2 L, h(x _ y) = h(x) _ h(y) and h(x ^ y) =h(x) ^ h(y). A bijective homomorphism is a (lattice-)isomorphism.



28 3 BackgroundIf L1 and L2 are lattices with both least and greatest element 0 resp. 1, it isoften appropriate to consider homomorphisms h : L1 ! L2 such that h(0) = 0and h(1) = 1. Such maps are called f0; 1g-homomorphisms.If B1 and B2 are Boolean algebras, then a map h : B1 ! B2 is a morphismof Boolean algebras if h is a f0; 1g-homomorphism and additionally for everyx 2 B1, h(:x) = :h(x).We continue by briey presenting some well-known representation theoremsfor certain classes of lattices. We begin with representation theorems for �niteBoolean algebras, continue with a representation theorem for �nite distribu-tive lattices, and at the end we mention the Stone representation theorem forBoolean algebras. The Priestley duality theorem for distributive lattices willbe presented separately in Section 4.1.4.De�nition 3.18 (Atom) Let L be a lattice with least element 0. An elementa 2 L is called an atom if 0 < a and for every y 2 L, 0 � y < a implies y = 0.The set of atoms of L is denoted by A(L).It may happen that a lattice has no atoms at all (the chain of non-negativereal numbers is such an example). Even a Boolean algebra may have no atoms(e.g. let B be the family of all �nite unions of subintervals of R of the followingtypes: (�1; a); [a; b); [b;1), where �1 < a < b < 1, together with ;. ThenB is a Boolean algebra with no atoms).Theorem 3.1 (Representation theorem for �nite Boolean algebras)Let B be a �nite boolean algebra. Then the map � : B ! P(A(B)), de�ned by�(a) = fx 2 A(B) j x � agis a lattice isomorphism between B and P(A(B)).De�nition 3.19 (Join and meet irreducible elements) Let L be a lattice.An element x 2 L is called join irreducible if x 6= 0 (in case L has a 0) andx cannot be expressed as the join of two other elements in L, i.e. if it has theproperty that x = y _ z implies y = x or z = x.An element x 2 L is called meet irreducible if x 6= 1 (in case L has a 1)and it has the property that x = y ^ z implies y = x or z = x.We denote the set of join-irreducible elements of L by J (L) and the set ofmeet-irreducible elements of L by M(L). Each of these sets inherits the orderrelation of L and will be regarded as an ordered set.Theorem 3.2 (Birkho�'s representation of �nite distributive lattices)Let L be a �nite distributive lattice. Let � : L! O(J (L)) be de�ned by�(a) = fx 2 J (L) j x � ag:Then � is a lattice isomorphism between L and O(J (L)).



3.1.1 Lattices 29Theorem 3.3 Let P be a �nite ordered set. Then the map � : P ! J (O(P ))de�ned by �(x) =# x is an order-isomorphism1 from P onto J (O(P )).Theorems 3.2 and 3.3 assert thatL ' O(P(L)) and P ' J (O(P ))for all �nite distributive lattices L and all �nite partially ordered sets P .Note that for every distributive lattice L the partially ordered set J (L) isgenerally much smaller and less complex than the lattice itself. This meansthat lattice problems concerning �nite distributive lattices are likely to becomesimpler when translated into problems about �nite partially ordered sets. Wemay regard the maps L 7! J (L) and P 7! O(P ) as playing a rôle analogous tothat of the logarithm and exponential functions. For more details we refer to[DP90], p.172.We now briey present the representation theorem for Boolean algebras dueto Stone. The representation theorem for distributive lattices due to Priestleywill be presented in Section 4.1.4.De�nition 3.20 (Ideal) Let L be a lattice. A non-empty subset J of L iscalled an ideal if(I1) x; y 2 J imply x _ y 2 J ,(I2) x 2 L, y 2 J and x � y imply x 2 J .A non-empty subset F of L is called a �lter if(F1) x; y 2 J imply x ^ y 2 J ,(F2) x 2 L, y 2 J and y � x imply x 2 J .Thus, an ideal is a non-empty down-set closed under join and a �lter is a non-empty upwards-closed set closed under meet. An ideal or �lter is called properif it does not coincide with L.For every x 2 L the set # x = fy 2 L j y � xg is an ideal (the principal idealgenerated by x); dually, the set " x = fy 2 L j x � yg is a �lter (the principal�lter generated by x). Given any non-empty subset A of L there is a smallestideal containing A, namely(A] = fx 2 L j x �_T for some �nite subset T of Ag:Similarly, the smallest �lter containing A is[A) = fx 2 L j x �_T for some �nite subset T of Ag:De�nition 3.21 (Prime Ideal, Prime Filter) Let L be a lattice and J aproper ideal in L. The ideal J is said to be prime if(PI) x; y 2 L and x ^ y 2 J imply x 2 J or y 2 J .The set of prime ideals of L is denoted by Ip(L). It is ordered by set inclusion.A prime �lter is de�ned dually, i.e. it is a �lter that satis�es(PF) x; y 2 L and x _ y 2 J imply x 2 J or y 2 J .The set of prime �lters is denoted by Fp(L).1An order-isomorphism between two partially ordered sets is a bijective map that preservesthe order.



30 3 BackgroundTheorem 3.4 (Stone's representation theorem for Boolean algebras)Let B be a Boolean algebra. Let X = Ip(B) be the set of prime ideals of B en-dowed with the topology � generated by B = fXa j a 2 Bg as a basis, where forevery a 2 B, Xa = fI 2 Ip(B) j a 62 Ig. Then the following hold:(1) Each element of B is clopen in Ip(B) (because XnXa = Xa0).(2) Every clopen subset of (X; �) is of the form Xa for some a 2 B.(3) (X; �) is a compact totally disconnected2 topological space.(4) The map � : B ! B de�ned by �(a) = Xa is a Boolean algebra isomor-phism between B and the Boolean algebra B = fXa j a 2 Bg of clopen subsetsof the space (X; �).We briey note that the set of all prime �lters of a lattice L (as well as theset of all prime ideals of L) is in bijective correspondence with the set of allf0; 1g-lattice homomorphisms from L to the lattice with 2 elements f0; 1g.Namely, for every f0; 1g-lattice homomorphism h : L ! f0; 1g, h�1(0) isa prime ideal and h�1(1) is a prime �lter. Conversely, if I is a prime ideal ofL, then the map h : L ! f0; 1g de�ned by h(x) = 0 if and only if x 2 I isa f0; 1g-lattice homomorphism. Similarly, if F is a prime �lter of L, then themap h : L ! f0; 1g de�ned by h(x) = 1 if and only if x 2 F is a f0; 1g-latticehomomorphism.These results are used in Section 4.1.4, where Priestley's representationtheorem for distributive lattices is presented.3.1.2 General Notions of Universal AlgebraLet � be a signature, i.e. a set of operation symbols endowed with an arityfunction a : � ! N . A �-algebra is a structure A = (A; f�Ag�2�), where forevery � 2 � with a(�) = n, �A : An ! A. We also say that the algebra A is ofsimilarity type �.De�nition 3.22 (Subalgebra) Given two �-algebras A = (A; f�Ag�2�) andB = (B; f�Bg�2�), we say that A is a subalgebra of B if A � B and for every� 2 � and every a1; : : : ; aa(�) 2 A, �A(a1; : : : ; aa(�)) 2 A.If A;B are two algebras of the same similarity type, then \B is a subalgebraof A" will be symbolised by B � A .A subuniverse of A = (A; f�Ag�2�) is a subset B of A which is closed underthe fundamental operations of A, i.e. if � 2 � with a(�) = n and a1; : : : ; an 2 Bthen �A(a1; : : : ; an) 2 B. The set of all subuniverses of A is denoted Sub(A).De�nition 3.23 (Subuniverse of A generated by X) Let A be an algebraand X � A. Let Sg(X) = TfB j X � B and B is a subuniverse of Ag. Sg(X)is the subuniverse of A generated by X.2A topological space is totally disconnected if, given distinct points x; y 2 X, there exist aclopen subset V of X such that x 2 V and y 62 V .



3.1.2 General Notions of Universal Algebra 31Sg(X) = (Sg(X); f�Sg(X)g�2� ) is a subalgebra of A (the subalgebra of Agenerated by X), where �Sg(X) is the restriction of �A to Sg(X). For X � Awe say that X generates A (or A is generated by X, or X is a set of generatorsof A) if Sg(X) = A.De�nition 3.24 (Homomorphism) Let A and B be two �-algebras. A map-ping h : A ! B is called a homomorphism (or shortly morphism) from A toB if h(�A(a1; : : : ; an)) = �B(h(a1); : : : ; h(an)) for every n-ary operation symbol� 2 � and all a1; : : : ; an 2 A. If, in addition, the mapping h is onto, then B issaid to be a homomorphic image of A.The set of all equivalence relations of a given set A is denoted by Eq(A).De�nition 3.25 (Congruence) A congruence of a �-algebra A is an equiv-alence relation � with the property that for every n-ary operation symbol � 2 �and every elements ai; bi 2 A, if ai�bi holds for 1 � i � n then�A(a1; : : : ; an)��A(b1; : : : ; bn):The compatibility property is an obvious condition for introducing an alge-braic structure on the set A=� of equivalence classes of A with respect to �; analgebraic structure which is inherited from the algebra A: for every n-ary op-eration symbol � 2 � and every n-tuple of equivalence classes [ai]�; 1 � i � n,�A=�([a1]�; : : : ; [an]�) = [�A(a1; : : : ; an)]�.The set of all congruences of an algebra A is denoted by Con(A). The con-gruence lattice of A, denoted by ConA, is the lattice whose universe is Con(A)and meets and joins are calculated the same as when working with equivalencerelations.We will denote by �A the identity congruence on A, �A = f(a; a) j a 2 Agand by rA the trivial congruence on A, rA = A�A. It is easy to see that �Ais the smallest congruence on A and rA is the largest congruence on A.If � is a congruence on A, there is a canonical onto homomorphism p : A!A=� de�ned by p(a) = [a]� for every a 2 A.Let h : A! B be a homomorphism. Then the kernel of h, denoted ker(h), isde�ned by ker(h) = f(a1; a2) j h(a1) = h(a2)g. The kernel of a homomorphismh is a congruence on A.Theorem 3.5 (First Isomorphism Theorem) Let h : A ! B be a homo-morphism onto B. Then there is a isomorphism g from A=ker(h) to B suchthat h = g � p, where p is the natural homomorphism from A to A=ker(h).The �rst isomorphism theorem is also called the homomorphism theorem.Assume that A is an algebra and �; � 2 Con(A) with � � �. Let �=� =f([a]�; [b]�) 2 (A=�)2 j (a; b) 2 �g. Then �=� is a congruence on A=� and thefollowing theorem holds.Theorem 3.6 (Second Isomorphism Theorem) If �; � 2 Con(A) and � �� then the map h : (A=�)=(�=�) ! A=� de�ned by h([[a]�]�=�) = [a]� is anisomorphism from (A=�)=(�=�) to A=�.



32 3 BackgroundLet B be a subset of A and � a congruence on A. Let B� = fa 2 A j B \ [a]� 6=;g. Let B� be the subalgebra of A generated by B�. Also, de�ne �jB = � \B2,the restriction of � to B. If B is a subalgebra of A, then the universe of B� isB� and �jB is a congruence on B.Theorem 3.7 (Third Isomorphism Theorem) If B is a subalgebra of Aand � 2 Con(A), then B=�jB is isomorphic with B�=�B�Let L be a lattice, and let a; b 2 L, a � b. The interval [a; b] = fc 2 L j a � c �bg is a subuniverse of L.Theorem 3.8 (Correspondence Theorem) Let A be an algebra and let � 2Con(A). Then the mapping h : [�;rA]! Con(A=�) de�ned by h(�) = �=� is alattice isomorphism.De�nition 3.26 (Simple Algebra) An algebra A is simple if Con(A) =f�;rg.Sometimes one requires simple algebras to be non-trivial; following [BS81]we admit trivial simple algebras.De�nition 3.27 (Maximal Congruence) A congruence � on an algebra Ais maximal if the interval [�;r] in Con(A) has exactly two elements.From Theorem 3.8 the following result follows immediately.Theorem 3.9 Let � 2 Con(A). Then A=� is a simple algebra if and only if �is a maximal congruence on A or � = r.Let fAigi2I be an indexed family of �-algebras.De�nition 3.28 (Direct Product) The direct product A = Qi2I Ai of thefamily fAigi2I is an algebra with universe Qi2I Ai and such that for everyn-ary operation symbol � 2 � and a1; : : : ; an 2 Qi2I Ai, fA(a1; : : : ; an)(i) =fA(a1(i); : : : ; an(i)), i.e. fA is de�ned component-wise.We have the projection maps �j : Qi2I Ai ! Aj for j 2 I de�ned by�j(a) = a(j) which give surjective homomorphisms �j : Qi2I Ai ! Aj.De�nition 3.29 (Subdirect Product) An algebra A is a subdirect productof an indexed family fAigi2I of �-algebras if A � Qi2I Ai and �i(A) = Ai forevery i 2 I.An embedding h : A! Qi2I Ai is subdirect if h(A) is a subdirect product ofthe family fAigi2I . If �i 2 Con(A) for i 2 I, and Ti2I �i = �, then the naturalhomomorphism p : A! Qi2I A=�i is a subdirect embedding.De�nition 3.30 (Subdirectly Irreducible Algebra) An algebra A is sub-directly irreducible if for every subdirect embedding p : A ! Qi2I Ai, there isan i 2 I such that �i � p : A! Ai is a isomorphism.



3.1.2 General Notions of Universal Algebra 33The following characterization of subdirectly irreducible algebras is very usefulin practice:Theorem 3.10 An algebra A is subdirectly irreducible if and only if A is trivialor there is a minimum congruence in Con(A)nf�g. In the latter case the min-imum element is T(Con(A)nf�g, a principal congruence, and the congruencelattice of A has the form in Figure 3.1.
Con(A) \ {     }Figure 3.1: The lattice of congruences of a subdirectly irreducible lattice.Theorem 3.11 (Birkho�) Every algebra A is isomorphic to a subdirect prod-uct of subdirectly irreducible algebras (which are homomorphic images of A).We can de�ne the following operators, which map classes of algebras to classesof algebras (all of the same type):A 2 I(K) i� A is isomorphic to some member of K,A 2 S(K) i� A is a subalgebra of some member of K,A 2 H(K) i� A is a homomorphic image of some member of K,A 2 P (K) i� A is a direct product of a nonempty family ofalgebras in K,A 2 Ps(K) i� A is a subdirect product of a nonempty family ofalgebras in K.De�nition 3.31 (Variety) A nonempty class of algebras of the same similar-ity type is called a variety if it is closed under subalgebras, homomorphic imagesand direct products.Since the intersection of a class of varieties of similarity type � is again avariety, and as the class of all algebras of similarity type � forms a variety, itfollows that for every class K of algebras there is a smallest variety containingK. Let V (K) be the smallest variety containing K. A result due to Tarskistates that V = HSP (hence, for every class of algebras of the same similaritytype, V (K) = HSP (K)). It can be also shown that V = HPs.Given an algebra A there are usually many functions besides the funda-mental operations which are compatible with the congruences on A and which\preserve" subalgebras of A. The most obvious such functions of this type arethose obtained by composition of the fundamental operations. This leads tothe study of terms.



34 3 BackgroundDe�nition 3.32 (Terms) Given a set � of operation symbols and a set X of(distinct) objects called variables, we denote by T�(X) the set of terms of type� over X, i.e. the smallest set such that:(i) X [ �0 � T�(X),(ii) If p1; : : : ; pn 2 T�(X) and � 2 �n, then the \string" �(p1; : : : ; pn) 2T�(X).where for every i 2 N , �i is the set of operation symbols in � of arity i.For p 2 T�(X) we often write p(x1; : : : ; xn) to indicate that all the variablesoccurring in p are among x1; : : : ; xn. A term p is n-ary if the number of variablesappearing explicitly in p is � n.The term algebra of type � over X will be denoted T�(X).The term algebra of type � over X, T�(X), satis�es the following univer-sality property: For every �-algebra A and every map f : X ! A there is aunique homomorphism of �-algebras f : T�(X) ! A with the property thatf jX = f . X
��

f // AT�(X) 9!f ;;xxxxxxxxxLet A be an algebra of similarity type �. Let p(x1; : : : ; xn) 2 T�(X) be aterm. Then p de�nes a mapping pA : An ! A.An identity of type � over X is an expression of the form p1 = p2, wherep1; p2 2 T�(X). Let Id(X) be a set of identities of type � over X. An algebraof type � satis�es an identityp1(x1; : : : ; xn) = p2(x1; : : : ; xn)(or the identity is true in A, or holds in A), abbreviated byA j= p1(x1; : : : ; xn) = p2(x1; : : : ; xn) (or A j= p1 = p2);if for every choice of a1; : : : ; an 2 A we have pA1 (a1; : : : ; an) = pA2 (a1; : : : ; an).A class K of algebras satis�es p1 = p2 (writtenK j= p1 = p2) if each memberof K satis�es p1 = p2. If Id is a set of identities, we say that K satis�es Id(written K j= Id) if K j= p1 = p2 for every p1 = p2 2 Id.Let K be a class of algebras, let q1 = q2 be an identity and Id a set ofidentities. If from K j= Id it follows that K j= q1 = q2, we write Id j=K q1 = q2.Given K and X letIdK(X) = fp1 = p2 2 Id(X) j K j= p1 = p2g:Let Id be a set of identities of type �. Let M(Id) be the class of algebras thatsatisfy Id.A class K of algebras is an equational class if there is a set Id of identitiessuch that K = M(Id). In this case we say that K is de�ned or axiomatized byId.



3.1.3 Polynomial Functions, Algebraic Functions 35Theorem 3.12 (Birkho�) K is an equational class if and only if K is avariety.De�nition 3.33 (Freely generated algebras) Let K be a class of �-algebrasand let X be a set of (distinct) objects called variables. Let F (X) be a �-algebragenerated by X. If for every A 2 K and for every map f : X ! A there isa homomorphism f : F (X) ! A which extends f (i.e., f(x) = f(x) for everyx 2 X), then we say that F (X) has the universal mapping property for K overX, X is called a set of free generators of F (X), and F (X) is said to be freelygenerated by X.Let K be a family of �-algebras and letX be a set of variables. Let �K be de-�ned by �K(X) = T�K(X), where �K(X) = f� 2 Con(T�(X)) j T�(X)=� 2IS(K)g.Let X = X=�K(X). Then FK(X) = T�(X)=�K(X).Theorem 3.13 (Birkho�) Suppose that T�(X) exists3. Then FK(X) has theuniversal mapping property for K over X.It can be shown (cf. e.g. [BS81] p.68) that FK(X) 2 ISP (K). Hence, if Kis closed under I, S, and P , in particular if K is a variety, then FK(X) 2 K.Given a class K of �-algebras and terms p; q 2 T�(X) it can easily be seen([BS81] p.73) that K j= p = q if and only if (p; q) 2 �K(X). Thus, IdX(K) =f(p; q) 2 T�(X)2 j K j= p = qg = f(p; q) 2 T�(X)2 j (p; q) 2 �K(X)g = �K(X).In particular, let V be a variety. The free algebra in V freely generated byX, FV(X) = T�(X)=�K(X) is then isomorphic to F�(X)=IdX (V ).3.1.3 Polynomial Functions, Algebraic FunctionsLet A be a �-algebra and X a set. Then AAX can be made into an �-algebrain the canonical way, de�ning the operations pointwise.De�nition 3.34 Let x be an element of X. Then the function px : AX �! Ade�ned by px((ay)y2X) = ax is called the x-th projection function.De�nition 3.35 Let PX(A) be the subalgebra of AAX generated by the projec-tion functions (px)x2X . Then PX(A) is the algebra of polynomial functions inthe variables X on A.De�nition 3.36 Let FX(A) be the subalgebra of AAX generated by the pro-jection functions and by the constant functions. Then FX(A) is the algebra ofalgebraic functions in the variables X on A.If card(X) = n 2 N , then AAX �= AAn . Then P n(A), the subalgebra ofAAn generated by the projection functions fpi j i = 1; : : : ; ng; pi 2 AAn , isthe algebra of n-ary polynomial functions on A and F n(A), the subalgebra ofAAn generated by the projection functions and by the constant functions, is thealgebra of n-ary algebraic functions on A.3T�(X) exists i� X 6= ; or �0 6= ;.



36 3 BackgroundRemark 3.14 For every p 2 T�(X) there exists n 2 N and x1; :::; xn 2 X suchthat p 2 T�(fx1; :::; xng). Let f : fx1; :::; xng �! P n(A), f(xi) = pi. Thenby the universality property of T�(fx1; :::; xng) there is a unique morphismf : T�(fx1; :::; xng) �! P n(A) which extends f . The image by f of the term pwill be denoted f(p) = pA 2 P n(A) and will be called the polynomial functionassociated to p.So, to each term corresponds a n-ary polynomial function. Reciprocally,any polynomial function depends in fact only on a �nite number of variables.Let h : An ! A be a n-ary function on A, and p 2 T�(fx1; : : : ; xng). Wesay that h is represented by the term p if h = pA 2 P n(A).h is a polynomial function if there exists a term p 2 T�(fx1; : : : ; xng) suchthat h is represented by p (i.e. h = pA).Let p 2 T�(fx1; :::; xng), and let a1; :::; an be arbitrary elements of A. Letf : fx1; :::; xng �! A be de�ned by f(xi) = ai for i = 1; :::; n. Then thereis a unique morphism f : T�(fx1; :::; xng) �! A which extends f . Note thatf(p) is in fact pA(a1; :::; an), where pA is the polynomial function associated top (easy proof by structural induction on the structure of p) .For a given variety V, the free algebra in V freely generated by X will bedenoted FV(X).Remark 3.15 Let T�(X) be the term algebra of type � over X. Let f : X �!PX(A), f(x) = px. By the universality property of T�(X) there is a uniquemorphism f : T�(X) �! PX(A) which extends f . For any p 2 T�(X), f(p) isthe X-variate polynomial associated to p.kerf = f(p1; p2) 2 T�(X)2 j f(p1) = f(p2)g == f(p1; p2) 2 T�(X)2 j v(p1) = v(p2) for all v : X ! Ag== f(p1; p2) 2 T�(X)2 j A j= p1 = p2g = IdX(A)Imf = PX(A) (because f(X) generates PX(A)) and so PX(A) and T�(X)=IdX (A)are isomorphic. Note that T�(X)=IdX (A) is isomorphic with FV (A)(X). SoPX(A) �= FV (A)(X).The next subsection gives the basic de�nitions for the so-called discriminatorvarieties, which will be used later in the thesis.3.1.4 Discriminator VarietiesDe�nition 3.37 (Discriminator) A discriminator function on a set A is afunction t : A3 ! A de�ned byt(a; b; c) = ( a if a 6= bc if a = bDe�nition 3.38 (Switching Function) A switching function on a set A isa function s : A4 ! A de�ned bys(a; b; c; d) = ( c if a = bd if a 6= b



3.1.4 Discriminator Varieties 37If A is an algebra then a ternary term t(x; y; z) representing the discrimi-nator function on A is called a discriminator term on A. A term s(x; y; u; v)representing the switching function on A is called a switching term for A.It is easy to see that from a discriminator term we can construct a switchingterm and vice-versa: s(x; y; u; v) = t(t(x; y; u); t(x; y; v); v)t(x; y; z) = s(x; y; z; x)Therefore an algebra has a discriminator term if and only if it has a switchingterm. We also know (cf. [BS81], p.165) that an algebra with a discriminatorterm is simple.Examples of algebras with a discriminator term:(1) Let (H;_;^;); 0; 1) be a Heyting algebra with an additional unary oper-ation d : H ! H, such that d(x) = ( 1 if x = 10 if x 6= 1A ternary discriminator is t(x; y; z) = [z^d(x_y ) x^y)]_[x^(d(x_y )x ^ y)) 0)].(2) The 2-element Boolean algebra (d(x) = x).(3) The n-element  Lukasiewicz algebra (d(x) = S1(x)).(4) The n-element Post algebra (d(x) = S1(x)).(5) A Heyting algebra with a join-irreducible 1 and with a dual pseudocom-plementation + (d(x) = x++).De�nition 3.39 (Discriminator Variety) Let K be a class of algebras witha common discriminator term. Then the variety generated by K is called adiscriminator variety.In the thesis we will use two important properties of discriminator varieties(cf. e.g. [BS81] p.165).(1) The subdirectly indecomposable elements of a discriminator variety aresimple (discriminator varieties are semisimple).(2) For every algebra in a discriminator variety, the intersection of all itsmaximal congruences is �.Examples of discriminator varieties:(1) The equational class of all algebras H = (H;_;^;+;); 0; 1),where (H;_;^;); 0; 1) is a Heyting algebra and + is a dual pseudocom-plementation.(2) The equational class of all Boolean algebras.(3) The equational class of all  Lukasiewicz algebras of order n.(4) The equational class of all Post algebras of order n.



38 3 Background3.2 Logic | Basic NotionsIn this section we present the basic notions of logic that will be needed in whatfollows. Since in the thesis we will not restrict ourselves to classical logics, butwill consider more general logical systems, we will present the facts in a verygeneral framework. For details on classical �rst-order logic we refer to [Mon76];for a proof-theoretic approach we refer to [Tak75]; for more information onnon-classical logics we refer to [Ras74]. For an introduction to algebraic logiccontaining many motivational comments see [ANSK94], [AN93], [ANS94] and[N�em94]. Also, a presentation of general logics can be found in [Mes89]; fordetails about institutions (that are not described here) we refer to [GB85].We begin with a very general presentation of the notion of \logic". Wecontinue with an overview of some of the main properties of classical �rst-orderlogic. We then sketch the links between logic and algebra and make somemodel-theoretical considerations.3.2.1 GeneralitiesRoughly speaking, we can think of a logic L as a �ve-tupleL = (FL;`L;ML;mngL; j=L)where� FL is a set, called the set of all formulae of L,� `L is a binary relation between sets of formulae and individual formulae,i.e. `L� P(FL)� FL (for every set X, P(X) denotes the powerset of X).`L is called the provability relation of L,� ML is a class, called the class of all models of L,� mngL is a function with domain FL�ML, called the meaning function ofL,� j=L is a binary relation, j=L�ML � FL, called the validity relation of L.In the existing logics, the set FL of formulae is de�ned by specifying alanguage and rules for constructing \well-formed" formulae, and `L is de�nedfor example by a set of axioms and inference rules, or by a sequent calculus.The rules that de�ne FL and `L can be seen as \grammatical rules".The class of models can contain very di�erent types of models (we alsoallow the possibility that ML is empty, in which case the logic is not endowedwith a semantics), and the meaning function associates with every formula� and model M the meaning mngL(�;M) of � in M . We did not explicitlyspecify the codomain of mngL, in order not to impose restrictions on the notionof \meaning". For instance, in the particular case of the logics considered inChapter 5 two types of models are considered: algebraic models (of the form (A,v), where A is an algebra over a suitable signature and v a function that assigns
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Figure 3.2: The general pattern of a logic.values in A to the propositional variables) and relational (or Kripke) models(of the form (K;m), where K is a set of \possible worlds" or \states" endowedwith certain operations and relations and m a function that assigns subsets ofstates to the propositional variables). The meaning of a formula in an algebraicmodel is an element of the corresponding algebra, whereas the meaning of aformula in a relational model is a set of possible worlds (intuitively, the set ofthose worlds where the formula is true).(FL;`L) together with their de�ning \grammar" is called the syntacticalpart of L, while (ML;mngL; j=L) is the semantical part of L.In Figure 3.2 we illustrate the general pattern of a logic [ANSK94].There are two directions in the study of logics:Proof theory, which seeks to axiomatize the entailment relation � ` � be-tween a set � of sentences and a sentence �.Model theory, which focuses on the satisfaction relation of the type M j= �,where M is a model and � is a sentence.The proof-theoretic approach has a long tradition, dating back to the workof Tarski [Tar56] on \consequence relations" and of Gentzen on the entailmentrelation. (Of course, semantic considerations are also included, especially inTarski's work.) The model-theoretic approach is exempli�ed by Barwise's ax-ioms for abstract model theory [Bar74, BF85, Ebb85]. We would also like tomention the framework of institutions, due to Goguen and Burstall [GB85],which belongs to the model-theoretic approach, but it achieves much greatergenerality by using category theory and avoiding a commitment to particularnotions such as \language" and \structure".



40 3 Background3.2.2 Basic Properties of Propositional LogicsEach formalized system of a propositional calculus is an ordered pair S =(L; CL), where L is a formalized language and CL is a consequence operationon L. The formalized language L of S is { roughly speaking { a set of certain�nite sequences of elements formed starting from a \alphabet" of L, termedformulae.We begin with the notion of language of zero order.De�nition 3.40 (Language of zero order) An (alphabet of a) language ofzero order consists of an ordered system L = (V;L; U), where(1) V is the set of propositional variables,(2) L is the set of propositional connectives,(3) U is a set of auxiliary signs.We assume that also an arity function a : L! N . is given. Intuitively, the arityfunction speci�es the number of arguments of every propositional connective.The set Fma(L) of formulae over the alphabet L is the least set of �nitesequences of signs in L such that� all propositional variables (considered as one-element sequences) are inFma(L),� all connectives of arity 0 are in Fma(L),� if f1; : : : ; fn are in Fma(L) and � is a propositional connective with arityn, then �(f1; : : : ; fn) is in Fma(L).Fma(L) can thus be regarded as a L-algebra. It is easy to see that thealgebra Fma(L) is a free L-algebra, the set V of all propositional variables in Lbeing a set of free generators for Fma(L).A map h : V ! A, where A is a L-algebra is called a valuation. Fromthe universality property of Fma(L) it follows that for every L-algebra A andevery valuation h : V ! A there is a unique homomorphism of L-algebrash : Fma(L)! A that extends h.Thus, every formula � 2 Fma(L) induces a mapping �A : AV ! A by�A(h) = h(�) for any valuation h : V ! A:De�nition 3.41 (Consequence operation) Let L be a language of zero or-der. A consequence operation in L is a map C : P(Fma(L)) ! P(Fma(L))satisfying the following conditions:(Extensivity) � � C(�),(Monotonicity4) �1 � �2 implies C(�1) � C(�2),4We briey note that this condition is imposed in many logical systems; however in the so-called non-monotonic logics the consequence operator is not required to have the monotonicityproperty. We include it among the properties of a consequence operation since in the thesiswe do not take the non-monotonic approach into consideration.



3.2.1 Generalities 41(Idempotence) C(C(�)) = C(�)A consequence operation C has a �nite character if the following conditionis satis�ed:� If � 2 C(�) then there exists a �nite subset �0 of � such that � 2 C(�0).A consequence operation in a formalized language of zero order can be in-troduced by the following method. We choose a set A of logical formulae calleda set of logical axioms and a �nite set f(r1); : : : ; (rn)g of rules of inference. Anyrule of inference is a mapping (r) : P ! Fma(L), where P � Fma(L)n for somen 2 N (n is then called the arity of (r)). Instead of (r)(�1; : : : ; �n) = � weusually write (r) �1; : : : ; �n� .De�nition 3.42 (Formal Proof) By a formal proof of a formula � from aset � of formulae with respect to a set A of logical axioms and rules of inferencef(r1); : : : ; (rn)g we mean any �nite sequence �1; : : : ; �k of formulae in L suchthat� �1 2 � [A,� for every 1 < i � k, either �i 2 � [ A, or �i = (rl)(�i1 ; : : : ; �inl ), wherei1; : : : ; inl < i and (rl) is a rule of inference in f(r1); : : : ; (rn)g with aritynl,� �k = �.If there exists a formal proof of a formula � from a set � with respect tothe logical axioms5 A and inference rules f(r1); : : : ; (rn)g, then we write � ` �.In particular, if � = ; we write ` �.A deductive system S over L is de�ned by a set of axioms A and a set ofinference rules f(r1); : : : ; (rn)g; it consists of a pair (L;`S), where `S is therelation between sets of formulae and individual formulae de�ned above. Therelation `S is called the consequence relation of S.Let S = (L;`S) be a deductive system, and let C : P(Fma(L))! P(Fma(L))be de�ned by C(�) = f� j � `S �g. The operator C is the consequence opera-tion in L determined by the set A of logical axioms and the set f(r1); : : : ; (rn)gof inference rules. It is easy to prove that C is a consequence relation and hasa �nite character.Let S be a deductive system. If � 2 Fma(L) then � is called a theorem of Sif `S �. A set T � Fma(L) is called a S-theory if T `S � implies � 2 T , for all� 2 Fma(L). Observe that the theorems of S belong to every S-theory.5The axioms are usually given by so-called axiom schemes, where every variable that occurscan be instantiated with an arbitrary formula.



42 3 BackgroundExample 3.3 We briey discuss the axiomatizations of an important deduc-tive system, namely Classical Propositional Calculus (CPC).The set of propositional connectives of CPC is L = ();^;_;:;?;>).The axiom schemes are:(A1) a) (b) a),(A2) (a) (b) c))) ((a) b)) (a) c)),(A3) (:b) :a)) (a) b).There is one rule of inference:(r) a; a) bb (modus ponens).:(a) stands for a )?. The operations _ and ^ can be de�ned in terms ofthe operations ) and : by: a _ b = (:a)) ba ^ b = :((:a) _ (:b)):One of the basic results in CPC is the deduction theorem. In what followsFma denotes the set of formulae.Deduction Theorem Let � [ f�;  g � Fma. Then� [ f�g `CPC  i� � `CPC �)  :The class of Boolean algebras forms an algebraic semantics for CPC. For thesake of simplicity we will regard a Boolean algebra B as an algebra (B;_B ;^B;)B;:B ;?B; TB), where (B;_B ;^B;:B ;?B ;>B) is a Boolean algebra in the senseof De�nition 3.9 and )B is a relative complementation, namely a )B b =:Ba _B b.For every formula � let �B : BV ! B be the function associated to �. Thefollowing completeness theorem holds.Weak Completeness Theorem For every formula �,`CPC � i� B j= � = 1 for every Boolean algebra B i� 2 j= � = 1;where 2 is the 2-element Boolean algebra.Completeness Theorem For every set of formulae � and every formula �,� `CPC � i� f = 1 j  2 �g j=Bool � = 1 i� f = 1 j  2 �g j=2 � = 1:The second equivalence reects the fact that the variety Bool of Boolean alge-bras is generated by the 2-element Boolean algebra 2.



3.2.3 Basic Properties of First-Order Logic 433.2.3 Basic Properties of First-Order LogicThe �rst notion in �rst-order logic we consider is the notion of language.De�nition 3.43 (Language) A �rst order (formal) language L = (�; V; L)consists of:(1) A signature �, consisting of a set of function (or operation) symbols O anda set of predicate (or relation) symbols P (with arity functions aO : O !N; aP : P ! N). For every n 2 N we will denote the set of all operationsof arity n by On, and the the set of all relation symbols of arity n by Pn,(2) A set of variables V = (Vf ; Vb), where Vf is a set of free variables, and Vbis a set of bound variables,(3) A set of logical connectors (L):The set L may contain operators such as : (not), ^ (and), _ (or), ! (im-plies), 8 (for all), 9 (exists). (In non-classical logics also other operatorsmay occur.)The algebra TermL of terms in a given language L is the free O-algebrafreely generated by the set of free variables. The set of atomic formulae in thelanguage L is the setAtL = fR(t1; : : : ; tn) j t1; : : : ; tn 2 TermL; R 2 P; with arity ng:Formulae are inductively de�ned as follows:(1) Every atomic formula is a formula,(2) If � and  are formulae, then :�, � ^  , � _  , �!  are formulae.(3) If � is a formula, a a free variable in �, and x a bound variable notoccurring in �, then 8x�0 and 9x�0 are formulae, where �0 is the expressionobtained from � by replacing every occurrence of a by x.(4) Formulae are exactly those expressions obtained by the rules (1){(3).De�nition 3.44 A variable x is free in � if some occurrence of x in � is notin the domain of a quanti�er. A variable x is bound in � if all occurrences ofx are in the domain of some quanti�er.A sentence is a formula with no free variables.In �rst-order logic a notion of provability or logical deduction can be de�ned.The notion is based on a set of axioms, a set of inference rules, and a notion ofproof. For details on the form of the axioms and inference rules, and about thenotion of proof we refer to any standard text on logic, e.g. [Tak75] or [Mon76].De�nition 3.45 A theory in the �rst-order logic, T = (L; Th) consists of alanguage L and a set Th of �rst-order sentences over L (the free variablesin the sentences are assumed to be universally quanti�ed) which contains allthe axioms of classical �rst-order logic and is closed under �rst-order logicaldeduction.



44 3 BackgroundMore generally, let L be a language and C a consequence relation on theset of formulae in the language L. A theory (L; C; Th) consists of the languageL, the consequence relation C and a set Th of �rst-order sentences over L (thefree variables in the sentences are assumed to be universally quanti�ed) whichis closed under the consequence relation C.In what follows if not otherwise stated we refer to classical �rst-order logic.In classical �rst-order logic the so-called Craig interpolation property holds.Theorem 3.16 (Craig Interpolation Property) Let � and  be two for-mulae such that ` � )  . If � and  have at least one predicate constant incommon, then there exists a formula � called an interpolant of �)  such that� contains only those atomic formulae that occur in both � and  , and suchthat ` �) � and ` �)  .If � and  have no predicate constant in common, then either ` � or ` : is provable.The Craig Interpolation Property is basic for the proof of Theorem 3.17below cf. [BHK90] p.359.De�nition 3.46 Let T = (L; Th) be a theory and L0 a language. The restric-tion of the theory T to the language L0, L02T is de�ned as (L \L0; Th0) whereTh0 is the intersection of Th with the set of sentences in the language L0.De�nition 3.47 Let T1 = (L1; Th1) and T2 = (L2; Th2) be two theories in the�rst-order logic. The union of T1 with T2 is the theory T1 +T2 = (L1[L2; Th),where Th is the closure under �rst-order logical deduction of Th1 [ Th2.Theorem 3.17 Let T1 = (L1; Th1) and T2 = (L2; Th2) be two theories in the�rst-order logic, and let L be a language. If L1 \ L2 � L then L2(T1 + T2) =L2T1 + L2T2.This distributivity property does not hold in general if L1 \ L2 is not con-tained in L.More considerations concerning the equivalence between such distributivityproperties and di�erent variants of the Craig Interpolation Property can befound in [DGS91].The relation j= is based on a satis�ability relation with respect to �-structures.We now give the main de�nitions.De�nition 3.48 If � is a signature with set of function symbols O and set ofpredicate symbols P , then a �-structure is an ordered pair (A;L), where A isa nonempty set and L consists of a family fRAgR2P of fundamental relations(with the arity of RA equal to the arity of R if R 2 P ), and a family ffAgf2Oof fundamental operations on A (with the arity of fA equal to the arity of f ,for f 2 O).A is called the universe of A. If P = ; then A is an algebra; if O = ; thenA is a relational structure.



3.2.3 Basic Properties of First-Order Logic 45A notion of satis�ability A j= � is de�ned �rst for sentences � (takinginto account the structure of �), then on formulae by A j= � if and only ifA j= 8x1 : : : 8xn�. For details see for example [BS81], p.195.This notion of satis�ability can be extended to classes of structures and setsof formulae: If K is a class of �-structures and � is a formula we sayK j= � i� A j= � for every A 2 K:If E is a set of formulae thenA j= E i� A j= � for every � 2 E;K j= E i� K j= � for every � 2 E:(If A j= E we also say that A is a model for E.) Then we sayE j= � i� for every A;A j= E implies A j= �;E j= E0 i� E j= � for every � 2 E0:In classical �rst-order logic the following holds:Theorem 3.18 (Soundness and Completeness) For every formula � in thelanguage L, ` � if and only if j= �.Therefore in what follows the symbol j= can be used instead of `.De�nition 3.49 (cf. [Mon76]) Let L be a language.(1) A theory is a pair (L;�) such that � is a set of sentences in L and � 2 �whenever � j= �,(2) If A is a L-structure, the L-theory of A is the pair (L;�) where � = f� jA j= �g.(3) A theory (L;�) is an extension of a theory (L0;�0) provided that L � L0and � � �0.(4) We say that (L;�) is a conservative extension of (L0;�0) provided that, inaddition, � = �0 \ Fma(L).(5) If (L;�) is a theory, a set � � Fma(L) is a set of axioms for � providedthat � = f� 2 Fma(L) j � j= �g.De�nition 3.50 (cf. [Mon76]) Let L � L0 be a language extension and �;�0be theories over L;L0 respectively.(1) If R is a relation symbol of L0 but not of L, then a possible de�ni-tion of R over � is any formula � in the language L with free variablesfv0; : : : ; vm�1g, where m is the arity of R.



46 3 Background(2) If � is an operation symbol of L0 but not of L, then a possible de�nition of� over � is a formula � in the language L with free variables fv0; : : : ; vmg,where m is the arity of �, such that the following existence and uniquenessconditions are in �: 8v0; : : : ; vm�19vm�;8v0; : : : ; vm; vm+1[�(v1; : : : ; vm) ^ �(v1; : : : ; vm+1)) vm = vm+1]:(3) We say that (L0;�0) is a de�nitional extension of (L;�) provided thatfor every non-logical constant C of L0 but not in L there is a possiblede�nition �C of C over � such that�0 = f� j � 2 Fma(L0); and �[f�0C j C a non-logical constant of L0 but not in Lg j= �g;where �0C is the sentence 8v0; : : : ; vm(C(v0; : : : ; vm) , �C) if C is arelation symbol of arity m, while �0C is 8v0; : : : ; vm(C(v0; : : : ; vm�1) =vm , �C) if C is an operation symbol of arity m.3.2.4 Link Between Logic and AlgebraThe idea of solving problems in logic by �rst translating them to algebra, solvingthem by using the powerful methodology of algebra, and then translating thesolution back to logic is quite old. Papers on the history of logic point out thatthis method was fruitfully applied in the 19th century not only to propositionallogics, but also to quanti�er logics (cf. the works of De Morgan, Peirce). Thenumber of applications has grown ever since. The main reason for this is that,when working with a problem, it is often useful to \transform" the probleminto a well-understood and streamlined area of mathematics, solve the problemthere, and translate the result back. In this case, the advantage of this approachis that universal algebra is not only a unifying framework but also containspowerful theoretical results. Another reason is that, with the rapidly growingvariety of applications of logic (in diverse areas like computer science, linguistics,AI, law, etc.) there is a growing number of new logics to be investigated. In thissituation translating these problems into algebraic terms proves often useful:it o�ers a tool for economy and uni�cation in various ways. Several logicalproperties can be translated to properties of the class of their algebraic models,and vice-versa.Among the special classes of algebras in which powerful theoretical resultshave been established are the discriminator varieties and, more generally, thearithmetical varieties6. It turns out that in most cases, algebras originating fromlogic fall into one of these two categories. The varieties of algebras investigatedin Chapter 5, for example those corresponding to the SHn-logics or to theSHKn logics, are discriminator varieties.6A variety is called arithmetical if it is both congruence-distributive and congruence-permutable (i.e. the lattices of congruences of all the algebras in the variety are distributive,and, moreover, for every algebra in the variety its congruences commute). Alternatively, avariety V is arithmetical if there is a term m(x; y; z) such that V j= m(x; y; x) = m(x; y; y) =m(y; y; x) = x, cf. [BS81]. It has been shown that every discriminator variety is an arithmeticalvariety; there exist arithmetical varieties which are not discriminator varieties.



3.2.4 Link Between Logic and Algebra 47(T1) a) a(T2) (a) b)) ((b) c)) (a) c))(T3) a) (a _ b)(T4) b) (a _ b)(T5) (a) c)) ((b) c)) ((a _ b)) c))(T6) (a ^ b)) a(T7) (a ^ b)) b(T8) (a) b)) ((a) c)) (a) (b ^ c)))(T9) (a) (b) c))) ((a ^ b)) c)(T10) ((a ^ b)) c)) (a) (b) c))(T11) (a ^ :a)) b(T12) (a) (a ^ :a))) :a(T13) a _ :a Figure 3.3: Axiom SchemesMany properties of the logics can be translated to properties of classes ofalgebraic models for such logics. To give only a few examples, the Beth de�n-ability property reduces (for certain classes of logics) to the property that all theepimorphisms in a corresponding category of algebraic models are surjective;and certain versions of the Craig interpolation property reduce to amalgamationproperties on the category of algebraic models. For details in these directionswe refer to [Cze82], [Sai88]; the main results are also presented without proofsin [ANSK94], p.64.We illustrate here { as a very simple example { the link between logic andalgebra for the case of propositional logic. We chose this example since itexplains the link between the axioms of the SHn-logics and the properties ofthe algebraic models discussed in Section 5.1.Let L be a propositional language, and T = (L; C;�) a 0-order theory basedon L.In what follows we will consider some classes of logics based on the connec-tors ^;_;);:, that are axiomatized by subsets of set of axioms for classicalpropositional logic.Consider the axiom schemes presented in Figure 3.3.The Lindenbaum-Tarski-algebra associated with the theory T is the quotientof the algebra of formulae Fma(L) to the equivalence relation' de�ned by � '  i� �)  2 C(�) and  ) � 2 C(�).The links between the axiom schemes in Figure 3.3 and the properties ofthe Lindenbaum-Tarski algebras are given in Figure 3.4Similar theorems hold for systems of the modal logic, and for wider classesof logics.



48 3 BackgroundThe theory contains theorems The Lindenbaum-Tarski algebra of the theory is(T1)� (T2) Partially-ordered set(T1)� (T8) Lattice(T2)� (T10) Relatively pseudocomplemented lattice(T2)� (T12) Heyting algebra(T1)� (T13) Boolean algebraFigure 3.4: Properties of the Lindenbaum-Tarski Algebras3.3 Brief Overview on Many-Sorted Structures andMany-Sorted LogicSince in Chapters 6{8 we consider many-sorted structures and logics (the controlvariables are allowed to have di�erent sorts, the functions and relations can havearguments of di�erent sorts, etc.) in what follows we briey present the relevantbasic notions.Many-sorted algebras and structures often appear in theoretical computerscience, since { for example when modeling programs { \entities" of di�erenttypes have to be put together. Obviously up to a certain extent many-sortedstructures also appear in classical algebra: we would like to mention modulesover a ring. These can be seen as many-sorted structures, having two sorts:the \module-element" sort and the \scalar" sort. The main results in universalalgebra extend to many-sorted algebras.In what follows we give some basic notions of (many-sorted) logic that will beused in Section 6. We de�ne many-sorted signatures and structures, morphismsof structures, terms, formulae and interpretations of many-sorted languages inmany-sorted structures. Morphisms of signatures are also considered, and theway formulae can be translated along morphisms of signatures is discussed. Formore details we refer to [Dia96] and [Gog96].De�nition 3.51 (Signature) A signature � consists of a set of sorts Sort, aset of function (or operation) symbols O, and a set of predicate (or relation)symbols P , with arities aO : O ! (Sort�� Sort), aP : P ! Sort�. For everys1 : : : sn 2 Sort� and every s 2 Sort, we will denote the set of all operations ofarity (s1 : : : sn; s) by Os1:::sn;s, and the the set of all relation symbols of aritys1 : : : sn by Ps1:::sn .De�nition 3.52 (�-Structure) Let � = (Sort; O; P ) be a signature consist-ing of a set of sorts Sort, a set of operation symbols O, and a set of relationsymbols P , with arities aO : O ! (Sort�� Sort), aP : P ! Sort�. A �-structure is a structure M = ((Ms)s2Sort; ffMgf2O; fRMgR2P ) where if f 2 Oand aO(f) = (s1 : : : sn; s) then fM : Ms1 � : : : �Msn ! Ms and if R 2 P andaP (R) = s1 : : : sn then RM �Ms1 � : : :�Msn .If P is empty we obtain the notion of (many-sorted) algebra; if O is emptywe obtain the notion of relational structure.



3.3 Brief Overview on Many-Sorted Structures 49De�nition 3.53 (Morphism of �-structures) Let M1 and M2 be two �-structures. A morphism of �-structures from M1 to M2 is a Sort-indexed familyfhsgs2Sort of maps hs : M1s !M2s with the following properties:(1) For every f 2 Os1:::sn;s, and every (m1; : : : ;mn) 2M1s1 � : : :�M1sn ,hs(fM1(m1; : : : ;mn)) = fM2(hs1(m1); : : : ; hsn(mn));(2) For every R 2 Ps1:::sn,(m1; : : : ;mn) 2 RM1 implies (hs1(m1); : : : ; hsn(mn)) 2 RM2for all (m1; : : : ;mn) 2M1s1 � : : :�M1sn .The composition of two �-morphisms is their composition as functions. Theidentity �-morphism on M , denoted 1M , is the identity of M . A �-morphismh : M ! M 0 is a �-isomorphism if there is a �-morphism h0 : M 0 ! M suchthat h0 � h = 1M and h � h0 = 1M 0 . Such a morphism h0 is called an inverse ofh. For a given signature � = (Sort; O; P ) we will denote by Str� the categoryof �-structures, with �-morphisms as arrows.De�nition 3.54 (Terms, Formulae) Let � = (Sort; O; P ) be a signature andX = (Xs)s2Sort be a many-sorted set.� The algebra of terms in the signature � and variables X is the many-sortedalgebra TO(X) of terms over the signature (Sort; O) (the free (Sort; O)-algebra freely generated by X).� The set At�(X) of atomic formulae over the signature � is the set of allexpressions of the form R(t1; : : : ; tn) where t1; : : : ; tn are terms of sorts1; : : : ; sn and R is a predicate symbol of arity s1 : : : sn.� The set of formulae over the signature � freely generated by X is the freef_;^;:; 0; 1; f8xgx2X ; f9xgx2Xg-algebra generated by At�(X), where forevery x 2 X, 8x and 9x are regarded as unary operators.De�nition 3.55 (Interpretation) An interpretation of a language L (con-sisting of a signature � and a set of variables X) is a �-structure M togetherwith a (sort-preserving) mapping v : X ! M . The mapping v is called anassignment of values from M to the variables in X.De�nition 3.56 (Satis�ability in a given interpretation) Let v : X !M be an interpretation and let v be the unique extension of v to a morphismfrom the set TO(X) of terms over � in variables X to M . The interpretation vsatis�es a formula � (denoted v j= �) if this follows from the following inductivede�nition:



50 3 Background(0) The unique extension v of v to a morphism from TO(X) to M can be induc-tively de�ned for every term t in the language L. We de�ne v(x) = v(x)for every variable x 2 X; if f is an operation symbol of arity (s1 : : : sn; s)and t1; : : : ; tn terms of sorts respectively s1; : : : ; sn, then v(f(t1; : : : ; tn)) =fM (v(t1); : : : ; v(tn)).(1) If R is a predicate symbol of arity s1 : : : sn and t1; : : : ; tn are terms ofsorts respectively s1; : : : ; sn, then v satis�es R(t1; : : : ; tn) if and only if(v(t1); : : : ; v(tn)) 2 RM .(2) The assignment v satis�es :� if and only if it does not satisfy �; v satis�es� ^  if and only if it satis�es both � and  ; v satis�es � _  if and onlyif it satis�es � or  ;(3) The assignment v satis�es 8x� if and only if for every v0 : X ! M suchthat v and v0 agree, except possibly on x, v0 satis�es �; v satis�es 9x� ifand only if for some v0 : X !M such that v and v0 agree, except possiblyon x, v0 satis�es �.Let v : X !M be an interpretation and let v be the unique extension of vto a morphism from the set TO(X) of terms over � in variables X to M . Wecan de�ne a function vFma : Fma�(X)! f0; 1g as follows:1. vFma(R(t1; : : : ; tn)) = ( 1 if (v(t1); : : : ; v(tn)) 2 RM0 otherwise ,2. vFma(�1^�2) = vFma(�1)^vFma(�2), vFma(�1_�2) = vFma(�1)_vFma(�2),vFma(:�) = 1 i� vFma(�) = 0,3. vFma(8x�(x)) = minfvx=mFma (�(x)) j m 2 Mg, where vx=m(y) = v(y) forevery y 6= x and vx=m(x) = m,4. vFma(9x�(x)) = maxfvx=mFma (�(x)) j m 2 Mg, where vx=m(y) = v(y) forevery y 6= x and vx=m(x) = m.Thus, v satis�es � if and only if vFma(�) = 1.De�nition 3.57 (Subsignature) Let �1 and �2 be two signatures, �1 =(Sort1; O1; P1) and �2 = (Sort2; O2; P2). �1 is a subsignature of �2 (denotedby �1 � �2) if Sort1 � Sort2; O1 � O2; P1 � P2.De�nition 3.58 (Restriction) Let � = (Sort; O; P ) and �0 = (Sort0; O0; P 0)be two signatures such that �0 � �. Let M = (fMsgs2Sort; ffMgf2O; fRMgR2P )be a �-structure. The restriction of M to the signature �0 is the structureM 0 = (fM 0sgs2Sort0 ; ffM 0gf2O0 ; fRM 0gR2P 0), where(1) For every s 2 Sort0, M 0s = Ms,



3.3 Brief Overview on Many-Sorted Structures 51(2) For every f 2 O0 with arity aO(f) = (s1 : : : sn; s) (with s1; : : : ; sn; s 2Sort0), fM 0 : M 0s1 � : : : �M 0sn ! M 0s coincides with fM : Ms1 � : : : �Msn !Ms,(3) For every R 2 P 0 with arity aP (R) = s1 : : : sn (with s1; : : : ; sn 2 Sort0),RM 0 �M 0s1 � : : :�M 0sn coincides with RM �Ms1 � : : :�Msn.The restriction of M to �0 will be denoted U��0M . We also say that M 0 is the�0-reduct of M , or that M is the �-expansion of M 0. The application U��0that associates with every �-structure its restriction to �0 is a functor from thecategory Str� of �-structures to the category Str�0 of �0-structures called theforgetful functor.The following lemma will be useful in Section 7.1.2.Lemma 3.19 Let L1 = (�1;X1) and L2 = (�2;X2) be two languages suchthat L1 is a sublanguage of L2 (i.e. �1 � �2 and X1 � X2). Let M1 be a�1-structure and M2 a �2-structure such that M1 is the restriction of M2 tothe signature �1.Let � be a formula in the language L1 (i.e. containing only sorts, opera-tion symbols, predicate symbols and variables from L1). Then for every (sort-preserving) assignment s : X2 ! M2, s satis�es � if and only if its restrictionto X1, sjX1 : X1 !M1, satis�es �.Proof : Note �rst that it is easy to see that if s : X2 ! M2 then itsrestriction to X1 has indeed values in M1, i.e. sjX1 : X1 ! M1. Therefore itfollows immediately by structural induction that for every term t in the languageL1, s(t) = sjX1(t) 2M1.Moreover, if R is a predicate of arity s1 : : : sn in P1 and t1; : : : ; tn terms inthe language L1, then (s(t1); : : : ; s(tn)) 2 RM2 if and only if (s(t1); : : : ; s(tn)) 2RM1 .We prove by structural induction that for every assignment s : X2 ! M2and every formula � in the language L1, s satis�es � if and only if its restrictionto X1 satis�es �.Induction basis: Assume that � is an atomic formula, i.e. � = R(t1; : : : ; tn)for some terms t1; : : : ; tn, and let s : X2 !M2 be an arbitrary assignment. Thens satis�es � if and only if (s(t1); : : : ; s(tn)) 2 RM2 . But since M1 is the restric-tion of M2 to �1, (s(t1); : : : ; s(tn)) 2 RM2 if and only if (s(t1); : : : ; s(tn)) 2 RM1 .Since for every term t in the language L1 s(t) = sjX1(t) it follows that s satis�es� if and only if (sjX1(t1); : : : ; sjX1(tn)) 2 RM1 , i.e. if and only if sjX1 satis�es �.Induction step: We distinguish several cases:Case 1: Let � = : and s : X2 !M2 be an arbitrary assignment. Assumeknown that for every assignment s0 : X2 ! M2, s0 satis�es  if and only if itsrestriction to X1 satis�es  . In particular it follows that s does not satisfy  ifand only if its restriction to X1 does not satisfy  , i.e. that s satis�es � if andonly if its restriction to X1 satis�es �.



52 3 BackgroundCase 2: Let � = �1 ^ �2 and s : X2 ! M2 be an arbitrary assignment.Assume that for i = 1; 2 and every assignment s0 : X2 ! M2, s0 satis�es �iif and only if s0jX1 satis�es �i. In particular s satis�es �i if and only if sjX1satis�es �i.We know that s (resp. sjX1) satis�es � if and only if it satis�es both �1and �2. Therefore it follows immediately that s satis�es � if and only if sjX1satis�es �.The case � = �1 _ �2 can be proved similarly.Case 3: Let � = 8x and s : X2 ! M2 be an arbitrary assignment.Assume that for every assignment s0 : X2 ! M2, s0 satis�es  if and only ifs0jX1 satis�es  .We know that s satis�es 8x if and only if for every s0 : X2 ! M2 suchthat s and s0 agree, except possibly on x, s0 satis�es �, and that sjX1 satis�es8x if and only if for every s00 : X1 ! M1 such that sjX1 and s00 agree, exceptpossibly on x, s00 satis�es �.We have to prove that the following statements are equivalent:(1) For every s0 : X2 !M2 such that s and s0 agree, except possibly onx, s0 satis�es  .(2) For every s00 : X1 !M1 such that sjX1 and s00 agree, except possiblyon x, s00 satis�es  .(1) ) (2): Assume that (1) holds. Let s00 : X1 !M1 be such that s00 agreeswith sjX1 except possibly on x. We can de�ne an assignment s0 : X2 !M2 bys0(x) = ( s00(x) if x 2 X1s(x) if x 2 X2nX1It is easy to see that s0 agrees with s except possibly on x, and s0jX1 = s00.By (1) it follows that s0 satis�es  , and by the induction hypothesis we concludethat s0jX1 = s00 satis�es  .(2) ) (1): Assume that (2) holds. Let s0 : X2 ! M2 be such that s ands0 agree, except possibly on x. Then s0jX1 and sjX1 agree except possibly on x,therefore s0jX1 satis�es  and by the induction hypothesis s0 satis�es  .It follows therefore that s satis�es 8x if and only if sjX1 satis�es 8x .The case � = 9x can be proved similarly. 2More general relationships between di�erent signatures can be expressed bymorphisms.De�nition 3.59 (Signature Morphism) Let �;�0 be two signatures, � =(Sort; O; P ) and �0 = (Sort0; O0; P 0). A signature morphism � : �! �0 consistsof a triple (�S ; �O; �P ) where(1) �S : Sort! Sort0 is a map on sorts,



3.3 Brief Overview on Many-Sorted Structures 53(2) �O is a Sort� � Sort-indexed family of maps on operation symbols,�s1:::sn;sO : Os1:::sn;s ! O0�S(s1):::�S(sn);�S(s),(3) �P is a Sort�-indexed family of maps on predicate symbols,�s1:::snP : Ps1:::sn ! P 0�S(s1):::�S(sn).Example 3.4 An example of a morphism of signatures is the inclusion. Let�1 = (Sort1; O1; P1) and �2 = (Sort2; O2; P2) be such that Sort1 � Sort2, O1 �O2 and P1 � P2. The morphism i = (iS ; iO; iP ) : �1 ,! �2, where iS ; iO andiP are the corresponding inclusions is a morphism of signatures.Proposition 3.20 Any morphism of signatures � : �1 ! �2 induces a functorStr(�) : Str�2 ! Str�1.Proof : Let � : �1 ! �2 be a signature morphism, and let M be a �2-structure. AssumeM = ((Ms)s2Sort2 ; ffMgf2O2 ; fRMgR2P2). Then Str(�)(M) =M = ((M s)s2Sort1 ; ffMgf2O1 ; fRMgR2P1), where for every s 2 Sort, M s =M�(s); for every f 2 O with arity (s1 : : : sn; s), fM : M s1 � : : :�M sn !M s isthe operation f 0M : M�(s1)� : : :�M�(sn) !M�(s) of M , where f 0 = �s1:::sn;sO (f);and for every R 2 P with arity s1 : : : sn, RM �M s1� : : :�Msn is the predicateR0M �M�(s1) � : : :�M�(sn) of M , where R0 = �s1:::snR (R). 2For every morphism of signatures � : �1 ! �2 and every �0-structure Mwe will also denote Str(�)(M) by Mj�.Let M;M 0 be two �2-structures and let h : M ! M 0 be a morphism of�2-structures. Then Str(h) : Str(M)! Str(M 0) is de�ned as follows: For everys 2 Sort1, let Str(h)s = h�s : Str(M)s = M�(s) ! Str(M 0)s = M 0�(s).It is easy to see that Str(h) is a morphism of �1-structures: Let � 2 O1 be anoperation of arity (s1 : : : sn; s). Let (m1; : : : ;mn) 2 Str(M)s1 � : : :� Str(M)sn .Then Str(h)s(�Str(M)(m1; : : : ;mn)) = h�(s)(�O(�)M )(m1; : : : ;mn)) == �O(�)M 0)(h�(s)(m1); : : : h�(s)(mn)) == �Str(M 0)(Str(h)s1(m1); : : : ;Str(h)sn(mn)).Let R 2 P1 be a predicate symbol of arity s1 : : : sn. Let (m1; : : : ;mn) 2Str(M)s1 � : : :� Str(M)sn be such that RStr(M)(m1; : : : ;mn).Then �(R)M (m1; : : : ;mn) and hence, �(R)M 0(h�(s1)(m1); : : : ; h�(sn)(mn)).Therefore, it follows that RStr(M 0)(Str(h)s1(m1); : : : ;Str(h)sn(mn)). 2Example 3.5 Let �1 = (Sort1; O1; P1) and �2 = (Sort2; O2; P2) be such thatSort1 � Sort2, O1 � O2 and P1 � P2. Let i = (iS ; iO; iP ) : �1 ,! �2 be theinclusion morphism between the signatures �1 and �2. The functor Str(i) :Str�2 ! Str�1 induced by the inclusion i is the forgetful functor.We now analyze the way terms and formulae can be translated along mor-phisms between signatures.Let � = (�S ; �O; �P ) be a morphism of signatures, where �S : Sort! Sort0be a map between sorts, and �O : O ! O0 a map between operation symbols,and �P : P ! P 0 a map between predicate symbols.



54 3 Background(1) The map between sorts, �S : Sort ! Sort0 translates a Sort-sorted setX = (Xs)s2Sort to a Sort0-sorted set ~X with ~Xs0 = `�S(s)=s0 Xs for everys 2 Sort. (In [Dia96] it is noted that ~X is the pointwise left Kan extensionof �S along X.) Let h be the identity map, h : X ! ~X de�ned for everys 2 Sort and every x 2 Xs by hs(x) = x 2 ~X�S(s).(2) (�S ; �O) de�ne a Sort-sorted map �\T (X) : TO(X)! TO0( ~X)� as follows:For every x 2 Xs, x 2 ~X�S(s) � TO0( ~X)�S(s). We know that TO0( ~X)�S(s) =(TO0( ~X)j�)s. Hence, x 2 (TO0( ~X)j�)s. Therefore, for every s 2 Sort,Xs � (TO0( ~X)j�)s. Let j : X ! TO0( ~X)j� be the inclusion. Then�\T (X) = j\ : TO(X) ! TO0( ~X)j� is the unique extension of j to a ho-momorphism of O-algebras.(3) The translation from Fma�(X) to Fma�0( ~X) can be de�ned in a similarway. Let �\At(X) : At�(X)! At�(~X), be de�ned by �\At(X)(R(t1; : : : ; tn)) =�P (R)(�\T (X)(t1); : : : ; �\T (X)(tn)):Then �\Fma : Fma�(X) ! Fma�0( ~X) is the unique morphism w.r.t. theoperations f_;^;:; 0; 1; f8xgx2X ; f9xgx2Xg that extends �\At(X).Remark 3.21 Assume now that the variables have a rôle of generators ratherthan of variables. We allow quanti�ed formulae, with the mention that (8x)�(x)holds in a given model i� �(d) holds for any value d attributed to x.Similarly, any signature morphism � = (�S ; �O; �P ) : �! �0 together withan arbitrary map �X : X ! X 0 such that if x 2 Xs then �X(x) 2 X 0�S(s)(renaming of the generators), uniquely extends to morphisms:�\Term : TO(X)! TO0(X 0)j�;�\At : At�(X)! At�0(X0);�\Fma : Fma�(X)! Fma�0(X0):Proof : The existence of �\Term follows from the fact that if x 2 Xs then�X(x) 2 X 0�S(s), from the de�nition of TO0(X 0)j�, and from the universalityproperty of TO(X).�\At : At�(X)! At�0(X0); is de�ned by�\At(R(t1; : : : ; tn)) = �P (R)(�\Term(t1); : : : ; �\Term(tn)):The map �X : X ! X 0 induces a morphism of signatures�L : f_;^;:; 0; 1; f8xgx2X ; f9xgx2Xg ! f_;^;:; 0; 1; f8xgx2X0 ; f9xgx2X0gas follows:� �L preserves the sorts,



3.4 ATP: The Resolution Principle 55� �L(_) = _; �L(^) = ^; �(:) = :; �(0) = 0; �(1) = 1,� �L(8x) = 8�(x); �L(9x) = 9�(x).The existence of �\Fma : Fma�(X) ! Fma�0(X0)j�L follows from the univer-sality property of Fma�(X) and from the de�nition of Fma�0(X0)j�L 23.4 Automated Theorem Proving: The ResolutionPrincipleWe give a short introduction to resolution in classical �rst order logic, basedmainly on [CL73] and Chapter 12 of [Rob79]. A short introduction to reso-lution in many-valued logic based on [BF92] will be given in Section 4.2. Anextensive overview of resolution-based theorem proving in many-valued logicscan be found in [BF95], [H�ah94], [H�ah96b].3.4.1 The Resolution PrincipleThe basic idea behind the resolution procedure is to prove statements by refu-tation, i.e. the strategy of resolution is to take the negation of the statementthat one wants to prove, and then to show that this negation produces a con-tradiction with the known statements. One also says that the negation of thegiven statement is unsatis�able.We begin by giving the main de�nitions.De�nition 3.60 (Literal, Clause, Clausal Form) A literal is an atomic for-mula or a negation thereof. A clause is a set of literals. A clause C =fL1; : : : ; Lng is understood to represent the disjunction of its members, L1 _: : : _ Ln. The symbol 2 will be used to denote the empty clause. A groundclause (term, literal) is a clause (term, literal) without variables. For any clauseC, the set of variables occurring in C is denoted by V (C). The clausal formF (C) of a clause C is the universally quanti�ed formula 8x1 : : : 8xmC, whereV (C) = fx1; : : : ; xmg.The standard notions of substitution and uni�er play an important role inthe resolution method.De�nition 3.61 (Substitution, Variant, Instance, Uni�er, M.g.u.)Let V be the set of all variables, T the set of terms. A mapping � : V ! T iscalled a substitution if �(v) 6= v for only �nitely many v 2 V . The domain ofa substitution � is de�ned as dom(�) = fv j v 2 V; �(v) 6= vg.Substitutions can operate on terms, literals, and clauses by the usual exten-sions. A substitution � such that �(V ) � V and injective on its domain iscalled a renaming.If � is a renaming with dom(�) = V (C) then �(C) is called a variant of C.For any substitution �, we call �(C) an instance of C.Let M be a set of literals. A substitution � is called a uni�er of M if �(M)contains only one element. A substitution � is called a most general uni�er



56 3 Background(short m.g.u.) of M if � is a uni�er such that for every other uni�er � of Mthere is a � such that �� = � .De�nition 3.62 (Factor) If two or more positive literals of a clause C havea m.g.u. �, then �(C) is called a factor of C. Likewise, if two or more negativeliterals of a clause C have a m.g.u. �, then �(C) is called a factor of C.De�nition 3.63 (Binary Resolvent) Let C1 and C2 be clauses with no vari-able in common. Let L1 and L2 be literals occurring in C1 and C2, respectively.If L1 and :L2 have a m.g.u. �, then the clause C3 := (�(C1)��(L1))[(�(C2)��(L2)) is called a binary resolvent of C1 and C2.De�nition 3.64 (Resolvent) A resolvent of two clauses C1 and C2 is one ofthe following binary resolvents:1. a binary resolvent of C1 and C2,2. a binary resolvent of C1 and a factor of C2,3. a binary resolvent of a factor of C1 and C2,4. a binary resolvent of a factor of C1 and a factor of C2.Robinson's Resolution AlgorithmInput: a set of clauses F in �rst-order predicate logic.Output: 2 if F is unsatis�able.Algorithm :while F has not been proven unsatis�able and new clauses can be addeddo(c1; c2) := a pair in F ;R := Resolvents((c1; c2));if 2 2 Rthen F is unsatis�ableelse F := F [RodComputing the resolvents of two clausesInput: Two clauses, C1; C2,Output: R the set of all resolvents of clauses C1; C2.



3.4.2 Semantic Resolution 57Algorithm :R := Binary-resolvents(C1; C2) [[ Binary-resolvents(C1; Factor(C2)) [[ Binary-resolvents( Factor(C1); C2) [[ Binary-resolvents( Factor(C1); Factor(C2)):The proof of the completeness of the resolution procedure, as well as thoseof its re�nements (see e.g. section 3.4.2), requires the proof of a lifting lemmastating that a resolvent for two instances of a given clause can be \lifted" to aresolvent for those clauses themselves, and such that the original resolvent (forthe two instances) is an instance of the resolvent for the clauses. For this, werefer to the literature, e.g. Chapter 5 of [CL73].3.4.2 Semantic ResolutionThe resolution principle can be seen as a inference rule that can be used togenerate new clauses from old ones. However, unlimited application of resolu-tion may generate many irrelevant and redundant clauses besides useful ones.Although a deletion strategy [CL73] can be used in order to delete some of theseirrelevant and redundant clauses after they are generated, time has already beenwasted by generating them.Therefore, in order to have e�cient theorem proving procedures, we mustprevent large numbers of useless clauses from being generated. This leads tore�nements of resolution. Below we will discuss semantic resolution.The main idea of semantic resolution is to use an interpretation to divideclauses into two groups, and an ordering to reduce the number of possibleresolutions.De�nition 3.65 Let I be an interpretation and P an ordering of predicatesymbols. A �nite set of clauses fE1; : : : ; Eq; Ng; q � 1 is called a semanticclash with respect to P and I (PI-clash, for short) if and only if E1; : : : ; Eq(called electrons) and N (called nucleus) satisfy the following conditions:1. E1; : : : ; Eq are false in I,2. Let R1 = N . For each i = 1; : : : ; q, there is a resolvent Ri+1 of Ri andEi,3. The literal in Ei, which is resolved upon, contains the largest predicatesymbol in Ei; i = 1; : : : ; q,4. Rq+1 is false in I.Rq+1 is called a PI-resolvent of the PI-clash fE1; : : : ; Eq; NgDe�nition 3.66 Let I be an interpretation for a set of clauses S, and P bean ordering of predicate symbols appearing in S. A deduction from S is calleda PI-deduction if and only if each clause in the deduction is either a clause inS, or a PI-resolvent.



58 3 BackgroundTheorem 3.22 If P is an ordering of predicate symbols in a �nite and un-satis�able set S of clauses, and if I is an interpretation of S, then there is aPI-deduction of 2 from S.The proof of the completeness theorem is based, as in the case of the reso-lution principle, on a lifting lemma.In what follows we will present a special kind of interpretation to be usedin semantical resolution, that leads to hyperresolution.3.4.3 HyperresolutionLet us consider an interpretation I in which every literal is the negation of anatom. If this interpretation is used, every electron and every PI-resolvent mustcontain only atoms. Similarly, if every literal in I is an atom, then every electronand every PI-resolvent must contain only negations of atoms. Hyperresolutionis based on these considerations.De�nition 3.67 A clause is called positive if it does not contain any negationsign. A clause is called negative if every literal of it contains the negation sign.A clause is called mixed if it is neither positive nor negative.De�nition 3.68 A positive hyperresolution is a special case of PI-resolutionin which every literal in the interpretation I contains the negation sign. It iscalled positive hyperresolution because all the electrons and PI-resolvents inthis case are positive.A negative hyperresolution is a special case of PI-resolution in which everyliteral in the interpretation I does not contain any negation sign. It is callednegative hyperresolution because all the electrons and PI-resolvents in this caseare negative.From Theorem 3.22 it follows that both positive and negative hyperresolu-tion are complete. For details we refer for instance to [CL73].3.5 Category Theory | Basic NotionsDe�nition 3.69 (Category) A category C consists of:(1) a class of objects, Obj(C) (denoted also jCj),(2) for each pair of objects A;B a class of morphisms, HomC(A;B), and(3) a composition relation on morphisms,such that(i) For any two morphisms f 2 HomC(A;B) and g 2 HomC(B;C) the compo-sition of f and g, g � f 2 HomC(A;C),(ii) The composition of morphisms is associative, that is h�(g�f) = (h�g)�f ,



3.5.1 Limits and Colimits 59(iii) For every object A there is the identity morphism idA 2 HomC(A;A) withthe property f � idA = f and idB � f = f for all f 2 HomC(A;B).Remark: Instead of HomC(A;B) one also writes C(A;B). The notationsf : A! B and A f! B both denote a morphism f in HomC(A;B).In the following, C and D will always denote arbitrary categories.Typical examples of categories in mathematics are the category of groups(objects are groups, morphisms are the group homomorphisms), the categoryof monoids (objects are monoids, morphisms are the monoid homomorphisms),the category of topological spaces (objects are topological spaces, morphismsare the continuous functions between them), and, of course, the category ofsets (objects are sets, morphisms are set mappings). Note also that to everypreorder (P;�) we can associate a category having as objects the elements of Pand a (unique) morphism between p1 and p2 if and only if p1 � p2. Summariz-ing, we can say that category theory extracts the basic features of \every-day'swork" when dealing with spaces in a certain discipline and studying structurepreserving mappings (the morphisms) between those spaces.The objects of a category do not necessarily form a set. A category C iscalled locally small if for any two objects C and D of C the set of morphismsC(C;D) is a set, while C is called small if both its collection of objects and itscollection of morphisms are sets.De�nition 3.70 (Dual Category) Let C be a category. The dual of C, is thecategory Cop having the same objects as C and an arrow fop 2 Cop(B;A) forevery f 2 C(A;B).A morphism f 2 C(C;D) is called isomorphism if there exists a morphismg 2 C(D;C) such that f � g = 1D and g � f = 1C .A morphism f 2 C(C;D) is called epimorphism if for any object E and anytwo parallel morphisms g; h : D // Eoo in C, g � f = h � f implies g = h.Dually, f 2 C(C;D) is called monomorphism (or monic) if for any objectB and any two parallel morphisms g; h : B // Coo in C, f � g = f � h impliesg = h.3.5.1 Limits and ColimitsWe now recall the notion of (co-)limit which is one of the basic notions incategory theory and in our modeling approach.De�nition 3.71 (Diagram) A diagram D = (fXigi2I ; fFijgi;j2I) in a cat-egory C is de�ned as an indexed family of objects fXigi2I and a family ofmorphism sets Fij � C(Xi;Xj), for i; j 2 I.De�nition 3.72 (Co-Cone) A co-cone of the diagram D = (fXigi2I ; fFijgi;j2I)consists of an object X 2 Obj(C) and, for every i 2 I, a morphism fi : Xi ! X,



60 3 Backgroundsuch that fi = fj � fij for all j 2 I, i.e. such that for every i; j 2 I and forevery fij 2 Fij the following triangle commutesXXi fi >>}}}}}}}} fij // Xjfj``A A A A A A A ADe�nition 3.73 (Colimit) A colimit of the diagram D = (fXigi2I ; fFijgi;j2I)is a co-cone with the property that for every other co-cone given by morphismsf 0i : Xi ! X 0, i 2 I, there exists exactly one morphism f : X ! X 0, such thatf 0i = f � fi, for all i 2 I (universality property).The colimit of a diagram D = (fXigi2I ; fFijgi;j2I) will be denoted by lim�!(D).(In the literature, several other notations may be found, such as lim�!i2IXi orlim�!DXi or lim�!Xi.)Reversing the arrows in the de�nition of a colimit of a diagram D results inthe dual notion called limit of D, denoted by lim �(D).Remark: Starting with a diagram D = (fXigi2I ; fFijgi;j2I) that consists onlyof the objects Xi, i 2 I, as \nodes" but without morphisms, i.e. all Fij = ;, weobtain the notion of the categorical co-product, `i2I Xi (as a special colimit)and product, Qi2I Xi (as a special limit), respectively. The morphisms fi in thecorresponding de�nition of lim�!(D) and lim �(D) are called \canonical injections"of the co-product and \canonical projections" of the product, respectively. Thisin particular means that we can derive special notions of limits and colimits ,corresponding to the shape of the base diagram D.Other important colimits are:Initial Object Colimit of the diagram consisting of the empty set.Coequalizers Colimits of diagrams consisting of two parallel arrows A f //g // B .Pushouts Colimits of diagrams of the form: A f //g
��

BC .The dual notions are:Terminal Object Limit of the diagram consisting of the empty set.Equalizers Limits of diagrams consisting of two parallel arrows A f //g // B .Pullbacks Limits of diagrams of the form: Bf
��C g // A .



3.5.2 Functors and Natural Transformations 613.5.2 Functors and Natural TransformationsDe�nition 3.74 (Functor) Let C and D be two categories. A functor fromC to D is an operation which assigns to each object C of C an object F (C)of D, and to each morphism f of C a morphism F (f) of D in such a waythat F respects the domain and the codomain as well as the identities and thecomposition:� If f 2 C(A;B) then F (f) 2 D(F (A); F (B)),� F (idA) = idF (A),� F (f � g) = F (f) � F (g).A functor as de�ned above is also called covariant functor. A contravariantfunctor from C to D is a functor F : Cop ! D.De�nition 3.75 (Natural Transformation) Let F;G be functors from a cat-egory C to a category D. A natural transformation � from F to G is a mappingassigning to each object A in C a morphism �A from F (A) to G(A) in D suchthat for every arrow f : A! B in C the following diagram in DF (A) F (f) //�A
��

F (B)�B
��G(A) G(f) // G(B)commutes. That is, for every arrow f : A ! B in C we have: G(f) � �A =�B � F (f).The arrows �A are called the components of the natural transformation � .If F and G are functors we will denote the family of all natural transforma-tions from F to G by [F;G].De�nition 3.76 (Natural Isomorphism) A natural transformation � : F !G is called a natural isomorphism if every component �A is invertible (i.e., thereis a natural transformation ��1 : G! F with ��1A = (�A)�1).It is also important to note that one can compose functors and naturaltransformations in a straightforward way.Let a natural transformation � : F ! G between two functors F;G : C ! Dbe given. Let additionally functors H : B ! C and K : D ! E be given.Then � �H (or �H) denotes the natural transformation from FH to GH givenby the components (�H)A := �H(A) (A an object in B) and K � � (or K�)denotes the natural transformation from KF to KG de�ned componentwise as(K�)A := K(�A) (A an object in C).It is straightforward to check that the fact that � is a natural transformationguarantees that �H and K� are natural transformations.



62 3 BackgroundMoreover, given three functors F;G and H, all from C to D, and two naturaltransformations � : F ! G and � : G! H, one easily de�nes the compositionof � and �: (� � �)A = �A � �A, where A is an object in C and �A and �A, byde�nition, arrows in D. Checking that � � � de�nes a natural transformation istrivial.3.5.3 On the Yoneda LemmaWe now introduce one more concept, that of hom-functors, in order to stateone of the fundamental theorems in category theory, the Yoneda lemma.De�nition 3.77 (Hom-functors) Let C be a locally small category. For anarbitrary object A in C we de�ne a functor F = C(A; ) : C ! Sets by F (B) =C(A;B) and for any arrow f : B ! C in C we let F (f) = C(A; f) : C(A;B)!C(A;C) map h : A! B to f � h : A! C.We obtain a covariant functor F : C ! Sets.Analogously, we de�ne G = C( ; A), a contravariant functor from C toSets, on objects B of C and arrows f : B ! C in C by G(B) = C(B;A)and G(f) = C(f;A) : C(C;A) ! C(B;A) which maps any h : C ! A toh � f : B ! A.Each object C of C gives rise to a functor y(C) : Cop ! Sets, de�ned onobjects by y(C)(D) = C(D;C) and on morphisms � : D0 ! D by y(C)(�) :C(D;C)! C(D0; C), y(C)(�)(u) = u � � for every u : D ! C.If f : C1 ! C2 is a morphism in C, there is a natural transformationy(C1)! y(C2) obtained by composition with f . This makes y into a functory : C ! SetsCop; y(C) = C( ; C):The functor y is called the Yoneda embedding.Theorem 3.23 (Yoneda Lemma) Let C be a locally small category, and Aan object of C. If F : C ! Sets is a covariant functor and if � : C(A; ) ! Fdenotes a natural transformation then there is a 1-1-correspondence betweenthe set of natural transformations [C(A; ); F ] and the set F (A), given by: � 7!�A(idA).If we choose F = C(A0; ) we obtain a 1-1-correspondence between the set ofmorphisms C(A0; A) and the set of natural transformations [C(A; ); C(A0; )].3.5.4 Adjoint FunctorsWe continue with another basic and widely applicable concept, that of adjointfunctors.De�nition 3.78 (Adjoint Functors) Let F : C ! D and G : D ! C befunctors. We say that F is left adjoint to G if there is a natural isomorphism� : D(F ; ) �! C( ; G ) between these hom-functors from Cop�D ! Sets, givenby the components �AB : D(FA;B) �! C(A;GB).



3.5.4 Adjoint Functors 63Pictorially: F (A)
��

A
��B G(B)where the left part is in D and the right in C.The adjointness expresses that there is a 1-1 correspondence between thearrows F (A)! B in D and A! G(B) in C.The above de�nition says that there are two natural transformations, �from the hom-functor D(F ; ) to C( ; G ) and � = ��1 back from C( ; G ) toD(F ; ).De�nition 3.79 (Unit of an Adjunction) Let � be the natural isomorphismdescribing an adjunction between functors F : C ! D and G : D ! C,with Fleft adjoint to G.The unit � of this adjunction is the natural transformation between idC andGF given by the components �A := �AF (A)(idF (A)) : A! GF (A).Proposition 3.24 The unit � of a transjunction satis�es the following uni-versal property: for every morphism g : A ! G(B) in C there is exactly onemorphism f : F (A)! B in D such that g = G(f) � �A.The co-unit of an adjunction can be de�ned by simply proceeding dually.De�nition 3.80 (Co-unit of an Adjunction) Let � be the natural isomor-phism describing an adjunction between functors F : C ! D and G : D ! C,withF left adjoint to G. Let � be the inverse of �. The co-unit " of this adjunctionis the natural transformation between F � G and idD given by the components"B := �G(B)B(idG(B)) : FG(B)! B.The co-unit of course also has a universal property, namely: for all f :F (A) ! B (arrows in D) there is exactly one g : A ! G(B) in C such thatf = "B � F (g).Theorem 3.25 Let F and G be functors C F // DGoo . An adjunction (F;G; �)such that F is left adjoint to G is completely given by one of the following threeequivalent properties.1. Functors F and G and a natural transformation � : idC ! GF withthe universal property of the unit �. (Then, � is de�ned by �AB(f) =G(f) � �A.)2. Functors F and G and a natural transformation " : FG ! idD with theuniversal property of the co-unit ". (Then, � is de�ned as the inverse of� de�ned as �AB = "B � F (g).)



64 3 Background3. Functors F and G and natural transformations � and " such that "F �F� = idF and G" � �G = idG. These two triangular identities are repre-sented in Diagram 3.1. (Then, � is again de�ned in terms of � as above.)FF�
��

idF
""F

FF
FF

FF
FF

G �G //idG ""F
FF

FF
FF

FF
GFGG"

��FGF "F // F G (3.1)3.5.5 Other Categorical NotionsDe�nition 3.81 (Exponentiation) A category C has exponentiation if it hasall binary products and if for every pair of objects A;B there is an object BA anda morphism ev : BA�A! B (the evaluation map) with the following universalproperty: for every f : C�A! B there exists exactly one f̂ : C ! BA such thatev � (f̂ � idA) = f ; this can be expressed by the commutativity of the followingdiagram: C �Af̂�idA
��

f
##G

GG
GG

GG
GGBA �A ev // BThe assignment f 7! f̂ de�nes a canonical bijection from C(C � A;B) toC(C;BA). Recalling the de�nition of an adjunction, which involves a naturalisomorphism between D(F ; ) and C( ; G ), this suggests that we may be ableto �nd an adjunction based on this bijection. Indeed, the morphisms f and f̂are called exponential adjoints, motivated by the following result.Proposition 3.26 Let C be a category with exponentiation. De�ne the endo-functors F := � A (with F (f) = f̂ � idA) and G = ( )A. Then G is rightadjoint to F .For further basic categorical notions we refer to the literature on categorytheory. We refer here only to a few selected titles, namely [AHS90], [ML71],[HS79], [Pie91], [Gol84], and [MLM92].3.6 Sheaf and Topos Theory | Basic NotionsIn this section we present basic notions of sheaf and topos theory. For detailswe recommend [MLM92] and [Gol84]. For some remarks on sheaf theory andespecially remarks on sheaves of algebras we refer to [Joh82], Chapter V.1.3.6.1 Sheaves over Topological SpacesIn what follows we present well known results, that can be found for examplein [Joh82] or [MLM92]. We closely follow the presentation of sheaves given in[Joh82].



3.6.1 Sheaves over Topological Spaces 65An indexed system of sets (Fi)i2I can alternatively be regarded as a mapf : F = `i2I Fi ! I, with the property that for every x 2 F , f(x) = i if andonly if x 2 Fi. If the index set I has a topology, then the set F can be endowedwith a topology such that f is continuous (this then expresses the fact that thesets in the family (Fi)i2I are continuously indexed).De�nition 3.82 (Bundle) A bundle over I is a triple (F; f; I) where F andI are topological spaces and f : F ! I is a continuous map with codomain I.For every i 2 I, f�1(i) will be denoted by Fi, and F = `i2I Fi.De�nition 3.83 (Morphism of Bundles) Let (F; f; I) and (G; g; I) be twobundles over I. A morphism between (F; f; I) and (G; g; I) is a continuous maph : F ! G such that g � h = f , i.e. the following diagram is commutativeF f ��?
??

??
??

?
h // Gg
��� �
� �
� �
� �IThe category of bundles over I is denoted Sp/I.De�nition 3.84 (Sections) Let (F; f; I) be a bundle over I. A partial sectionde�ned on a open subset U � I is a continuous map s : U ! F with the propertythat f �s is the inclusion U � I. A section de�ned on I is called global section.The set of all partial sections over the open subset U of I will be denoted by�(F; f)(U).In what follows 
(I) will denote the topology on I. 
(I) is a poset and canbe regarded as a category, with inclusions as morphisms.De�nition 3.85 (Presheaf) A presheaf on a topological space I is a functorP : 
(I)op ! Sets.Let U � V be open sets in I, and let iVU : U ,! V be the correspondingmorphism in 
(I). We will denote the restriction P (iVU ) : P (V )! P (U) by �VU .De�nition 3.86 (Sheaf) A sheaf on a topological space I is a presheaf F :
(I)op ! Sets that additionally satis�es the following condition:� Given an open cover (Ui)i2I of U and a family of elements si 2 F (Ui)such that for every pair (i; j) we have �UiUi\Uj (si) = �UjUi\Uj (sj), there is aunique s 2 F (U) with �UUi(s) = si for all i 2 I.The morphisms of (pre)sheaves are natural transformations of functors. Thecategory of presheaves over I will be denoted PreSh(I), and the category ofsheaves over I will be denoted Sh(I).For every bundle (F; f; I) let �(F ) = fs : I ! F j s continuous and f � s =idIg be the set of all the global sections of F . � de�nes a functor � : Sp=I !PreSh(I).



66 3 BackgroundDe�nition 3.87 (Stalk) Let F be a presheaf on I. The stalk of F at a pointi 2 I is the colimit Fi = lim�!i2UF (U), where U ranges over all open neighbor-hoods of i.The collection of stalks (Fi)i2I is an I-indexed family of sets. Let D(F )denote the disjoint union of the stalks, and let � : D(F ) ! I be the canonicalprojection on I. For s 2 F (U) and i 2 U , let si be the image of s in Fi (thegerm of s at i). The map s : U ! D(F ), s(i) = si de�nes a partial section ofthe projection D(F )! I; we impose on D(F ) the coarsest topology for whichall such sections are continuous.Let F be a presheaf. The construction above de�nes a bundle D(F ) =(D(F ); �; I). A functor D : PreSh(I)! Sp=I can be de�ned this way.Theorem 3.27 The functor D : PreSh(I) ! Sp=I preserves �nite limits andis left adjoint to � : Sp=I ! PreSh(I).Let LH=I be the full subcategory of Sp=I whose objects are of the form(F; f; I) with f : F ! I a local homeomorphism (i.e. for every a 2 F there areopen neighborhoods U and U 0 of a respectively f(a) such that f : U ! U 0 isa homeomorphism). It can be shown that any bundle map between two localhomeomorphisms f : F ! I, f 0 : F 0 ! I is itself a local homeomorphism.Theorem 3.28 The functors D and � restrict to an equivalence of categoriesbetween Sh(I) and LH=I.Note that for every presheaf P , �(D(P )) is a sheaf. We obtain therefore afunctor � �D : PreSh(X)! Sh(X).Theorem 3.29 The inclusion Sh(X) ! PreSh(X) has a left adjoint, namelythe composition � � D : PreSh(X) ! Sh(X). This functor is known as theassociated sheaf functor or the shea��cation functor.The associated sheaf functor is left exact, in the sense that it preserves all�nite limits.The category Sh(X) of sheaves over a topological space X has many goodproperties: it has limits, colimits and exponentiation; and additionally it has anotion of subobject and a subobject classi�er.Limits: For any space X, Sh(X) has all small limits (and they are computedpointwise). The inclusion of Sh(X) in PreSh(X) preserves all these limits.Colimits: All small colimits exist in Sh(I). They can be computed by �rstcomputing the colimit in the category of presheaves and then taking the as-sociated sheaf of the resulting presheaf, using the principle that left adjointspreserve colimits.Exponentiation: For every topological space X, the category Sh(X) has ex-ponentiation. Namely, let P and F 2 Sets
(X)op be presheaves. If F is a sheaf,



3.6.1 Sheaves over Topological Spaces 67then so is the (presheaf) exponential FP . Since this will be needed later, webriey indicate the way FP is de�ned:On objects: FP (U) = Hom(PjU ; FjU ) in the categoryof presheaves over U(PjU ; FjU are the restrictions of P; F to O(U)op),On morphisms: for V � U ,FP (i) : FP (U) = Hom(PjU ; FjU )! FP (V ) = Hom(PjV ; FjV )is de�ned by FP (i)(�) = �jPjV .De�nition 3.88 (Subfunctor) Let F : Cop ! Sets. A subfunctor of F is afunctor G : Cop ! Sets such that(1) G(C) � F (C) for every C 2 jCj.(2) for every f : C ! D, G(f) : G(D)! G(C) is a restriction of F (f).De�nition 3.89 (Subsheaf) A subsheaf of a sheaf F is a subfunctor of Fwhich is itself a sheaf.De�nition 3.90 (Equivalence of Morphisms) Two monomorphisms f : A!D and g : B ! D are equivalent if there is an isomorphism h : A ! B withf = g � h.De�nition 3.91 (Subobject) A subobject of D is an equivalence class ofmonomorphisms into D.It follows that a subobject of a sheaf F in the category Sh(X) is isomorphicto a subsheaf of F .De�nition 3.92 (Subobject Classi�er) A subobject classi�er is a monictrue : 1! 
 (in a category with �nite limits) such that for every monic S ! Xthere is a unique � : X ! 
 which forms the pullback squareS
��

! // 1true
��X � // 
Let X be a topological space and O(X) be the family of open sets of X.Let the presheaf 
 : O(X)op ! Sets be de�ned:On objects: 
(U) = fW jW � U;W open in Xg,On morphisms: If i : V � U is the inclusion, then 
(i) = �UV : 
(U)! 
(V )is de�ned by �UV (W ) = W \ V .Theorem 3.30 For any topological space X, the presheaf 
 is a sheaf and isa subobject classi�er for Sh(X)



68 3 Background3.6.2 Grothendieck TopologiesA Grothendieck topology is a generalization of the concept of a topology on aset. It is based on a notion of \cover" which is a generalization of open coversin a topology. Here, we briey give the basic de�nitions { for more details cf.[MLM92].De�nition 3.93 (Sieve) A sieve S on an object C in a category C is a collec-tion of morphisms in C with codomain C which is closed under right composition(i.e. if f : B ! C 2 S, then for any g : A! B, the composition g � f : A! Cis in S).Alternatively, a sieve can be seen as a subobject S of y(C), where y : C !SetsCop is the Yoneda embedding (cf. Section 3.5.3), y(C) = C( ; C).De�nition 3.94 (Grothendieck topology) A Grothendieck topology J ona category C is a function J which assigns to each object C 2 C a collectionJ(C) of sieves on C, in such a way that the following conditions are satis�ed:(1) [Identity cover] For every object C the maximal sieve ff j cod(f) = Cg isin J(C),(2) [Stability] If R 2 J(C) and f : B ! C then the sieve f�(R) = fg : A !B j f � g 2 Rg is in J(B),(3) [Transitivity] If R1 2 J(C) and R2 is any sieve on C such that f�(R2) 2J(B) for all f : B ! C 2 R1, then R2 2 J(C).If S 2 J(C), one says that S is a covering sieve, or that S covers C.Intuitively, condition (1) states that the sieve generated by the identityarrow is a cover, condition (2) states that given a cover of an object and asubstructure of that object, the restriction of the cover to the substructure isa cover of the substructure, and condition (3) states that covers of covers areagain covers.De�nition 3.95 (Site) A site is a pair (C; J), consisting of a (small) categoryC and a Grothendieck topology J on C.In the case of ordinary topological spaces, one usually describes an opencover of U as just a family fUi j i 2 Ig of open subsets of U with unionSUi = U ; such a family is not necessarily a sieve, but it generates a sieve {namely, the collections of all open sets V � U with V � Ui for some Ui. Inthe more general context of a category with pullbacks, this way of generating acovering sieve can be carried out in terms of a so-called basis for a Grothendiecktopology.De�nition 3.96 (Basis) A basis for a Grothendieck topology on a category Cwith pullbacks is a function K which assigns to each object C a collection K(C)consisting of families of morphisms with codomain C, such that:



3.6.3 Sheaves on a Site 69(1) If f : C 0 ! C is an isomorphism, then ff : C 0 ! Cg 2 K(C);(2) If ffi : Ci ! C j i 2 Ig 2 K(C), then for any morphism g : D ! C thefamily of pullbacks f�2 : Ci �C D ! D j2 Ig is in K(D);(3) If ffi : Ci ! C j i 2 Ig 2 K(C), and if for each i 2 I one has afamily fgij : Dij ! Ci j j 2 Iig 2 K(Ci), then the family of compositesffi � gij : Dij ! C j i 2 I; j 2 Iig is in K(C).The elements R of K(C) are called covering families or covers of C.Note that a Grothendieck topology J is not always a basis because condition(1) above may not be satis�ed. A basis K generates a Grothendieck topologyJ by (S 2 J(C), 9R 2 K(C)R � S) :Let C be a category and J a Grothendieck topology on C. A sieve S on Cis called closed (for J) if and only if for every arrow f : D ! C in C,f�(S) 2 J(D) if and only if f 2 S:3.6.3 Sheaves on a SiteThe main di�erence between the de�nition that will be given in this sectionand the de�nitions 3.85 and 3.86 given in section 3.6.1 is the fact that here thetopology on the index set 
(I) is replaced with a more general category C.De�nition 3.97 (Presheaf) A presheaf on a category C is a contravariantfunctor from C to the category of sets Sets.A sheaf is a presheaf that satis�es an additional \gluing" condition.De�nition 3.98 (Sheaf) A sheaf on a site (C; J) is a presheaf F : Cop !Sets such that for every object C of C and every covering sieve R 2 J(C),each morphism R ! F in SetsCop has a unique extension to a morphismHomC(�; C)! F .Remark 3.31 If F is a presheaf F 2 SetsCop, and R 2 J(C) is a cover forC, a matching family of elements of F is a function that assigns to everyelement f : D ! C of R an element xf 2 F (D) such that F (g)(xf ) = xfg.An amalgamation of such a matching family is an element x 2 F (C) withF (f)(x) = xf for every f : D ! C 2 R.Then the previous de�nition states that F is a sheaf if and only if every matchingfamily for any cover of any object of C has a unique amalgamation.This can be also expressed by requiring that for every object C of C and eachcover R 2 J(C) the following diagram is an equalizer:F (C) e�!Yf2RF (dom(f)) p //a //
Yf;g;f2R;dom(f)=cod(g)F (dom(g)):



70 3 BackgroundLet K be a basis for a topology on a category C with pullbacks, and J theGrothendieck topology generated by K. In this case, the sheaves for J can bedescribed in terms of the basis K as follows: Given a K-cover R = ffi : Ci !C j i 2 Ig of C, a family of elements xi 2 F (Ci) is said to be matching for R i�F (�1ij)(xi) = F (�2ij)(xj) for every i; j 2 I, where �1 and �2 are the projectionsfrom the pullback: Ci �C Cj�1ij
��

�2ij // Cjfj
��Ci fi // C (3.2)An amalgamation for fxigi2I is then an x 2 F (C) with F (fi)(x) = xi for everyi 2 I.Proposition 3.32 (cf. [MLM92]) Let F be a presheaf on C. Then F is asheaf for J if and only if for any cover ffi : Ci ! C j i 2 Ig in the basis K,any matching family fxigi has a unique amalgamation.Let C be a small category and J a Grothendieck topology on C. Let Sh(C; J)be the full subcategory of SetsCop consisting of the sheaves with respect to J .Theorem 3.33 (cf. [MLM92]) The inclusion functor � : Sh(C; J) ! SetsCophas a left adjoint a : SetsCop ! Sh(C; J) called the associated sheaf functor.Moreover, the functor a commutes with �nite limits.The composition a � i : Sh(C; J) ! Sh(C; J) is naturally isomorphic to theidentity functor.3.6.4 TopoiIn what follows we present elementary conditions (or axioms) that turn a cat-egory E into a topos.De�nition 3.99 (Subobject Classi�er) If C is a category with a terminalobject 1, then a subobject classi�er for C is a C-object 
 together with a C-morphism true : 1! 
 that satis�es the following axiom:
-axiom For every monic f : A ,! E there exists a unique C-morphismcharA : E ! 
 (denoted also charf ) such that the following diagramis a pullback: A!

��

f // EcharA
��1 true // 
 (3.3)The morphism charA is called the characteristic morphism of the subobject Aof E.Note that when a subobject classi�er exists in a category, it is unique up toisomorphism.



3.6.4 Topoi 71Theorem 3.34 (cf. [MLM92]) Let f : A ,! E and g : B ,! E be two subob-jects of E. Then f ' g if and only if charA = charB.Consequence 3.35 (cf. [MLM92]) The assignment of charA to f : A ,! Eestablishes a one-one correspondence between the collection Sub(E) of subobjectsof an object E, and the collection HomC(E;
) of arrows from E to 
.De�nition 3.100 (Topos) An elementary topos is a category E such that(1) E is �nitely complete,(2) E is �nitely co-complete,(3) E has exponentiation,(4) E has a subobject classi�er.Remark The properties (1) and (3) constitute the de�nition of cartesian closedcategories. The condition (2) is implied by the combination (1), (3) and (4)(cf. [MLM92]). Thus, a topos is a cartesian closed category with a subobjectclassi�er.In what follows we give the main properties of topoi that will be used in thethesis.De�nition 3.101 (Image) Let f : A! B be a morphism in C. The image off , Im(f) is a monomorphism m : M ! B such that there is a unique e : A!Mwith f = m � e such that the following universality property is satis�ed:A f //e
!!C

CC
CC

CC
C 8g

��1
11
11
11
11
11
11
11

BM m =={{{{{{{{9!'
��8N 8hmonoFFFor every N , for every monomorphism h : N ! B and every g : A ! N suchthat f = h � g there is a unique ' : M ! N such that m = h � ' and g = ' � e.Proposition 3.36 In a topos, every monomorphism is an equalizer.Proof : From the de�nition of a subobject classi�er, every monomorphismis the equalizer of the following diagram:M m // N ! //charm //1 true // 
Proposition 3.37 In a topos, every arrow f has an image m and factors asf = m � e (with e epimorphism).The proof can be found in [MLM92], p.185. Since we will need it later, wepoint out the categorical constructions necessary for determining m and e:



72 3 BackgroundLet f : A! B. Let x; y : B ! C be such thatA f //f
��

By
��B x // Cis a pushout. Let m : M ! B be the equalizer of x; y : B ! C. By theuniversality property of the equalizer, there is a unique e : A ! M such thatf = m � e. Hence, the image of f is obtained by pushouts and equalizers in thetopos E .Proposition 3.38 For each object A in a topos the partially ordered set Sub(A)of subobjects of A is a lattice. Moreover, for each arrow k : A ! B, takingpullback along k de�nes a morphism k�1 : Sub(B)! Sub(A) of partially orderedsets (i.e. a functor). This functor has as right adjoint the functor 9k which sendseach subobject S of A to its image under k in B, and a left adjoint 8k.Since this will be used in what follows, we sketch here how the intersectionand union are obtained in Sub(A). The intersection of two subobjects S; T ,! Ais the pullback in the Diagram3.4:S \ T //

��

T
��S // A (3.4)The union of two subobjects S; T ,! A is obtained as follows: We �rst formthe coproduct S + T of S and T in the topos. The arrow S + T ! A obtainedby the universality property of the coproduct has an image M as shown inDiagram 3.5. M is a subobject of A, which contains both S and T . It is notdi�cult to see that M satis�es the properties of a g.l.b. hence M = S [ T .S + T

##G
GG

GG
GG

G Too

��

M
  A

AA
AA

AA
AS

OO

// A (3.5)
3.6.5 Geometric MorphismsThe de�nition of a \map" between two topoi is based on the examples of sheaveson topological spaces. Let X and Y be topological spaces and Sh(X), Sh(Y) thetopoi of sheaves on X, resp. Y .A continuous function f : X ! Y gives rise to a pair of adjoint functors:an inverse image functor f� and a direct image functor f�, with f� left adjointto f�, as follows: Sh(X) f� // Sh(Y)f�oo f� ` f�: (3.6)



3.6.6 Morphisms of Sites 73The direct image functor is de�ned by composition with f�1, namely ifF : 
(X)op ! Sets is a sheaf on X and U is any open subset of Y , thenf�(F )(U) = F (f�1(U)). The inverse image functor is usually de�ned in termsof the �etale spaces corresponding to the sheaves: if p : E ! Y is �etale, thenf�(E p! Y ) is the �etale space over X de�ned by pullback along f , as in thefollowing diagram: f�(E) //

��

Ep
��X f // Y (3.7)From this de�nition it follows that f� preserves �nite limits, i.e. it is leftexact. Additionally, since f� ` f� it follows that f� preserves all colimits andf� preserves all limits.De�nition 3.102 (Geometric Morphism) A geometric morphism f : E !F between the topoi E and F is a pair of functors f� : E ! F and f� : F ! Esuch that f� is left adjoint to f� and f� is left exact. Then f� is called the directimage part of f and f� the inverse image part of the geometric morphism.3.6.6 Morphisms of SitesDe�nition 3.103 Let (C; J) and (D;K) be sites. A functor � : C ! D pre-serves covers if and only if for every covering sieve S 2 J(C) the sieve �(S)generated by f�(u) j u : C 0 ! C 2 Sg is a covering sieve of �(C) in D.De�nition 3.104 (Morphism of Sites) Let (C; J) and (D;K) be sites. Sup-pose that C and D are closed under �nite limits. A functor � : C ! D is amorphism of sites if � preserves �nite limits and covers.Theorem 3.39 ([MLM92], Th.2, p.409) For categories C and D with �nitelimits, any morphism of sites � : (C; J)! (D;K) induces a geometric morphismf : Sh(D;K) ! Sh(C; J); the direct image functor f� : Sh(D;K) ! Sh(C;J)sends a sheaf F on (D;K) to the composition f�(F ) = F � �, and the inverseimage functor f� : Sh(C; J)! Sh(D;K) sends a sheaf G on (C; J) to the tensorproduct G
C A� whereA� = a � y � � : C ��! D y�! SetsDop a�! Sh(D, K):If the sites (C; J) and (D;K) do not have �nite limits a similar theorem canbe formulated.De�nition 3.105 (Covering Lifting Property) A functor � : D ! C issaid to have the covering lifting property (clp) if for any object D of D and anyJ-cover S of �(D), there exists a K-cover R of D such that �(R) = f�(u) ju 2 Rg � S.In other words, � has clp if for every object D of D, every cover of the imageof D is re�ned by the image of a cover of D itself.



74 3 BackgroundTheorem 3.40 ([MLM92], Th.4, p.412) Let (C; J) and (D;K) be sites, andlet � : D ! C and � : C ! D be functors such that � is left adjoint to �. If� has the covering lifting property, or equivalently, if � preserves covers, thenthere is an induced geometric morphism f : Sh(D;K) ! Sh(C; J), with inverseand direct image functors described, for sheaves F on (C; J) and G on (D;K)by f�(F ) = a(F � �) and f�(G) = G � �:In fact just the functor � : D ! C alone su�ces to give a geometric mor-phism of sheaves, provided � has the covering lifting property.Theorem 3.41 ([MLM92], Th.5, p.412) Let � : D! C be a functor havingthe covering lifting property. Then � induces a at and continuous functorA� : C ! Sh(D;K), de�ned by A�(C) = a � C(��; C), and hence a geometricmorphism fSh(D;K)! Sh(C; J), with inverse image functor f�(F ) ' a(F � �)for any sheaf F on C.3.6.7 Geometric LogicLet L be a many-sorted �rst-order language given by a collection of \sorts" or\types", collections of relation symbols and of function symbols together withtheir arities. Starting from the language L one can inductively de�ne termsand atomic formulae; from atomic formulae one can build up more complicatedformulae using the connectives _;^;);: and quanti�ers for any sort X.For such a �rst order language L one can de�ne an interpretation of L in atopos E by associating an object XM of E to every sort X in the language, asubobject RM � XM1 � : : :�XMn to every relation symbol R � X1 � : : : �Xnof L and an arrow fM : XM1 � : : : �XMn ! YM in E to each function symbolf : X1 � : : :�Xn ! Y .Given such an interpretation M of L in a topos E , one can de�ne for eachterm t(x1; : : : ; xn) of sort Y an arrow tM : XM1 � : : : � XMn ! YM , and forevery formula �(x1; : : : ; xn) with free variables FV (�) � fx1; : : : ; xng (wherexi is of sort Xi), a subobject f(x1; : : : ; xn) j �(x1; : : : ; xn)g � XM1 � : : : �XMn .For example, if �(x1; : : : xn) = R(t1; : : : ; tk) for some relation symbolR, thenthe subobject f(x1; : : : ; xn) j R(t1; : : : ; tk)g is the pullback of the subobject RMof X1 � : : : �Xn along DtM1 ; : : : ; tMk E.We interpret the conjunction of two formulae by forming the pullback ofthe corresponding subobjects; similarly disjunctions are interpreted as unionsin E (see Theorem 3.38 and the subsequent comments). To interpret 8 and9 recall that for each arrow k : A ! B, taking pullback along k de�nes amorphism k�1 : Sub(B) ! Sub(A) of partially ordered sets (i.e. a functor).This functor has a right adjoint 9k : Sub(A) ! Sub(B) and a left adjoint8k : Sub(A)! Sub(B). Thus, quanti�ers of the language L can be interpretedby these adjoints:f(x1; : : : ; xn) j (8x : X)�(x1; : : : ; xn; x)gM = 8�(ff(x1; : : : ; xn; x) j �(x1; : : : ; xn; x)gM );f(x1; : : : ; xn) j (9x : X)�(x1; : : : ; xn; x)gM = 9�(ff(x1; : : : ; xn; x) j �(x1; : : : ; xn; x)gM );where � : XM1 � : : :�XMn �XM ! XM1 � : : :�XMn is the projection.



3.6.7 Geometric Logic 75De�nition 3.106 (Coherent (Geometric) Formulae) We call coherent for-mulae (called also geometric formulae) those formulae built up from atomicformulae using only the connectives _ and ^ and the quanti�er 9.De�nition 3.107 (Coherent (Geometric) Axioms) We call coherent ax-ioms (called also geometric axioms) are formulae of the form (8x1; : : : ; xn)(�) ) where � and  are coherent formulae.We say that a coherent axiom (8x1; : : : ; xn)(� )  ) is satis�ed in a giveninterpretation M of L in a topos E if f(x1; : : : ; xn) j �gM is a subobject off(x1; : : : ; xn) j  gM in E .Let now f : F ! E be a geometric morphism. Then the inverse imagefunctor f� yields for every interpretation M of L in E an interpretation f�Min F .The functor f� preserves arbitrary colimits and �nite limits. Therefore, itpreserves equalizers, intersections (obtained by pullback), unions (obtained asimages of coproducts, where images are obtained by pushouts and equalizers)and image factorization (obtained by by pushouts and equalizers); hence itpreserves the interpretation of any coherent formula. Thus, for every formulabuilt up from atomic formulae using only the connectives _ and ^ and theconnective 9: f�(f(x1; : : : ; xn) j �gM ) = f(x1; : : : ; xn) j �gf�M :In general f� will not preserve the interpretation of universally quanti�ed for-mulae. Nevertheless, one can see that for every coherent axiom� = (8x1; : : : ; xn)(�)  )with � and  coherent formulae, if � is satis�ed in a given interpretation M ofL in the topos E then � is satis�ed in the induced interpretation f�M in F .To see this, letM be an interpretation of L in E and f a geometric morphism.Then � is satis�ed in the interpretation M of L in E if and only if f(x1; : : : ; xn) j�gM is a subobject of f(x1; : : : ; xn) j  gM . Since f� preserves all �nite limitsit also preserves pullbacks, sof�(f(x1; : : : ; xn) j �gM ) � f�(f(x1; : : : ; xn) j  gM ) is a subobject:Using the fact that f�(f(x1; : : : ; xn) j �gM ) = f(x1; : : : ; xn) j �gf�M andf�(f(x1; : : : ; xn) j  gM ) = f(x1; : : : ; xn) j  gf�M it follows thatf(x1; : : : ; xn) j �gf�M � f(x1; : : : ; xn) j  gf�M is a subobject:The direct image functor f� being right adjoint preserves limits, but it doesnot normally preserve unions or images, so we cannot expect it to preserve thevalidity of coherent axioms.We will briey explain which are the formulae whose interpretations arepreserved by direct image functors. It is easy to see that the interpretation of



76 3 Backgrounda conjunction of atomic formulas is preserved by direct image functors. Exis-tential quanti�cation is not always preserved. We analyze once more the wayexistential quanti�ers are interpreted. Let �(x1; : : : ; xn; x) be a formula over L.Thenf(x1; : : : ; xn) j (9x)�(x1 ; : : : ; xn; x)gM = 9�(f(x1; : : : ; xn; x) j �(x1; : : : ; xn; x)g)Mwhere � is the corresponding projection function.By the de�nition of 9�, 9�(f(x1; : : : ; xn; x) j �(x1; : : : ; xn; x)gM is the imageof � � �f(x1; : : : ; xn; x) j �(x1; : : : ; xn; x)gM �! XM1 �: : :�XMn �XM �! XM1 �: : :�XMn :The image of � � � can be obtained as the equalizer of two arrows obtainedby the the pushout of � � � with itself. In the particular case when � � � is amonomorphism, the image of � � � is f(x1; : : : ; xn; x) j �(x1; : : : ; xn; x)gM . Thefact that � � � is a monomorphism reects the situation described intuitively(and informal) in what follows: \the value of x in XM with the property that�(x1; : : : ; xn; x) is uniquely determined by the values of x1; : : : ; x2; : : : ; xn".In such cases, the image factorization of ��� is preserved by any functor thatpreserves monomorphisms. This shows that a certain amount of quanti�cationis preserved by direct image functors.A formula � is called cartesian relative to a given theory T if it is constructedfrom atomic formulae using only conjunction and existential quanti�cation over\T -provably unique" variables (i.e. variables whose values, in any model of T ,are uniquely determined by the values of the remaining free variables). Carte-sian axioms (relative to a given theory T ) are similarly de�ned: they are axiomsof the form (8x)(�(x) )  (x)) where the formulae � and  are cartesian rela-tively to T . We say that a theory is cartesian if its axioms can be ordered suchthat each is cartesian relative to those which precede it. Then it follows thatmodels of cartesian theories are preserved by direct image functors.



Chapter 4A Brief Overview of RelatedResultsIn this chapter we review concepts and results that are directly linked to our ownresults, that will be presented in the thesis, as well as other related work. Webegin by presenting some basic results on sheaves of algebras and the Priestleyduality for distributive lattices. These will be used in Chapter 5, and a resultdue to Davey [Dav73] concerning a method of constructing a sheaf whose stalksare quotients of a given (universal) algebra will be used in Chapter 8, in thestudy of the behavior of interacting systems.We briey point out how both the sheaf representation of algebras and thePriestley representation for distributive lattices lead to �bered structures. Wethen present the basic results in many-valued resolution. We end by present-ing various models for the study of concurrency: �rst classical approaches areconsidered, then the method of logical �berings due to J. Pfalzgraf, and thenother models based on sheaves and presheaves.The results contained in this chapter are in general well-known and can befound in the literature. My contribution consists in organizing the information,pointing out the fact that in both Priestley and sheaf representation �beredstructures appear, and in extending a result concerning uni�cation in discrimi-nator varieties due to [Bur92] from a single equation, as appears in [Bur92], tosystems of equations (Theorem 4.2).4.1 Representations of Algebras4.1.1 Sheaves of AlgebrasThe stalks and the sets of global sections of a given sheaf may have an algebraicstructure (for example in algebraic geometry they may carry a ring or groupstructure; in model theory sheaves with algebraic structure and their model-theoretic properties are studied [Wer75]).We present here basic de�nitions and results concerning sheaves with alge-braic structure. More information about the subject can be found for examplein [Dav73], [Wer75], [KC79], [Joh82], [MLM92].77



78 4 A Brief Overview of Related ResultsLet A be an algebraic variety (i.e. a class of algebras closed under homo-morphic images, subalgebras and products). The variety A can be describedby its signature � and by a set Id of identities.Given an arbitrary category C with �nite products, we can interpret thenotion of an object with an A-structure in C by associating to every operationsymbol � 2 � with arity n a morphism �A : An ! A (where A is the objectcarrying the A-structure), and interpreting every equation as the statement onthe commutativity of an appropriate diagram.A homomorphism between two A-algebras A and B in the category C is amorphism h 2 HomC(A;B) such that for every operation symbol � 2 � witharity n, the following diagram commutesAnhn
��

�A // Ah
��Bn �B // B (4.1)The category obtained this way will be denoted AC.Let C;D be categories with �nite products and F : C ! D a functor pre-serving �nite products. Then for any algebraic variety A, F lifts to a functorAF : AC ! AD.Let A be an algebraic variety. We know that for every topological space I,the category Sh(I) has �nite limits (in particular �nite products). Thereforewe can construct the category ASh(I), as described above.Proposition 4.1 (cf. [Joh82]) Let F 2 Sh(I) be a sheaf. Assume that Fcarries an A-structure. Then for every U 2 
(I), F (U) has an A-structure, andfor every V � U , �UV : F (U)! F (V ) is a A-morphism. Conversely, if for everyU 2 
(I), F (U) has an A-structure, and for every V � U , �UV : F (U)! F (V )are A-morphisms, then one can give an A-structure to F .Proof : A sheaf F 2 ASh(I) carries anA-structure if and only if for every � 2� with arity n, there is a morphism in Sh(I) (i.e. a natural transformation) �F :F n ! F , and the diagrams corresponding to the identities that characterize Acommute.Therefore, if F 2 ASh(I) carries an A-structure, it follows that for everyopen set U 2 
(I), �F (U) : F n(U) ! F (U) for every � 2 �; and all diagramscorresponding to the identities that characterize A commute at U .As F n(U) = F (U)n it follows that for every U 2 
(I), F (U) carries an A-structure, and by the fact that for every � 2 �, �F is a natural transformationit follows that for every V � U , �UV : F (U)! F (V ) is a A-morphism. 2Therefore we may regard an A-algebra in Sh(I) as a sheaf on I with valuesin the variety A.Proposition 4.2 (cf. [Joh82]) Let F 2 Sh(I) be a sheaf. Assume that Fcarries an A-structure. Then its stalks form an indexed family of A-algebras.



4.1.1 A Construction by Davey 79Proof : For every i 2 I, the functor Stalki : Sh(I)! Sets which sends F toFi preserves �nite limits, and hence induces a functor ASh(I)! A. 2The converse is not true in general: we need to know in addition that thealgebra operations de�ned on the stalks \�t together continuously".For example, let � be a binary operation on A. Let the corresponding oper-ations in the �bers be �Ai : Ai�Ai ! Ai. These operations can be combined togive a map �D(A) : D(A)�ID(A)! D(A), where D(A) = `i2I Ai, � : D(A)!I the canonical projection and D(A)�ID(A) = f(y; y0) 2 D(A) j �(y) = �(y0)gis the �bered product. The morphism �D(A) is de�ned component-wise.These remarks lead to the following de�nition:De�nition 4.1 A sheaf of algebras over a topological space I is a triple (F; f; I)where:(1) F and I are topological spaces (F is called sheaf space and I base space).(2) The map f : F ! I is a local homeomorphism1 .(3) For every i 2 I, Fi = f�1(i) forms an algebra, and all the stalks are ofthe same type, �.(4) For every operation symbol � 2 �, with a(�) = n, the induced mapping� : F<n> ! F is continuous, where F<n> = f(a1; : : : ; an) 2 F n j f(a1) =: : : = f(an)g (with the topology induced by the product topology of F n),and �(a1; : : : ; an) = �Fi(a1; : : : ; an) if f(aj) = i for all j = 1; : : : ; n.A Construction by DaveyLet A be an algebra of similarity type �, let (�i)i2I be a family of congruenceson A, and let � be a topology on I. The following problem was addressed andsolved in [Dav73]: In which situation does a sheaf exist with �bers Ai = A=�isuch that for every a 2 A the map [a] : I ! `i2I Ai is a global section? Webriey present the main results from [Dav73].Two constructions are possible:Construction 1 ([Dav73]): Let (FA; f; I) be de�ned by FA = `i2I A=�i,and f : FA ! I be the natural projection. Assume that a subbasis for thetopology on FA is f[a](U) j U 2 �; a 2 Ag, where [a](U) = f[a](i) j i 2 Ug =f[a]�i j i 2 Ug.Construction 2 ([Dav73]): Let GA : � ! �Alg be de�ned on objects byGA(U) = A=�U , where �U = Vi2U �i and on morphisms, for every V � U bythe canonical morphism GA(U) = A=�U ! A=�V = GA(V ), a�U 7! a�V .Let Gi = lim�!i2UGA(U) be the �bers, and for every i 2 I let gi : Gi ! Ai bethe unique morphism that arises from the universality property of the colimit.gi(�Ui (a)) = a�i for every U 2 � and every i 2 I.1A map f : F ! I is a local homeomorphism if for every point x 2 F there exists aneighborhood U of x in F such that f(U) is open and f : U ! f(U) is a homeomorphism.



80 4 A Brief Overview of Related ResultsIt is easy to see that GA is a presheaf, but it is not necessarily a sheaf. Let(SGA; g; I) be the associated sheaf.Note that in the �rst construction, the stalk at i is isomorphic to Ai, but(FA; f; I) might be not a sheaf space. In the second construction, (SGA; g; I)is a sheaf space, but gi : Gi ! Ai may not be an isomorphism.Theorem 4.3 ([Dav73]) The following conditions are equivalent:(1) If [a]�i = [b]�i then there is an open neighborhood U of i such that forevery j 2 U , [a]�j = [b]�j .(2) (FA; f; I) is a sheaf of algebras.(3) For every i 2 I, gi : Gi ! Ai is an isomorphism.De�nition 4.2 (S-topology, [Dav73]) If (�i)i2I is a family of congruenceson an algebra A, then any topology on I that satis�es (1) is called an S-topology.Corollary 4.4 ([Dav73]) Assume that the topology on I is an S-topology withrespect to the family of congruences (�i)i2I . Then (FA; f; I) and (SGA; g; I) areisomorphic sheaves of algebras for which(1) The stalk at i is isomorphic to Ai = A=�i,(2) The map � : A ! �(I; FA) de�ned by �(a) = ([a]�i)i2I is a homomor-phism,(3) In A �! �(I; FA) � Qi2I A=�i pi! A=�i:(i) pi � � is an epimorphism, and(ii) A is a subdirect product of the family (A=�i)i2I if and onlyif Vi2I �i = �A (i.e. if and only if � is a monomorphism).The coarsest S-topology can be constructed as follows:Lemma 4.5 (cf. [Dav73, KC79]) Let A ,! Qi2I Ai pi! Ai be a subdirectproduct. The coarsest S-topology on I is the topology generated by the setsE(a; b) = fi 2 I j pi(a) = pi(b)g as a subbasis.We briey present a number of results, to round up the previous consider-ations.Lemma 4.6 ([KC79]) Suppose that A ,! Qi2I Ai pi! Ai is a subdirect productand let �1; �2 be two topologies on I. If �1 � �2 and �1 contains the equalizertopology induced by A, then �(FA; (I; �1)) � �(FA; (I; �2)).Note that, even if the topology on I is an S-topology, it is not always the casethat A is isomorphic to the algebra of global sections �(FA; I). The followingresults due to Davey (cf. [Dav73]) show in which case A is isomorphic to analgebra of global sections of a sheaf with �bers Ai = A=�i, for i 2 I.



4.1.2 Sheaf Representation Theorems in U.A. 81De�nition 4.3 (Global Family, cf. [Dav73]) A family (ci)i2I of elementsof A is said to be global with respect to (�i)i2I if for every i 2 I there existai1; : : : ; ain; bi1; : : : ; bin 2 A such that:(i) (aij ; bij) 2 �i for every j = 1; : : : ; n,(ii) If (aij ; bij) 2 �k for every j = 1; : : : ; n then (ck; ci) 2 �k.Theorem 4.7 ([Dav73]) Let (�i)i2I be a family of congruences on an algebraA and assume that A is subdirect product of (A=�i)i2I . Endow I with its coarsestS-topology. Then � : A ! �(I; FA) is an isomorphism if and only if for everyfamily of elements (ci)i2I global with respect to (�i)i2I , there is a c 2 A with(c; ci) 2 �i for every i 2 I.4.1.2 Sheaf Representation Theorems in Universal AlgebraLet A be an algebra and ffi : A ! Ai j i 2 Ig a subdirect representation ofA (i.e. such that fi is onto for every i 2 I and the canonical homomorphismf : A! Qi2I Ai is injective).The following construction (for further details see [Wer75]) leads to a rep-resentation of A by an algebra of sections over a sheaf of algebras.(a) De�ne a topology � on I such that all sets of the form fi 2 I jfi(a) = fi(b)g for a; b 2 A are open in I.(b) Let S = `i2I Ai and f : S ! I the canonical map. Endow Swith a topology such that all sets ffi(a) j i 2 Ig with a 2 A,are open in S.(c) For every a 2 A let [a] : I ! S be de�ned by [a](i) = fi(a).Then:(1) S = (S; f; I) is a sheaf of algebras over I (the standard sheaf of A),(2) For every a 2 A the map [a] : I ! S is a section,(3) The mapping [ ] : A! �S is an injective homomorphism (the standard sheafrepresentation of A).A Topological RepresentationIn this section we present results due to Werner [Wer75], see also [Dav73] or[BS81].Let A be the member of a discriminator variety. Let Con(A) be the con-gruence lattice of A, with greatest element r = A � A and smallest element4 = f(a; a) j a 2 Ag.We de�ne a topological space called the spectrum of A, which has the setSpec(A) = f� 2 Con(A) j � maximal g = f� 2 Con(A) j for all �; � � � ) � =� or � = rg as underlying set and is endowed with the equalizer topology, i.e.the topology generated by the sets E(a; b) = f� 2 Spec(A) j (a; b) 2 �g andtheir complements D(a; b) = f� 2 Spec(A) j (a; b) 62 �g.



82 4 A Brief Overview of Related ResultsLemma 4.8 ([Wer75]) The sets E(a; b) and D(a; b) form a basis of clopensets for the equalizer topology on Spec(A) (they form a Boolean algebra).Lemma 4.9 ([Wer75]) Let X � Spec(A) be a set of maximal congruences.Then the following conditions are equivalent:(1) The family f�� : A! A=� j � 2 Xg of canonical projections is a (faithful)subdirect representation of A,(2) Tf� j � 2 Xg = 4,(3) X [ frg is a dense subset of Spec(A).Theorem 4.10 ([Wer75]) For every algebra A in a discriminator variety, thetopological space Spec(A) is a Boolean space and its dual Spec(A)�, the Booleanalgebra of all clopen subsets of Spec(A), is the set fE(a; b) j a; b 2 Ag[fD(a; b) ja; b 2 Ag.De�nition 4.4 (Standard Sheaf Associated with an Algebra) Let V bea discriminator variety, A 2 V. The standard sheaf construction yields a sheafS(A) = (`�2Spec(A)A=�; f; Spec(A)) over Spec(A).Theorem 4.11 ([Wer75]) Let V be a discriminator variety, A 2 V and letS(A) be the standard sheaf associated to A. The standard sheaf representation[ ] : A! �S(A) which associates with every a 2 A the section [a] : Spec(A)!`�2Spec(A)A=�, de�ned for every � 2 Spec(A) by [a](�) = [a]� is an isomor-phism.A similar sheaf representation theorem by considering for every A 2 V theproper spectrum Spec0(A) = Spec(A)nfrg. Spec0(A) is not a Boolean space ingeneral (it is a Boolean space i� r is an isolated point of Spec(A) i.e. when r isa compact congruence). For details concerning the standard sheaf constructionin this case cf. [Wer75] (it is shown that in this case A has a representation asthe algebra of all sections with compact support).4.1.3 Applications: Uni�cation in Discriminator VarietiesLet V be a variety of algebras (of signature �) and let p(x1; : : : ; xn), q(x1; : : : ; xn)be two terms in T�(fx1; : : : ; xng).De�nition 4.5 (V-uni�er)(1) A V-uni�er of p and q is a substitution � : fx1; : : : ; xng ! T�(U) de�nedfor every i; 1 � i � n; by �(xi) = ti(u1; : : : ; um), such that V satis�esp(t1; : : : ; tn) = q(t1; : : : ; tn). A V-uni�er of p and q will be denoted inwhat follows by xi  ti(u1; : : : ; um); 1 � i � n:



4.1.3 Applications: Uni�cation in Discriminator Varieties 83(2) A given V-uni�er � : fx1; : : : ; xng ! T�(U), xi  ti(u1; : : : ; um); 1 �i � n; is more general than another V-uni�er �0 : fx1; : : : ; xng ! T�(U 0),xi  t0i(u01; : : : ; u0k); 1 � i � n; if there is a substitution � : fu1; : : : ; umg !T�(U 0), uj  t00j (u01; : : : ; u0k); 1 � j � m; such that �0 = � � �, i.e. suchthat V satis�est0i(u01; : : : ; u0m) = ti(t001(u01; : : : ; u0k); : : : ; t00m(u01; : : : ; u0k)):The notion `more general than' determines a preorder on the V-uni�ers ofp and q. If every pair of V-uni�able terms has a most general V-uni�er, whichis more general than all V-uni�ers of the pair, then we say that the variety hasunitary uni�cation. We know that discriminator varieties have unitary uni�ca-tion (cf. [Bur92]).In the following, X = fxi j i 2 Ng, X̂ = fx̂i j i 2 Ng, and ~X = f~xi ji 2 Ng, will be disjoint sets of variables contained in a countably in�nite setU = fui j i 2 Ng. If p is a term in variables from X, p̂ (resp. ~p) will denotethe term in variables from X̂ (resp. ~X) obtained by replacing each xi in p byx̂i (resp. ~xi).We can alternatively regard a uni�er of p(x1; : : : ; xn) and q(x1; : : : ; xn) as amorphism � : FV(fx1; : : : ; xng)! FV(U)such that �([p]) = �([q]) ([p]; [q] denote the equivalence classes of the terms presp. q in FV(fx1; : : : ; xng)).We can reformulate the relation \is more general than" on the set of uni�ersof p(x1; : : : ; xn) and q(x1; : : : ; xn) as follows: Let �1; �2 : FV(fx1; : : : ; xng) !FV(U) be uni�ers of p(x1; : : : ; xn) and q(x1; : : : ; xn). We say that �1 is more gen-eral than �2 (denoted by �1 � �2) i� there is a substitution � : FV(U)! FV(U)such that �2 = � � �1.Note that the existence of a most general uni�er does not depend on thenames of the variables (the problem of the names can be solved by composingwith an appropriate substitution that \renames" the variables).For the sake of simplicity, in what follows we will denote the equivalenceclass of the term p (resp. p̂, ~p) in FV (X) (resp. FV (X̂), FV ( ~X)) again by p(resp. p̂, ~p) instead of [p] (resp. [p̂], [~p]). From the context it will be clear whenwe consider the terms and when their equivalence classes.Theorem 4.12 ([Bur92]) Let V be a discriminator variety with switchingterm s(x; y; u; v) on the simple algebras in V. Let p(x1; : : : ; xn); q(x1; : : : ; xn) betwo terms that are uni�able in V and let r1; : : : ; rn be terms in variables fromX such that V satis�es p(r1; : : : ; rn) = q(r1; : : : ; rn). Then the substitutionxi  s(p̂; q̂; x̂i; r̂i); i = 1; : : : ; n, is a V-uni�er of p and q that is more generalthat any other V-uni�er of p and q.



84 4 A Brief Overview of Related ResultsThe theorem above (proved in [Bur92]) can be viewed as an extension ofL�owenheim's reproductive solutions of Boolean equations. Although in [Bur92]it is pointed out that every system of equations in a discriminator variety re-duces to one equation, we think that it is also of interest to obtain a generaliza-tion of Theorem 4.12 to systems of equations, exactly as in the case of Booleanequations (for L�owenheim's theorem that gives the form of reproductive solu-tions of systems of Boolean equations see e.g. [Rud74] p.978, Th.2.12).Theorem 4.13 Let V be a discriminator variety with switching term s(x; y; u; v)on the simple algebras of V. Let p1(x1; : : : ; xn); p2(x1; : : : ; xn); q1(x1; : : : ; xn)and q2(x1; : : : ; xn) be terms such that there are terms r1; : : : ; rn in variablesfrom X such that r = (r1; : : : ; rn) is a solution in V of the system of equations( p1(x) = q1(x)p2(x) = q2(x) (4.2)i.e. V j= pi(r) = qi(r) for i = 1; 2.Let �1 : FV(fx1; : : : ; xng) ! FV(U), de�ned by �1(xi) = s(p̂1; q̂1; x̂i; r̂i),be a most general uni�er for p1(x1; : : : ; xn) and q1(x1; : : : ; xn); and let �2 :FV(fx̂1; : : : ; x̂ng) ! FV(U), de�ned by �2(x̂i) = s(~p2; ~q2; ~xi; ~ri), be a most gen-eral uni�er for p̂2 and q̂2. Then the substitution� = �2 � �1 : FV(x1; : : : ; xn)! FV(U)is a most general solution of the system of equations, i.e. has the property that(1) �(pi) = �(qi), for i = 1; 2; and(2) For every � : FV(x1; : : : ; xn)! FV(U) such that �(pi) = �(qi) for i = 1; 2;there exists a substitution � : FV(U)! FV(U) such that � � � = �.Proof : We �rst show that � is a solution of the system (4.2). It is easyto see that �(p1) = �2(�1(p1)) = �2(�1(q1)) = �(q1): In order to show that�(p2) = �(q2), note �rst that for every maximal congruence � on FV(U), thequotient FV(U)=� is a simple algebra, hence, by the hypothesis, s(x; y; u; v) isa switching term on FV(U)=�. Therefore, for every maximal congruence � onFV(U) we have:[�1(xi)]� = s([p̂1]�; [q̂1]�; [x̂i]�; [r̂i]�)= ( [x̂i]� if [p1(x̂1; : : : ; x̂n)]� = [q1(x̂1; : : : ; x̂n)]�[r̂i]� otherwiseHence,[�1(p2(x1; : : : ; xn))]� = � [p2(x̂1; : : : ; x̂n)]� if [p1(x̂1; : : : ; x̂n)]� = [q1(x̂1; : : : ; x̂n)]�[p2(r̂1; : : : ; r̂n)]� otherwise ,and[�1(q2(x1; : : : ; xn))]� = � [q2(x̂1; : : : ; x̂n)]� if [p1(x̂1; : : : ; x̂n)]� = [q1(x̂1; : : : ; x̂n)]�[q2(r̂1; : : : ; r̂n)]� otherwise .Therefore, taking into account that �2 is an uni�er of p̂2 and q̂2, and r is asolution of p̂2 = q̂2, it follows that for every maximal congruence � we have:[�(p2(x1; : : : ; xn))]� = [�2(�1(p2(x1; : : : ; xn)))]� =



4.1.3 Applications: Uni�cation in Discriminator Varieties 85= ( [�2(p2(x̂1; : : : ; x̂n))]� if [p1(x̂1; : : : ; x̂n)]� = [q1(x̂1; : : : ; x̂n)]�[�2(p2(r̂1; : : : ; r̂n))]� otherwise == ( [�2(q2(x̂1; : : : ; x̂n))]� if [p1(x̂1; : : : ; x̂n)]� = [q1(x̂1; : : : ; x̂n)]�[�2(q2(r̂1; : : : ; r̂n))]� otherwise == [�(q2(x1; : : : ; xn))]�.From the fact that in a discriminator variety the intersection of all maxi-mal congruences is � (cf. Section 3.1.4) it follows that �(p2(x1; : : : ; xn)) =�(q2(x1; : : : ; xn)).We now show that � is the most general such substitution:Let � : FV(fx1; : : : ; xng) ! FV(U) be a substitution such that �(p1) = �(q1)and �(p2) = �(q2). We want to show that there exist a substitution � : FV(U)!FV(U) such that � = � � �.Let n : FV( ~X)! FV(X) be the renaming substitution given by n(~xi) = xi.Then for every i = 1; : : : ; n we have�(n(�(xi))) = �(n(�2(�1(xi)))) == �(n(�2(s(p̂1; q̂1; x̂i; r̂i)))) == �(n(s(p̂1; q̂1; x̂i; r̂i)[x̂j  s(~p2; ~q2; ~xj ; ~rj); j = 1; : : : ; n])) == �(s(p̂1; q̂1; x̂i; r̂i)[x̂j  s(p2; q2; xj ; rj); j = 1; : : : ; n]) == s(p̂1; q̂1; x̂i; r̂i)[x̂j  s(�(p2); �(q2); �(xj); �(rj)); j = 1; : : : ; n] == s(p̂1; q̂1; x̂i; r̂i)[x̂j  �(xj); j = 1; : : : ; n] == s(�(p1); �(q1); �(xi); �(ri)) = �(xi).As (��n)�� and � coincide on the generators xi of FV(fx1; : : : ; xng), it followsthat (� � n) � � = �. 2The application of Theorem 4.13 can be iterated, so our generalization en-ables us to solve systems with any number of equations.The following theorem is a consequence of the fact that in a discriminatorvariety, for every primitive positive sentence �, we have FV(n) j= � i� Sn j= �(where Sn is the class of (� n)-generated simple algebras in V). This followsfrom the sheaf representation theorem for discriminator varieties, and from thefact that the stalks of a n-generated Boolean product are (� n)-generated.Theorem 4.14 ([Bur92]) Let V be a discriminator variety, and let Sn be theclass of (� n)-generated simple algebras in V. Assume that the language of Vcontains constants. Then xi  ri; 1 � i � n, (where ri are ground terms) is aV-uni�er of p and q i� S0 j= p(r1; : : : ; rn) = q(r1; : : : ; rn).If the language of V does not contain constants, then a similar result holds,with S0 replaced by S1. Additionally, in this case it is not required that theterms ri are ground terms.Remark: In practical situations the application of this method may generatevery long terms.



86 4 A Brief Overview of Related Results4.1.4 Priestley Duality for Distributive LatticesIn this section we briey present the duality theorem for distributive latticesdue to Priestley [Pri70, Pri72].De�nition 4.6 (Priestley Space) A Priestley Space is an ordered topologicalspace (X;�; �) with the property that1) (X; �) is compact,2) For every x; y 2 X, if x 6� y then there is a clopen order ideal U � Xsuch that x 2 U and y 62 U (i.e. X is totally order disconnected).Let D01 be the category of distributive lattices, having as objects the dis-tributive lattices with 0, 1, and as morphisms the lattice morphisms, and let Pbe the category of Priestley spaces, having as objects compact totally order dis-connected spaces and as morphisms continuous order preserving maps betweenthese spaces.The Priestley duality theorem for distributive lattices with 0 and 1 can bestated as follows (for details see also [DP90]).Theorem 4.15 (Priestley) The functorsD01 D // P P E // D01de�ned on objects by:D(A) = HomD01(A; f0; 1g) E(X) = HomP (X; f0; 1g)and on morphisms by:f : A1 ! A2 h : X1 ! X2D(f) : D(A2)! D(A1) E(h) : E(X2)! E(X1)D(f)(�) = � � f E(h)( ) =  � h:de�ne a dual equivalence between the category D01 of distributive lattices andthe category P of Priestley spaces.More precisely we have:(1) For every lattice L 2 D01, the space HomD01(A; f0; 1g) (with the orderde�ned pointwise and the topology generated by the sets Xa = ff j f(a) = 1gand XnXa = ff j f(a) = 0g as a subbasis) is a Priestley space,(2) For every Priestley space X = (X;�; �), HomP (X; f0; 1g) is a distribu-tive lattice,(3) For every lattice L 2 D01, the map �A : A ! E(D(A)) de�ned by�A(a) = ff : A ! f0; 1g j f is a 0,1-lattice morphism with f(a) = 1g, is anisomorphism of 0,1-lattices,(4) For every Priestley space X 2 P , the map "X : X ! D(E(X)), de�nedby "X(x) = fh : X ! f0; 1g j h is continuous, order-preserving, and h(x) = 1gis an isomorphism of Priestley spaces,



4.1.5 Sheaf Representation and Priestley Representation . . . 87(5) For every morphism of lattices f : A1 ! A2, D(f) is continuous andorder-preserving,(6) For every h : X1 ! X2 continuous and order-preserving, E(h) is amorphism of lattices,(7) The maps D : D01(A1; A2) ! P (D(A2);D(A1)) and E : P (X1;X2) !D01(E(X2); E(X1)) are bijections and the following diagrams commute:A1�1
��

f // A2�2
��

X1"1
��

h // X2"2
��E(D(A1)) E(D(f)) // E(D(A2)) D(E(X1)) D(E(h)) // D(E(X2))Note that for every distributive lattice L, HomD01(L; f0; 1g) is in bijectivecorrespondence with the family of all prime �lters of L; similarly, for everyPriestley space X, HomP (X; f0; 1g) is in bijective correspondence with the setof clopen order-ideals of X. Intuitively it is sometimes better to refer to theelements of D(L) as prime �lters; technically, proofs are often shorter if consid-ering the elements of D(L) as 0; 1-morphisms of lattices from L to f0; 1g.We also note that if L is a Boolean algebra then every prime �lter is maximal,hence the order on D(L) is discrete. In this case the Priestley representationtheorem reduces to the Stone representation theorem (cf. Theorem 3.4). If Lis a �nite distributive lattice then the topology on D(L) turns out to be thediscrete topology. In this case the Priestley representation theorem reduces tothe representation theorem for �nite distributive lattices due to Birkho� (cf.Theorem 3.2).In Section 5.3.1 we will discuss the possibility of extending the Priestleyduality theorem for distributive lattices with additional operators.4.1.5 Sheaf Representation and Priestley Representation seenas FiberingsWe now point out the basic ideas of the two representation theorems describedabove, namely the sheaf representation theorem and the Priestley represen-tation theorem. Both these representation theorems can be seen as \decom-positions" of the algebra as an indexed family of simpler algebras, such thatthe index space has a \good" structure. We present the main ideas in whatfollows. Details will be given in Section 5.1.3, where the ideas above will beparticularized for the case of SHn-algebras.Sheaf Representation TheoremThe sheaf representation theorem for discriminator varieties states that everyalgebra A in a discriminator variety V is isomorphic to the algebra of continuousfunctions f : I ! `�2I Ai, where I a \base space" (the set of all maximalcongruences of A, including r) and for every � 2 I, A� = A=�.



88 4 A Brief Overview of Related ResultsHence, one can put in evidence a �bered structure de�ned by A, namelythe \base space" I (a topological space, with no relation) and \�bers" (simplealgebras in the variety V).
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Figure 4.1: The Standard Sheaf Associated to the algebra A
Priestley Representation TheoremThe Priestley representation theorem for the variety of distributive lattices with0 and 1 states that every distributive lattice A is isomorphic to the lattice ofcontinuous and order-preserving functions f : I ! f0; 1g, where I a \basespace" (the set of all prime �lters of A).Hence, one can put in evidence a �bered structure de�ned by A, namelythe \base space" I (an ordered topological space) and \�bers" (all equal to the2-element lattice).
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Figure 4.2: The Priestley space associated to the distributive lattice ANote the similarity between this idea and the idea on which the notion of\Logical Fiberings" (due to Jochen Pfalzgraf) is based (cf. [Pfa91]): in bothcases we can put in evidence a \base space" I and \�bers" (namely, simplealgebras in V or, respectively, the lattices f0; 1g).



4.2 Resolution in Many-Valued Logics 89A comparison between the two representation theoremsLet A = (A; f�Ag�2� be a �-algebra in a discriminator variety V of algebraswith a distributive lattice underlying structure (i.e. such that f_;^; 0; 1g � �,and (A;_A;^A; 0A; 1A) is a distributive lattice).Sheaf Representation Theorem Priestley Duality TheoremIndex set: maximal congruences maximal congruencesw.r.t. the signature � w.r.t. the signature(including also r) f0; 1;_;^gSubbasisfor topology E(a; b), Xa = E(x; 1),D(a; b) XnXa = E(x; 0) = D(x; 1)Order: discrete de�ned pointwiseFibers: all simple algebras in V f0; 1g (all simple distributiveand the one-point algebra lattices with 0; 1)Additional operators on A may de�ne additional relations on the Priestleydual of A, D(A). In Section 5.1.5 we will present this for the particular case ofSHn-algebras, and in Section 5.3.1 we will make some more general remarks.Note that if A is a Boolean algebra then the sheaf representation and thePriestley representation for A coincide.4.2 Resolution in Many-Valued LogicsWe begin by pointing out the main idea the of the method for automatedtheorem proving in many-valued logics based on resolution due to Baaz andFerm�uller [Baa92, BF92, BF95], as presented in [BF95].Analyzing the method of resolution it turns out that it is a \two-level" ap-proach: the �rst level consists in translation of arbitrary formulae to clauseform, whereas the actual proving by resolution is a \logic-free" process. In therepresentation of clauses for classical logic no \logical symbols" appear, withthe exception of negation. But even the rôle of negation is not that of a logi-cal operator: literals containing the negation signs can be thought of as beingendowed with the truth value \false", whereas literals that do not contain thenegation sign can be considered endowed with the truth value \true". Thissuggested an extension of the procedure to arbitrary �nitely-valued logics (de-scribed by the tables of the operators and of the quanti�ers): literals are in thiscase atomic formulas endowed with truth values; and it turns out that a similarresolution procedure can be de�ned.Also in this case (and in even more general cases, as for example in thecase of logic systems described by their Gentzen-type calculus cf. e.g. [Min90])automated theorem proving procedures by resolution can be given. They are



90 4 A Brief Overview of Related Resultsessentially two-level approaches. The �rst level consists in the translation ofarbitrary formulae of any chosen logic into clause form syntax. The clausesyntax itself has to be considered as \logic-free". The translations to clauseform can be described as derivations in a calculus consisting of logic-speci�ctransformation rules.The second level consists of the application of a logic-independent resolutionprinciple (e.g. for many-valued clauses) that is a straightforward generalizationof the classical 2-valued resolution principle.This also allows to transfer many re�nements of resolution that are essentialfor e�cient theorem proving to the many-valued case.We start with a slightly di�erent notion of literal, taken, as the rest of thisshort introduction, from [BF95].De�nition 4.7 (Literal) Let W denote the set of truth values (in the classicalcase, true or false). A literal is an atomic formula equipped with a truth value,denoted by Lw.Clauses, substitutions, and (most general) uni�ers are de�ned just as in theclassical case.De�nition 4.8 (Resolvent) A clause C3 is the resolvent of C1 and C2 ifC1 = D1 [ fP ug, C2 = D2 [ fQvg, for two di�erent truth values u 6= v 2 W ,and C3 = �(D1 [D2), where � is the m.g.u. of P and Q.The proof that the empty clause 2 is derivable from C if and only if C isunsatis�able in its Herbrand universe (i.e., there is no interpretation satisfyingC) can be found in [BF92].We remark here that the completeness of the calculus is preserved whenapplying the following reduction rules on the set of already derived clauses:� C [ fDg ) C if �(C) � D for a clause C 2 C (the subsumption rule);� C [ fDg ) C if fLw j w 2Wg � D (the tautology rule).In [H�ah90, H�ah91, H�ah93] H�ahnle introduced semantic tableaux systemsthat can be used to implement a generic theorem prover which performs ef-�ciently in a variety of �nitely valued logics. The key idea was to enhancethe formula language in such a way that it is possible to keep track of thevaluations still to be considered at a certain step of the proof. The technicaldevice was the use of truth value sets as signs or pre�xes in front of the formulae.In [H�ah94], H�ahnle presents a general satis�ability-preserving transformation offormulae from arbitrary �nitely-valued logics into a clause form based on signedatomic formulae (these clause form translations are structure-preserving), to-gether with a suitable de�nition of a clause language and a signed resolutionrule. The main idea is that the literals in the clauses are labeled with sets oftruth values; in formulating a resolution principle for this case it turns out tobe necessary to formulate a merging rule for the truth values (in addition to



4.2 Resolution in Many-Valued Logics 91the standard binary resolution rule). H�ahnle shows (using semantic trees) thatthe procedure thus de�ned is complete.Then [H�ah94] considers so-called regular logics (logics in which all sentencescan be expressed in a signed clause form, where all clauses are regular, i.e. haveall signs of the form � j := fj; : : : ;>g or � j := f?; : : : ; jg) and gives acomplete resolution rule for these logics.Regular logics have the property that the truth tables of their connectivescan be characterized geometrically (for details see [H�ah91]).In [H�ah96b] a many-valued version of Anderson and Bledsoe's excess literaltechnique is proposed, which works particularly well with regular clauses. It isshown that this method can easily be used to prove completeness of a versionof semantic clash resolution for regular clauses, namely:Many-valued negative hyperresolutionn � i1 p1o [D1; : : : ;n � in pno [Dn;n � j1 p1; : : : ; � jn pno [ED1 [ : : : [Dn [Eprovided n � 1; il < jl for all 1 � l � n, and D1; : : : ;Dn; E are negative.The proof of the completeness of the procedure closely follows the proofgiven in the original paper in [AB70], and can be found in [H�ah96b].We would also like to mention [H�ah96a] where a concise axiomatization of abroad class of generalized quanti�ers in many-valued logics { so-called distribu-tion quanti�ers { is presented. It is shown that for certain lattice-based quan-ti�ers relatively small axiomatizations can be obtained in a schematic way, byproviding an explicit link between skolemized signed formulae and �lters/idealsin Boolean set lattices. H�ahnle shows that for many \naturally" de�ned quan-ti�ers the inverse images of sets of truth values for these quanti�ers have rep-resentations as disjunctive normal form combinations of �lters and ideals.In Section 5 we will present a method for automated theorem proving insome classes of many-valued logics based on distributive algebras with operatorsthat behave \well" with respect to join and/or meet. For the �rst-order logicswe only take the existential and universal quanti�ers into account.Our method is an extension of the method for many-valued signed hyperres-olution for regular logics given in [H�ah96b], in the sense that in the de�nition ofregular logics [H�ah96b] one of the assumptions is the existence of a total order-ing on the set of truth values. We use the canonical lattice order in the latticeof truth values (which in general is not a total order). The di�erence betweenour approach and the above mentioned approaches consists in the fact that weuse signed clauses of the form x pt or x pf , where the signs are \possibleworlds" (which, in the cases considered are of the form " x where x 2 A is ajoin-irreducible truth value).



92 4 A Brief Overview of Related ResultsIt turns out that under our assumptions and with our de�nition of literaland clause these types of labels are su�cient for formulating an automatedtheorem proving procedure based on negative hyperresolution.Our method also has the advantage of clarifying possible links between theuse of \sets as signs" and interpretations in Kripke models (in fact the idea ofthe algorithm occurred to us when studying Kripke models for SHn-logics).4.3 Models for Cooperating Agents and ConcurrencyWe continue by presenting some existing approaches to modeling cooperatingagents scenarios and concurrency. We begin with a succinct presentation ofsome classical approaches to concurrency, and then continue with approachesbased on notions as �berings, �ber bundles, presheaves and sheaves.4.3.1 Classical Approaches to ConcurrencyWe will present �rst some selected classical approaches to concurrency, namelytransition systems, Petri nets, and trace languages. In the end we will brieypresent a new approach due to Pratt [Pra94].Transition SystemsTransition systems are a commonly used model of computation. They providethe basic operational semantics for Milner's Calculus of Communicating Sys-tems [Mil80, Mil89]. In this theory, processes are de�ned by algebraic equationsand evolve into other processes by performing some actions. The theory is de-scribed in detail in the above references. We give here only the basic de�nitionsand show in which way the constructions of complex transition systems fromsimpler ones can be seen as universal in a category of transition systems. Fordetails we refer to [Mil80, Mil89, WN93].Transition systems are models in which the notion of a state of the system istaken as primitive. The behavior of the system is described by a set of actions;the notions of causality and consequence are captured in a transition relation.De�nition 4.9 (Transition Systems) A transition system is a tuple T =(S; i; L;Tran), where(1) S is a set of states,(2) i 2 S is the initial state,(3) L is a set of labels,(4) Tran � S � L� S (the transition relation).Notation Let T = (S; i; L;Tran) be a transition system. We write s a�! s0 toindicate that (s; a; s0) 2 Tran.In what follows, given a transition system Ti, if not speci�ed otherwise wewill denote by Si, ii, Li, Trani its set of states, initial state, set of labels andtransitions respectlvely.



4.3.1 Asynchronous Transition Systems 93A transition system models a process whose transitions represent the pro-cess's atomic actions while the labels are action names.For technical reasons it is convenient to introduce idle transitions, associatedto any state.De�nition 4.10 (Idle Transitions) Let T = (S; i; L;Tran) be a transitionsystem. Let � be a distinguished symbol that does not belong to L. An idletransition of T consists of (s; �; s), where s 2 S. We de�ne Tran� := Tran [f(s; �; s)js 2 Sg and T� = (S; i; L [ f�g;Tran�).Remark The distinguished symbol � corresponds to the empty action. Theidle transitions model the fact that after an empty action the state remainsunchanged.Idle transitions help to give a simpler de�nition for the morphisms betweentransition systems. Basically, morphisms between transition systems can beunderstood as expressing the partial simulation (or re�nement) of one processby another one.De�nition 4.11 (Morphisms) Let T1 and T2 be two transition systems. Amorphism from T1 to T2, f : T1 �! T2, is a pair f = (�; �), where � : S1 �!S2, � : L1 �! L2, �(i1) = i2 and (s; a; s0) 2 Tran1 implies (�(s); �(a); �(s0)) 2Tran2.Proposition 4.16 (The Category of Transition Systems) Transition sys-tems and their morphisms form a category TS in which the composition of twomorphisms f1 = (�1; �1) : T0 �! T1 and f2 = (�2; �2) : T1 �! T2 is de�ned byf2 � f1 = (�2 � �1; �2 � �1) : T0 �! T2, and the identity morphism for a tran-sition system T = (S; i; L;Tran) has the form (1S ; 1L), where 1S is the identityfunction on states S and 1L is the identity function on the labeling set L of T .Constructions of more complex transition systems starting from simplerones can be seem as universal constructions in a category of transition systems(in this case, the universal properties will characterize the constructions up toisomorphism).It is easy to show that all �nite products exist in the category of transitionsystems. In fact the category TS has all products).The notion of product models the behavior of a family of agents that areacting independently, in parallel. In order to model situations in which a processcan behave like one of several alternative processes, we can use co-products(sums) or �bered sums in the category of transition systems.Asynchronous Transition SystemsThe idea on which asynchronous transition systems are based is simple enough:the transition systems are extended by specifying which transitions are mutuallyindependent.



94 4 A Brief Overview of Related ResultsDe�nition 4.12 An asynchronous transition system consists of (S; i; E; I;Tran)where (S; i; E;Tran) is a transition system, I � E � E, the independence rela-tion is a irreexive, symmetric relation on the set E of events such that:(1) If e 2 E then 9s; s0 2 S with (s; e; s0) 2 Tran,(2) If (s; e; s0) 2 Tran and (s; e; s00) 2 Tran then s0 = s00,(3) If e1 I e2 and (s; e1; s1); (s; e2; s2) 2 Tran then for some u,(s1; e2; u); (s2; e1; u) 2 Tran,(4) If e1 I e2 and ((s; e1; s1); (s1; e2; u) 2 Tran then for some s2,(s; e2; s2); (s2; e1; u) 2 Tran.De�nition 4.13 (Morphisms) Let T1; T2 be two asynchronous transition sys-tems, T1 = (S1; i1; E1; I1;Tran1) and T2 = (S2; i2; E2; I2;Tran2). A morphismfrom T1 to T2 is a morphism of transition systems (�; �) : (S1; i1; E1;Tran1)!(S2; i2; E2;Tran2) such that if e I1 e0 and �(e); �(e0) are both de�ned then �(e) I2 �(e0).The category A of asynchronous transition systems has as objects the asyn-chronous transition systems and as morphisms, morphisms of asynchronoustransition systems.The category A of asynchronous transition systems has categorical construc-tions as products and coproducts that essentially generalize those of transitionsystems.Petri NetsPetri nets are one of the oldest models for concurrent processes [Pet62a, Pet62b].They are a powerful tool for modeling asynchronous parallel processes and arefrequently used in modeling cooperating agents scenarios. We present here oneof the numerous variants in which Petri nets appear in the literature. We onlygive the de�nitions and the basic properties, and show that constructions ofPetri nets can be seen as universal in a category of Petri nets. For furtherdetails we refer to e.g. [Rei85, MOM91].Petri nets are models in which the behavior of a system is described by a setof events; the notions of causality and consequence are described by preconditionand postcondition maps.De�nition 4.14 (Petri Net) A Petri net is a tuple N = (B;M;E; pre; post),where(1) B is a set of conditions,(2) M is a nonempty subset of B (the initial marking),(3) E is a set of events,(4) pre : E �! P(B) is the precondition map such that for all e 2 E, pre(e)is nonempty,



4.3.1 Petri Nets 95(5) post : E �! P(B) is the postcondition map such that for all e 2 E,post(e) is nonempty.The initial marking consists of a subset of conditions that are imagined tohold initially. A marking, i.e. a subset of conditions, formalizes a notion ofglobal state, by specifying the conditions that hold. Markings can change whenevents occur.As in the case of transition systems, it is, for technical reasons, often usefulto extend events by an idling event. As in the case of transition systems, anidling event has no pre- and post-conditions and does not change the currentstate.De�nition 4.15 (Idling Event) Let N = (B;M;E; pre; post) be a Petri net.Let � be a distinguished symbol that does not belong to E, which will be called theidling event. De�ne E� = E[f�g. We extend the pre- and post-condition mapsto � by taking pre(�) = post(�) = ;. We de�ne N� = (B;M;E�; pre; post).De�nition 4.16 (Transition) Let N = (B;M;E; pre; post) be a Petri net.For M1;M2 � B and e 2 E�, de�neM1 e�!M2 if and only if pre(e) �M1,post(e) �M2 andM1 n pre(e) = M2 n post(e):De�nition 4.17 (Independence of Events) Let N = (B;M;E; pre; post)be a Petri net. Two events e1; e2 2 E� are independent if[pre(e1) [ post(e1)] \ [pre(e2) [ post(e2)] = ;:In what follows, given a Petri net Ni, we will denote by Bi, Mi, Ei, preiand posti its set of conditions, initial marking, pre- and post-condition mapsrespectively.De�nition 4.18 (Morphisms of Petri Nets) Let N1 and N2 be two Petrinets. A morphism from N1 to N2, g = (�; �) : N1 �! N2, consists of a relation� � B1�B2 and a partial function � : E1 �! E2, such that the inverse relation��1 is a partial function from B2 to B1, and�M1 = M2;�(pre(e)) = pre(�(e)); and�(post(e)) = post(�(e)):Proposition 4.17 (The Category of Petri Nets) Petri nets and their mor-phisms form a category PN in which the composition of two morphisms (�1; �1) :N0 �! N1, and (�2; �2) : N1 �! N2 is de�ned by (�1; �1) � (�2; �2) = (�2 ��1; �2 � �1) : N0 �! N2 and the identity morphism for a Petri net N =(B;M;E; pre; post) is (1B ; 1E), where 1B is the identity relation on conditionsand 1E is the identity function on events.As for transition systems, one can de�ne (in categorical terms) several con-structions on Petri nets, such as product (which corresponds to a \synchroniza-tion operation" on independent nets) and coproduct.



96 4 A Brief Overview of Related ResultsEvent StructuresEvent structures were developed as an attempt to link Petri net theory anddomain theory. In a Petri net a state is given by a marking, but the samemarking can be reached after several di�erent sets of transitions. Thus, theinformation theoretic content of a marking is rather obscure. Event structuresremedy this by making the state of a system be exactly the set of actions thathave occurred so far.In a Petri net multiple occurrences of the same action can occur, so if a statejust recorded which actions had occurred and some actions occurred severaltimes, this information will be forgotten. Therefore, the concept of event oroccurrence of an action was introduced. An event is an action that occurs atmost once in an execution.De�nition 4.19 ([WN93]) An event structure is a structure (E;�; ]) con-sisting of a set E of events which are partially ordered by �, the causal de-pendency relation, and a binary symmetric irreexive relation ] � E � E, theconict relation, which satisfy:fe0 j e0 � eg is �nite ;If e]e0 and e0 � e00 then e]e00;for all e; e0; e00 2 E.Two events e; e0 2 E are concurrent (e co e0) i� :(e � e0 _ e0 � e _ e]e0).As explained before, we can de�ne a notion of state of an event structure(E;�; ]).De�nition 4.20 ([WN93]) Let (E;�; ]) be an event structure. De�ne itscon�guration D(E;�; ]) to consist of those subsets x � E which are:(1)[Conict free] 8e; e0 2 x, :(e]e0),(2)[Downwards-closed] 8e; e0 2 E, if e � e0 and e0 2 x then e 2 x.De�nition 4.21 (Morphisms of Event Structures) Let ES1 = (E1;�1; ]1)and ES2 = (E2;�2; ]2) be event structures. A morphism from ES1 to ES2 is apartial function � : E1 ! E2 that satis�esIf x 2 D(ES1) then (1) �x 2 D(ES2)(2) 8e; e0 2 x, if �(e); �(e0) are both de�nedand �(e) = �(e0) then e = e0.A morphism � : ES1 ! ES2 of event structures expresses how behaviorin ES1 determines behavior in ES2. It can be shown (see e.g. [WN93]) thatmorphisms of event structures preserve the concurrency relation.The category ES of event structures has as objects event structures andas morphisms morphisms of event structures. This category has products andcoproducts, useful in modeling parallel composition and nondeterministic sums.



4.3.1 Trace Languages 97Trace LanguagesIn this section we introduce the basic notions of trace theory and we state someelementary results that will be useful in the next sections. We will mainly follow[Die90].Traces or languages have been a popular way of representing behavior ofprocesses. The behavior of a process is characterized entirely by the set ofits observations or traces. This approach has been very succesful in study-ing sequential behavior, where the behavior of an automaton is identi�ed withthe set of strings it accepts. It has been extended to concurrent processes byregarding the parallel execution of two processes as the \shu�e" of their lan-guages. Traces can be combined with one another using the various operationson strings, giving a nice algebraic theory of processes.On a certain level of abstraction we may say that the setting of a concurrentsystem is given by a set of atomic actions X, together with a speci�cation ofwhich actions can be performed independently or concurrently. Such a speci�-cation is given by an independence relation I � X �X. For technical reasonswe will assume that I is irreexive and symmetric (i.e. no action can act con-currently to itself and independence is mutual).Actions which are not independent are called dependent. A concurrentprocess in this abstraction is a labelled graph where the labels of nodes areactions and edges represent an ordering (in time) between dependent actions.No edges are drawn between independent actions.After giving this general intuitive presentation of traces, we start with thebasic de�nitions.De�nition 4.22 (Dependence Alphabet) A dependence alphabet is a pair(X;D), where X is an alphabet and D � X �X is a reexive and symmetricrelation, the dependence relation. The complement I of D is irreexive andsymmetric; it is called the independence relation.Let =c be the equivalence relation on X� generated by all the pairs of theform (uabv; ubav), with u; v 2 X�; (a; b) 2 I. It is easy to see that =c is acongruence on X�.The quotient monoid X�= =c is denoted by M(X;D). This monoid has theproperty that for every a; b 2 X, if (a; b) 2 I then [a]=c � [b]=c = [b]=c � [a]=c .These types of monoids were �rst studied by P. Cartier and D. Foata [CF69].They were introduced in computer science in connection with the analysis ofsafe net systems by A. Mazurkiewicz [Maz77].De�nition 4.23 The monoid M(X;D) is the free partially commutative monoidgenerated by the dependence alphabet (X;D).The previous de�nition is motivated by the following universality propertysatis�ed by M(X;D).Theorem 4.18 (Freeness, cf. [Die90]) For any monoid M and any map-ping f : X !M such that for every (a; b) 2 I; f(a)f(b) = f(b)f(a) there existsa unique morphism of monoids f : M(X;D)!M which extends f .



98 4 A Brief Overview of Related ResultsDe�nition 4.24 The category FPCM of free partially commutative monoids isthe full subcategory of the category Mon of monoids, which has the free partiallycommutative monoids as its objects.Traces are equivalence classes of words; in order to avoid ambiguity it isuseful to have normal forms. The next theorem, due to Foata (cf. [Die90],[CF69]) de�nes a normal form for traces.Let F be the set of �nite non-empty subsets of pairwise independent letters,F = fF � X j F �nite, non-empty and 8a; b 2 F; if a 6= b then (a; b) 2 Ig.Each element F of F is called an elementary step. Every elementary stepF yields a trace [F ] 2 M(X;D), where [F ] = Qa2F a (since all letters in Fare pairwise independent, the product is well de�ned: the order in which theproduct is computed is not important).Theorem 4.19 (Foata Normal Form, [CF69]) Let t 2M(X;D) be a trace.There exists a unique sequence of elementary steps F1; : : : ; Fr, r � 0, Fi 2 Ffor all i = 1; : : : ; r such that t = [F1] : : : [Fr] and for all b 2 Fi; 2 � i � r thereis some a 2 Fi�1 with (a; b) 2 D.Note that every dependence alphabet can be seen as an undirected graph,having the set X as set of vertices and an edge between any pair of di�erentdependent vertices (so the set of edges is E = Dnf(x; x) j x 2 Xg). Conversely,given any undirected graph G = (X;E), G corresponds to the dependencealphabet (X;D) where D = E[f(x; x) j x 2 Xg. The monoid M(X;D) will bethen the freely partially commutative monoid associated to the graph G, andwill be denoted M(G).De�nition 4.25 (Graph Morphism) A graph morphism h : (X1; E1) !(X2; E2) is an application h : X1 ! X2 such that:(1) For every x 2 X2, h�1(x) is �nite,(2) For every (x; y) 2 E1, (h(x); h(y)) 2 E2.De�nition 4.26 (The Category of Graphs) The category Grph of undirectedgraphs has as objects undirected graphs and as morphisms graph morphisms.Proposition 4.20 (cf. [Die90]) Let M be the mapping that associates(1) with every graph G = (X;E) the free partially commutative monoid M(G),(2) with every morphism of graphs h : G1 ! G2, the unique monoid mor-phisms M(h) : M(G2)!M(G1), with the property that for every y 2 X2,M(h)(y) = Qx2h�1(y) x.Then M de�nes a contravariant functor from Grph to FPCM.Theorem 4.21 ([Fis86]) Let h : G1 ! G2 be a morphism of undirected graphsand M(h) : M(G2)!M(G1) be the associated homomorphism of free partiallycommutative monoids. Then it holds:



4.3.1 Trace Languages 99(1) The homomorphism M(h) is surjective if and only if h is injective,(2) The homomorphism M(h) is injective if and only is h is surjective onvertices and edges.Corollary 4.22 (General Embedding Theorem, cf. [Die90]) Let G be anundirected graph and let fGj j j 2 Jg be a �nite family of subgraphs. Forj 2 J let �j : M(G) ! M(Gj) denote the canonical projection and let � :M(G) ! Qj2JM(Gj) be the homomorphism into the direct product given by�(t) = (�j(t))j2J . Then the mapping � is injective if and only if G = Sj2J Gj.Note that if fMj j j 2 Jg is any family of non-trivial free partially com-mutative monoids then Qj2JMj is free partially commutative if and only if Jis �nite. The direct product Qj2JM(Gj) is, in general, not a free partiallycommutative monoid .If the family fGj j j 2 Jg is not �nite, then { under the assumption that forevery vertex x of G there are at most �nitely many j 2 J such that x is a vertexof Gj { it follows that there is an injective morphism M(G) ,! Lj2JM(Gj),where Lj2JM(Gj) = f(mj)j2J j mj 2 M(Gj) for all j 2 J;mj = " a.e.2g isthe so-called weak product of the family fM(Gj)gj2J (see e.g. [Die90]).De�nition 4.27 ([Die90]) Let (X1;D1); : : : ; (Xk;Dk) be dependence alpha-bets and let Mi = M(Xi;Di) be the corresponding free partially commutativemonoids, i = 1; : : : ; k. Then the synchronization of M1; : : : ;Mk is de�ned byM1jj : : : jjMk = M( k[i=1Xi; k[i=1Di):Let Li �Mi; i = 1; : : : ; k. Then the synchronization of L1; : : : ; Lk is de�ned byL1jj : : : jjLk = ft 2M1jj : : : jjMk j pi(t) 2 Li for i = 1; : : : ; kg;where pi : M1jj : : : jjMk !Mi denotes the canonical projection, i = 1; : : : ; k.Theorem 4.23 ([Die90], [MP86], [CM85]) Let fGj j j 2 Jg be a �nitefamily of dependence graphs and G = Sj2J Gj. For every j 2 J let Mj =M(Gj), M = M(G), and let pj : M ! Mj, piij : Mi ! M(Gi \ Gj) be thecanonical projections.The following assertions are equivalent:(1) The canonical embedding � : M ! f(mj)jj2J j piij(mi) = pjij for all i; j 2Jg is an isomorphism.(2) Every chordless cycle in the graph G is a cycle in a subgraph Gj for somej 2 J .2a.e. means almost everywhere



100 4 A Brief Overview of Related ResultsHigher Dimensional AutomataHigher dimensional automata are a generalization of automata proposed byPratt [Pra91] to model non-interleaving concurrency. Standard �nite automataare drawn as points representing states and directed arcs representing transi-tions, hence all the elements are 0 and 1-dimensional objects. Pratt generalizesthis to allow elements of any �nite dimension, where an n-dimensional objectstands for a transition representing the concurrent occurrence of n actions.Computation can be viewed as a path through such an automaton. Con-current execution of a and b, ajjb, is represented as a square whose surface is\�lled in", and mutual exclusion ab t ba as a square whose interior is \empty"(so one has to follow the edges, doing one of a, b at one time).Communication can be modeled abstractly as \eroding" some of the interiorsurface. When two processes synchronize, they must both be at some �xedstage in their execution simultaneously, i.e. their execution trajectory mustpass through a point. Monotonicity of computation is modeled by the fact thatcertain parts of the square are illegal. Asynchronous communication is modeledas eroding the area where the message was received before transmission. Morecommunication erodes more area, in the extreme case leading to a single pathof execution.
SynchronizationConcurrent Execution Mutual ExclusionIt is possible to generalize the concept of a computation from a path to aset of paths (as a �rst approximation for a path one can take take a homotopyclass, i.e. a set of paths where each path can be deformed into another withoutjumping over holes). For a geometric approach that uses tools from algebraicgeometry and homotopy theory we refer to [Gou95].Higher dimensional automata are rather di�cult to specify because the spec-i�cations are quite long. However they are able to control information in abetter way than other models, allowing forgetting of useless information.Partially Ordered MultisetsPartially ordered multisets are the simplest non-interleaving model of processes:instead of ordering events linearly as in a trace, they are ordered partially.Partially ordered multisets are posets with a labeling function which labelsevery event with an action. Thus partially ordered multisets generalize strings,which are labeled traces.



4.3.1 Geometric Automata 101Partially ordered multisets as a model for concurrency have been studiedin [Pra82, Pra86, Gis88]. A process is modeled as a set of partially orderedmultisets, and a run executes one of the partially ordered multisets of this set.Formulae from �rst order or temporal logic can be used to specify partiallyordered multisets, and the algebraic and logical speci�cations may be mixed.Partially ordered multisets have been generalized to metric process models[Cre91] and measured sets [Cas91].Geometric AutomataWe give here a very brief presentation of geometric automata, taken from[Gup94]. Geometric automata were introduced by Gunawardena in 1991 asa generalization of event structures. They are based on a syntactic approachto causality. A geometric automaton consists of a set of events each of whichis associated with a condition, a boolean formula on the events. Executing anevent means changing its value from 0 to 1, and events are executed one at atime when their conditions are satis�ed.This approach is very declarative in its essence: for every event we have tostate under which conditions it can happen.Geometric automata are an interleaving model of concurrency, since oneevent is executed at a time.Chu SpacesA new model of concurrency are the Chu spaces [Pra94, Gup94]. The ideabehind the de�nition of Chu spaces is very simple, namely that the centralnotions for all (computer) systems are the notion of state (a snapshot of asystem at any time) and the fact that systems can move from one state toanother doing certain actions. So a system is a pair of sets: the set X ofstates it can be in and the set A of events (occurrences of transitions) thatcan happen during its execution. The state of a system carries the history of asystem, namely the set of events that have occurred so far.De�nition 4.28 A Chu space is a binary relation between two sets A and X.We write it as a triple (A;X;R) where R : A � X ! f0; 1g gives the binaryrelation as a characteristic function of a subset of A�X.We can think of A as the set of events and X as the set of states of theprocess represented by the Chu space. Then R(a; x) tells us whether event ahas occurred in state x.Chu spaces �rst arose as an instance of a general construction, called Chu'sconstruction that originated from the study of so-called \(*)-autonomous cate-gories" by Barr and Chu in 1979.De�nition 4.29 (Chu Maps) Let (A;X;R) and (B;Y; S) be two Chu spaces.A Chu map between them consists of a pair of functions f : A ! B andg : Y ! X such that for any a 2 A and any y 2 Y , S(f(a); y) = R(a; g(y)).This condition is called the adjointness condition for Chu maps, and f; g willbe called the left and right adjoint respectively.



102 4 A Brief Overview of Related ResultsChu spaces and Chu maps form a category denoted Chu. Some of themathematical structure of this category is further explored in [Pra93], wherePratt shows how to embed various categories fully and faithfully in Chu.4.3.2 Links Between These ModelsIn [WN93] the links between event structures, trace languages, Petri nets andasynchronous transition systems are studied. In [Gup94] the links between Chuspaces and other models for concurrency are considered. In what follows we onlystate the main ideas. For details we refer to [WN93] and [Gup94] respectively.ES TL�1core:oo

A�core:``A A A A A A A A A A A A A A A A A

�2core:OO

// PNadjunctionooTo every trace language one can associate an event structure in a canonicalway . This representation theorem extends to a coreection between the cate-gories of event structures and trace languages. (A coreection is an adjunctionin which the unit is a natural isomorphism.) The coreection expresses thesense in which the model of event structures is \embedded" in the model oftrace languages.The existence of this coreection also makes it possible to construct explic-itly the product on event structures, which is not easy to de�ne directly. Formore details see [WN93].An asynchronous transition system determines a trace language in a canon-ical way. This mapping extends to a coreection between the category A ofasynchronous transition systems and the category TL of trace languages.This coreection does not extend to an adjunction from TL to A. For moredetails see [WN93].A coreection between event structures and asynchronous transition sys-tems follows by composing the coreections between event structures and tracelanguages and that between trace languages and asynchronous transition sys-tems.There is an adjunction between the categories A of asynchronous transitionsystems and the category PN of Petri nets. For details see for example [WN93].In [Gup94] Chu spaces and other models of concurrency are compared. Itis shown that Chu spaces can mimic the behavior of event structures, i.e. thatto every event structure (E;�; ]) we can associate a Chu space. Further resultson the link between event structures and Chu spaces can be found in [Plo93].Since Chu spaces embed event structures, they can represent any behaviorthat safe Petri nets can model.



4.3.4 Logical Fiberings 103Geometric automata cannot be encoded by Chu spaces. The reason is thatin a geometric automata, the enabling formula only needs to be true at theinstant an event is taking place, and it can become false later.4.3.3 Approaches Based on Multi-Modal LogicThe main idea of these approaches is to associate with each action Ac executedby an agent Ag a modal connective [Ag;Ac] with the formula[Ag;Ac]�being read as:\If the agent Ag executes the action Ac and the action ends, then� is true in the resulting state."In this way one obtains a multi-modal language, with a set of modal oper-ators indexed by the set of actions and the set of agents. The logic can be alsoextended with the (deontic) predicates Per , for permission, Obl for obligationand Res, to restrict the execution of actions. For an extensive study of thislogic we refer to [Cos90]. A semantics based on the Kripke's possible worldsemantics was provided in [Cos90].Intuitively, a Kripke model (W; (R[Ag;Ac])Ag2Agents;Ac2Actions; V ) consists ofa set W of possible worlds (one can think of them as being states), a fam-ily (R[Ag;Ac])Ag2Agents;Ac2Actions of relations on W , and a valuation V de�nedon the cartesian product between the set of propositional formulas (consid-ered pre-de�ned) and the set of possible worlds, such that for every formula �,V (�; x) 2 fT; Fg is the truth value of formula � at state x. For details we referto [Cos90].We would also like to mention dynamic logic (also known as the logic ofprograms) The language of regular �rst-order dynamic logic was introduced byPratt in 1976. The name \dynamic logic" was given to the language by Harelin 1977. For an introduction to dynamic logic we refer to [Har84].4.3.4 Fibered ModelsLogical FiberingsThe approach to modeling robotics scenarios presented in this section originatesfrom [Pfa91], and was worked out on a small example in [PS92]. For a briefdiscussion, see also [Pfa93]. We will introduce some notations in order to beable to describe the main idea of the logical �berings approach. The de�nitionsgiven here are taken with minor di�erences from [PS95]. All notations used arein correspondence with [Pfa91, PS92].Let (Ai)i2I be an indexed system of sets (with a given indexing set I).An abstract �bering is a triple � = (A; �; I), where A is the disjoint union ofthe Ai, denoted by `i2I Ai, and � : A �! I is the canonical projection from A



104 4 A Brief Overview of Related Resultsto I de�ned as �(a) = i for all a 2 Ai. The index set I is called the base space,A the total space, � the display map, and for every i, we call Ai = ��1(i) the�ber over i.The sets A and I can be endowed for example with a topology, with relations,or with an algebraic structure. The map � should respect the correspondingstructure of the spaces, for example it has to be a continuous map if we workin the category of topological spaces. The above de�nition is the most generalnotion of a �ber bundle (or abstract �bering).Let � = (A; �; I) be an abstract �bering. A global section s : I ! A =`i2I Ai is a map such that � � s = idI . (This entails s(i) 2 ��1(i) for all i inI). Let � = (A; �; I) be an abstract �bering and let U � I be a subset of I. Amap sU : U ! A is called a local section (with respect to U) if � � sU = idU .A morphism between two �berings (A; �1; I) and (B; �2; I) is a map f :A �! B such that the following diagram is commutative:IA �1 ??������� f // B�2__? ? ? ? ? ? ? ?i.e. for every a 2 A: if a 2 Ai then f(a) 2 Bi.De�nition 4.30 (Logical Fiberings) A logical �bering is a tuple � = (E; �; I; L),where E (the total space) and I (the indexing set, also called the base space)are arbitrary sets, and L (denoting the typical �ber modeling every �ber ��1(i),for all i 2 I), is taken to be a classical �rst order logical space.The simplest form of a �bering is the so-called trivial �bering, � = (E; �; I; F ),where E = I � F , � is the �rst projection, and the �ber over i 2 I is��1(i) = fig � F .For logical �berings, this corresponds to a parallel system of logics Li overan index set I (serving as base space) for which the typical �ber F is a classical�rst order logic L. Within each �ber Li = ��1(i), the reasoning processes canrun independently and in parallel. Also communication between the �bers canbe modeled.A characteristic feature of a classical �ber bundle is the so-called local triv-iality property. A locally trivial �ber bundle is composed of parts that locallyhave a simple structure, in the sense that they are of the type of a productbundle Ui�F ! Ui. Here, the Ui, subsets of the base space I, form a coveringof I. The \constraints" arising from forming the entire bundle are modeled byso-called transition functions. They formally describe how the local parts arepatched together in all those cases where the covering sets have a non-emptyintersection. Each particular �ber ��1(i) obtains its structure from the \typical�ber" F . We now give the formal de�nition of the concept of local triviality.De�nition 4.31 (Locally Trivial Fiberings) A �bering � = (E; �; I; F ) iscalled locally trivial with respect to a covering fUjgj2J of the base space I, ifthe following diagram is commutative
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Uj

��1(Uj) Uj � F-PPPPPPPPPPPPPq �������������)� p1�j
�j is an isomorphism in the corresponding category, where�j = (�; �j); �j : ��1(Uj)! F (a morphism).For i 2 Uj , �j;i : ��1(i) �=! F is the �ber isomorphism induced by �j (thisgives ��1 its �ber structure).A product bundle (trivial logical �bering) is given by E = I � L and � :E ! I, the projection to the �rst component. Thus, the �ber over i is ��1(i) =fig �L =: Li, for i 2 I. We will also call this a free parallel system, sometimesdenoted by LI .The 2-valued subsystems Li, i 2 I are equipped with local truth values
i = fTi; Fig. The set of (global) truth values 
I for the whole �bering is thedisjoint union `i2I 
i.In such logical systems there are many ways to form logical operations bycombining classical logical connectives locally in each Li and then putting themtogether in the form of \logical vectors" like (�i)i2I . Furthermore, we can model\system changes" in the sense that we shift logical information (formulas) fromone subsystem Li to another Lj . This corresponds to model communicationbetween �bers (seen as logical state spaces of corresponding agents). For amore formal treatment of such univariate operations and the formation of logicalexpressions in a logical �bering we refer to [Pfa91].A basic operation for parallel systems LI is the mapping of a local pair(xi; yi) in Li � Li (i 2 I) into di�erent subsystems Lj; Lk, etc.In [Pfa91], a classi�cation of all such bivariate operations, called transjunc-tions, is given. A transjunction can be represented by its truth value matrix,a mapping from a bivariate truth table within a �xed local system Li into abivariate truth table where the T and F values (occurring in the truth tablewithin Li) are distributed over four value sets 
�, 
�, 
 , and 
�, correspond-ing to the subsystems L�, L�, L , and L� respectively. The classi�cation of[Pfa91] is based on the type of the truth table under consideration | to whichclassical connective it corresponds when omitting the indices.Logical Fiberings and Applications to Modeling Control in Systemsof Cooperating AgentsThe idea of logical �berings has been applied to model control for small concreteexamples [PSS95, PSS96a]. It turned out that the logical �berings approachis particularly suitable for modeling communication and interaction between



106 4 A Brief Overview of Related Resultscooperating agents, due to the possibility to switch between a local and a globalpoint of view which is typical for this framework.We now illustrate the ideas presented above on a simple example, adaptedfrom [Pfa93] (see also [DPSS91]). More complex examples (including also error-handling), as well as the relation between planning and modeling with logical�berings can be found in [PSS95] and [PSS96a].Let R0; R1; R2 be three robots performing the following task:R0 receives a work piece a and a work piece b. He checks whether a and b are well-positioned on the table. If a and b are well-positioned then R0 performs an assembly task,and the work piece r obtained from assembling a and b is placed on the table. The piecesof type a are furnished by R1: if there are pieces of type a in stock, and if no r is placed onthe table, R1 brings a piece of type a and puts it on the assembly bench of R0. The piecesof type b are furnished by R2: if there are pieces of type b in stock, and if no r is on thetable, R2 brings a piece of type b to the assembly bench of R0. After R0 has assembled aand b and the result r has been placed on the table, r is transported to the stock by R1together with R2.The states of the system consisting of the cooperating agents R0; R1; R2 can bedescribed by specifying whether pieces of type a (resp. b) are left in stock, andwhether a piece of type a (b, r) is placed on the table.We will use the following truth values to correspond to the actions (TVstands for \Truth Value" and LS for \Logical Subsystem"):TV LS ActionT0 L0 R0 remains inactiveF0 L0 R0 performs the assembly taskT1 L1 R1 remains inactiveF11 L1 R1 brings pieces of type aF12 L1 R1 transports the resultT2 L2 R2 remains inactiveF21 L2 R2 brings pieces of type bF22 L2 R2 transports the resultNote that L1 and L2 are 3-valued logical systems, and L0 is 2-valued.As in [PSS95] we now de�ne the m-transjunction � by its truth table, be-low. In order to render the situation pictorially, we put the values of the �rstfour logical propositions horizontally and the last three vertically. Impossiblecombinations of the truth values of the variables have been deleted. We see thatthere are several cases in which the resulting truth value is not uniquely deter-mined; this corresponds to a choice of actions for the agents in the scenario. Inwhat follows, F_ stands for F11 _ F21, T^ for T1 ^ T2 and F^ for F12 ^ F22.
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Figure 4.3: Animation of a Scenario with ICARS� ontablea 0 1 0 1ontableb 0 0 1 1instocka instockb ontablerm(m>0) n(n>0) 0 F_ F21 F11 F0m(m>0) 0 0 F11 T2 F11 F00 n(n>0) 0 F21 F21 T1 F00 0 0 T^ T2 T1 F0m(m�0) n(n�0) 1 F^ F^ F^ F^Moreover, every individual action Rij can be seen as a morphism on thecorresponding local section, thereby regulating the new values of the controlpropositions.Note that in this example if we take the overall, \global" view, the modelobtained is similar to the classical model (used for example in planning). Tran-sjunctions are applied on the initial global section, until the goal situation(corresponding section) is reached.Taking a \local view" however changes things, as robots may be forced tocarry out conicting actions necessitating communication. This communicationis modeled by taking global sections in such cases. In the example discussed,conicts can only arise between R1 and R2, suggesting to group the two togetheras an autonomous unit. What we obtain then is just an optimized version ofthe \global" approach. For more complicated examples, this concept of local-izing the processing of data and parallelizing the decision on which actions toperform next may greatly improve the e�ciency of planning and control.A demonstrator was implemented in the frame of the MEDLAR projects[PSSS95]. It is based on the theoretical results concerning logical �berings,



108 4 A Brief Overview of Related Resultsand uses for animation the ICARS system (developed by W. Jacak and P.Rogalinski).This system uses wireframe representations for the robots (3-D color graph-ics) and carries out path planning and collision detection modules before per-forming any movement the robots have been ordered to make. The animationis driven by the combination of the corresponding interacting logic and plan-ning modules, based on the logical �berings approach; the logical controller isveri�ed by a Prolog program. A copy of the screen is given in Figure 4.3.Sheaf Theoretical ModelsFrom the approaches to concurrency based on presheaf and sheaf theory wewill briey present the approaches of Monteiro and Pereira [MP86], Goguen[Gog92], and Winskel and Cattani [Win96, CW96].The starting point of the approach of Monteiro and Pereira [MP86] is theobservation that the structure of a set of concurrent systems (unlike the struc-ture of a single system) is determined by the way the systems are connectedand by the way the connections carry interactions among systems. This formof interaction can be described by imposing that individual systems have \indi-vidual locations" and that interacting systems occupy \overlapping locations".Furthermore, such overlaps are considered \sites of interaction". This leads tothe notion that locations are closed under �nite \intersections".Any activity is seen as taking place at some speci�c location. Since one candistinguish a \global" location (where the activity of all system componentsoccurs), a \null" location (where no activity occurs) and a location for everyset of component systems, this suggests that the set of locations should beclosed under �nite intersections and arbitrary unions { so the set of locationscan be modeled as a topological space or, more abstractly, as a complete Heytingalgebra.Behaviors can be described as elements of the free monoid �� over someevent vocabulary �. In this way however the information concerning the con-tribution of the component parts to the behavior is lost. Monteiro and Pereirahad the idea of extending the notion of behavior monoids to a structure oflocalized events, namely the notion of a sheaf of monoids over a complete Heyt-ing algebra of event locations. In [MP86] they study this type of sheaves ofmonoids associated to concurrent systems. They show that it has the samekind of universal and functorial properties as the free monoids. This de�nitionof sheaves of behavior monoids provides the setting for the de�nition of sheavesof processes interacting at the intersection of their locations. The sheaves ofprocesses over a complete Heyting algebra have a complete lattice structurethat allows the solution of process equations by �xpoint methods.In [Gog92] Goguen uses concepts from sheaf theory to explain phenomena inconcurrent systems, as object, inheritance, deadlock, and non-interference. Theapproach is very general: it applies not only to concurrent object oriented sys-tems, but also to systems of di�erential equations, electrical circuits, hardware



4.3.4 Sheaf Theoretical Models 109description languages and much more.The objects are modeled by sheaves F : B ! Sets over a \base for ob-servation" that contains certain space-time domains. F associates with everydomain of observation U (of space-time) a set F (U) of attributes of the givenobject observed at U . The possible domains U are partially ordered by inclu-sion, and typically are closed under �nite intersections and arbitrary unions,i.e. they form a topological space.The sheaf condition says that any set of pairwise consistent local observa-tions can be \glued together" into a unique observation over the union of theirdomains. This sheaf condition appears to be satis�ed by all behaviors in allnaturally arising systems from Computer Science; however it is not satis�edby certain properties of systems such as for instance the fairness property (cf.[Gog92] p.169).The main points made in [Gog92] about the relationship between sheavesand objects are the following:� Objects give rise to sheaves,� Inheritance relations correspond to sheaf morphisms,� Systems are diagrams of sheaves,� Colimits in the category of diagrams of sheaves correspond to intercon-necting systems,� The behavior of a system is given by the limit of its diagram.These ideas have been applied to Petri Nets by Lilius [Lil93]. The ideasfrom [Gog92] have been further developed by Malcolm in [Mal94], where a for-malization of object classes and systems of objects is given, in order to studybasic properties of ways in which systems of objects may be interconnected. Hede�nes an adjunction between PO-systems (functors S : Cop ! Obj, where Cis a partially ordered set) and sheaves of objects (PO-systems S : Cop ! Objwhere C is a complete Heyting algebra) and expresses the hope that, by usinga more general notion of sheaf as a functor on a category with a Grothendiecktopology, an adjunction between system speci�cations and sheaves of objectscan be obtained. In [Ĉ�r95] Ĉ�rstea shows that transition systems and sheavescan be related by means of an adjunction between the corresponding categories.This is used in order to give a sheaf-theoretic formalization of the distributedsemantics for FOOPS developed in [Ĉ�r95].[Win96] and [CW96] investigate presheaf models for processes.[Win96] is concerned with the study of presheaf models for process cal-culi with value passing, and [CW96] with modeling process constructions onpresheaves, showing that these preserve open maps, and with transferring suchresults to traditional models for processes.Intuitively, process calculi are modeled as presheaves over a small categoryP considered a \path-category": a model like a transition system or a labelledevent structure gives rise to a presheaf F : Pop ! Sets associating with every



110 4 A Brief Overview of Related Resultspath object P in P the set F (P ) of paths (in the chosen model) with \shape"P . Presheaf models for concurrency turn out to include interleaving models likesynchronization trees and independence models like labelled event structures,as well as contributing to a general de�nition of bisimulation based on so-calledopen maps.Roughly speaking, open maps in a category M of models (that can beTS;PN;ES etc. or a �ber in any of these categories) are morphisms with theproperty that any extension of a computation path in the codomain can bematched by an extension of its domain.Formally, whenever for m : P ! Q a morphism in P a diagramP p //m
��

Xf
��Q q // Yin M commutes (meaning that the path f � p in Y can be extended via m to apath q in Y ), then there is a morphism p0 such that in the diagramP p //m

��

Xf
��Q q //

p0 ??~~~~~~~ Yp0 �m = p and f � p0 = q (meaning that the path p can be extended via m toa path p0 in X which matches q). When the morphism p satis�es this propertywe say that it is P-open.[Win96] studies denotational semantics in presheaf models. This is shownto correspond to operational semantics in the sense that bisimulation obtainedfrom the so-called \open maps" is proved to coincide with bisimulation as de-�ned traditionally from the operational semantics. A presheaf model and de-notational semantics are proposed for a language allowing process-passing.[CW96] models process constructions on presheaves showing that these pre-serve open maps, and transfers such results to traditional models of processes.They show that a wide range of left Kan extensions between categories ofpresheaves preserve open maps; a particular Kan extension is shown to coincidewith a re�nement operation on event structures. [CW96] explains (by generalarguments) why the operations of a presheaf model preserve open maps andwhy for speci�c presheaf models the operations coincide with those traditionalmodels.



Chapter 5Fibered Representation andUniversal AlgebraIn this chapter we present some common features of known representation the-orems for certain classes of algebras with a lattice reduct, and a method forautomated theorem proving in certain many-valued logics, based on the Priest-ley dual of the algebra of truth values.We begin with a detailed presentation of the ideas for the case of SHn-logics,since the idea occured to us when working on this topic. Since in Section 4.1.2 wealready discussed the sheaf representation theorems for discriminator varietiesand its application, we will only mention this type of representation theoremsin the case of SHn-algebras and will focus on representation theorems inducedby the Priestley representation theorem.We �rst present a duality theorem induced by the Priestley duality theorem(an extension of the results in [Itu83]). The Priestley representation theo-rems suggested a method for automated theorem proving in SHn-logics. Thismethod is presented in Section 5.2. A more general case is discussed in Sec-tion 5.3.1, where we analyze the conditions under which a theorem provingprocedure similar to that described in Section 5.2 holds. In Section 5.3.3 theautomated theorem proving procedure is extended to more general classes oflogics; we also take into account �rst-order logics.After presenting the ideas in this general framework, we illustrate this gen-eral procedure for the case of:� Pmn-logics (sound and complete with respect to the subvariety Pmn of thevariety of Ockham algebras),� SHKn-logics (sound and complete with respect to the variety of SHKn-algebras ( Lukasiewicz-Moisil algebras of order n)).We end this chapter with the description of an implementation of the pro-cedure. 111



112 5 Fibered Representation and Universal Algebra5.1 A Motivating Example: SHn-logicsThe language of SHn-logics is a propositional language, whose formulae arebuilt from propositional variables taken from a set Var, with operations _ (dis-junction), ^ (conjunction), ) (intuitionistic implication), �;: (a De Morganresp. an intuitionistic negation), and a family fSi j i = 1; : : : ; n � 1g of unaryoperations.The following Hilbert style axiomatization of SHn-logics is taken from[Itu82], see also [IO96].Axioms:(A1) a) (b) a)(A2) (a) (b) c))) ((a) b)) (a) c))(A3) (a ^ b)) a(A4) (a ^ b)) b(A5) (a) b)) ((a) c)) (a) (b ^ c)))(A6) a) (a _ b)(A7) b) (a _ b)(A8) (a) c)) ((b) c)) ((a _ b)c))(A9) �� a$ a(A10) Si(a ^ b)$ Si(a) ^ Si(b)(A11) Si(a) b)$ (Vnk=i Sk(a)) Sk(b))(A12) Si(Sj(a))$ Sj(a), for every i; j = 1; : : : ; n� 1(A13) S1(a)) a(A14) Si(� a)$� Sn�ia; for i = 1; : : : ; n� 1(A15) S1(a) _ :S1(a); where :(a) = a)� (a) a)Inference rules:(R1) a; a) bb(R2) a) b� b)� a(R3) a) bS1(a)) S1(b)5.1.1 An Algebraic Semantics for SHn-logicsDe�nition 5.1 An abstract algebra A = (A; 0; 1;^;_;);:;�; S1 ; : : : ; Sn�1) issaid to be a symmetric Heyting algebra of order n (SHn-algebra for short) if:(1) (A; 0; 1;^;_;);:) is a Heyting algebra,(2) � is a De Morgan negation on A,



5 An Algebraic Semantics for SHn-logics 113(3) For every x; y 2 A and for all i; j 2 f1; : : : ; n�1g, the following equationshold:(S1) Si(a ^ b) = Si(a) ^ Si(b),(S2) Si(a) b) = (Vnk=i Sk(a)) Sk(b)),(S3) Si(Sj(a)) = Sj(a), for every i; j = 1; : : : ; n� 1,(S4) S1(a) _ a = a,(S5) Si(� a) =� Sn�ia; for i = 1; : : : ; n� 1,(S6) S1x _ :S1x = 1, with :x = x) 0.From the above de�nition, from the fact that the class of Heyting algebrasare equationally de�nable as well as from the fact that the De Morgan propertycan be expressed equationally, it follows that the class of symmetric Heytingalgebras of order n is a variety, which will be denoted SHn.We quote without proof the following properties which are true in everySHn-algebra (cf. [Itu83]):(S7) Si1 = 1; Si0 = 0;(S8) Si(x _ y) = Six _ Siy;(S9) If Six = Siy for all i = 1; : : : ; n� 1, then x = y,(S10) x � y if and only if Six � Siy,(S11) S1x � S2x � : : : Sn�1x,(S12) x � Sn�1x,(S13) Six ^ :Six = 0;(S14) Six _ :Six = 1;(S15) Si(:x) = :Sn�1x,(S16) x ^ Si+1y � y _ Si(x):De�nition 5.2 Let n � 2 and let Sn2 be the cartesian product Ln � Ln whereLn = f0; 1n�1 ; : : : ; n�1n�1g. Consider the following operations on Sn2:(1) _;^ de�ned pointwise,(2) � (x; y) = (1� y; 1� x) for every (x; y) 2 Sn2,(3) Si(x; y) = (Si(x); Si(y)), whereSi( jn� 1) = ( 1 if i+ j � n;0 if i+ j < n;(4) (x1; x2) ) (y1; y2) = (x1 ) y1; x2 ) y2), where ) is the Heytingrelative pseudocomplementation on Ln1.1The Heyting relative pseudocomplementation on Ln is de�ned by: x ) y is the largestelement z of Ln such that x ^ z � y. Hence, x) y = � 1 if x � yy if x > y . The pseudocomple-mentation induced by ) is de�ned by :x = x) 0. Hence, :x = � 1 if x = 00 if x > 0 .



114 5 Fibered Representation and Universal AlgebraIt is easy to see that Sn2 = (Ln � Ln; (0; 0); (1; 1);_;^;);�; S1 ; : : : ; Sn�1) is asymmetric Heyting algebra of order n [Itu83].Proposition 5.1 ([Itu83]) Every symmetric Heyting algebra of order n is iso-morphic to a subdirect product of a family of subalgebras of Sn2 .It follows that the variety SHn of symmetric Heyting algebras of order n isgenerated by Sn2 .Lemma 5.2 The variety SHn is a discriminator variety.Proof : We know that the variety of SH-algebras of order n is generatedby the algebra Sn2 . We show that Sn2 has a discriminator term. Let d(x) =S1(x)^: � S1(x) be a term in the language of SHn-algebras with one variablex. We know that for every a = ( in�1 ; jn�1) 2 Sn2 ,S1( in� 1 ; jn� 1) = 8>>><>>>: (1; 1) if 1 + i � n and 1 + j � n;(1; 0) if 1 + i � n and 1 + j < n;(0; 1) if 1 + i < n and 1 + j � n;(0; 0) if 1 + i < n and 1 + j < n;� S1( in� 1 ; jn� 1) = 8>>><>>>: (0; 0) if 1 + i � n and 1 + j � n;(1; 0) if 1 + i � n and 1 + j < n;(0; 1) if 1 + i < n and 1 + j � n;(1; 1) if 1 + i < n and 1 + j < n;: � S1( in� 1 ; jn� 1) = 8>>><>>>: (1; 1) if 1 + i � n and 1 + j � n;(0; 1) if 1 + i � n and 1 + j < n;(1; 0) if 1 + i < n and 1 + j � n;(0; 0) if 1 + i < n and 1 + j < n:Therefore S1(a) ^ : � S1(a) is (1; 1)(= 1Sn2 ) if a = (1; 1) = 1Sn2 and is0Sn2 otherwise. Hence, d(a) = ( 1Sn2 if a = 1Sn20Sn2 otherwise . Therefore we are in thesituation described by Example (1) of Section 3.1.4. Hence, a discriminatorterm for Sn2 is t(x; y; z) = [z ^ d(x_ y ) x^ y)]_ [x^ (d(x_ y ) x^ y)) 0)].25.1.2 A Kripke Semantics for SHn-logicsIn [IO96] a Kripke-style semantics for SHn-logic is given. We recall here thebasic de�nitions and results given in [IO96].De�nition 5.3 (SHn-frame, cf. [IO96]) A SHn-frame is a system K =(W;R; fsi j i = 1; : : : ; n� 1g; g) where:(K0) W is a nonempty set (of states), R is a binary relation on W and all siand g are functions on W , such that:(K1) R reexive,



5.1.2 A Kripke Semantics for SHn-logics 115(K2) R transitive,(K3) R(x; y) implies R(g(y); g(x)),(K4) g(si(x)) = sn�i(g(x)), for all i = 1; : : : ; n� 1,(K5) g(g(x)) = x,(K6) sj(si(x)) = sj(x), for all i; j = 1; : : : ; n� 1,(K7) R(s1(x); x),(K8) R(x; sn�1(x)),(K9) R(si(x); sj(x)), for all i � j,(K10) R(x; y) implies R(si(x); si(y)) and R(si(y); si(x)),(K11) R(si(y); y) and R(y; si(y)) imply si(y) = y, for all i = 1; : : : ; n� 1,(K12) R(x; si(x)) or R(si+1(x); x), for all i = 1; : : : ; n� 1, (for n � 3).De�nition 5.4 (SHn-model, cf. [IO96]) An SHn-model based on a frameK is a system M = (K;m) such that m : Var ! P(W ) is a meaning functionthat assigns subsets of states to propositional variables and satis�es the followingcondition:(HER) R(x; y) and x 2 m(p) imply y 2 m(p).De�nition 5.5 ( [IO96]) We say that an SHn-model M satis�es a formula� at the state x (denoted by M rj=x�) if the following conditions are satis�ed:M rj=xp if and only if x 2 m(p); for p 2 Var,M rj=x� _  if and only if M rj=x� or M rj=x ,M rj=x� ^  if and only if M rj=x� and M rj=x ,M rj=x�)  if and only if for all y, if R(x; y) and M rj=y� then M rj=y ,M rj=x:� if and only if for all y, if R(x; y) then M 6 rj=y�,M rj=xSi(�) if and only if M rj=si(x)�,M rj=x � � if and only if M 6 rj=g(x)�.A formula � is true in an SHn-model M (denoted M rj= �) if and only iffor every x 2 W , M rj=x�. If M = (K;m), we will sometimes use the notationK rj=m�.The formula � is true in a SHn-frame K (denoted by K rj= �) if and onlyif it is true in every SHn-model based on K. The formula � is SHn-valid ifand only if it is true in every SHn-frame.A formula � is a semantical consequence of a set of formulae � (denoted by� rj= �) if and only if for every model M , if all the formulae from � are true inM , then � is true in M .



116 5 Fibered Representation and Universal AlgebraThe following theorems are proved in [IO96]:Proposition 5.3 ([IO96]) In every SHn-frame, if R(si(x); y) then there existsj � i and there exists z 2W such that R(x; z) and y = sj(z).Proposition 5.4 ([IO96]) Given a model M = (K;m), the meaning functionm can be extended to all formulae by m(�) = fx 2 W j M rj=x�g. For everymodel M and for every formula �, this extension has the property(HER) If R(x; y) and x 2 m(�) then y 2 m(�):Proposition 5.5 ([IO96]) X `SHn � if and only if X rj= �.5.1.3 DecompositionWe now point out the basic ideas of the main known representation theoremsfor SHn-algebras, namely the sheaf representation and the Priestley represen-tation. They will be discussed in detail in Section 5.1.4 and Section 5.1.5. Theserepresentations can be seen as \decompositions" of the algebra as an indexedfamily of simpler algebras, such that the index space has a good structure.For a given SHn-algebra A, we �x a base set and give a representationof A in terms of continuous functions with domain I. We distinguish severalpossibilities:Case 1: I is the set of all maximal congruences of SHn-algebras (in-cluding r). In this case we obtain a sheaf representation theoremwhich is the particularization of the sheaf representation theorem givenby Werner (which holds for every discriminator variety) to the variety ofSHn-algebras.
A/  

A/  

A/  n

A/  

  
nI = Spec(A)

  
i

  
j

  k

  
m

  l

A/  

i

j

k

l

A/  
m

Figure 5.1: The Standard Sheaf Associated to the SHn-algebra AWe point out that in this case the \�bers" are subalgebras of Sn2 , andthe \base space" is a topological space, with no relation.Case 2: I is the set of all maximal congruences of A as a distributivelattice. In this case I is the Priestley space of A. We know that A isisomorphic (as a distributive 0,1-lattice) with the lattice of clopen order-�lters of I (i.e. with the lattice of all continuous order-preserving functions



5.1.3 Decomposition 117from I to f0; 1g). In Section 5.1.5 we will show how the Priestley dual-ity theorem can be extended to a duality theorem for SHn-algebras (atopological representation theorem appears for SHn-algebras is given in[Itu83]): The SHn-algebra operations ();:;�; S1; : : : ; Sn) on A de�nea family of relations on I. From this family of relations, new operations)0;:0;�0; S01; : : : ; S0n can be de�ned on the lattice of clopen order-�ltersof I.
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Figure 5.2: The Priestley space associated to the SHn-algebra AWe point out that in this case all the \�bers" are isomorphic to the 2-element lattice f0; 1g and the \base space" is a topological space endowedwith a partial order and relations corresponding to the \non-lattice"-operations on A.The situations described above seem to be two extreme possibilities. Thissuggests that one might consider several other possibilities. We may for instancetake I to be the set of all maximal congruences of A seen as a De Morgan algebra,or the set of all maximal congruences of A seen as a symmetric Heyting algebra.
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Figure 5.3: Space associated to the SHn-algebra AIn certain situations, the operations not included in the subsignature withrespect to which the elements of I are congruences may induce additional re-lations on I. In this paper we will only focus on the �rst two (classical) cases.The \intermediate" possibilities will be subject for future work. Note the simi-larity between this idea and the idea on which the notion of \Logical Fiberings"(due to Jochen Pfalzgraf) is based (cf. [Pfa91] and Section 4.1.5): we can putin evidence a \base space" I and \�bers" (namely, in cases 1 and 2, simpleSHn-algebras or, respectively, the lattices f0; 1g).



118 5 Fibered Representation and Universal Algebra5.1.4 Sheaf Representations for SHn-algebras and ApplicationsIn Section 5.1.1 we noted that the variety of SH-algebras of order n is a dis-criminator variety. We can therefore apply the theoretical results described inSection 4.1.2 to this variety.We �rst want to determine for every SHn-algebra A the topological spaceSpec(A) of all maximal congruences of A. The answers are taken from [Itu83].It is easy to see that the kernel D of a homomorphism f : A ! B of SHnalgebras has the following properties:(D1) 1 2 D,(D2) If a; a) b 2 D then b 2 D,(D3) If a) b 2 D then � b)� a 2 D,(D4) If a 2 D then S1(a) 2 D.De�nition 5.6 (Deductive System) A subset D of a SHn algebra A is adeductive system if it satis�es the conditions (D1), (D2), (D3), (D4).De�nition 5.7 (Maximal Deductive System) A deductive system D is max-imal if it is proper and it is not a proper subset of any other proper deductivesystem.Remark 5.6 ([Itu83]) The ordered set of all congruences of A is isomorphicto the set of all deductive systems of A, ordered by inclusion.It follows that there is a bijective correspondence between the set Spec(A) ofmaximal congruences on A and the set of all maximal deductive systems of A.Theorem 5.7 ([Itu83]) The following statements are true in every SHn-algebraA:(1) 1 is the meet of all maximal deductive systems in A,(2) For a deductive system D in A the following conditions are equivalent:(i) A=D is simple,(ii) D is maximal.In conclusion, every non-degenerate SHn-algebra A is isomorphic to a sub-direct product of a family of simple SHn-algebras.Proposition 5.8 ([Itu83]) The following statements are true in the varietyof SHn-algebras:(1) If D is a maximal deductive system in an SHn-algebra A, then A=D isan SHn-algebra isomorphic to a subalgebra of Sn2.



5.1.4 Applications: Theorem Proving and Solving Equations (Uni�cation) 119(2) The simple SHn-algebras are exactly the subalgebras of Sn2 .(3) The subdirectly irreducible SHn-algebras are the same as the subalgebrasof Sn2.De�nition 5.8 (Standard Sheaf) Let A be an SHn-algebra. The standardsheaf associated to A is the sheaf S(A) = (`�2Spec(A)A=�; f; Spec(A)) overSpec(A).Since the variety of SHn-algebras is a discriminator variety, by Theorem 4.11it follows that the standard representation [ ] : A ! �S(A) de�ned for every� 2 Spec(A) by a(�) = [a]� is an isomorphism. This shows that A is isomorphicto the algebra of global sections of a sheaf having as base space the booleanspace of all maximal congruences on A (or equivalently all maximal deductivesystems { including A), and having as �bers subalgebras of Sn2 (and also theone-point algebra, corresponding to r).Applications: Theorem Proving and Solving Equations (Uni�cation)1. Theorem ProvingBy Theorem 5.8, the variety of SHn-algebras is generated by the algebraSn2 . Since propositional SHn-logic is sound and complete with respect to thevariety of SHn-algebras, it follows that a formula � in the language of theSHn-logic is a theorem if and only if SHn j= � = 1. Using the fact that thevariety of SHn-algebras is generated by the algebra Sn2 it follows thatSHn ` � if and only if Sn2 j= �:Thus, a method for checking that a given formula is a SHn-theorem is toshow that for every assignment f : Var! Sn2 , f(�) = 1.The complexity of this procedure is O(n2)m, where m is the number ofvariables that occur in �.Another method would be to show that the equation � = 1 has as solutionsall the combinations of truth values in Sn2 . In what follows we will considerthe application of the sheaf representation theorem for SHn-algebras in solvingequations (uni�cation).2. Solving Equations; Uni�cationWe apply the theorems presented in Section 4.1.3 to the variety SHn ofSHn-algebras.Lemma 5.9 The free SHn-algebra with 0 generators is the 2-element SHn-algebra. There is only one simple algebra with 0 generators, namely the 2-element SHn-algebra.



120 5 Fibered Representation and Universal AlgebraProof : The free SHn-algebra with 0 generators contains 0 and 1, and isclosed under all the operations. But it is known that in every SHn-algebra� 0 = 1;� 1 = 0;:0 = 1;:1 = 0; Si(0) = 0; Si(1) = 1; 0 ) 1 = 1 and1) 0 = 0. Hence, f0; 1g is closed under all the operations.We know (see e.g. [Itu83]) that the simple SHn-algebras are exactly thesubalgebras of Sn2 . Let S be a simple algebra with 0 generators. Then S � Sn2is closed under all the operations and (0; 0); (1; 1) 2 S. By the de�nition of theoperations in Sn2 it is easy to see that the set f(0; 0); (1; 1)g is closed under allthe operations of SHn-algebra. Hence, S = f(0; 0); (1; 1)g. 2In what follows we will denote the SHn-algebra with 0 generators by L2.Note that if p and q are uni�able then they have at least one ground uni�er.Theorem 4.14 specializes to the variety of SHn-algebras as follows.Corollary 5.10 Let SHn be the variety of SHn-algebras. Then:(1) xi  ri; 1 � i � n, (where ri are ground terms), is a uni�er of p and q inSHn if and only if L2 j= p(r1; : : : ; rn) = q(r1; : : : ; rn).(2) In this case, the substitution � : T�(X) ! T�(X̂) de�ned by xi  s(p̂; q̂; x̂i; r̂i); (i = 1; : : : ; n) is a most general uni�er for p and q in SHn.Theorems 4.12 and 4.14 show how a most general uni�er for two terms inthe language of the variety of SHn-algebras can be found:1) Find a solution in L2 (the simple SHn-algebra with 0 generators),2) If no solution is found then by Theorem 4.14 we know that theterms are not uni�able,3) If there is a (ground) solution in L2, use Theorem 4.12 to con-struct a most general uni�er.5.1.5 Priestley Duality for the Variety of SHn-algebrasIn [Itu83] Iturrioz gives a topological representation theorem for SHn-algebras.However, in [Itu83], the nature of morphisms in the category of correspondingPriestley spaces with operators, and the functorial aspect of the duality are notdiscussed. Here we present the construction in detail. This detailed presentationaims at capturing the main features of this type of representations, and atmaking clear which links exist between the algebraic models and their duals.We start from the Priestley duality for distributive lattices. Heyting alge-bras have additional operations as ) and :. An extension of the Priestleyduality to Heyting algebras can be found in [Gol89]. We present it below, andthen extend it to a duality theorem for SHn-algebras.



5.1.5 Priestley Duality for Heyting Algebras 121Priestley Duality for Heyting AlgebrasLet HAlg be the category of Heyting algebras and HSp the category of Heytingspaces, having as objects those Priestley spaces (X;�; �) with the additionalproperty(H1) For every U � X clopen, # U is also clopen,and as morphisms maps � : (X1;�1; �1) ! (X2;�2; �2) which are continuous,order-preserving and additionally satisfy the following condition:(H2) fy j �(z) � yg = f�(x) j z � xg;in other words, the order-�lter generated in X2 by �(z) is the image by � ofthe order-�lter generated by z in X1.Remarks:(1) The condition (H1) assures that every element U in E(X) has a pseu-docomplement, namely Xn # U . It is easy to see that the dual of every Heytingalgebra satis�es (H1).(2) A relative pseudocomplement in E(X) is de�ned (see e.g. [Gol89]) forevery U; V clopen order-�lters byU ) V = fx 2 X j if x � y and y 2 U then y 2 V gIn terms of continuous, order-preserving functions this can be reformulated as:For h1; h2 2 E(X),(h1 ) h2)(x) = 1 if and only if for every y � x; if h1(y) = 1 then h2(y) = 1:(3) Condition (H2) ensures that the image E(�) of a morphism in HSp pre-serves the pseudocomplement. It is easy to see that condition (H2) is satis�edby every image D(f) of a morphism in HAlg. It is easy to see that, assum-ing that � is order-preserving, condition (H2) is equivalent to the followingcondition2:(H20) If �(z) � y then there exists x with (z � x and �(x) = y).It can be proved (see e.g. the remark in [DP90], pp.205) that the Priestleyduality induces a dual equivalence between the category of Heyting algebrasand the category of Heyting spaces. We give the outline of the proof:Proof : We have the following functors:HAlg D // HSp HSp E // HAlgde�ned on objects by:D(A) = HomD01(A;L2) E(X) = HomP (X; f0; 1g)and on morphisms by:f : A1 ! A2 h : X1 ! X22condition (H20) states that � is a bounded morphism with respect to the relation � onX1 and resp. X2. Details on bounded morphisms will be given in Section 5.3.2.



122 5 Fibered Representation and Universal AlgebraD(f) : D(A2)! D(A1) E(h) : E(X2)! E(X1)D(f)(�) = � � f E(h)( ) =  � h:Facts:(1) For every Heyting algebra A, D(A) is a Priestley space and for everyclopen set U � D(A), # U is also clopen (because E(D(A)) and A are isomor-phic as 0,1-lattices, hence E(D(A)) is pseudocomplemented).(2) For every Heyting space (X;�; �), E(X) is a Heyting algebra.(3) For every Heyting algebra A, E(D(A)) ' A as Heyting algebras. Forevery Heyting space X, D(E(X)) ' X as Heyting spaces.(4) For every f : A1 ! A2 morphism of Heyting algebras, D(f) : D(A2)!D(A1) satis�es (H2).(5) For every h : X1 ! X2, continuous, order-preserving and satisfying(H2), E(h) is a morphism of Heyting algebras (in particular E(h)(a ) b) =E(h)(a)) E(h)(b)).(6) D : HAlg(A1; A2) ! HSp(D(A2);D(A1)) and E : HSp(X1;X2) !HAlg(E(X2); E(X1)) are bijections and the following diagrams commute:A1�1
��

f // A2�2
��

X1�1
��

h // X2�2
��E(D(A1)) E(D(f)) // E(D(A2)) D(E(X1)) D(E(h)) // D(E(X2))Priestley Duality for SHn-algebrasEvery SHn-algebra has in particular a Heyting algebra structure. Therefore itseems reasonable to look for a suitable subcategory of the category of Heytingspaces which is dually equivalent to the category of SHn-algebras.A natural idea is to associate for every SHn-algebra A a relation (or func-tion) on the Heyting space corresponding to A to every non-Heyting operationof A.Let A = (A;_;^; 0; 1;);:;�; S1; : : : ; Sn�1) be a SHn algebra. Let D(A) =HomD01(A; f0; 1g) and consider the following functions on D(A):(1) g : D(A) ! D(A) de�ned for every f : A ! f0; 1g by g(f) : A ! f0; 1gwhere g(f)(a) = 1 if and only if f(� a) = 0,(2) For every i = 1; : : : ; n� 1, a map si : D(A)! D(A) de�ned for every f :A! f0; 1g by si(f) = f �Si (i.e. si(f)(a) = 1 if and only if f(Si(a)) = 1).Remark: The de�nitions can also be given in terms of prime �lters. In thiscase we have:(10) g : D(A) ! D(A) is de�ned for every prime �lter F 2 D(A) by g(F ) =fx 2 A j� x 62 Fg (the Bialynicki-Birula and Rasiowa involution associ-ated to �),



5.1.5 Priestley Duality for SHn-algebras 123(20) For every i = 1; : : : ; n� 1, the map si : D(A)! D(A) is de�ned for everyprime �lter F 2 D(A) by si(F ) = S�1i (F ).In what follows we will usually prefer the morphism notation since it makesthe proofs shorter. Intuitively however, the �lter notion turns out to be moreappropriate.Lemma 5.11 The maps g and si are well-de�ned and continuous.Proposition 5.12 Let K = (D(A);�; �; g; s1; : : : ; sn�1) be the dual of theSHn-algebra A endowed with the operations de�ned above. The following prop-erties are ful�lled:(1) If f1 � f2 then g(f2) � g(f1),(2) g(si(f)) = sn�i(g(f)),(3) g(g(f)) = f ,(4) sj(si(f)) = sj(f),(5) s1(f) � f ,(6) f � sn�1(f),(7) si(f) � sj(f) for every i � j,(8) If f1 � f2 then si(f1) � si(f2) and si(f2) � si(f1) (i.e. they are equal),(9) If si(f1) � f2 then si(f2) � f2,(10) For all i = 1; : : : ; n� 1, f � si(f) or si+1(f) � f .Proof : In what follows a is an arbitrary element of A and f; f1; f2 are ele-ments in D(A).(1) We have g(f2)(a) = 1 if and only if f2(� a) = 0. Assume that g(f2) = 1,i.e. f2(� a) = 0. Since f1(� a) � f2(� a) it follows f1(� a) = 0, henceg(f1)(a) = 1.(2) We have g(si(f))(a) = 1 if and only if si(f)(� a) = 0, if and only iff(Si(� a)) = 0; and sn�i(g(f))(a) = 1 if and only if g(f)(Sn�i(a)) = 1 ifand only if f(� Sn�i(a)) = 0. But in A, Si(� a) =� (Sn�i(a)). Hence,g(si(f))(a) = 1 if and only if sn�i(g(f))(a) = 1.(3) g(g(f))(a) = 1 if and only if g(f)(� a) = 0 if and only if f(�� a) = 1 ifand only if f(a) = 1 (because for every a 2 A, �� a = a).(4) sj(si(f))(a) = si(f)(Sj(a)) = f(Si(Sj(a))) = f(Sj(a)) = sj(f)(a).(5) If s1(f)(a) = 1 then f(S1(a)) = 1 and, since for every a 2 A, S1(a) � a (by(S4)) and f is increasing, we have f(a) = 1.(6) Follows from the fact that in A, a � Sn�1(a) (by (S12)).(7) Follows from the fact that if i � j then Si(a) � Sj(a) for every a 2 A (by(S11)).



124 5 Fibered Representation and Universal Algebra(8) Assume �rst that si(f1)(a) = 1. Then f1(Si(a)) = 1, and since f1(Si(a)) �f2(Si(a)) it follows that si(f2)(a) = f2(Si(a)) = 1.Assume now that si(f2)(a) = 1, i.e. f2(Si(a)) = 1. We know that for everya 2 A, :Sia _ Sia = 1 (by (S14)). Therefore f1(:Sia _ Sia) = f1(:Sia) _f1(Sia) = 1. Therefore either f1(:Sia) = 1 or f1(Sia) = 1. Assume thatf1(Sia) = 0. Then f1(:Sia) = 1 hence f2(:Sia) = 1, and since f2(Si(a)) = 1 itfollows that f2(0) = 1 which is false. Therefore, f1(Sia) = 1.(9) If si(f1) � f2 then using (8) we have si(f2) � si(si(f1)) = si(f1) � f2.(10) Assume that for some i = 1; : : : ; n � 1 neither f � si(f) nor si+1(f) � f .This means that f(a) = 1 and si(f)(a) = f(Si(a)) = 0 for some a 2 A,and f(b) = 0 and si+1(f)(b) = f(Si+1(b)) = 1 for some b 2 A. Thereforef(a ^ Si+1(b)) = 1 and f(b _ Si(a)) = 0. But this is impossible because forevery a; b 2 A, a ^ Si+1(b) � b _ Si(a) (by (S16)). 2Lemma 5.13 Let X be an arbitrary set and let K = (X;�; g; s1; : : : ; sn�1)be such that � is a partial order on X and g; s1; : : : ; sn�1 are functions on Xthat satisfy the properties (1)-(10). Then K is a SHn-frame, i.e. satis�es theproperties (K1)-(K12) from De�nition 5.3.Proof : Since � is a partial order, (K1), (K2) and (K11) are true. (K3)�(K10) and (K12) follow from the properties (1)-(10). 2It follows in particular that the dual space associated to every SHn-algebraby this procedure are in particular special SHn-frames in the sense of thede�nition given in [IO96], where the reexive and transitive relation is a partialorder3.Lemma 5.14 Let f : A1 ! A2 be a morphism of SHn-algebras. Then D(f) :D(A2) ! D(A1) is continuous, order-preserving and commutes with the oper-ations g; s1; : : : ; sn�1. Moreover, D(f) satis�es condition (H2).Proof : The fact that D(f) is continuous and order-preserving follows fromthe Priestley duality. It is easy to see that D(f)(g(h)) = g(D(f)(h)) andD(f)(Si(h)) = Si(D(f)(h)). The fact that D(f) satis�es condition (H2) fol-lows from the extension of Priestley duality to Heyting algebras presented inSection 5.1.5. 2Conversely, let (X;�; �; g; s1; : : : ; sn�1) be a space such that:(1) (X;�; �) is a Heyting space,(2) g; s1; : : : ; sn�1 are continuous,3However, the choice of more general Kripke-style structures in [IO96], where the relationR is only required to be reexive and transitive, probably o�ers more advantages. We have inmind the Kripke models for intuitionistic logic. It is known that intuitionistic propositionallogic is complete for (�nite) Kripke models over trees. Some models are however needlesslycomplicated. By �ltration (respectively by selective �ltration) simpler models can be obtained,but this procedure does not preserve all the properties of models, in particular that of beinga tree.



5.1.5 Priestley Duality for SHn-algebras 125(3) (X;�; �; g; s1; : : : ; sn�1) satis�es the conditions (1)-(10) listed above.By Lemma 5.13 it follows that such a space is a SHn-frame, with R =�.Let E(X) = ff : X ! f0; 1g j f continuous and order-preservingg (equiva-lently, E(X) can be seen as the set of clopen order-�lters of X). We know thatE(X) is a pseudocomplemented lattice.Proposition 5.15 On the lattice E(X) the following operations can be de�ned:(1) _ : E(X)�E(X)! E(X) is de�ned by h1 _h2(x) = maxfh1(x); h2(x)g.(In terms of clopen order-�lters, _ is the union),(2) ^ : E(X)�E(X)! E(X) is de�ned by h1 ^ h2(x) = minfh1(x); h2(x)g.(In terms of clopen order-�lters, ^ is the intersection),(3) ): E(X)�E(X) ! E(X) is de�ned by h1 ) h2(x) = 1 if and only if forevery y � x, if h1(y) = 1 then h2(y) = 1: (In terms of clopen order-�lters,U1 ) U2 = ff 2 X j f � g and g 2 U1 implies g 2 U2g),(4) �: E(X) ! E(X) is de�ned for every continuous order-preserving h :X ! f0; 1g by � h : X ! f0; 1g, � h(x) = 1 if and only if g(h(x)) = 0.(In terms of clopen order-�lters: � U = Xng�1(U)).(5) For every i = 1; : : : ; n � 1, Si : E(X) ! E(X) is de�ned for everycontinuous order-preserving h : X ! f0; 1g by Si(h) = h � si. (In termsof clopen order-�lters: Si(U) = s�1i (U)).The algebra (E(X); ;;X;\;[;);:;�; S1 ; : : : ; Sn�1) is a SHn-algebra.Proof : From the extension of the Priestley duality to Heyting algebras pre-sennted in Section 5.1.5, it follows that (E(X); ;;X;\;[;);:) is a Heytingalgebra. We will show that the axioms of a SHn-algebra are satis�ed.De Morgan Laws:�� h = h Proof : For every h 2 E(X), �� h(x) = 1 if and only if � h(g(x)) =0 if and only if h(g(g(x))) = 1. Since g(g(x)) = x it follows that for everyx 2 X, �� h(x) = h(x).� (h1 _ h2) =� h1^ � h2 Proof : For h1; h2 2 E(X), � (h1 _h2)(x) = 1 if andonly if (h1 _ h2)(g(x)) = 0 if and only if maxfh1(g(x)); h2(g(x))g = 0 ifand only if h1(g(x)) = h2(g(x)) = 0 if and only if � h1(x) =� h2(x) = 1if and only if minf� h1(x);� h2(x)g = 1.SHn Laws:Si(h1 ^ h2) = Si(h1) ^ Si(h2) Proof : Si(h1 ^ h2)(x) = (h1 ^ h2)(si(x)) == minfh1(si(x)); h2(si(x))g = Si(h1) ^ Si(h2)(x).



126 5 Fibered Representation and Universal AlgebraSi(h1 ) h2) = Vn�1k=i Sk(h1)) Sk(h2) Proof : By the de�nition of the relativepseudocomplement it follows that for every k � i, Si(a ) b) � [Sk(a) )Sk(b)]. Indeed, Sk(a) b) � (Sk(a)) Sk(b)) because Sk(a) b)^Sk(a) �Sk(b). We therefore have Si(a ) b) � Sk(a ) b) � [Sk(a) ) Sk(b)] forevery k.Conversely: Let x be such that (Vn�1k=i Sk(h1) ) Sk(h2))(x) = 1. Weknow that (Vn�1k=i Sk(h1) ) Sk(h2))(x) = 1 if and only if for every k � i,[Sk(h1) ) Sk(h2)](x) = 1 (i.e. if and only if for every k � i and everyy � x, if h1(sk(y)) = 1 then h2(sk(y)) = 1). Assume that Si(h1 )h2)(x) = (h1 ) h2)(si(x)) = 0. Then for some z � si(x) we haveh1(z) = 1 and h2(z) = 0. The space X is in particular a SHn-frame,hence from Lemma 5.3, if z � si(x) then there exist k � i and z0 � xsuch that z = sk(z0). Hence, for some k � i and some z0 � x we haveh1(sk(z0)) = 1 and h2(sk(z0)) = 0. Contradiction.Si(Sj(h)) = Sj(h) Proof : Si(Sj(h))(x) = Sj(h)(si(x)) = h(sj(si(x))) = h(sj(x))(we used property (4) of SHn-spaces).S1(h) _ h = h Proof : (S1(h) _ h)(x) = maxfS1(h)(x); h(x)g =maxfh(s1(x)); h(x)g = h(x) (since by property (5) of SHn-spaces s1(x) �x and h is order-preserving).Si(� h) =� Sn�i(h) Proof : Si(� h)(x) = 1 if and only if � h(si(x)) = 1, i.e.if and only if h(g(si(x))) = 0. By property (2) of SHn-spaces, g(si)(x) =sn�i(g(x)). Hence, Si(� h)(x) = 1 if and only if h(sn�i(g(x))) = 0, i.e. ifand only if � Sn�ih(x) = 1.S1(h) _ :S1(h) = 1 Proof : Assume that this is not true, i.e. that (S1(h) _:S1(h))(x) = 0 for some x. It follows that 0 = (S1(h) _ :S1(h))(x) =maxfS1(h(x));:S1(h)(x)g, hence S1(h(x)) = :S1(h)(x) = 0. We knowthat :S1(h)(x) = 0 if and only if there is some y � x such that S1(h)(y) =1. But, from property (8) of SHn-spaces, if y � x, then S1(h)(y) �S1(h)(x). Contradiction. 2De�nition 5.9 The category SHnSp of SHn-spaces has asObjects: spaces (X;�; �; g; s1; : : : ; sn�1) such that:(1) (X;�; �) is a Heyting space,(2) g; s1; : : : ; sn�1 are continuous,(3) (X;�; �; g; s1; : : : ; sn�1) satis�esthe conditions (1)-(10) listed above.Morphisms: continuous order-preserving mappings that(1) satisfy the condition (H20) and(2) preserve the operations g; s1; : : : ; sn�1.Lemma 5.16 Let f : X1 ! X2 be a morphism of SHn-spaces. Then E(f) :E(X2)! E(X1) de�ned by E(f)(h) = h � f is a morphism of SHn-algebras.



5.1.6 Link Between Algebraic Semantics and Kripke-style Semantics 127Proof : The fact that E(f) is a morphism of Heyting algebras followsfrom the extension of the Priestley duality to Heyting algebras presented inSection 5.1.5. It only remains to show that it commutes with the operatorsf�; S1; : : : ; Sn�1g.We know that E(f)(� h)(x) = 1 if and only if � h(f(x)) = 0, i.e. if and onlyif h(g(f(x))) = 0. Since h(g(f(x))) = h(f(g(x))) = E(f)(h)(g(x)), it followsthat E(f)(� h) =� E(f)(h).For every i = 1; : : : ; n�1, E(f)(Sih) = (Si�h)�f = Si�(h�f) = SiE(f)(h).2Corollary 5.17 The Priestley duality induces a dual equivalence between thecategory of SHn-algebras and the category of SHn-spaces.5.1.6 Link Between Algebraic Semantics and Kripke-style Se-manticsWe begin by making some remarks concerning morphisms of Kripke frames.Then we compare the algebraic models of SHn-logic and the Kripke-style mod-els. In Section 5.1.5 we de�ned a category SHnSp, having as objects SHn-spacesand as morphisms continuous order-preserving mappings that satisfy condition(H2) and preserve the operations g; s1; : : : ; sn�1. In Section 5.1.5 we noted thatcondition (H2) is equivalent with the \boundness" condition (H20):(H20) If �(z) � y then there exists x with (z � x and �(x) = y).This indicates a way of de�ning morphisms between SHn-frames. Given twoKripke frames K1 = (W1; R1; fs1i j i = 1; : : : ; n�1g; g1) and K2 = (W2; R2; fs2i ji = 1; : : : ; n � 1g; g2), a morphism from K1 to K2, f : K1 ! K2 is a mapf : W1 !W2 such that:� If (x1; y1) 2 R1 then (f(x1); f(y1)) 2 R2,� If (f(x1); y2) 2 R2 then there exists a y1 with (x1; y1) 2 R1 and f(y1) = y2.Note the similarity between this notion of morphism and that of \p-morphism"or \bounded morphism" from modal logic. More considerations in this direc-tion will be made in Section 5.3.2.We now say some words on the link between the satis�ability notion in thealgebraic models (SHn-algebras) and the relational models (Kripke frames)of SHn-logic. The duality theorem stated in Section 5.1.5 together with thesoundness and completeness of SHn-logic with respect to the algebraic seman-tics given in [Itu83], as well as with respect to the Kripke-style semantics givenin [IO96], suggests that there might be a link between satis�ability in the twodi�erent types of models. In what follows we establish some results in thisdirection.Let � be a formula in the language of the SHn-propositional logic withvariables Var.For a given Kripke frame K = (X;R; g; s1; : : : ; sn�1), we will denote thefamily of all hereditary subsets of X (with respect to the relation R) by H(X).



128 5 Fibered Representation and Universal AlgebraBelow, we present in parallel the notions of satis�ability in algebraic modelsand in Kripke models.Algebraic Models Kripke ModelsA: SHn-algebra K = (X;R; g; s1; : : : ; sn�1)SHn-framefor f : Var! A; for v : Var!H(X)A aj=f� i� f(�) = 1 K rj=v� i� fx j K rj=v;x�g = XA aj=� i� K rj=� i�for every f : Var! A, A aj=f� for every v : Var! H(X), K rj=v�Lemma 5.18 (cf. [IO96]) Let K = (X;R; g; s1; : : : ; sn�1) be a Kripke frame,and let H(X) be the family of all hereditary subsets of X (with respect to therelation R). Let m : Var ! H(X) be a meaning function such that for everyp 2 Var, m(p) is a hereditary set. Then the extension of m to formulae has alsoas values hereditary sets.We now consider topological Kripke-style models corresponding to the SHn-spaces:Lemma 5.19 Let X = (X;�; �; g; s1; : : : ; sn�1) be a SHn-space and let m :Var ! P(X) be a meaning function such that for every p 2 Var, m(p) is aclopen order-�lter of X. Then the extension of m to formulae has also asvalues clopen order-�lters of X.Proof : The extension of m to formulae is m(�) = fx 2 X j X rj=m;x �g.Obviously, m(0) = ; and m(1) = X. We show by structural induction that forevery �, m(�) is a clopen order-�lter.The property is obvious for every � 2 Var and for 0 and 1. Let � be aformula. We assume that the property is true for all subformulae of � and showthat it is also true for �. We distinguish the following cases:Case 1: � = �1 ^ �2.By the de�nition of the satis�ability relation we have x 2 m(�1 ^�2) if andonly if x 2 m(�1) and x 2 m(�2). Hence, m(�1 ^ �2) = m(�1) ^m(�2). Sinceby the induction hypothesis m(�1) and m(�2) are both clopen order-�lters itfollows that m(�1 ^ �2) is a clopen order-�lter.Case 2: � = �1 _ �2.Analogously to Case 1 we can prove that m(�1_�2) = m(�1)_m(�2). Sinceby the induction hypothesis m(�1) and m(�2) are both clopen order-�lters it



5.1.6 Link Between Algebraic Semantics and Kripke-style Semantics 129follows that m(�1 _ �2) is a clopen order-�lter.Case 3: � = �1 ) �2.By the de�nition of the satis�ability relation we know that x 2 m(�1 ) �2)if and only if for all y, if y � x and y 2 m(�1) then y 2 m(�2). Hence,m(�1 ) �2) = fx 2 X j for all y; if y � x and y 2 m(�1) then y 2 m(�2)g =m(�1) ) m(�2). Since by the induction hypothesis m(�1);m(�2) are clopenorder-�lters, it follows that m(�1) ) m(�2) is a clopen order-�lter (see also[Gol89]).Case 4: � = :�1. Follows from Case 3.Case 5: � = Si�1.We know that x 2 m(Si�1) if and only if si(x) 2 m(�1), i.e. if and only ifx 2 s�1i (m(�1)). Hence, m(Si�1) = s�1i (m(�1)). Since m(�1) is a clopen order-�lter, and si is continuous and order-preserving, it follows that also m(Si�1) isa clopen order-�lter.Case 6: � =� �1.We have x 2 m(� �1) if and only if g(x) 62 m(�1), i.e. if and only ifx 2 Xng�1(m(�1)) =� m(�1)By the induction hypothesism(�1) is a clopen order-�lter, hence g�1(m(�1))is a clopen order-ideal and therefore Xng�1(m(�1)) is a clopen order-�lter. 2Lemma 5.19 is a simple consequence of the fact that the algebra of clopenorder-�lters of X, ClopenOF(X), is a SHn-algebra and that Fma(Var) is thefree �-algebra freely generated by Var, where � = f_;^;!;:;�; S1; : : : ; Sn�1g,hence every m : Var ! ClopenOF(X) extends in a unique way to a homomor-phism of �-algebras m : Fma(Var)! ClopenOF(X).Lemma 5.20 Let A be a SHn-algebra and D(A) its dual. Let �A : A !ClopenOF(D(A)) be the canonical isomorphism given by the Priestley represen-tation.(1) Let f : Var ! A. Then A aj=f� if and only if D(A) rj=mf�, where mf :Var! P(D(A)) is de�ned by mf (p) = �A(f(p)) = fh 2 D(A) j h(f(p)) =1g.(2) Let m : Var ! P(D(A)) be such that for every p 2 Var, m(p) is a clopenorder-�lter, and let fm : Var! A be de�ned by fm(p) = ��1A (m(p)). Thenfor every p 2 Var, D(A) rj=m� if and only if A aj=fm�.Proof : (1) Note �rst that for every f : Var ! A, the associated meaningfunctionmf = �A�f extends to a morphismmf of SHn-algebras from Fma(Var)to the set of clopen order-�lters of D(A), ClopenOF(D(A)), de�ned by mf (�) =fh 2 D(A) j D(A) rj=mf ;h �g. From the fact that f : Fma(Var) ! A isthe unique morphism that extends f and that A and ClopenOF(D(A)) are



130 5 Fibered Representation and Universal Algebraisomorphic, it follows that mf (�) = �A � f(�) = �A � f(�) = fh 2 D(A) jh(f(�)) = 1g (or, in terms of prime �lters: mf (�) = fF j f(�) 2 Fg). We knowthat A aj=f� if and only if f(�) = 1 and D(A) rj=mf� if and only if mf (�) = D(A),and from the form of mf (�) the equivalence follows easily.(2) It is easy to see that the unique morphism fm : Fma(Var) ! A whichextends fm is ��1A �m. Therefore, fm(�) = 1 if and only if ��1A �m(�) = 1 ifand only if m(�) = D(A). 2Corollary 5.21 Let A be a SHn-algebra and D(A) its dual, and let � 2Fma(Var) be a formula of the SHn-logic. Then:(1) If D(A) rj= � then A aj= �,(2) If A is �nite and A aj= �, then D(A) rj= �.Proof : (1) Assume that D(A) rj= �. We show that A aj= �.Let f : Var ! A be an assignment of truth values. Let �A : A !ClopenOF(D(A)) be the canonical isomorphism between A and the set of clopenorder-�lters of D(A). Let m : Var ! ClopenOF(D(A)) be de�ned for everyp 2 Var by m(p) = �A(f(p)). m has as values order-�lters of D(A), hence is ameaning function. From Lemma 5.19, the extension m of m to formulae has alsoas values clopen order-�lters of D(A). For every formula �, m(�) = �A(f(�)).Since D(A) rj= � it follows that m(�) = D(A). Therefore, by the de�nition of�A it follows that f(�) = 1.(2) Assume that A is �nite, and A aj= �. We show that D(A) rj= �.Let m : Var ! P(D(A)) be a meaning function that has as values order-�lters of D(A). Since A is �nite, the topology on D(A) is discrete, hence theset of clopen order-�lters coincides in this case with the set of order-�lters. Theextension m of m to formulae has also as values (clopen) order-�lters of D(A).Let �A : A ! ClopenOF(D(A)) be the canonical isomorphism between A andthe set of order-�lters ofD(A). Let f : Var! A be de�ned by f = ��1A �m. SinceA aj= �, it follows that f(�) = 1. It is easy to see that f = (��1A �m) = ��1A �m.Therefore, it follows that m(�) = D(A). 2Note that, if A is in�nite, the fact that A aj= � does not imply in generalthat D(A) rj= �.Proposition 5.22 Let � be a formula in the language of the SHn-propositionallogic with variables Var. The following are equivalent:(1) `SHn �,(2) For every relational model K, K rj= �,



5.1.6 Link Between Algebraic Semantics and Kripke-style Semantics 131(3) D(Sn2) rj= �,(4) Sn2 aj=�,(5) For every SHn-algebra A, A aj=�.Proof : (1)) (2) follows from [IO96], Proposition 5.1; (2)) (3) is immedi-ate because D(Sn2) is a relational model; (3)) (4) follows from Corollary 5.21;(4) ) (5) follows from the fact that the variety of SHn-algebras is generatedby Sn2 ; (5) ) (1) follows from the completeness of SHn-logic with respect toSHn-algebras. 2Corollary 5.23 Let � be a formula in the language of the SHn-propositionallogic with variables Var. Then `SHn � if and only if D(Sn2) rj= �.
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jFigure 5.4: The Priestley Dual of Sn2Remark 5.24 The Priestley dual of Sn2 , D(Sn2) is isomorphic to the or-dered set of the join-irreducible elements of Sn2 , namely with the orderedset D(Sn2) = f(0; in�1) j i = 1; : : : ; n � 1g [ f( in�1 ; 0) j i = 1; : : : ; n � 1gwith the order de�ned pointwise (these elements correspond to the prime �lters" (0; in�1); i = 1; : : : ; n � 1 resp. " ( in�1 ; 0); i = 1; : : : ; n � 1). The additionaloperations g; s1; : : : ; sn�1 are de�ned by:(1a) g(" (0; in�1)) = f(x; y) 2 Sn2 j� (x; y) 62" (0; in�1)g = f(x; y) 2 Sn2 j1� x < in�1g = f(x; y) 2 Sn2 j x � n�in�1g = " ( n�in�1 ; 0);(1b) g(" ( in�1 ; 0)) = f(x; y) 2 Sn2 j� (x; y) 62" ( in�1 ; 0)g = f(x; y) 2 Sn2 j1� y < in�1g = f(x; y) 2 Sn2 j y � n�in�1g = " (0; n�in�1);(2) sj(" (0; in�1)) = f( kn�1 ; ln�1) 2 Sn2 j Sj( kn�1 ; ln�1) � (0; in�1)g.Since Sj( kn�1 ; ln�1) = 8>>><>>>: (1; 1) if j + k � n; if j + l � n(1; 0) if j + k � n; if j + l < n(0; 1) if j + k < n; if j + l � n(0; 0) if j + k < n; if j + l < n



132 5 Fibered Representation and Universal Algebrait is easy to see that Sj( kn�1 ; ln�1) � (0; in�1) if and only if j + l � n, i.e.if and only if l � n � j. Thus, sj(" (0; in�1)) = " (0; n�jn�1). Similarly,sj(" ( in�1 ; 0)) = " (n�jn�1 ; 0).5.2 Automated Theorem Proving in SHn-logicsIn what follows we present an approach to automated theorem proving thatuses the Priestley dual of the algebra of truth values, in cases such a dualityholds.The general procedure { that can be applied in cases in which the logic issound and complete with respect to a variety V of algebras that have an under-lying distributive lattice structure, with the property that V is generated by a�nite number of �nite algebras, and such that the Priestley duality extends to adual equivalence between V (seen as a category) and a corresponding categoryof relational models { will be presented in section 5.3.1.We will �rst illustrate the ideas for the case of SHn-logics.Our approach is in some sense inspired by the approach presented in [H�ah94,H�ah96b], but is di�erent in that we exploit the fact that the algebraic modelhas a dual with less elements, and use it in order to improve e�ciency (e.g. thenumber of clauses that are generated).The main idea of our approach is to use signed literals, where the signsare \possible worlds", i.e. elements of D(Sn2) (corresponding to prime �lters oftruth values) instead of truth values (as done in [BF92, BF95]) or arbitrary setsof truth values (as done in [H�ah94, H�ah96b]). The idea of using \valuations inf0; 1g" instead of values is not new. It appears already for instance in [Sco73]for the case of  Lukasiewicz logics.In what follows, for a given meaning function m : Var ! OD(Sn2) we usethe following notation:x �t means \� is true at x" in the interpretation m (i.e. D(Sn2) rj=m;x �)x �f means \� is false at x" in the interpretation m (i.e. D(Sn2) 6 rj=m;x �)where x is a \possible world", i.e. an element of D(Sn2).We point out that expressions of the type x �t respectively x �f arevery similar to the \positive and negative regular formulae" of the form � i �respectively � i � introduced in [H�ah96b] for many-valued logics where theset of values is f0; 1n�1 ; : : : ; n�2n�1 ; 1g.The only di�erence is that in [H�ah96b] totally ordered sets are considered,whereas we consider labelling over duals of �nite distributive lattices. In theparticular case of totally ordered lattices of truth values, H�ahnle's notions ofpositive and negative literal are recovered: � i � corresponds to x �t and� i� 1 � to x �f , where x = " i, which justi�es the terminology \literalwith positive polarity" for literals with sign � i , resp. \literal with negative



5.2.1 An E�cient Translation into Clause Form 133polarity" for literals with sign � i , as used in [H�ah96b].In order to de�ne an automated theorem proving procedure, we need:1) An e�cient procedure for translation into clause form,2) A resolution procedure (which has to be proved sound and complete).In [H�ah96b], H�ahnle de�nes a procedure for transforming a signed formulain a set of signed clauses, and then shows how the signed clauses can be trans-formed into regular clauses { to which resolution is applied in order to showthat they are unsatis�able.In what follows we sketch a procedure similar to the one described [H�ah96b],by which, given a SHn-formula �, a set � of clauses can be obtained such that� is unsatis�able if and only if the given formula � is a theorem.The advantage of the method presented here is that, instead of using thewhole set of values in Sn2 , as the general approach would require, it uses thespace dual to Sn2 which has only 2(n�1) elements. In Section 5.3.1 we will showthat this method can be extended to more general many-valued logics, soundand complete for classes of algebras for which a Priestley-type duality is known,and whose variety of models is generated by �nitely many �nite algebras.5.2.1 An E�cient Translation into Clause FormAs noticed in [H�ah94], there are several main obstacles when clausal normalforms are to be used in a generalized context:(1) Normal forms can become exponentially long with respect to thelength of the input formula when \naive" algorithms are used,(2) The normalized input has no resemblance with the original formula,Another obstacle can be the fact that many non-classical logics do not have\internal" normal forms.These problems can be solved by using a structure-preserving clause formtranslation.The procedure that we present in what follows has been inspired by [H�ah94],which deals with short conjunctive normal forms for �nitely valued logics; itpresents and discusses structure-preserving translations to clause form. Thecentral idea behind structure-preserving clause form translations is to intro-duce additional atoms (resp. predicate letters in the case of �rst-order logic),which serve as abbreviations for subformulae of the input. It remains to trans-late the formulae that represent the de�nitions of the new literals. In classicallogic this is a classical translation procedure, called \translation to de�nitionalform" or \structure-preserving translation" in the literature (see e.g. [Ede92]for a detailed description of this translation strategy).We begin with some de�nitions. For the sake of simplicity, we only presentthe propositional case here.



134 5 Fibered Representation and Universal AlgebraLet Var be a countably in�nite set of variables; in what follows, all thevariables belong to Var.De�nition 5.10 Let x 2 D(Sn2) be a "possible world" and p be an atom (inthe propositional case, a propositional variable). Then x pt is a positive literal(with sign x ) and x pf is a negative literal (with sign x ). A set of (positiveor negative) signed literals is called a (signed) clause. A formula in signedconjunctive normal form (CNF) is a �nite set of (signed) clauses. (In the �rst-order case we require that the clauses in a formula have disjoint variables.).De�nition 5.11(1) A propositional positive literal x pt is satis�able if for some meaningfunction m : Var! O(D(Sn2)), p is true in m at x.(2) A propositional negative literal x pf is satis�able if for some meaningfunction m : Var! O(D(Sn2)), p is false in m at x.(3) A propositional signed clause is satis�able if and only if at least one of itsliterals is satis�able.(4) A signed formula � is satis�able if and only if all clauses in � are simul-taneously satis�able by the same interpretation.Note that if y pt at m and y � x then x pt at m.Let � be a propositional SHn-formula, � 2 Fma(Var).Lemma 5.25(1) � is a SHn-theorem if and only if there is no valuation m such that � isfalse at " (0; 1) in m or � is false at " (1; 0) in m.(2) � is not a SHn-theorem if and only if for at least one valuation m � isfalse at " (0; 1) in m or � is false at " (1; 0) in m.Proof : (1) We know that � is a theorem if and only if for every valuationm : Var! O(D(Sn2)) and every x 2 D(Sn2), � is true at x in m.Assume that � is a SHn-theorem. Then there is no valuation m such that� is false at " (0; 1) in m or � is false at " (1; 0) in m. Assume now that thereis no valuation m0 such that � is false at " (0; 1) in m0 or � is false at " (1; 0) inm0. Let m be an arbitrary valuation m : Var! O(D(Sn2)), and let x 2 D(Sn2).Because of the form of D(Sn2) it follows that x �" (0; 1) or x �" (1; 0). Since� is true at both " (0; 1) and " (1; 0), it follows that � is true at x.(2) follows immediately from (1). 2For every formula � we can introduce a new propositional variable p�.Lemma 5.26 The formula � is a theorem if and only if there is no valuationm such that m(�) = m(p�) and " (0; 1) pf� or " (1; 0) pf� at m.



5.2.1 An E�cient Translation into Clause Form 135De�nition 5.12 Let �1; �2 be two formulae, and let m : Var ! O(D(Sn2)) bea valuation. We say that �1 and �2 are equivalent in m (denoted �1 �m �2) ifthey are true at the same states, i.e. if m(�1) = m(�2).We say that �1 � �2 is satis�able if there is a valuation m such that �1 �m�2.Lemma 5.27 The relation � has the following properties:(1) Let m be a valuation, and �1; �2 be formulae such that �1 �m �2. Thenfor every x 2 D(Sn2), ( x �f1 _ x �t2) ^ ( x �t1 _ x �f2) at m.(2) �1 � �2 is satis�able if and only if there exists a valuation m such thatfor all x 2 D(Sn2), ( x �f1 _ x �t2) ^ ( x �t1 _ x �f2 ) at m.Proof : (1) Let m be a valuation, and �1; �2 be formulae such that �1 �m �2.Then for every x 2 D(Sn2), x �t1 at m if and only if x �t2 at m, and x �f1at m if and only if x �f2 at m.This is equivalent to saying that for every x 2 D(Sn2) �1 is true at x or �2is false at x, and �1 is false at x or �2 is true at x at m, i.e. ( x �f1 _ x �t2)^( x �t1 _ x �f2) at m.(2) Follows immediately from (1). 2We can therefore reduce the task of proving that a formula � is a SHn-theorem to the task of proving that for no valuation m : Var ! O(D(Sn2)) wehave " (0; 1) pf� or " (1; 0) pf� at m and p� �m �.By Lemma 5.27, p� �m � if and only if for every x 2 D(Sn2), ( x �f _x pt�) ^ ( x �t _ x pf�) at m.Corollary 5.28 A formula � is a SHn-theorem if and only if there is no val-uation m such that8>>>><>>>>: (1) " (0; 1) pf� _ " (1; 0) pf�; at m;(2x) ( x �f _ x pt�) ^ ( x �t _ x pf�) at m:for every x 2 D(Sn2)We did not yet obtain a set of signed clauses that is unsatis�able if and onlyif � is a theorem. It can be seen that in (2x), expressions of the form x �t,and x �f still occur. We will show how we can recursively eliminate theseexpressions.Lemma 5.29 Let m be a valuation, and let � be a binary and r a unaryoperator. Then:(1) Every formula  =  1 �  2 is equivalent in m to a formula of the formp 1 � p 2 where p i �m  i for i = 1; 2;



136 5 Fibered Representation and Universal Algebra(2) Every formula  = r 1 is equivalent in m to a formula of the form rp 1,where p 1 �m  1.Moreover, for every x 2 D(Sn2),(3) x ( 1 � 2)t at m if and only if x (p 1 �p 2)t at m, where p 1 �m  1and p 2 �m  2;(4) x (r 1)t at m if and only if x (rp 1)t at m, where p 1 �m  1.In conclusion, � is a SHn-theorem if and only if the following set of formulae(in classical logic) is unsatis�able:( " (0; 1) pf� _ " (1; 0) pf�;p �  for every subformula  of �:Corollary 5.30 � is a SHn-theorem if and only if the following conjunctionof formulae is unsatis�able:( " (0; 1) pf� _ " (1; 0) pf� )^^ ^x2D(Sn2) ^ subformula of � = 1� 2 ( x pf _ x (p 1 � p 2)t ) ^ ( x pt _ x (p 1 � p 2)f )^^ ^x2D(Sn2 ) ^ subformula of � =r 1 ( x pf _ x (rp 1)t ) ^ ( x pt _ x (rp 1)f ):Lemma 5.31 For any given valuation m the following holds:(Disj t) x (p1 _ p2)t i� ( x pt1) _ ( x pt2).(Disj f) x (p1 _ p2)f i� ( x pf1 ) ^ ( x pf2).(Conj t) x (p1 ^ p2)t i� ( x pt1) ^ ( x pt2).(Conj f) x (p1 ^ p2)f i� ( x pf1 ) _ ( x pf2).(Sj t) x (Sj(p1))t i� sj(x) pt1.(Sj f) x (Sj(p1))f i� sj(x) pf1 .(�, t) x (� (p1))t i� g(x) pf1 .(�, f) x (� (p1))f i� g(x) pt1.(), t) x (p1 ) p2)t i� 8y � x, y pf1 _ y pt2.(), f) x (p1 ) p2)f i� m pt1, where m = maxfy j y � xg, x pf2 and8x1; x2 � x; x1 6= x2; x1 pt1 _ x2 pf2 .(:, t) x (:p)t i� 8y � x, y pf .(:, f) x (:p)f i� 9y � x with y pt.Proof :(Disj t) : We know that x (p1 _ p2)t if and only if x 2 m(p1 _ p2) if and onlyif (x 2 m(p1) or x 2m(p2)) if and only if ( x pt1) _ ( x pt2).



5.2.1 An E�cient Translation into Clause Form 137(Disj f) : Similarly, x (p1 _ p2)f if and only if x 62 m(p1 _ p2) if and only if(x 62 m(p1) and x 62 m(p2)) if and only if ( x pf1) ^ ( x pf2).(Conj t,Conj f): We know that x (p1 ^ p2)t if and only if x 2 m(p1 ^ p2) =m(p1) \m(p2) if and only if ( x pt1) ^ ( x pt2). The second part followssimilarly.(Sj t; Sjf) : x (Sj(p1))t if and only if x 2 m(Sj(p1)) if and only if sj(x) 2m(p1).(� t;� f) : x (� (p1))t if and only if x 2 m(� (p1)) if and only if g(x) 62m(p1).() t) : By Lemma 5.19, x (p1 ) p2)t if and only if x 2 m(p1 ) p2) if andonly if 8y � x if y pt1 then y pt2 at m, if and only if 8y � x y pf1 _ y pt2at m.() f) : We know that x (p1 ) p2)f if and only if for some y � x, y pt1and y pf2 . By distributivity, the formula Wy�x( y pt1 ^ y pf2) canalternatively be written as^S1;S2;S1\S2=;S1[S2=fyjy�xg0@ _y12S1 y1 pt1 _ _y22S2 y2 pf21AIt is easy to see that, since in our case for every state x the set fy j y � xgis �nite and totally ordered, it follows that for every non-empty set S1 �fy j y � xg, S1 contains a maximal element max(S1) and Wy12S1 y1 pt1 ifand only if max(S1) pt1. Similarly, for every non-empty S2 � fy j y � xg,S2 contains a minimal element min(S2) and Wy22S2 y2 pf2 if and only ifmin(S2) pf2 . Additionally, since S1 \ S2 = ;, max(S1) 6= min(S2).Hence, x (p1 ) p2)fi�maxfy j y � xg pt1 ^ ^S1;S2 6=;;S1\S2=;S1[S2=fyjy�xg � max(S1) pt1 _ min(S2) pf2� ^ x pf2 ;i.e. i� maxfy j y � xg pt1 ^Vy1;y2�x;y1 6=y2 � y1 pt1 _ y2 pf2� ^ x pf2 .(: t, : f): Follows from the fact that :p = p) 0. 2We can use Consequence 5.30 and Lemma 5.31 in order to obtain a conjunctivenormal form for �. The rules necessary for eliminating the operators are thefollowing (where L is a signed literal):



138 5 Fibered Representation and Universal AlgebraDisj (t) : L _ " (0; i) (p1 _ p2)tnL; " (0; i) pt1; " (0; i) pt2o L _ " (i; 0) (p1 _ p2)tnL; " (i; 0) pt1; " (i; 0) pt2o
Disj (f) : L _ " (0; i) (p1 _ p2)fnL; " (0; i) pf1o ^nL; " (0; i) pf2o L _ " (i; 0) (p1 _ p2)fnL; " (i; 0) pf1o ^nL; " (i; 0) pf2o
Conj (t) : L _ " (0; i) (p1 ^ p2)tnL; " (0; i) pt1o ^nL; " (0; i) pt2o L _ " (i; 0) (p1 ^ p2)tnL; " (i; 0) pt1o ^nL; " (i; 0) pt2oConj (f) : L _ " (0; i) (p1 ^ p2)fnL; " (0; i) pf1 ; " (0; i) pf2o L _ " (i; 0) (p1 ^ p2)fnL; " (i; 0) pf1 ; " (i; 0) pf2o
Sj(t) : L _ " (0; i) Sj(p)tnL; " (0; nn�1 � j) pto L _ " (i; 0) Sj(p)tnL; " ( nn�1 � j; 0) pto
Sj(f) : L _ " (0; i) Sj(p)fnL; " (0; nn�1 � j) pfo L _ " (i; 0) Sj(p)fnL; " ( nn�1 � j; 0) pfo
� (t) : L _ " (0; i) � ptnL; " ( nn�1 � i; 0) pfo L _ " (i; 0) � (p)tnL; " (0; nn�1 � i) pfo
� (f) : L _ " (0; i) � pfnL; " ( nn�1 � i; 0) pto L _ " (i; 0) � (p)fnL; " (0; nn�1 � i) pto



5.2.1 An E�cient Translation into Clause Form 139
) (t) : L _ " (0; i) (p1 ) p2)tVj � i nL; " (0; j) pf1 ; " (0; j) pt2o; L _ " (i; 0) (p1 ) p2)tVj � i nL; " (j; 0) pf1 ; " (j; 0) pt2o;
) (f) : L _ " (0; i) (p1 ) p2)fnL; (0; 1n�1 ) pt1o^Vj 6= j0 � inL; " (0; j) pt1; " (0; j0) pf2o^nL; " (0; i) pf2o ;

L _ " (i; 0) (p1 ) p2)fnL; ( 1n�1 ; 0) pt1o^Vj 6= j0 � inL; " (j; 0) pt1; " (j0; 0) pf2o^nL; " (i; 0) pf2o ;
:(t) : L _ " (0; i) :ptVj�i nL; " (0; j) pfo ; L _ " (i; 0) :ptVj�i nL; " (j; 0) pfo ;
:(f) : L _ " (0; i) :pfnL; " (0; j) pt; j � io L _ " (i; 0) :pfnL; " (j; 0) pt; j � ioAfter performing this translation, from any formula � we obtain a formula� in clause form, containing \literals" of the form x pt and x pf where p isa variable and x a possible world.From Corollary 5.30 and Lemma 5.31 it follows that � is a theorem if andonly if � is unsatis�able.Proposition 5.32(1) The number of clauses generated from a given formula � is O(n3l), wherel is the number of subformulae of �.(2) If the formula � does not contain the connective ), then the number ofclauses generated from � is O(n2l), where l is the number of subformulaeof �.(3) If the formula � does not contain the connectives ) and :, then thenumber of clauses generated from � is O(nl), where l is the number ofsubformulae of �.



140 5 Fibered Representation and Universal AlgebraProof : The number of clauses generated from a given formula � is1+ X subformula of � Xx2D(Sn2 ) j clauses( x pf _ x  t )j+j clauses( x pt _ x  f )j:(1) The maximal number of clauses is generated by the subformulae of theform  =  1 )  2. In this case, for every x 2 D(Sn2) the number of clausesgenerated by ( x pf _ x  t ) is less than or equal to card(fy j y � xg, andthe number of clauses generated by ( x pt _ x  f ) is less than or equal to2 + card(f(x1; x2) j x1 6= x2; x1; x2 � xg). Thus, the number of clauses gener-ated from a given formula � has as upper bound 1 + 2l�n�1i=1 (i+ i(i� 1) + 2) =1 + 4l + 2l�n�1i=1 i2 = 1 + 4l + 2l (n�1)(n�2)(2n�3)6 . Hence, the number of clausesgenerated from a given formula � is O(n3l).(2) If the formula � does not contain the operator ), then the maximalnumber of clauses is generated by the subformulae of the form  = : 1. In thiscase, for every x 2 D(Sn2) the number of clauses generated by ( x pf _ x  t )is equal to the number of elements in D(Sn2) smaller than x; ( x pt _ x  f )gives rise to only one clause. If the subformula does not have the form : , thenthe sum of the number of clauses generated by ( x pf _ x  t ) and the numberof clauses generated by ( x pt _ x  f ) is at most 3. Thus, the number ofclauses generated from � has as upper bound 1 + 2l�n�1i=1 (i+ 1) = 1 + 2l�ni=2i =1 + l(n2 + n� 2). Thus, in this case the number of clauses generated from � isO(n2l).(3) Assume that � does not contain the connectives ) and :. In thiscase, for every x 2 D(Sn2) the sum of the number of clauses generated by( x pf _ x  t ) and the number of clauses generated by ( x pt _ x  f ) isat most 3. Thus, the number of clauses generated from � has as upper bound1 + 6l(n� 1), so it is O(nl). 2Example 5.1 Find a clause form for � = (S1x _ :S1x).Proof : We introduce the following renamings: p = S1x, q = :p, r = p _ q.Therefore � is a tautology if and only if the conjunction of the followingformulae is unsatis�able:" (0; 1) rf _ " (1; 0) rf ; and for all � 2 D(Sn2)� rf _ � (p _ q)t, � rt _ � (p _ q)f ,� qf _ � :pt, � qt _ � :pf ,� pf _ � S1(x)t, � pt _ � S1(x)f .We have therefore the following set of clauses:



5.2.2 A Resolution Procedure 141n " (0; 1) rf ; " (1; 0) rfo ; and, for all i and j � i (where applicable):n " (0; i) rf ; " (0; i) pt; " (0; i) qto ; n " (i; 0) rf ; " (i; 0) pt; " (i; 0) qto ;n " (0; i) rt; " (0; i) pfo ; n " (0; i) rt; " (0; i) qfo ;n " (i; 0) rt; " (i; 0) pfo ; n " (i; 0) rt; " (i; 0) qfo ;n " (0; i) qf ; " (0; j) pfo, n " (0; i) qt; " (0; j) pt;8j � ion " (i; 0) qf ; " (j; 0) pfo, n " (i; 0) qt; " (j; 0) pt;8j � ion " (0; i) pf ; " (0; 1) xto, n " (0; i) pt; " (0; 1) xfo ;n " (i; 0) pf ; " (1; 0) xto, n " (i; 0) pt; " (1; 0) xfo :5.2.2 A Resolution ProcedureWe now continue by showing that we can formulate a version of negative hy-perresolution in this more general context, inspired by the method described in[H�ah94, H�ah96b].Negative Hyperresolutionn x1 pf1o [D1; : : : ;n xn pfno [Dn;n y1 pt1; : : : ; yn ptno [ED1 [ : : : [Dn [Eprovided that n � 1, yi � xi for all i = 1; : : : ; n and D1; : : : ;Dn; E are negative.It is easy to see that if 2 can be derived from � by a �nite number ofapplications of many-valued negative hyperresolution then � is unsatis�able(this follows easily from the fact that if m is a model for the negative clausesC1; : : : Cn and for the positive clause C then m is a model of any of theirresolvents).In order to prove the completeness of many-valued negative hyperresolu-tion we show that the proof presented in [H�ah96b], which was taken virtuallyunaltered from [AB70], works as well in this case.Theorem 5.33 Let � be an unsatis�able set of clauses. Then 2 can be derivedfrom � by a �nite number of applications of many-valued negative hyperresolu-tion.



142 5 Fibered Representation and Universal AlgebraProof : Let nl(�) be the total number of literals in � and nc(�) the totalnumber of clauses in �. It is obvious that nl(�) � nc(�). We will proceed byinduction on the di�erence k(�) = nl(�)�nc(�). If 2 2 � then the conclusionis obvious. Therefore in what follows we will assume that 2 62 �. We distinguishthe following casesCase 1. k(�) = 0: In this case nl(�) = nc(�). Since 2 62 �, � must consistonly of unit clauses. Since � is unsatis�able, there must exist two clausesf � ptg and f � pfg in � such that � � �.(In order to prove that the last statement is true, assume that for every twoclauses C1; C2 in �, if C1 = � pt and C2 = � pf then � 6� �. In this casewe can construct a valuation m : Var ! O(D(Sn2)) that satis�es �. Indeed,for every p 2 Var let m(p) = D(A) if p does not occur in the clauses in �,and m(p) =" f�m j �m is minimal element of f� j � pt 2 �gg. It is easy tosee that m is a meaning function, and that m satis�es �: if � pt 2 � then� 2 m(p), whereas if � pf 2 � then � 62 m(p), since otherwise we would have� � �m, with �m pt 2 �.)Then 2 can be derived from the clauses f � ptg and f � pfg where � � �by negative hyperresolution.Case 2. k(�) > 0 (i.e. nl(�) > nc(�)).Subcase 2a: Assume that all non-positive clauses consist of one literal. Thenit follows that all negative literals in � appear in unit clauses. Since � isunsatis�able, there is a positive clause in � which immediately produces theempty clause with suitable negative unit clauses.(In order to prove the last statement, assume that for every positive clauseC and every negative clauses C1; : : : ; Cn, C does not produce immediately theempty clause with C1; : : : ; Cn. We can construct a model that satis�es � asfollows: Let m : Var ! O(D(A)) be de�ned by m(p) = D(A) for every p thatdoes not occur in a negative clause; m(p) =" f� j � pf 2 � implies � 6� �g.It is easy to see that m is a valuation that makes true all negative clausesas well as all clauses that contain variables which do not occur in any negativeclause. Let C = f y1 pt1; : : : ; yn ptng be a clause that only contains variablesthat appear in negative clauses. From the assumption, the empty clause cannotbe generated by hyperresolution from C and other negative clauses. Assumethat m does not make C true. Then for every i = 1; : : : ; n, yi 62 m(pi), i.e.there exists Ci = xi pfi 2 � with xi � yi. In this case it would follow thatC;C1; : : : ; Cn would yield the empty clause by hyperresolution. Contradiction.This shows that m makes C true.)Subcase 2b: There is a non-positive non-unit clause C = f � pfg [D 2 �with D 6= 2. Let �0 = �nfCg, �1 = �0[D, and �2 = �0[ff � pfgg. Since �is unsatis�able it follows that both �1, �2 are unsatis�able. Moreover, �1 and�2 contain the same number of clauses as �, but they have less literals. Hence,k(�1) < k(�) and k(�2) < k(�). Since �1 and �2 are both unsatis�able, bythe induction hypothesis, 2 can be deduced from �1 and 2 can be deducedfrom �2 by hyperresolution. Consider a hyperresolution deduction of 2 from



5.3 A General Approach 143�1. If we replace each occurrence of D by C in this proof then we obtain a validhyperresolution deduction with last clause 2 or f � pfg. If the last clause is2, we have already a hyperresolution deduction of 2 from �. If the last clauseis f � pfg, then its deduction from � can be extended to a deduction of 2from � using the fact that there is a deduction of 2 from �2. 2Example 5.2 Consider the example presented before. The set of clauses canbe shown to be unsatis�able by negative hyperresolution:n " (0; 1) rt; " (0; 1) qfo n " (0; 1) rf ; " (1; 0) rfo
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h25.3 A General ApproachResults on sheaf representation for discriminator varieties and the applicationsto uni�cations have been given in Section 4.1.2 and Section 4.1.3. Therefore, inwhat follows we will only focus on applications of the Priestley representationtheorem to automated theorem proving.In this section we will show that the ideas on which the procedure for auto-mated theorem proving presented before is based can be applied without major



144 5 Fibered Representation and Universal Algebramodi�cations to a wide class of logics, namely the class of those logics that aresound and complete with respect to a variety V of algebras with a distributivelattice reduct and operators, with the additional property that V is generatedby one �nite algebra A, and such that the Priestley Duality for distributivelattices extends to a dual equivalence between V (seen as a category) and anappropriate category of ordered Priestley spaces endowed with additional rela-tions.We begin with some theoretical considerations that show the correctness ofour approach, and then we will give a similar general resolution procedure.We will end by illustrating the method by means of two examples.5.3.1 Theoretical ConsiderationsWe will begin by analyzing the propositional case. In Section 5.3.6 we will alsoconsider many-valued �rst-order logics.Let L be a propositional logic which satis�es the following properties:(P1) L is sound and complete with respect to a variety of algebrasVL generated by �nitely many �nite algebras, i.e. such thatVL = HSP (A1; : : : ; An). In other words,`L � if and only if VL j= � = 1if and only if for i = 1; : : : ; n;Ai j= � = 1:(P2) The algebras in VL have an underlying distributive lattice struc-ture, and(P3) The Priestley duality induces a full duality between the vari-ety VL and a subcategory of the category of Priestley spaces(possibly with additional operators), that we will denote byVLSp.For every algebra A 2 VL we will denote its dual by D(A), and the isomor-phism between A and the set ClopenOF(D(A)) of clopen order-�lters of D(A)by �A : A! ClopenOF(D(A)).Topological Relational ModelsThe satis�ability relation aj= for the algebras of VL induces a satis�ability rela-tion rcj= for the elements in VLSp as follows:In order to de�ne rcj= we will require that all the meaning functions haveas values clopen order-�lters in K. Let K be an object of VLSp. Let m :Var ! ClopenOF(K) be a meaning function. Since we assumed that there is adual equivalence between the categories VLSp and VL (induced by the Priestleyduality), it follows that K = D(A) for some A 2 VL.
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(5.1)De�nition 5.13 Let m : Fma(Var) ! ClopenOF(K) = ClopenOF(D(A)) bede�ned by m = �A � ��1A �m. We de�ne:(1) D(A) rcj=m;x � if and only if x 2 m(�),(2) D(A) rcj=m � if and only if m(�) = D(A);(3) D(A) rcj= � if and only if D(A) rj=m � for every m : Var! ClopenOF(D(A)):Lemma 5.34 Let A be an algebra in V. Then A aj= � if and only if D(A) rcj= �.Proof : Assume that A aj= �. Let m : Var ! ClopenOF(D(A)) be a meaningfunction such that for every p 2 Var, m(p) is a clopen order-�lter. Let fm :Var ! A be de�ned by fm = ��1A �m. Since A aj= � it follows that fm(�) = 1,hence m(�) = �A � ��1A �m(�) = �A(1) = D(A), i.e. D(A) rcj=m �.Conversely, assume that D(A) rcj= �. Let f : Var ! A be an arbitraryassignment. Let mf : Var! ClopenOF(D(A)) be de�ned by mf = �A �f . SinceD(A) rcj= � it follows that mf (�) = D(A), where mf = �A���1A � �A � f = �A�f .Hence, f(�) = 1. 2Proposition 5.35 Under the conditions (P1){(P3) we have`L � if and only if for all i = 1; : : : ; n;D(Ai) rcj= �:Proof : By (P1), `L � if and only if for all i = 1; : : : ; n;Ai aj= �: By Lemma 5.34,for every i = 1; : : : ; n, Ai aj= � if and only if D(Ai) rcj= �: 2Remark: The result in Lemma 5.34 may seem surprising, since a corre-sponding theorem does not hold in general for modal logics if one considerssatis�ability in modal algebras respectively in Kripke frames. The reason isthat we de�ned a restricted notion of meaning function on the topological rela-tional models K 2 VLSp, by imposing that the values of such meaning functionsare clopen order-�lters.Note that the satis�ability relation rcj= de�ned this way does not coincidewith the notions of satis�ability de�ned for Kripke models in [IO96] (where thevalues of the meaning functions are only required to be hereditary sets).



146 5 Fibered Representation and Universal AlgebraHowever, for �nite spaces K 2 VLSp the notion of satis�ability de�nedbefore coincides with the more general notion of satis�ability de�ned in [IO96].This happens because in the �nite case the topology on the Priestley spacesis discrete (hence, all the order-�lters are clopen). By Assumption (P1), thealgebras A1; : : : ; An are �nite, thus every meaning function with as values order-�lters has as values actually clopen order-�lters (in the discrete topology). Thus,in Proposition 5.35 the topological properties of the meaning functions playno rôle. Hence, the satis�ability relation de�ned on D(Ai), for i 2 f1; : : : ; ngcoincides with a more general satis�ability relation analogous to the one de�nedin [IO96].5.3.2 Towards a Link Between Algebraic and Relational ModelsThe consideration in Section 5.1.5 concerning the extension of the Priestleyduality theorem to SHn-algebras, as well as similar existing approaches (likefor example duality theorems for varieties of Ockham algebras and for �-valued Lukasiewicz-Moisil algebras), together with duality theorems between certainvarieties of modal logics and appropriate categories of topological Kripke modelssuggest that a general approach to extending Priestley duality theorems tovarieties of distributive algebras with operators may be possible. Some steps inthis direction have been done by [Gol89], where Priestley duality is used in orderto develop a representation theorem for distributive lattices with operators (joinhemimorphisms and meet hemimorphisms are considered).In what follows we extend the results of [Gol89] in that we consider sep-arately operators that are homomorphisms or antimorphisms, and use theseresults in order to de�ne a general notion of relational (not necessarily topolog-ical) models for such logics, and a notion of satis�ability in such models. Thus,in Lemma 5.36, we explicitely consider lattice homomorphisms and lattice anti-morphisms besides the join- and meet-hemimorphisms studied in [Gol89]. Thiswill o�er a general framework for expressing the automated theorem proof pro-cedure, for proving its correctness and for analyzing its complexity.We will consider some cases that appear more frequently in practice. Namely,we will consider the situations when the operators of the logic L can belongto the following classes: f^;_g; Lh; La; Jh;Mh, and Heyting implication andnegation (Hey).We assume that the logic L satis�es the conditions (P1) � (P3), with theremarks that:(1) The signature of the algebras in VL is f^;_; 0; 1g [ �, where � = Lh [La [ Jh [Mh (or � = f);:g [ Lh [ La [ Jh [Mh if the logic alsocontains the operation symbols for Heyting implication and negation),(2) The additional operations on the algebras in VL belong to the followingclasses: lattice homomorphisms (Lh), lattice antimorphisms (La), joinhemimorphisms (Jh) and meet hemimorphisms (Mh) (resp. Heyting al-gebra operations (Hey)). The de�nitions are given below.De�nition 5.14 Let A be an algebra with a lattice reduct.



5.3.2 Towards a Link Between Algebraic and Relational Models 147A lattice antimorphism on A is a function k : A ! A with k(0) = 1; k(1) =0; k(a1 _ a2) = k(a1) ^ k(a2) and k(a1 ^ a2) = k(a1) _ k(a2).A join hemimorphism on A is a function f : An ! A such that for everyi; 1 � i � n,(Jh1) f(a1; : : : ; ai�1; 0; ai+1; : : : ; an) = 0;(Jh2) f(a1; : : : ; ai�1; b1 _ b2; ai+1; : : : ; an) == f(a1; : : : ; ai�1; b1; ai+1; : : : ; an) _ f(a1; : : : ; ai�1; b2; ai+1; : : : ; an):A meet hemimorphism on A is a function g : An ! A such that for everyi; 1 � i � n,(Mh1) g(a1; : : : ; ai�1; 1; ai+1; : : : ; an) = 1;(Mh2) g(a1; : : : ; ai�1; b1 ^ b2; ai+1; : : : ; an) == g(a1; : : : ; ai�1; b1; ai+1; : : : ; an) ^ g(a1; : : : ; ai�1; b2; ai+1; : : : ; an):The algebras will be denoted by(A;_;^; fhAgh2Lh; fkAgk2La; ffAgf2Jh; fgAgg2Lh):Based on previous papers in which the link between the algebraic and therelational semantics for modal logics is analyzed (as [Lem66a, Lem66b], as wellas the general study in [Gol89]), we will indicate a canonical way in whichone can associate functions or relations in the dual space and vice-versa. Thiswill provide hints about the de�nition of a satis�ability relation on these dualspaces, as well as about the translation to clause form.V D�! VLSpLh h 2 Lh, i.e. hA : A! A, 7! D(hA) : D(A) ! D(A) order-preservinglattice homomorphism D(hA)(f) = f � h;8f : A! f0; 1g(prime �lters: D(hA)(F ) = fa 2 A j h(a) 2 Fg)La k 2 La, i.e. kA : A! A 7! D(kA) : D(A) ! D(A) order-reversinglattice antimorphism D(kA)(f) = sw � f � k;8f : A! f0; 1g,where sw(0) = 1; sw(1) = 0(prime �lters: D(kA)(F ) = fa 2 A j k(a) 62 Fg)Jh f 2 Jh, i.e. fA : An ! A 7! D(fA) � D(A)n+1, increasing relationjoin hemimorphism D(fA)(f1; : : : ; fn; fn+1) i�(fi(xi) = 1 8i 2 f1; : : : ; ng) impliesfn+1(f(x1; : : : ; xn)) = 1(prime �lters: D(fA)(F1; : : : ; Fn; Fn+1) i�ai 2 Fi;8i 2 f1; : : : ; ng impliesf(a1; : : : ; an) 2 Fn+1.)Mh g 2Mh, i.e. gA : An ! A 7! D(gA) � D(A)n+1, decreasing relationmeet hemimorphism D(gA)(f1; : : : ; fn; fn+1) i�fn+1(g(x1; : : : ; xn)) = 1 implies(9i 2 f1; : : : ; ng : fi(xi) = 1).(prime �lters: D(gA)(F1; : : : ; Fn; Fn+1) i�(g(a1; : : : ; an) 2 Fn+1 implies9i 2 f1; : : : ; ng with ai 2 Fi.)



148 5 Fibered Representation and Universal AlgebraWe note that in a Priestley space the clopen order-�lters and their comple-ments form a subbasis for the topology. It is easy to see that this topology isthe join of two topologies:(1) The upper topology, generated by the set of clopen order-�lters as a basis,(2) The lower topology, generated by the set of complements of clopen order-�lters as a basis.De�nition 5.15 Let (X;�) be a partially ordered set and let R � Xn+1 be an-ary relation on X.(1) R is an increasing relation if it has the property that for all x 2 Xn andevery y; z 2 X, R(x; y) and y � z implies R(x; z).(2) R is a decreasing relation if it has the property that for all x 2 Xn andevery y; z 2 X, R(x; y) and z � y implies R(x; z).Lemma 5.36 Let A be a distributive lattice with operators in the classes Lh,La, Jh, Mh. Let (D(A);�; �) be the Priestley dual of A. The following holds:(1) If h 2 Lh (i.e. hA : A ! A is a lattice homomorphism), then D(hA) :D(A) ! D(A) is order-preserving and continuous with respect to thetopology � .(2) If k 2 La (i.e. kA : A ! A is a lattice antimorphism), then D(kA) :D(A)! D(A) is order-reversing and continuous with respect to the topol-ogy � .(3) If f 2 Jh (i.e. fA : An ! A is a join hemimorphism), then D(fA) �D(A)n+1 is an increasing relation such that for every F 2 D(A), D(fA)�1(F )is closed in the product topology on D(A)n of the upper topology, andmoreover, for every U1; : : : ; Un 2 ClopenOF(D(A)), the set fF j 9F1 2U1; : : : ; Fn 2 Un : D(fA)(F1; : : : ; Fn; F )g is clopen.(4) If g 2 Mh (i.e. gA : An ! A is a meet hemimorphism), then D(gA) �D(A)n+1 is a decreasing relation such that for every F 2 D(A), D(gA)�1(F )is closed in the product topology on D(A)n of the lower topology, and more-over, for every U1; : : : ; Un 2 ClopenOF(D(A)), the set fF j 8F1; : : : ; Fn;D(gA)(F1; : : : ; Fn)) 9i : Fi 2 Uig is clopen.Proof : (1) Let hA : A! A be a lattice homomorphism. Let F1; F2 2 D(A)be such that F1 � F2. Then for every a 2 D(hA)(F1) = h�1A (F1), we havehA(a) 2 F1 � F2, hence a 2 D(hA)(F2) = h�1A (F2). Thus, D(hA)(F1) �D(hA)(F2).Since the topology on D(A) is generated by the sets Xa = fF 2 D(A) ja 2 Fg and D(A)nXa = fF 2 D(A) j a 62 Fg as a subbasis, it is su�cient toshow that D(hA)�1(Xa) and D(hA)�1(D(A)nXa) are open. This holds, becauseD(hA)�1(Xa) = fF j D(hA)(F ) 2 Xag = fF j a 2 h�1A (F )g = fF j hA(a) 2



5.3.2 Towards a Link Between Algebraic and Relational Models 149Fg = XhA(a) and D(hA)�1(D(A)nXa) = fF j D(hA)(F ) 62 Xag = fF j a 62h�1A (F )g = fF j hA(a) 62 Fg = D(A)nXhA(a).(2) Let kA : A ! A be a lattice antimorphism. Let F1; F2 2 D(A) be suchthat F1 � F2. Then for every a 2 D(kA)(F2) = D(A)nk�1A (F2), we have kA(a) 62F2, hence, since F1 � F2, kA(a) 62 F1. Hence, a 2 D(kA)(F1) = D(A)nk�1A (F1).Thus, D(kA)(F2) � D(kA)(F1).In order to show that D(kA) is continuous it is su�cient to show thatD(kA)�1(Xa) andD(kA)�1(XnXa) are open. This holds, becauseD(kA)�1(Xa) =fF j D(kA)(F ) 2 Xag = fF j a 62 k�1A (F )g = fF j kA(a) 62 Fg = D(A)nXkA(a)and D(kA)�1(D(A)nXa) = fF j D(kA)(F ) 62 Xag = fF j a 2 k�1A (F )g = fF jkA(a) 62 Fg = XkA(a).The properties (3) and (4) are analyzed in [Gol89]. Here, we only pointout the main ideas of the proofs; for details concerning these proofs we refer to[Gol89], pp.187-190.(3) Let fA : An ! A be a join hemimorphism. Let F1; : : : ; Fn 2 D(A) andF � F 0. Assume that D(fA)(F1; : : : ; Fn; F ). By the de�nition of D(fA) thisholds if and only if ai 2 Fi for all i 2 f1; : : : ; ng implies f(a1; : : : ; an) 2 F . Let(a1; : : : ; aN ) be such that ai 2 Fi 8i 2 f1; : : : ; ng. Since D(fA)(F1; : : : ; Fn; F ),it follows that fA(a1; : : : ; an) 2 F � F 0, hence that fA(a1; : : : ; an) 2 F 0. There-fore, D(fA)(F1; : : : ; Fn; F 0).In order to show that inverse images of points by D(fA) are closed, let F 2D(A). To show that D(fA)�1(F ) is closed, let (G1; : : : ; Gn) 2 D(A)n be suchthat (G1; : : : ; Gn) 62 D(fA)�1(F ), i.e. (not D(fA)(G1; : : : ; Gn; F )). Then thereexist x1; : : : ; xn 2 A such that xi 2 Gi for every i � n, and fA(x1; : : : ; xn) 62 F .In this case Gi 2 Xx1 for every i � n. Let N = Xx1 � : : : � Xxn . N is anopen neighborhood of (G1; : : : ; Gn) in the product of the upper topology. Let(F1; : : : ; Fn) 2 N . Then xi 2 Fi for every i � n, and since fA(x1; : : : ; xn) 62 F ,it follows that not D(fA)(F1; : : : ; Fn), hence (F1; : : : ; Fn) 62 D(fA)�1(F ). Thisshows that N � D(A)nnD(fA)�1(F ).In order to show that for all clopen order-�lters U1; : : : ; Un, the set fy j 9xi 2U1; : : : ; xn 2 Un : D(fA)(x1; : : : ; xn; y)g is also a clopen order-�lter note �rstthat it is an order-�lter, since D(fA) is order-increasing. It is easy to see thatif f is a join hemimorphism, Xf(x1;:::;xn) = fF 2 D(A) j 9G1 2 Xx1 ; : : : ;9Gn 2Xxn : D(fA)(G1; : : : ; Gn; F )g.(4) Let gA : An ! A be a meet hemimorphism. Let F1; : : : ; Fn 2 D(A) andF 0 � F . Assume that D(gA)(F1; : : : ; Fn; F ). By the de�nition of D(gA) thisholds if and only if gA(a1; : : : ; an) 2 F implies ai 2 Fi for some i 2 f1; : : : ; ng.Assume that D(gA)(F1; : : : ; Fn; F ). Let gA(a1; : : : ; an) 2 F 0. Since F 0 �F , gA(a1; : : : ; an) 2 F , hence ai 2 Fi for some i 2 f1; : : : ; ng. Therefore,D(gA)(F1; : : : ; Fn; F 0).The fact that inverse images of points by D(gA) are closed follows as in (3),taking into account the de�nition of D(gA). In order to show that for everyclopen order-�lters U1; : : : ; Un, the set fy j 8x1; : : : ; xn;D(gA)(x1; : : : ; xn) )9i : xi 2 Uig is clopen, note �rst that it is an order-�lter and also that if g is a



150 5 Fibered Representation and Universal Algebrameet hemimorphism, thenXf(x1;:::;xn) = fF 2 D(A) j 8G1; : : : ; Gn; (D(gA)(G1; : : : ; Gn; F ) implies 9i � n : Gi 2 Xxi)g2The properties (3) and (4) in Lemma 5.36 are analyzed in [Gol89]. Herewe also consider operations as lattice morphisms and antimorphisms, since inthis case the operations induced on the dual space are much simpler (order-preserving, respectively order-inverting continuous maps).Let DLO� be the category of distributive lattices with operators in � having:Objects: Distributive lattices with 0, 1 andwith additional operators in �.Morphisms: Lattice morphisms that preserve 0; 1 and the operators in �.In [Gol89] a category RPS� of relational Priestley spaces is de�ned, having:Objects: Relational Priestley Spaces, i.e. spaces of the formX = (X;�; �; fHXgH2Lh; fKXgK2La; fRXgR2Jh; fQXgQ2Mh)where(1) (X;� �) is a Priestley space,(2) for every H 2 Lh, HX : X ! Xis a continuous order-preserving map,(3) for every K 2 La, KX : X ! X,is a continuous order-reversing map(4) for every R 2 Jh RX � XnR+1is an increasing relation such that:(4a) for every y 2 X, R�1X (y) is closed in theproduct topology on XnR of the upper topology,(4b) for every Y1; : : : ; YnR 2 ClopenOF(X)fy j 9x1 2 Y1; : : : ; xnR 2 YnR : RX(x1; : : : ; xnR ; y)g is clopen.(5) for every Q 2Mh, QX � XnQ+1is a decreasing relation such that:(5a) for every y 2 X, Q�1X (y) is closed in theproduct topology on XnQ of the lower topology,(5b) for every Y1; : : : ; YnQ 2 ClopenOF(X)fy j 8x1; : : : ; xnQ ; QX(x1; : : : ; xnQ)) 9i : xi 2 Yig is clopen.Morphisms continuous bounded morphisms,see the following de�nition.De�nition 5.16 (Bounded Morphism, [Gol89]) Let X1 and X2 be two re-lational Priestley spaces,X1 = (X1;�; �1; fHX1gH2Lh; fKX1gK2La; fRX1gR2Jh; fQX1gQ2Mh);



5.3.2 Towards a Link Between Algebraic and Relational Models 151X2 = (X2;�; �2; fHX2gH2Lh; fKX2gK2La; fRX2gR2Jh; fQX2gQ2Mh):(1) A map � : X1 ! X2 is a morphism if it preserves the order �, theoperations Lh;La and the relations Jh;Mh in passing from X1 to X2:(M1) x � y implies �(x) � �(y),(M2) x = HX1(y) implies �(x) = HX2(�(y)) for every H 2 Lh [ La,(M3) RX1(x1; : : : ; xn; x) implies RX2(�(x1); : : : ; �(xn); �(x)) for every R 2Jh [Mh.(2) A morphism is bounded if for all z 2 X1 it satis�es(BM1) RX2(y1; : : : ; yn; �(z)) implies 9x1; : : : ; xn 2 X1(RX1(x1; : : : ; xn; z) andyi � �(xi), for every 1 � i � n), for every y1; : : : ; yn 2 X2, and everyR 2 Jh,(BM2) QX2(y1; : : : ; yn; �(z)) implies 9x1; : : : ; xn 2 X1(QX1(x1; : : : ; xn; z)and �(xi) � yi, for every 1 � i � n), for every y1; : : : ; yn 2 X2,and every Q 2Mh,Note that the operations in Lh and La induce relations as follows:(Lh) For every H 2 Lh, �H = f(F1; F2) j F1 = H(F2)g,(La) For every K 2 La, �K = f(F1; F2) j F1 = K(F2)g.Conditions similar to (BM1) and (BM2) can be stated also for these relations,namely:(BMLh) �HX2 (G;�(F2)) implies 9F1: �HX1 (F1; F2) and G = �(F1),(BMLa) �KX2 (G;�(F2)) implies 9F1: �KX1 (F1; F2) and G = �(F1).However, it is not necessary to explicitly specify conditions similar to (BM1)and (BM2) for the operations in Lh and La because they are already satis�ed,as shown by Lemma 5.37.Lemma 5.37 Let � : X1 ! X2 be a morphism of relational Priestley spaces.Let H 2 Lh [ La. For every G 2 X2, if HX2(�(F2)) = G, then there exists aF1 2 X1 such that �(F1) = G and HX1(F2) = F1.Proof : It su�ces to take F1 = HX1(F2). The fact that �(F1) = G followsfrom the fact that � is morphism. 2In [Gol89] it is proved that there is a dual equivalence between the categoryDLO of distributive lattices with operators and the category RPS of relationalPriestley spaces. It is very easy to see that this correspondence can be extendeda dual equivalence between the category DLO� of distributive lattices withoperators in � (i.e. including lattice morphisms and lattice antimorphisms) andthe corresponding category RPS� of relational Priestley spaces.The correspondence between the operations and relations in a relationalPriestley space X and the corresponding operations on the lattice of its clopenorder-�lters ClopenOF(X) is schematically represented in the next table:



152 5 Fibered Representation and Universal AlgebraVLSp E! VL(Lh) HX : X ! X , 7! E(HX) : E(X) ! E(X), E(HX)(f) = f �HX ,order-preserving 8f 2 X ! f0; 1g continuous, order-preserving(order-�lters: E(HX )(U) = fx 2 X j HX(x) 2 Ug).(La) KX : X ! X 7! E(KX) : E(X) ! E(X), E(KX)(f) = sw � f �KX ;order-reversing 8f : X ! f0; 1g, continuous, order-preserving(order-�lters: E(KX)(U) = fx 2 X j K(x) 62 Ug).(Jh) RX � Xn+1 7! E(RX) : E(X)n ! E(X)increasing E(RX)(f1; : : : ; fn)(x) = 1 i� (9x1; : : : ; xn s.t.RX(x1; : : : ; xn; x) and fi(xi) = 1 8i 2 f1; : : : ; ng).(order-�lters: E(RX )(U1; : : : ; Un) == fx 2 X j 9x1 2 U1; : : : ; xn 2 Un : RX (x1; : : : ; xn; x)g).(Mh) QX � Xn+1 7! E(QX) : E(X)n ! E(X),decreasing E(QX)(f1; : : : ; fn)(x) = 1 i� (8x1; : : : ; xn 2 X ifQX(x1; : : : ; xn; x) then fi(xi) = 1 for some i 2 f1; : : : ; ng).(order-�lters: E(QX)(U1; : : : ; Un) == fx 2 X j 8x1; : : : ; xn with QX(x1; : : : ; xn; x); 9i; xi 2 Uig).Assume that a given logic L satis�es conditions (P1) � (P3) given in Sec-tion 5.3.1.Condition (P3) states that the logic L has the property that the dualitybetween the category DLO� of distributive lattices with operators in � and thecategory RPS� of corresponding relational Priestley spaces restricts to a dualequivalence between VL and an appropriate subcategory VLSp of RPS�.The duals of the algebras in V are therefore Priestley spaces endowed withadditional operation and relation symbols, corresponding to the operators in �.We will represent the corresponding operations, indexed by the same families:(X;�; �; fHXgH2Lh; fKXgK2La; fRXgR2Jh; fQXgQ2Lh).We will assume that the elements in VLSp can be described as relationalPriestley spaces that satisfy additional properties (induced by the identitiesthat characterize VL).Relational ModelsThe previous considerations suggest a possible de�nition for relational modelsfor a logic L with connectives � = f_;^g [Lh[La[ Jh[Mh which is soundand complete with respect to a variety VL of algebras that satis�es (P3).Our goal in what follows is to explain (in an intuitive way) how the satis-�ability relation rj= on Kripke frames and models can be de�ned if we know asimilar relation aj= for algebraic models.De�nition 5.17 (L-Frame) A L-frame is a relational structure X = (X;�; fHXgH2Lh; fKXgK2La; fRXgR2Jh; fQXgQ2Lh) where for every H 2 Lh, HX :



5.3.2 Towards a Link Between Algebraic and Relational Models 153X ! X is an order-preserving map, for every K 2 La, KX : X ! X is anorder-reversing map, for every R 2 Jh, RX � XnR+1 is an increasing relation,and for every Q 2Mh, QX � XnQ+1 is a decreasing relation.Remark: LetX = (X;�; �; fHXgH2Lh; fKXgK2La; fRXgR2Jh; fQXgQ2Lh)be a L-frame. Consider the discrete topology � on X. The ordered topologicalspace (X;�; �) is totally order-disconnected, and it is compact if and only if Xis �nite.De�nition 5.18 (L-Model) A L-model based on a L-frameX = (X;�; fHXgH2Lh; fKXgK2La; fRXgf2Jh; fQXgg2Lhis a system M = (X;m), where m : Var ! P(X) is a meaning function thatassigns to every variable p 2 Var an order-�lter of X.The extension of the meaning function to formulae (that generalizes theway meaning functions are extended to formulae in modal logic, for example)is explained by the following lemma.Lemma 5.38 Let X be an ordered relational structure with operations andrelations in the classes Lh;La; Jh;Mh. The following hold:(1) Every order preserving operation on X, H 2 Lh induces a lattice mor-phism hH : O(X) ! O(X), de�ned for every order-�lter U of X byhH(U) = H�1(U).(2) Every order reversing operation on X, K 2 Lh induces a lattice morphismkK : O(X) ! O(X) de�ned for every order-�lter U of X by kK(U) =O(X)nk�1(U).(3) Every increasing relation R � Xn+1 induces a join hemimorphism fR :O(X)n ! O(X), de�ned for every U1; : : : ; Un 2 O(X) byfR(U1; : : : ; Un) = fx 2 X j 9x1 2 U1; : : : ; xn 2 Un : R(x1; : : : ; xn; x)g:(4) Every decreasing relation Q � Xn+1 induces a meet hemimorphism gQ :O(X)n ! O(X), de�ned for every U1; : : : ; Un 2 O(X) bygQ(U1; : : : ; Un) = fx 2 X j 8x1; : : : ; xn with Q(x1; : : : ; xn; x);9i; xi 2 Uig:Proof : (1) Let H : X ! X be order-preserving, and let hH be de�ned forevery U 2 O(X) by hH(U) = H�1(U). We show that for every U 2 O(X),hH(U) 2 O(X). Let x � y. Assume that x 2 hH(U) = H�1(U). ThenH(x) 2 U . Since H is order-preserving and U an order-�lter it follows thatH(y) 2 U , i.e. that y 2 hH(U). This proves that hH(U) 2 O(X). The fact thathH is a lattice homomorphism follows immediately.(2) Let K : X ! X be order-reversing, and let kK be de�ned for everyU 2 O(X) by kK(U) = O(X)nK�1(U). We show that for every U 2 O(X),



154 5 Fibered Representation and Universal AlgebrakK(U) 2 O(X). Let x � y. Assume that x 2 kK(U). Then x 62 K�1(U),hence K(x) 62 U . Since K is order-reversing and U an order-�lter it followsthat K(y) 62 U , i.e. that y 2 kK(U). This proves that kK(U) 2 O(X). The factthat hH is a lattice antimorphism follows immediately.(3) Let R � Xn be an increasing relation. For every U1; : : : ; Un 2 O(X) letfR(U1; : : : ; Un) = fx 2 X j 9x1 2 U1; : : : ; xn 2 Un : R(x1; : : : ; xn; x)g. We showthat for every U1; : : : ; Un 2 O(X), fR(U1; : : : ; Un) 2 O(X). Let x � y. Assumethat x 2 fR(U1; : : : ; Un). Then for some x1 2 U1; : : : ; xn 2 Un, R(x1; : : : ; xn; x).Since R is an increasing relation it follows that R(x1; : : : ; xn; y). Hence weproved that there exist x1 2 U1; : : : ; xn 2 Un such that R(x1; : : : ; xn; y), i.e.that y 2 fR(U1; : : : ; Un). It is easy to see that for every i 2 f1; : : : ; ng,fR(U1; : : : ; Ui�1; ;; Ui+1; : : : ; Un) = ;. Also,fR(U1; : : : ; Ui�1; Ui [ Vi; Ui+1; : : : ; Un) == fx 2 X j 9x1 2 U1; : : : ; xi 2 Ui [ Vi; : : : ; xn 2 Un : R(x1; : : : ; xn; x)g == fx 2 X j 9x1 2 U1; : : : ; xi 2 Ui; : : : ; xn 2 Un : R(x1; : : : ; xn; x)g[[fx 2 X j 9x1 2 U1; : : : ; xi 2 Vi; : : : ; xn 2 Un : R(x1; : : : ; xn; x)g == fR(U1; : : : ; Ui�1; Ui; Ui+1; : : : ; Un) [ fR(U1; : : : ; Ui�1; Vi; Ui+1; : : : ; Un).(4) Let Q � Xn be an decreasing relation. For every U1; : : : ; Un 2 O(X) letgQ(U1; : : : ; Un) = fx 2 X j 8x1; : : : ; xn if Q(x1; : : : ; xn; x) then 9i 2 f1; : : : ; ng;xi 2 Uig. We show that for every U1; : : : ; Un 2 O(X), gQ(U1; : : : ; Un) 2 O(X).Let x � y. Assume that x 2 gQ(U1; : : : ; Un), i.e. for every x1; : : : ; xn, ifQ(x1; : : : ; xn; x), then there is an i 2 f1; : : : ; ng with xi 2 Ui.Let x1; : : : ; xn be such that Q(x1; : : : ; xn; y). Then, by the fact that Q isdecreasing, Q(x1; : : : ; xn; x). This shows that y 2 gQ(U1; : : : ; Un). It is easy tosee that for every 1 � i � n, fR(U1; : : : ; Ui�1;X; Ui+1; : : : ; Un) = X. Also,fR(U1; : : : ; Ui�1; Ui \ Vi; Ui+1; : : : ; Un) == fx 2 X j 8x1; : : : ; xn if Q(x1; : : : ; xn; x)then either xj 2 Uj for some j 6= i; or xi 2 Ui \ Vig == fx 2 X j 8x1; : : : ; xn if Q(x1; : : : ; xn; x) then xj 2 Uj for some jg\\fx 2 X j 8x1; : : : ; xn if Q(x1; : : : ; xn; x) then eitherxj 2 Uj for some j 6= i; or xi 2 Vig == fR(U1; : : : ; Ui�1; Ui; Ui+1; : : : ; Un) [ fR(U1; : : : ; Ui�1; Vi; Ui+1; : : : ; Un).2This shows that the set O(X) of order-�lters of X is closed under the oper-ations in �, hence it is in particular a distributive lattice with operators.The extension of the meaning function m : Var! O(X) is the unique mor-phism of f_;^g [ �-algebras m : Fma(Var)! O(X) that extends m.De�nition 5.19 We say that a L-model M = (K;m) satis�es a formula � atthe state x (denoted by M rj=x �) if and only if x 2 m(�).



5.3.3 Automated Theorem Proving 155A formula � is true in a L-model M = (K;m) (denoted by M rj= �) if andonly if m(�) = X.The formula � is true in a L-frame K (denoted by K rj= �) if and only if itis true in every L-model based on K.Lemma 5.39 Let A be an algebra in V. Assume that D(A) rj= �. Then A j=� = 1.Proof : Assume that D(A) rj= �. Let f : Var! A be an arbitrary assignmentof values to the variables. Let mf : Var ! ClopenOF(D(A)) be de�ned bymf (p) = �A � f . The unique extension of mf to the formulae also has clopenorder-�lters as values, and by the universality property it is easy to see thatmf = �A � f . Since D(A) rj= �, it follows that mf (�) = D(A), hence f(�) = 1.2The converse does not hold in general. However, it holds if A is �nite, asshown in the next lemma.Lemma 5.40 Let A be a �nite algebra in V. Then A j= � = 1 if and only ifD(A) rj= �.Proof : Assume that A j= � = 1. We show that D(A) rj= �. Let m :Var ! O(D(A)) be a meaning function. Since A is �nite, the topology ofD(A) is discrete, hence the set of clopen order-�lters of D(A) coincides withthe set O(D(A)) of order-�lters of D(A), hence m : Var ! ClopenOF(D(A)).Let f : Var ! A be de�ned by f = ��1A �m. Since A j= � = 1, it follows thatf(�) = 1. It is easy to see that f = ��1A � m. Thus, ��1A (m(�)) = 1, hencem(�) = D(A). The converse follows from Lemma 5.39. 2Corollary 5.41 Assume that the logic L satis�es conditions (P1), (P2), (P3).Then `L � if and only if for all i = 1; : : : ; n;D(Ai) rj= �:5.3.3 Automated Theorem ProvingIn this section we will show that the resolution procedure described in Sec-tion 5.2 can be extended to other �nitely valued logics.Let L be a propositional logic with the following properties:(P1') L is sound and complete with respect to a variety of algebrasV, such that: V = HSP (A), where A is a �nite algebra.(P2) The algebras in V are distributive lattices with operators.



156 5 Fibered Representation and Universal Algebra(P3) The Priestley duality between the category D01 of distributivelattices and the category P of Priestley spaces induces a dualequivalence between the variety V seen as a category and acorresponding category VLSp of Priestley spaces endowed withadditional functions and relations.For every algebra A 2 V we will denote its dual by D(A), and the isomor-phism between A and ClopenOF(D(A)) by �A : A! ClopenOF(D(A)).For every operation symbol f 62 f_;^;);:g in the language of L, thecorresponding operation or relation in the category VLSp will be denoted D(f).We showed that a satis�ability relation rj= can be de�ned on the relationalmodels. As noticed in Section 5.3.2, the satis�ability relation aj= for the algebrasof V induces a satis�ability relation rcj= for the elements in VLSp. These coincideon �nite models. From Corollary 5.41 and assertion (P10) it follows that forevery propositional formula � in the logic L,L ` � if and only if D(A) rj= �:As in the case of SHn-logics, for a given meaning function (interpretation)m : Var! O(D(A)), we will introduce the abbreviations:x �t means \� is true at x" in the interpretation m (i.e. D(A) rj=m;x �),x �f means \� is false at x" in the interpretation m (i.e. D(A) 6 rj=m;x �),where x is a \possible world", i.e. an element of D(A).Note that if y pt at m and y � x then x pt at m, and if y pf at m andx � y then x pf at m.5.3.4 Translation to Clause FormFirst we introduce a notion of signed literals and signed clauses.De�nition 5.20 Let x 2 D(A) be a \possible world" and p be an atom. Thenx pt is a positive literal (with sign x ) and x pf is a negative literal (withsign x ). A set of (positive or negative) signed literals is called a (signed)clause. A formula in signed conjunctive normal form (CNF) is a �nite set of(signed) clauses. In the �rst-order case we require that the clauses in a formulahave disjoint variables.De�nition 5.21 A propositional positive literal x pt is satis�able if for somemeaning function m : Var! O(D(A)), p is true in m at x.A propositional negative literal x pf is satis�able if for some meaning func-tion m : Var! O(D(A)), p is false in m at x.



5.3.4 Translation to Clause Form 157A propositional signed clause is satis�able if and only if at least one of itsliterals is satis�able.A signed formula � is satis�able if and only if all clauses in � are simulta-neously satis�able by the same interpretation.We present a structure-preserving translation to clause form, similar to theone presented in [H�ah94].Let Var be a countably in�nite set of variables which will contain all thevariables that will be considered in what follows. Let � be a formula in thelanguage of L, � 2 Fma(Var).Lemma 5.42 The formula � is a theorem in L if and only if there is no valu-ation m with the property that � is false at x in m for some minimal elementx in D(A).Proof : Assume �rst that � is a theorem in L. Then for every meaningfunction m : Var ! O(D(A)) and every x 2 D(A), � is true at x in m. Thisholds in particular for the minimal elements of D(A).In order to prove the inverse implication, we assume there is no valuationm with the property that � is false at x in m for some minimal element x inD(A). Let m : Var ! O(D(A)) and y 2 D(A) be arbitrary but �xed. SinceD(A) is �nite, there exists an element x which is minimal in D(A) such thatx � y. By the hypothesis � is true at x in m. Therefore, � is also true at y inm. 2The central idea behind structure-preserving clause form translations is tointroduce additional atoms (resp. predicate letters in the case of �rst-orderlogic), which serve as abbreviations for subformulae of the input. It remains totranslate the formulae that represent the de�nitions of the new literals.Let p� be a new propositional variable introduced for the formula �.Lemma 5.43 The formula � is a theorem if and only if there is no valuation msuch that m(�) = m(p�) and x pf� at m for some minimal element x 2 D(A).De�nition 5.22 Let �1; �2 be two formulae, and let m : Var ! O(D(A)) bea valuation. We say that �1 and �2 are equivalent in m (denoted �1 �m �2 ifthey are true at the same states, i.e. if m(�1) = m(�2)). We say that �1 � �2is satis�able if there is a valuation m such that �1 �m �2.Lemma 5.44 The relations � and �m have the following properties:(1) Let m be a valuation, and �1; �2 be formulae such that �1 �m �2. Thenfor every x 2 D(A), x �t1 at m if and only if x �t2 at m, and x �f1 atm if and only if x �f2 at m.(2) �1 � �2 is satis�able if and only if there exists a valuation m such thatfor all x 2 D(A), ( x  f1 _ x  t2) ^ ( x  t1 _ x  f2 ) at m.



158 5 Fibered Representation and Universal AlgebraThe proof is similar to the proof of Lemma 5.27.Therefore, we can reduce the task of proving that a formula � is a theoremin L to the task of proving that for no valuation m : Var ! O(D(A)) we havex pf� at m for some minimal element x 2 D(A) and p� �m �.Corollary 5.45 A formula � is a theorem if and only if there is no valuationm such that8>>><>>>: (1) Wx minimal in D(A) x pf� at m(2x) ( x �f _ x pt�) ^ ( x �t _ x pf�) at mfor every x 2 D(A)Note that in (2x), expressions as x �t resp. x �f occur. In order to obtaina clause form we have to (recursively) eliminate these expressions.Lemma 5.46 Let m be a valuation, and let � be an operation symbol in L ofarity n. Then every formula � = �( 1; : : : ;  n) is equivalent in m to a formulaof the form �(p 1 ; : : : ; p n) where p i �m  i for i = 1; : : : ; n.Moreover, for every x 2 D(A), x �( 1; : : : ;  n)t at m if and only ifx �(p 1 ; : : : ; p n)t at m, where p 1 �m  1 and p 2 �m  2.Corollary 5.47 � is a theorem in L if and only if the following conjunction offormulae is unsatis�able:0@ _x minimal in D(A) x pf�1A^ ^x2D(A) ^ subformula of �( x pf _ x  t )^( x pt _ x  f )In order to obtain a conjunctive normal form, we have to analyze the wayin which expressions of the form x  t and x  f can be decomposed further,depending on the structure of  , taking into accounnt Lemma 5.46.Lemma 5.48 The following holds, for any given valuation m:(Disj t) x (p1 _ p2)t i� ( x pt1) _ ( x pt2).(Disj f) x (p1 _ p2)f i� ( x pf1) ^ ( x pf2).(Conj t) x (p1 ^ p2)t i� ( x pt1) ^ ( x pt2).(Conj f) x (p1 ^ p2)f i� ( x pf1) _ ( x pf2).For expressing the transformation rules for the other operations we �rstpoint out the form of the extension of the meaning function to formulae.Lemma 5.49 Let � be an operation symbol in � with arity n. Thenm(�(p1; : : : ; pn)) = �O(D(A))(m(p1); : : : ;m(pn)):



5.3.4 Translation to Clause Form 159Proof : We use the fact that A as well as O(D(A)) are algebras of the samesimilarity type, and that �A and ��1A are mutually inverse homomorphisms.Hence, m(�(p1; : : : ; pn)) = �A � ��1A �m(�(p1; : : : ; pn)) == �A(��1A �m(�(p1; : : : ; pn))) == �A(�A(��1A (m(p1)); : : : ; ��1A (m(pn)))) == �A(��1A (�O(D(A))(m(p1); : : : ;m(pn)))) == �O(D(A))(m(p1); : : : ;m(pn)). 2The way the translation to clause form proceeds further depends on the waythe operations are de�ned on O(D(A)).For example, assume that the algebras in V additionally have a Heytingalgebra structure, we can use the fact that the elements of VLSp are Heytingspaces.Lemma 5.50 Assume that the members of V have a Heyting algebra structureand that the duality between V and VLSp is induced by the Priestley duality forHeyting algebras. In this case, for any given valuation m:(), t) x (p1 ) p2)t i� for every y � x, y pf1 _ y pt2.(), f) x (p1 ) p2)f i� �Wm�x;maximal m pt1�, x pf2 andVS1;S2 6=;;S1\S2=;S1[S2=fyjy�xg �WyM2S1;maximal yM pt1�_�Wym2S2;minimal ym pf2�(:, t) x (:p)t i� for every y � x, y pf .(:, f) x (:p)f i� there is a y; y � x with y pt.Proof : It is easy to see that:m(p1 ) p2) = �A(��1A �m(p1 ) p2)) == �A(��1A �m(p1)) ��1A �m(p2)) == �A(��1A (m(p1))) ��1A (m(p2))) == (m(p1)) m(p2)) == fx 2 D(A) j for all y; y � x and y 2 m(p1) implies y 2 m(p2)g.(), t), (:, t) and (:, f) follow immediately from this.In order to prove (), t) note that x (p1 ) p2)f if and only if x 62m(p1 )p2), which holds if and only if there exists at least one y � x such that y 2 m(p1)and y 62 m(p2).Thus, x (p1 ) p2)f if and only if Wy�x( y pt1 ^ y pf2 ) if and only if (bydistributivity) ^S1;S2;S1\S2=;S1[S2=fyjy�xg0@ _y12S1 y1 pt1 _ _y22S2 y2 pf21ATaking into account that for every S1 � fy j y � xg Wy12S1 y1 pt1 if and only ifWyM2S1;maximal yM pt1, and Wy22S2 y2 pf2 if and only if Wym2S2;minimal ym pf2 ,we obtain x (p1 ) p2)f



160 5 Fibered Representation and Universal Algebrai�0@ _yM�x;maximal yM pt11A^^S1;S2 6=;;S1\S2=;S1[S2=fyjy�xg0@ _yM2S1;maximal yM pt1 _ _ym2S2;minimal ym pf21A ^ x pf2 : 2Lemma 5.51 The following hold for any valuation m:(Lh) Let h be an operator on the logic L such that hA : A! A is a lattice ho-momorphism. Let HA = D(hA) be the corresponding operation on D(A).Then x 2 m(h(p)) i� HA(x) 2 m(p).(La) Let k be an operator on the logic L such that kA : A ! A is a latticeantimorphism. Let KA = D(kA) be the corresponding operation on D(A).Then x 2 m(h(p)) if and only if KA(x) 62 m(p).(Jh) Let f be an operator on the logic L such that fA : An ! A is a joinhemimorphism. Let RA = D(fA) be the corresponding relation on D(A).Then x 2 m(f(p1; : : : ; pn)) if and only if 9x1 2 m(p1); : : : ; xn 2 m(pn)such that (x1; : : : ; xn; x) 2 RA.(Mh) Let g be an operator on the logic L such that gA : An ! A is a meet hemi-morphism. Let QA = D(gA) be the corresponding relation on D(A). Thenx 2 m(g(p1; : : : ; pn)) if and only if 8x1; : : : ; xn such that (x1; : : : ; xn; x) 2QA there exists an i 2 f1; : : : ; ng such that xi 2 m(pi).Proof :(Lh) m(h(p)) = �A(��1A �m(h(p)) = �A(hA(��1A (m(p)))) == hO(D(A))(m(p)) = fx 2 X j HA(x) 2 m(p)g.Hence, x 2 m(h(p)) if and only if x 2 hO(D(A))(m(p)), if and only if HA(x) 2m(p).(La) m(k(p)) = �A(��1A �m(k(p)) = �A(kA(��1A (m(p)))) = kO(D(A))(m(p)).Hence, x 2 m(k(p)) if and only if KA(x) 62 m(p).(Jh) m(f(p1; : : : ; pn)) = �A(��1A �m(f(p1; : : : ; pn)) == �A(fA(��1A (m(p1)); : : : ; ��1A (m(pn)))) == fO(D(A))(m(p1); : : : ;m(pn)) == fRf (m(p1); : : : ;m(pn)) == fx 2 D(A) j 9x1; : : : xn; with x1 2 m(p1); : : : ; xn 2m(pn) and (x1; : : : ; xn; x) 2 Rfg.The conclusion follows immediately.(Mh) m(g(p1; : : : ; pn)) = �A(��1A �m(g(p1; : : : ; pn)) == �A(gA(��1A (m(p1)); : : : ; ��1A (m(pn)))) == gO(D(A))(m(p1); : : : ;m(pn)) == gQf (m(p1); : : : ;m(pn)) =



5.3.4 Translation to Clause Form 161= fx 2 D(A) j 8x1; : : : xn; with (x1; : : : ; xn; x) 2 Rf ;9i 2 f1; : : : ; ng; such that xi 2 m(pi)g. 2We therefore obtain a procedure for translation to clause form. The rules fortranslating disjunction, conjunction, and Heyting negation are those presentedin Section 5.2. For translating the Heyting implication we take into accountthe rules (); t) and (); f).For the other operations we have the following transformation rules:(Lh) : (h; t) L _ x h(p)tnL; Hh(x) pto (h; f) L _ x h(p)fnL; Hh(x) pfo(La) : (k; t) L _ x k(p)tnL; Kk(x) pfo (k; f) L _ x k(p)fnL; Kk(x) ptoConsider for example a unary join-hemimorphism 3 : A ! A (similar to themodal operator for \possibility"). The rule (Jh) described above specializes inthis case to:(3; t) L _ x 3(p)t�L; x1 pt1; (x1; x) 2 D(3)	 (3; f) : L _ x 3(p)fV(x1;x)2D(3) �L; x1 pf1	Consider now a unary meet-homomorphism 2 : A ! A (similar to the modaloperator for \necessity"). The rule (Mh) specializes in this case to:(2; t) L _ x 2(p)tV(x1;x)2Q2 �L; x1 pt1	 (2; f) : L _ x 2(p)f�L; x1 pf1 ; (x1; x) 2 Q2	In general the number of clauses generated by arbitrary meet- and join-hemimorphisms can be quite high. The next proposition gives an estimate ofthe number of clauses generated from a given formula � (we assume that onlyunary meet- and join-hemimorphisms occur in �).Proposition 5.52 Let n be the number of elements of D(A). The followingholds:(1) If the formula � only contains the connectives ^;_ and g such that g isinterpreted as a lattice morphism or antimorphism on A, then the numberof clauses generated from � is O(ln) where l is the number of subformulaeof �.(2) If the formula � only contains the connectives ^;_;: and g such that: is interpreted as a Heyting negation on A and g is interpreted as alattice morphism or antimorphism, (and possibly unary join- or meet-hemimorphisms) then the number of clauses generated from � is O(ln2).



162 5 Fibered Representation and Universal Algebra(3) If the formula � only contains the connectives ^;_;:;) and g such that: is interpreted as a Heyting negation, ) as a Heyting implication on A,and g as a lattice morphism or antimorphism, then the number of clausesgenerated from � is O(ln2n).Proof : The number of clauses generated from a given formula � is1+ X subformula of � Xx2D(Sn2 ) j clauses( x pf _ x  t )j+j clauses( x pt _ x  f )j:(1) Assume that � only contains the connectives _;^ and some morphismsand/or antimorphisms. In this case, for every x 2 D(Sn2) the sum of thenumber of clauses generated by ( x pf _ x  t ) and the number of clausesgenerated by ( x pt _ x  f ) is at most 3. Thus, the number of clausesgenerated from � has as upper bound 1 + 3nl, so it is O(nl).(2) Assume that � only contains the connectives _;^;:, some morphismsand/or antimorphisms and possibly unary meet- and/or join-hemimorphisms.In this case, for every x 2 D(Sn2) the sum of the number of clauses generatedby ( x pf _ x  t ) and the number of clauses generated by ( x pt _ x  f )is not larger than n+ 1. Note that rules (:; t); (h; f); (g; t) { where h is a meet-hemimorphism and g a join-hemimorphism { introduce maximally n clauses,whereas rules (:; f); (h; t); (g; f) introduce only one clause. Thus, the numberof clauses generated from � has as upper bound 1+nl(n+1), hence it is O(n2l).(3) If also the operator ) appears in �, then for every x 2 D(Sn2) thenumber of clauses generated by ( x pf _ x  t ) is less than or equal tothe number of elements in D(Sn2) smaller than x, and the number of clausesgenerated by ( x pt _ x  f ) is less than or equal to the number of subsetsof fy j y � xg. Thus, the number of clauses generated from a given formula� has as upper bound 1 + nl(n + 2n + 1), hence it is O(n2nl) (if the order inD(A) has some good properties, as in the case of SHn-logics, less clauses aregenerated). 25.3.5 A Resolution ProcedureIn this section we show that also in this more general context a hyperresolutionprocedure can be formulated.Negative Hyperresolutionn x1 pf1o [D1; : : : ;n xn pfno [Dn;n y1 pt1; : : : ; yn ptno [ED1 [ : : : [Dn [Eprovided that n � 1, yi � xi for all i = 1; : : : ; n and D1; : : : ;Dn; Eare negative.



5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 163The following theorem shows that the negative hyperresolution principlecan be applied.Theorem 5.53 Let � be a set of clauses. Then � is unsatis�able if and onlyif 2 can be derived from � by a �nite number of applications of many-valuednegative hyperresolution.The proof given in Section 5.2.2 holds also in this more general case.Theorem 5.54 Let L be a (�nitely valued) propositional logic that has thefollowing properties:(1) L is sound and complete with respect to a variety V of algebras with adistributive lattice reduct,(2) The variety V is generated by a �nite algebra A,(3) The Priestley duality extends to a dual equivalence between the variety Vand a suitably chosen subcategory of the category of Priestley spaces (withadditional operators and relations corresponding to the operations in thelogic L),(4) For every formula � in the language of L there is an equivalent set � ofclauses signed by elements in D(A).In this case, a formula � is a theorem if and only if 2 can be derived fromthe set of clauses � by a �nite number of applications of many-valued negativehyperresolution.5.3.6 An Approach to Automated Theorem Proving in First-Order LogicWe briey present here an extension to �rst-order logic.Let � = f^;_; �1; : : : ; �rg be a signature, where ^;_ are binary operationsand for every i 2 f1; : : : ; rg, �i has arity ni. Let A be a �nite algebra in a varietyV of �-algebras with an underlying distributive algebra structure. Assume thatV is generated by A, and that the Priestley duality for distributive latticesextends to a dual equivalence between V and a category of suitable Priestleyspaces VLSp. The dual of A will be denoted D(A).In what follows we present a possibility of de�ning �rst-order many-valuedlogics based on A (i.e. having A as a set of truth values).SyntaxConsider the language of a �rst-order logic L, consisting of:(1) An in�nite (countable) set X of variables.(2) A set O of function symbols;



164 5 Fibered Representation and Universal Algebra(3) A set P of predicate symbols;(4) A set � = f^;_; �1; : : : ; �rg of logical operators, including the binaryoperators ^;_;(5) A �nite set of (one-place) quanti�ers Q1; : : : ; Qk;Let TermO(X) be the set of terms of the language LA, i.e. the free O-algebrafreely generated byX, and let Term0O be the set of ground terms4 of the languageLA. Let AtL(X) be the set of atomic formulae of the language of L, i.e. the setof all the expressions of the form R(t1; : : : ; tn) where R is a predicate symbol ofarity n and t1; : : : ; tn are terms, and let Fma(L) be the free algebra of similaritytype (^;_; �1; : : : ; �r; (Q1x)x2X ; : : : ; (Qkx)x2X) freely generated by the set ofatomic formulae of the language of L.SemanticsThe (�nite) algebra A can be regarded as a set of \truth values" for the logicL. The operations �A for � 2 � can be regarded as \truth tables" in A. Thequanti�ers can also be de�ned by \truth tables". Thus:� For every � 2 � with arity n we associate a truth function �A : An ! A.� For every quanti�er Q we associate a truth function Q : P(A)n; ! A.Referring to a formula Q(x)�(x) truth functions can be understood as fol-lows, in a given domain D of interpretation: Let M � A be the setfw j 9d 2 D such that w is assigned to �(d)g:The quanti�er Q associates a truth value Q(M) 2 A to each such set.De�nition 5.23 (Frame, Interpretation) A frame5 for a language (consist-ing of a set of variables X, a set of operation symbols O, a set of predicatesymbols P , a set of logical connectors �, and a set of quanti�ers fQ1; : : : ; Qkg)and a set of truth values A is a pair (D; I) where:(1) D is a non-empty set, the domain, and(2) I is a signature interpretation, i.e. a function assigning a function I(f) :Dn ! D to every n-ary function symbol f 2 O, and a function I(R) :Dn ! A to every n-ary predicate symbol R 2 P .An interpretation I for a language (P;O;�; fQ1; : : : ; Qkg;X) and a set of truthvalues A is a triple (D; I; d) where (D; I) is a frame and d is a variable assign-ment d : X ! D.4A ground term is a term that does not contain any variable.5This de�nition and the name frame is taken from [BF95]. Note the di�erence betweenthis notion of frames and the notion de�ned in Sections 5.1.2 and 5.3.2.



5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 165The idea of a generalization of the algebraic treatment of formulae of propo-sitional calculi to formulae of predicate calculi is due to Mostowski [Mos48]pp.204-207 who introduced an algebraic interpretation of formulae of intuition-istic calculi (the quanti�ers 8 and 9 are interpreted as greatest lower bound resp.least upper bound). The approach in [BF95] is an extension of Mostowski's ap-proach in that arbitrary quanti�ers (not only 8 and 9) are considered, and theyare interpreted as maps from the family of nonempty subsets of A to A.Examples of frames for a language are the Herbrand frames (called Herbrandstructures in [H�ah96b]). The domain of a Herbrand frame is the set H = Term0Oof all ground terms (if the language contains no constant one constant is added);the signature interpretation IH assigns� to every n-ary function symbol f the map IH(f) : Hn ! H de�ned byIH(f)(h1; : : : ; hn) = f(t1; : : : ; tn) (seen as a ground term),� to every n-ary predicate symbol R a map IH(R) : Hn ! A.Every interpretation I = (D; I; d) induces a valuation function vI : Fma(L)!A as follows:(1) vI(x) = d(x) for all variables x 2 X,(2) vI(f(t1; : : : ; tn)) = I(f)(vI(t1); : : : ; vI(tn)) for all n-ary function symbolsf 2 O, n � 0;(3) vI(R(t1; : : : ; tn)) = I(R)(vI(t1); : : : ; vI(tn)) for all n-ary predicate sym-bols R 2 P , n � 0;(4) vI(�(�1; : : : ; �n)) = �A(vI(�1); : : : ; vI(�n)) for all logical operators � 2�,(5) vI((Qx)�) = Q(fw j 9d 2 D s:t: vIx;d(�) = wg) for all quanti�ers Q,where Ix;d is identical with I except for assigning d to the variable x.A Herbrand interpretation is an interpretation in a Herbrand structure.Example 5.3 For any Herbrand interpretation I we havevI(8x�(x)) = ^fvIx;t(�) j t ground termg;vI(9x�(x)) = _fvIx;t(�) j t ground termg:De�nition 5.24 (Validity, Satis�ability) A formula � is valid in a logic Li� for all interpretations I for the language of L and A, vI(�) = 1.A formula � is satis�able in a logic L i� there is an interpretation I for thelanguage of L and A with vI(�) = 1.



166 5 Fibered Representation and Universal AlgebraThe de�nition can be formulated in a more general way, allowing a set of\designated elements" Ad � A: a formula � is valid in L if and only if for allinterpretations I for LA and A, vI(�) 2 Ad, and it is satis�able in L if andonly if there is an interpretation I for LA and A with vI(�) 2 Ad. However, inwhat follows we will focus on the notion of validity resp. satis�ability given inDe�nition 5.24.Note that for every f : Fma(L) ! A, there exists a map mf = �A � f :Fma(L) ! O(D(A)). Then f(�) = 1 if and only if mf (�) = D(A). Recipro-cally, for every m : Fma(L) ! O(D(A)), we can de�ne fm : Fma(L) ! A byfm = ��1A �m. We have fm(�) = 1 if and only if m(�) = D(A).This suggests that one can introduce an alternative notion of interpretation,namely as a tripleM = (D;M; d), where d : X ! D, M(f) : Dn ! D for everyfunction symbol of arity n and M(R) : Dn ! O(D(A)) for every predicatesymbol of arity n. Because of the isomorphism between A and O(D(A)) (sinceA is �nite), these two notions of interpretation are equivalent.Interpretations in O(D(A)) extend to formulae in a similar way as interpre-tations in A.Proposition 5.55 A formula � is valid in L if and only if for every interpre-tation M = (D;M; d) in O(D(A)), vM(�) = D(A).Like in the propositional case, given an interpretationM = (D;M; d), whered : X ! D, M(f) : Dn ! D for every function symbol of arity n and M(P ) :Dn ! O(D(A)) for every predicate symbol of arity n, we will now considersigned formulae (in classical logic) of the type:� �t for \� is true at �" inM (i.e. � 2 vM(�))� �f for \� is false at �" inM (i.e. � 62 vM(�))where � is a \possible world", i.e. an element of D(A).Note that if � � � 2 D(A) and � �t inM then � �t inM.Lemma 5.56 The formula � is valid in L if and only if there is no interpre-tation M = (D;M; d) of L in O(D(A))_�2D(A); minimal � �f in M:Proof : It follows from the fact that � is not valid if and only if there existsan interpretation M = (D;M; d) such that vM(�) 6= D(A), i.e. if and only ifthere exists an interpretation M = (D;M; d) and an � 2 D(A) minimal suchthat � 62 vM(�). 2



5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 167Translation to clause formWe �rst present a procedure for translation to clause form using structure-preserving rules. We present, as in the propositional case, a structure-preservingtransformation method (the method presented here is inspired by the structure-preserving transformation method to clause form in �rst-order logic given in[Ede92], see also [BF95] and [H�ah94]).Let � be a formula. The main idea is to introduce for every non-atomicsubformula  of � a new atomic formula of the form P (x), where P is a newpredicate symbol and x are the free variables in  .Lemma 5.57 Let I = (D; I; d) be an interpretation of the language (X;O;P )of the logic L. Let � be a fomula in L and let (X;O;P �) the language obtainedby introducing a new predicate symbol P for every non-atomic subformula  of �.Let I� = (D�; I�; d�) be the interpretation for the language (X;O;P �) de-�ned inductively as follows:(1) D� = D,(2) I�(f) = I(f) for every function symbol f 2 O,(3) I�(R) = I(R) for every predicate symbol R 2 P ,For every non-atomic subformula  = �( 1; : : : ;  m) of � with free vari-ables fx1; : : : ; xng, I�(P ) : Dn ! A is de�ned for every d1; : : : ; dn 2 D byI�(P )(d1; : : : ; dn) = �A(vI�xi=di (P 1(x1; : : : ; xn)); : : : ; vI�xi=di (P m(x1; : : : ; xn))),For every non-atomic subformula  = (Qx) 1(x; x1; : : : ; xn) of � with freevariables fx1; : : : ; xng, I�(P ) : Dn ! A is de�ned for every d1; : : : ; dn 2D by I�(P )(d1; : : : ; dn) = vI�xi=di ((Qx)P (x1; : : : ; xn)).(4) d� = d : X ! D.Then for every subformula  of � with free variables x1; : : : ; xn, and forevery d1; : : : ; dn 2 D, vI�xi=di (P (x1; : : : ; xn)) = vIxi=di ( ).Proof : We proceed by structural induction on the structure of  .If  is an atomic subformula of � of the form  = R(t1; : : : ; tk) then obvi-ously vI�(R(t1; : : : ; tk)) = vI( ).Moreover, if x1; : : : ; xn are the free variables in  , then for every d1; : : : ; dn 2D, vI�xi=di (R(t1; : : : ; tk)) = vIxi=di ( ).Let now  be a subformula of �. Assume that for every subformula  0 of with free variables x1; : : : ; xn, vI�xi=di (P 0(x1; : : : ; xn)) = vIxi=di ( 0) for everyd1; : : : ; dn 2 D. We distinguish the following cases:Case 1:  = �( 1; : : : ;  m).In this case vI�(P (x1; : : : ; xn)) = I�(P )(d(x1); : : : ; d(xn)) == �A(vI�(P 1(x1; : : : ; xn)); : : : ; vI�(P m(x1; : : : ; xn))) == �A(vI( 1); : : : ; vI( m)) = vI( ):



168 5 Fibered Representation and Universal AlgebraSimilarly, for every d1; : : : ; dn 2 D,vI�xi=di (P (x1; : : : ; xn)) = �A(vI�xi=di (P 1(x1; : : : ; xn)); : : : ; vI�xi=di (P m(x1; : : : ; xn))) == �A(vIxi=di ( 1); : : : ; vIxi=di ( m)) = vIxi=di ( ):Case 2:  = (Qx) 1(x; x1; : : : ; xn).In this case vI�(P (x1; : : : ; xn)) = vI�((Qx)P 1 (x; x1; : : : ; xn)) = Q(fw j 9d 2D s:t: vI�x;d(P 1(x; x1; : : : ; xn)) = wg = Q(fw j 9d 2 D s:t: vIx;d( 1) = wg =vI( ).Similarly, for every d1; : : : ; dn 2 D,vI�xi=di (P (x1; : : : ; xn)) = I�(P )(d1; : : : ; dn) == vI�xi=di ((Qx)P 1(x; x1; : : : ; xn)) == Q(fw j 9d 2 D s:t: vI�xi=di;x=d(P 1(x; x1; : : : ; xn)) = wg == Q(fw j 9d 2 D s:t: vIxi=di:x=d( 1) = wg == vIxi=di ( ): 2Lemma 5.58 The following hold:(1) The formula � is valid if and only if for every interpretation I = (D; I; d),if the following conditions hold:(1a) for every subformula  (x1; : : : ; xn) = �( 1; : : : ;  m) of � with freevariables x1; : : : ; xn, vIxi=di (P (x1; : : : ; xn)) =�A(vIxi=di (P 1(x1; : : : ; xn)); : : : ; vIxi=di (P m(x1; : : : ; xn))), for everyd1; : : : ; dn 2 D, and(1b) for every subformula  (x1; : : : ; xn) = (Qx) 1(x; x1; : : : ; xn),vIxi=di (P (x1; : : : ; xn)) = vIxi=di ((Qx)P 1(x; x1; : : : ; xn)), for everyd1; : : : ; dn 2 D.then P� is true at I.(2) The formula � is satis�able if and only if there exists an interpretationI = (D; I; d) such that(2a) for every subformula  (x1; : : : ; xn) = �( 1; : : : ;  m) of � with freevariables x1; : : : ; xn, vIxi=di (P (x1; : : : ; xn)) =�A(vIxi=di (P 1(x1; : : : ; xn)); : : : ; vIxi=di (P m(x1; : : : ; xn))), for everyd1; : : : ; dn 2 D, and(2b) for every subformula  (x1; : : : ; xn) = (Qx) 1(x; x1; : : : ; xn),vIxi=di (P (x1; : : : ; xn)) = vIxi=di ((Qx)P 1(x; x1; : : : ; xn)), for everyd1; : : : ; dn 2 D.and P� is true at I.Proof : Let � be a fomula in L. By Lemma 5.57 we know that for every inter-pretation I = (D; I; d) and its extension I� = (D; I�; d) to the new introducedpredicate symbols, vI�xi=di (P�(x1; : : : ; xn)) = vIxi=di (�) for every d1; : : : ; dn 2 D.In particular, vI�(P�(x1; : : : ; xn)) = vI(�).



5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 169(1) Assume that � is valid. Let I = (D; I; d) be an arbitrary interpretationof the extended language such that the conditions (1a) and (1b) hold. ThenI = (D; I; d) is the extension (in the sense of Lemma 5.57) of its restrictionto (X;O;P ), hence vI(P�(x1; : : : ; xn)) = vI(�). Since � is valid it follows thatvI(�) = 1. Therefore, vI(P�(x1; : : : ; xn)) = 1, i.e. P� is true at I.Conversely, let � be a formula in L and assume that for every interpretationI that satis�es conditions (1a) and (1b), P� is valid in I. Let I = (D; I; d) bean interpretation for the language (X;O;P ). It is easy to see that the extensionI� of I to the language obtained by introducing a new predicate symbol forevery subformula  of � satis�es (1a) and (1b). It follows then that P� is trueat I�. But vI�(P�(x1; : : : ; xn)) = vI(�). Thus, � is true in I.(2) Assume that � is satis�able. Then there exists an interpretation I =(D; I; d) such that � is true in I. It is easy to see that the extension I� of I to thelanguage obtained by introducing a new predicate symbol for every subformula of � satis�es (2a) and (2b). Moreover, since vI�(P�(x1; : : : ; xn)) = vI(�), P�is true at I�.Conversely, assume that there exists an interpretation I = (D; I; d) of theextended language such that the conditions (2a) and (2b) are ful�lled and P�is true at I�. Then I = (D; I; d) is the extension (in the sense of Lemma 5.57)of its restriction to (X;O;P ), hence vI(P�(x1; : : : ; xn)) = vI(�). Therefore, �is true in I. 2Example 5.4 Let � be the formula (8x) � S1(p(x)) in a �rst-order SHn-logic(based on the algebra Sn2 as an algebra of truth values) with a unary predicatesymbol p (as explained at the beginning of Section 5.3.6).Let P� be a new predicate symbol with arity 0 corresponding to the formula� (without free variables), P�S1(p(x)) a new predicate symbol with arity 1 (cor-responding to the subformula � S1(p(x))), and PS1(p(x)) a new predicate symbolwith arity 1 (corresponding to the subformula S1(p(x))).Then� � is valid if and only if for every interpretation I,(i) I(P�) = vI((8x)P�S1(p(x))(x)),(ii) for any instantiation d 2 D, vIx=d(P�S1(p(x))(x)) =� vIx=d(PS1(f(x))),and(iii) for any instantiation d 2 D, vIx=d(PS1(p(x))(x)) = S1(vIx=d(p(x)))imply that P� is true in I, and� � is satis�able if and only if there is an interpretation I = (D; I; d) suchthat(i) I(P�) = vI((8x)P�S1(p(x))(x)),(ii) for any instantiation d 2 D, vIx=d(P�S1(p(x))(x)) =� vIx=d(PS1(f(x))),and(iii) for any instantiation d 2 D, vIx=d(PS1(p(x))(x)) = S1(vIx=d(p(x)))and P� is true in I.



170 5 Fibered Representation and Universal AlgebraTaking into account the bijective correspondence between models I = (D; I; d)based on A and models M = (D;M; d) based on O(D(A)) and the fact thatP� is not true at M if and only if_�2D(A); minimal � P f� inM;from Lemma 5.56 we obtain the following immediate corollary.Corollary 5.59 The formula � is valid if and only if there exists no interpre-tation M = (D;M; d) of L in O(D(A)) such that8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
W�2D(A); minimal � P f� in M;P (x1; : : : ; xn) true at � in M i� for all subformulae�(P 1 ; : : : ; P m) true at � in M  = �( 1; : : : ;  m) of  for every � 2 D(A) and every instantiation of thefree variables x1; : : : ; xn of  ;P (x1; : : : ; xn) true at � in M i� for all subformulae(Qx)P 1(x; x1; : : : ; xn) true at � in M  = (Qx) 1(x; x1; : : : ; xn) of �;for every � 2 D(A) and every instantiation of thefree variables x1; : : : ; xn of  :Proposition 5.60 The formula � is valid if and only if there exists no inter-pretation M = (D;M; d) of L in O(D(A)) such that8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

W�2D(A); minimal � P f� in M;( � P (x1; : : : ; xn)t _ � �(P 1 ; : : : ; P m)f )^ for all subformulae^( � P (x1; : : : ; xn)f _ � �(P 1 ; : : : ; P m)t)  = �( 1; : : : ;  m) of �in M and every instantiation of thefor every � 2 D(A) free variables x1; : : : ; xn of  ;( � P (x1; : : : ; xn)t _ � (Qx)P 1 (x; x1; : : : ; xn)f )^ for all subformulae^( � P (x1; : : : ; xn)f _ � (Qx)P 1 (x; x1; : : : ; xn)t)  = (Qx) 1(x; x1; : : : ; xn) of �in M and every instantiation of thefor every � 2 D(A) free variables x1; : : : ; xn of  :The situation when  = �( 1; : : : ;  n) can be handled as in the propositionalcase, taking into account the properties of �. For the situation when  =(Qx) 1(x), Q 2 f8;9g, we have the following results (some of them appear {in a di�erent context { also in [H�ah96a]).Lemma 5.61 Let I = (D; I; d) be an interpretation of L in A, and let a 2 Abe a join-irreducible element. The following properties hold:(81) vI(8x�(x; x1; : : : ; xn)) � a i� vIx=d(�(x; x1; : : : ; xn)) � a for every instan-tiation d 2 D of x.



5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 171(82) vI(8x�(x; x1; : : : ; xn)) 6� a i� vIx=d(�(x; x1; : : : ; xn)) 6� a for some instan-tiation d 2 D of x, depending on d(x1); : : : ; d(xn).(91) vI(9x�(x; x1; : : : ; xn)) � a i� vIx=d(�(x; x1; : : : ; xn)) � a for some instan-tiation d 2 D of x, depending on d(x1); : : : ; d(xn).(92) vI(9x�(x; x1; : : : ; xn)) 6� a i� vIx=d(�(x; x1; : : : ; xn)) 6� a for every instan-tiation d 2 D of x.Proof : (81) and (82) follow immediately, taking into account thatf(8x�(x; x1; : : : ; xn)) = ^fw j 9d 2 D s:t: vIx=d(�(x; x1; : : : ; xn)) = wg:(91) For the direct implication, assume that vI(9x�(x)) = Wfw j 9d 2 D s:t:vIx=d(�(x; x1; : : : ; xn)) = wg � a: From the fact that A is distributive and forevery � the set fw j 9d 2 D s:t: vIx=d(�(x; x1; : : : ; xn)) = wg is �nite, it fol-lows that a = Wfw j 9d 2 D s:t: vIx=d(�(x; x1; : : : ; xn)) = wg ^ a = Wfw ^ a j9d 2 D s:t: vIx=d(�(x; x1; : : : ; xn)) = wg: By the fact that a is join-irreducibleit then follows that a = w ^ a for some w such that there exists d 2 Dwith vIx=d(�(x; x1; : : : ; xn)) = w, hence, vIx=d(�(x; x1; : : : ; xn)) � a for somed 2 D (depending on d(x1); : : : ; d(xn). The converse follows immediately sinceif vIx=d(�(x; x1; : : : ; xn)) � a for some d 2 D, then also vI(9x�(x)) = Wfw j9d 2 D s:t: vIx=d(�(x; x1; : : : ; xn)) = wg � a.(92) follows immediately from (91). 2Lemma 5.62 Let M = (D;M; d) be an interpretation of L in O(D(A)). Thefollowing properties hold:(1) � (8x�(x; x1; : : : ; xn))t in M i� � (�(x; x1; : : : ; xn))t in M for everyinstantiation of x.(2) � (8x�(x; x1; : : : ; xn))f in M i� � (�(x; x1; : : : ; xn))f in M for somesome instantiation f�(d(x1); : : : ; d(xn)) for x, where f� is a new functionsymbol.(3) � (9x�(x; x1; : : : ; xn))t in M i� � (�(x; x1; : : : ; xn))t in M for someinstantiation f�(d(x1); : : : ; d(xn)) for x, where f� is a new function sym-bol.(4) � (9x�(x; x1; : : : ; xn))f in M i� � (�(x; x1; : : : ; xn))f in M for everyinstantiation of x.Proof : We know that all the elements � 2 D(A) are of the form " a witha a join-irreducible element in A.For every M = (D;M; d), let vM : Fma(L)! O(D(A)) be its extension tothe formulae. Let I = (D; I; d) be the associated interpretation in A (obtainedby composition with ��1A when necessary). For every  2 Fma(L) we have



172 5 Fibered Representation and Universal AlgebravM( ) = �A(vI( )) = f" a j vI( ) 2" ag = f" a j vI( ) � ag. Thus,� =" a 2 vM( ) if and only if vI( ) � a.Thus, �  t in M if and only if vI( ) � a. Therefore, using Lemma 5.61we have:(1) � (8x�(x; x1; : : : ; xn))t inM if and only if vI(8x�(x; x1; : : : ; xn)) � a,which, by Lemma 5.61 happens if and only if vIx=d(�(x; x1; : : : ; xn)) � a forevery instantiation d of x. Thus, � (8x�(x; x1; : : : ; xn))t in M if and only iffor every instantiation of x, � (�(x; x1; : : : ; xn))t inM.(2) � (8x�(x; x1; : : : ; xn))f inM if and only if � 62 vM(8x�(x; x1; : : : ; xn)).By Lemma 5.61 this happens if and only if vIx=d(�(x; x1; : : : ; xn)) 6� a for someinstantiation d of a, depending on the values of the other free variables in �.The assertions (3) and (4) follow analogously. 2Let L0 be the �rst-order language obtained from the language of L by addinga new r-ary predicate symbol P� for every formula � in L with r free variablesand a k-ary function symbol f� for every formula � of L that starts with aquanti�er and has k free variables. The f� will serve as Skolem functions.As a consequence of the previous results, the following hold:� � (8x�(x; x1; : : : ; xn))t in M i� � (�(x; x1; : : : ; xn))t in M for everyinstantiation of x.� � (8x�(x; x1; : : : ; xn))f in M i� � (�(f�(x1; : : : ; xn); x1; : : : ; xn))f inM (where f� is a new function symbol).� � (9x�(x; x1; : : : ; xn))t inM i� � (�(f�(x1; : : : ; xn); x1; : : : ; xn))t inM(where f� is a new function symbol).� � (9x�(x; x1; : : : ; xn))f in M i� � (�(x; x1; : : : ; xn))f in M for everyinstantiation of x.If with all operations in A one can associate corresponding relations onthe dual set, according to the remarks already done in Section 5.3.1 and Sec-tion 5.3.3, these rules allow us starting from a given formula � to construct aset of signed clauses � such that � is valid if and only if � is unsatis�able.De�nition 5.25 Let � 2 D(A) be a \possible world" and L be an atomicformula. Then � Lt is a positive literal (with sign � ) and � Lf is anegative literal (with sign � ). A set of (positive or negative) signed literals iscalled a (signed) clause. A formula in signed conjunctive normal form (CNF)is a �nite set of (signed) clauses. We require that the clauses in a formula havedisjoint variables.De�nition 5.26 A positive literal � Lt is satis�able if for some interpretationin O(D(A)), M = (D;M; d), � 2 vM(L). A negative literal � Lf is satis�ableif for some interpretation in O(D(A)), M = (D;M; d), � 62 vM(L).A signed clause is satis�able if and only if at least one of its literals issatis�able. A signed formula � is satis�able if and only if all clauses in � aresimultaneously satis�able by the same interpretation.



5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 173Let � be a set of clauses. The Herbrand universe H(�) of � is the setof variable-free terms that consist of constants and function symbols occurringin �. If there is no constant in � we introduce a special constant symbol toprevent H(�) from being empty.A ground instance C 0 of a clause (or atom) C in � is a substitution instanceof C such that terms in H(�) replace the variables of C.The Herbrand base A(�) of � is the set of all ground instances of atomsthat occur in clauses in �.An assignment in A associates truth values in A with atoms. Alterna-tively, an assignment in D(A) associates upwards-closed sets of elements inD(A) (\possible worlds") with atoms. Since O(D(A)) and A are isomorphic,the two notions express the same thing. A complete assignment in A to a setof atoms K is de�ned as a set of literals fP v(P ) j P 2 Kg, where v : K ! A.A complete assignment in D(A) to a set of atoms K is de�ned as a set ofthe form f � P t j P 2 K;� 2 m(P )g [ f � P f j P 2 K;� 62 m(P )g wherem : K ! O(D(A))).An H-interpretation6 of a set of clauses � is a complete assignment to A(�).A H-interpretation M satis�es a clause set � if and only if for every C 2 �,all ground instances C 0 of C are such that C 0 \M 6= ;. � is H-unsatis�able ifthere is no H-interpretation that satis�es �.Proposition 5.63 A set of clauses � is unsatis�able if and only if it is H-unsatis�able.Sketch of the proof: Every H-interpretation corresponds to a frame, as de-�ned in De�nition 5.23. Assume that � is H-satis�able, i.e. that there exists aH-interpretation M that satis�es �. We can therefore construct a Herbrand in-terpretation in AH = (Term0O; I; d) that satis�es � (or alternatively a Herbrandinterpretation in O(D(A)), HM = (Term0O;M; d)).Conversely, let I = (D; I; d) be an arbitrary interpretation. I inducesan H-interpretation in A, II = fPw j vI(P ) = w;P 2 A(�)g (resp. an H-interpretation in D(A), MI = f � P t j � 2 �A(vI(P )); P 2 A(�)g[ f � P f j� 62 �A(vI(P )); P 2 A(�)g). 2A Resolution ProcedureWe describe also in this case a resolution procedure based on negative hyper-resolution.In what follows we consider clauses signed by elements of D(A). Since � Ltimplies � Lt for every � � �, we can delete in a clause occurrences � Lt ofsigned literals with the property that there exists a � with � � � such that� Lt 2 C. Similarly, � Lf implies � Lf for every � � �. Hence we can6Note the di�erence we make here between Herbrand interpretations (cf. the examplesafter De�nition 5.23) and H-interpretations: Herbrand interpretations apply to formulae andare interpretations over the algebra of all variable-free terms, whereas H-interpretations arede�ned for clauses, and refer only to the Herbrand universe of a set of clauses. The two notionsare very similar, but because of these di�erences we use here di�erent names for them.



174 5 Fibered Representation and Universal Algebradelete in a clause occurrences � Lf of signed literals with the property thatthere exists an � with � � � such that � Lf 2 C.De�nition 5.27 (Factor) Let C be a clause. If two or more positive literalsof C have a m.g.u. �, then �(C) is called a factor of C. Likewise, if two ormore negative literals of a clause C have a m.g.u. �, then �(C) is called a factorof C.De�nition 5.28 (Binary Resolvent) Let C1 and C2 be clauses with no vari-able in common. Let � Lt1 and � Lf2 be signed literals occurring in C1 andC2, respectively. If � � � and L1 and L2 have a m.g.u. �, then the clauseC3 := (�(C1)� � �(Lt1)) [ (�(C2)� � �(Lf2 )) is called a binary resolvent ofC1 and C2.De�nition 5.29 (Resolvent) A resolvent of two clauses C1 and C2 is one ofthe following binary resolvents:1. a binary resolvent of C1 and C2,2. a binary resolvent of C1 and a factor of C2,3. a binary resolvent of a factor of C1 and C2,4. a binary resolvent of a factor of C1 and a factor of C2.Let P be an ordering of predicate symbols. A �nite set of clausesfE1; : : : ; Eq; Ng; q � 1is called a semantic clash with respect to P if and only if E1; : : : ; Eq (calledelectrons) and N (called nucleus) satisfy the following conditions:1. E1; : : : ; Eq are negative clauses,2. Let R1 = N . For each i = 1; : : : ; q, there is a resolvent Ri+1 of Ri and Ei,3. The literal in Ei, which is resolved upon, contains the largest predicatesymbol in Ei; i = 1; : : : ; q,4. Rq+1 is a positive clause.Rq+1 is called a resolvent by hyperresolution of the semantic clash fE1; : : : ; Eq; Ng.This can be schematically represented as follows:n �1 Lf1o [D1; : : : ;n �n Lfno [Dn;n �1 Lt1; : : : ; �n Ltno [ED1 [ : : : [Dn [Eprovided that n � 1, �i � �i for all i = 1; : : : ; n and D1; : : : ;Dn; Eare negative.



5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 175The following theorem states the correctness of the automated theoremproving procedure by hyperresolution:Theorem 5.64 For any set of clauses �, if the empty clause 2 can be derivedfrom � by resolution, then � is H-unsatis�able.Proof : Follows from the fact that an H-interpretation that satis�es aset of clauses also satis�es all their factors and their resolvents. But no H-interpretation satis�es the empty clause. 2The next results prove the completeness of the procedure.Lemma 5.65 (Lifting Lemma) If C 01 and C 02 are instances of C1 and C2respectively, and if C 0 is a resolvent of C 01 and C 02, then there is a resolvent Cof C1 and C2 such that C 0 is an instance of C.Proof : We rename if necessary the variables in C1 and C2 such that thevariables in C1 and C2 are disjoint. Let � L0t1 and � L0f2 be the literals resolvedupon (� � �), and let the resolvent of C 01 and C 02 beC 0 = (�(C 01)� � �(L0t1 )) [ (�(C 02)� � �(L0f2 ));where � is the m.g.u. of L01 and L02.Since C 01 and C 02 are instances of C1 and C2 respectively, there is a substi-tution � such that C 01 = �(C1) and C 02 = �(C2) (we used the disjointness ofthe variables in C1 and C2). Let � L1t1 ; : : : ; � Lr1t1 resp. � L1f2 ; : : : ; � Lr2f2be the literals in C1, resp. C2 corresponding to L01 resp. L02 (i.e. such that�(L1i ) = : : : = �(Lrii ) = L0i, i = 1; 2).If ri > 1, let �i be a m.g.u. for fL1i ; : : : ; Lrii g, and let Li = �i(L1i ), i = 1; 2.Then Li is a literal in the factor �i(Ci) of Ci. If ri = 1, then let �i be theidentity and Li = �i(L1i ). Let � = �1 [�2 (the variables in C1; C2 are disjoint).Since L01 and L02 are uni�able, L1 and L2 are uni�able. Let  be the m.g.u. ofL1 and L2. C = (((�(C1))� � (L1)) [ (((�(C2))� � (L2))= ((f(�(L)) j L 2 C1g � f � (�(L11))t; : : : ; � (�(Lr11 ))tg)[[ ((f(�(L)) j L 2 C2g � f � (�(L12))f ; : : : ; � (�(Lr22 ))fg):C is a resolvent of C1 and C2. Clearly, C 0 is an instance of C sinceC 0 = (�(C 01)� � �(L01)) [ (�(C 02)� � �(L02)) == (�(�(C1))� f � �(�(L11))t; : : : ; � �(�(Lr11 ))tg))[= (�(�(C2))� f � �(�(L12))f ; : : : ; � �(�(Lr22 ))fg);and  � � is more general than � � �. 2



176 5 Fibered Representation and Universal AlgebraLemma 5.66 Let P be an ordering on predicate symbols, and let � be a �niteunsatis�able set of signed ground clauses. Then 2 can be derived from � by a�nite number of applications of many-valued negative hyperresolution.Proof : Similar to the proof of Theorem 5.33. 2Theorem 5.67 Let P be an ordering on predicate symbols, and � be a �niteunsatis�able set of signed clauses. Then 2 can be derived from � by a �nitenumber of applications of many-valued negative hyperresolution.Proof : Since � is unsatis�able, there is a �nite unsatis�able set �0 of groundinstances of clauses in �. By Lemma 5.66, 2 can be derived from �0 by a �nitenumber of applications of many-valued negative hyperresolution. Let D0 be thededuction of 2 from �0. From the deduction D0 we can produce a deduction Dby hyperresolution of 2 from � as follows.For any node N of D0, let C 0N be the ground clause at node N in D0.Now, attach to each initial node I a clause CI from � such that C 0I is a groundinstance of CI . Then, for each non-initial node N , if clauses have been attachedin this way to each of its immediate predecessor nodes and they constitute asemantic clash, attach to N the hyperresolvent of which C 0N is an instance (thisis possible because of the lifting lemma, Lemma 5.65). In this way we attach aclause CN to each node N such that C 0N is a ground instantiation of CN . Theclause attached to the terminal node must be 2, since the clause already thereis 2. It is easy to see that the deduction tree, together with the attached clausesis a deduction by hyperresolution of 2 from �. This completes the proof. 25.4 Examples5.4.1 Pmn-logicsDe�nition 5.30 (Ockham Algebras) A Ockham algebra A = (L;_;^; f; 0; 1)is a distributive lattice with 0 and 1 with an unary operation f satisfying:(O1) f(0) = 1,(O2) f(1) = 0,(O3) f(x ^ y) = f(x) _ f(y),(O4) f(x _ y) = f(x) ^ f(y).Before entering into detail, we indicate some algebraic and logical moti-vation for the study of Ockham algebras. For details see also [Urq79]. Theclass of De Morgan lattices7 arises naturally in the study of logics omitting theparadoxes of material implication. The study of De Morgan lattices and theirrepresentations has very much helped in investigating the algebras of propo-sitions that arise from these logics. The Ockham algebras o�er a setting fordescribing a larger class of logics. In logical terms, the goal is to describe the7A De Morgan lattice is a structure M = (L;_;^;� 0; 1), where (L;_;^; 0; 1) is a dis-tributive lattice with 0 and 1, and � is a unary operation such that � 1 = 0, �� x = x and� (x ^ y) =� x_ � y for every x; y 2 L.



5.4.1 Pmn-logics 177structure of algebras of propositions which lack not only the paradoxes of ma-terial implication but also the law of double negation. The resulting theory isquite elegant mathematically and subsumes not only the theory of De Morganlattices but also that of Stone lattices8 which have been extensively investigatedby lattice theorists.The class of Ockham algebras is equationally de�nable, hence it is a variety.We will denote by K the variety of Ockham algebras.De�nition 5.31 (Pmn) For m > n � 0, let Pmn be the subclass of K de�ned byfm(x) = fn(x) for every x 2 L if m� n is even, respectively( fm(x) _ fn(x) = 1 for every x 2 Lfm(x) ^ fn(x) = 0 for every x 2 L if m� n is odd.We recall the following results (for details see e.g. [Urq79]).Let K be the category of Ockham algebras, having as objects Ockham alge-bras and as morphisms, morphisms of Ockham algebras.Let O be the category of Ockham spaces, having asObjects: structures (X;�; �; g) where (X;�; �) is a Priestley spaceand g : X ! X is a continuous, order reversing map;Morphisms: continuous, order preserving maps that preserve theunary operator.Proposition 5.68 ([Urq79]) The Priestley duality induces a dual equivalencebetween the category K and the category O.Proposition 5.69 ([Urq79]) L 2 Pmn if and only if the dual space D(L) =(X;�; �; g) of L satis�es gm(x) = gn(x) for every x 2 X.Let Pmn be the full subcategory of K whose objects are algebras in Pmn, andlet Omn be the full subcategory of O whose objects are those Ockham spaces(X;�; �; g) that additionally satisfy gm(x) = gn(x) for every x 2 X.Corollary 5.70 ([Urq79]) The dual equivalence between the category of Ock-ham algebras and the category of Ockham spaces induces a dual equivalencebetween Pmn and Omn.Theorem 5.71 ([Urq79]) If L is an Ockham algebra and (X;�; �; g) the dualspace of L, then L is subdirectly irreducible if and only if fx j g1(fxg) 6= Xg isnot dense in X (where g1(Y ) stands for fgn(y) j n � 0; y 2 Y g).8A Stone lattice is a structure S = (L;_;^; �; 0; 1), where (L;_;^; 0; 1) is a distributivelattice with 0 and 1, and � is a unary operation such that 0� = 1; x^x� = 0; (x^y)� = x�_y�for every x; y 2 L.



178 5 Fibered Representation and Universal AlgebraIf L is �nite, then � is the discrete topology on L, which gives us the followingconsequence.Corollary 5.72 ([Urq79]) If L is a �nite Ockham algebra and (X;�; �; g) thedual space of L, then L is subdirectly irreducible if and only if for some x 2 X,g1(fxg) = X.For m > n � 0, let Smn be the structure (X;�; �; g) de�ned by setting X =f0; 1; : : : ;m� 1g, with the discrete topology and order, and with g(k) = k + 1for k < m� 1 and g(m� 1) = n. Now let Lmn be the dual algebra of the spaceSmn (the lattice of all subsets of Smn, with f(Y ) = Smnng�1(Y )).
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m-2 m-3Figure 5.5: SmnRemark 5.73 For every m > n � 0, Lmn is subdirectly irreducible.Proof : Follows from the fact that g1(f0g) = f0; 1; : : : ;m� 1g = Smn. 2In fact, an even stronger result holds:Proposition 5.74 ([Gol81])(1) A �nite distributive Ockham algebra is simple if and only if it is a subal-gebra of Lm0 for some m > 0,(2) A �nite distributive Ockham algebra is subdirectly irreducible if and onlyif it is a subalgebra of Lmn for some m > n � 0.Theorem 5.75 ([Urq79]) Every algebra in Pmn is isomorphic to a sublatticeof a product of copies of Lmn.Corollary 5.76 ([Gol81], [AP94],p.6) The variety Pmn is generated by thesubdirectly irreducible algebra whose dual is Smn.Note that in this case we only know the form of the dual of the algebra thatgenerates the variety Pmn.Let Lmn be a logic with set of variables Var and with connectives _;^(binary) and f (unary) that is sound and complete with respect to the varietyPmn, i.e. such that for every formula � in the language of Lmn,`Lmn � if and only if Pmn j= � = 1:



5.4.1 Pmn-logics 179Since the variety Pmn is generated by the algebra Lmn, it follows that`Lmn � if and only if Lmn j= � = 1:By the considerations in Section 5.3.1 we can de�ne a relation rj= as follows:Let v : Var! O(Smn) be a meaning function that has as values order-�ltersin Smn = D(Lmn). Let � : Lmn ! O(Smn) be the canonical bijection betweenLmn and O(D(Lmn)), and let ��1 be its inverse. Let v : Fma(Var) ! O(Smn)be de�ned by v(�) = � � (��1 � v).We de�ne Smn rj=v;x � if and only if x 2 v(�);Smn rj=v � if and only if v(�) = Smn;Smn rj= � if and only if for every v : Var! O(Smn); Smn rj=v �:By Proposition 5.35, for every formula � in the logic Lmn we haveLmn j= � if and only if Smn rj= �:Proposition 5.77 The following holds:(1) Smn rj=v;x �1 ^ �2 if and only if Smn rj=v;x �1 and Smn rj=v;x �2,(2) Smn rj=v;x �1 _ �2 if and only if Smn rj=v;x �1 or Smn rj=v;x �2,(3) Smn rj=v;x f(�) if and only if Smn 6 rj=v;g(x) �.Proof : (1) and (2) hold since the operations _ and ^ in O(Smn) are unionresp. intersection.In order to prove (3) note �rst that the de�nition of f in O(Smn) is f(U) =Smnng�1(U). Hence, Smn rj=v;x f(�) if and only ifx 2 v(f(�)) = � � (��1 � v)(f(�)) == �((��1 � v)(f(�))) == �(f((��1 � v)(�))) == f(�((��1 � v)(�))) == Smnng�1(�((��1 � v)(�))),if and only if g(x) 62 �((��1 � v)(�)).Thus, Smn rj=v;x f(�) if and only if Smn rj=v;g(x) �. 2In this case, it is easy to see that the space Smn is much simpler than theOckham algebra Lmn, which we did not explicitly construct here. However,note that Lmn has 2m elements.



180 5 Fibered Representation and Universal Algebra5.4.2 SHKn-LogicLet SHKn be the logic obtained from the SHn logic by adjoining the followingaxiom: (A16) (a^ � a)) (b_ � b):It is easy to see that SHKn-logics are sound and complete with respectto the subvariety SHKn of the variety of SHn-algebras, consisting of thoseSHn-algebras that satisfy the Kleene law:(a^ � a) � (b_ � b):The fact that the  Lukasiewicz-Moisil algebras of order n (cf. De�nition 3.15)satisfy the Kleene property has been proved in [Sic67] and [Cig70] in two dif-ferent ways. The fact that every SHn-algebra that satis�es the Kleene law isa  Lukasiewicz-Moisil algebra of order n is proved in [Itu82].Theorem 5.78 ([Itu82]) For a SHn-algebra A the following conditions areequivalent:(1) A satis�es the Kleene law,(2) A is a  Lukasiewicz-Moisil algebras of order n.In [IO96], in order to obtain a Kripke semantics for SHKn-logics, SHKn-frames are de�ned as SHn-frames that satisfy the following condition:(K14) R(x; g(x)) or R(g(x); x):Soundness and completeness of SHKn-logics with respect to the class ofSHKn-frames are proved.This suggested us to investigate whether the Priestley duality between thecategory of SHn-algebras and that of SHn-spaces restricts to a dual equivalencebetween the category of SHKn-algebras and a suitable subcategory of SHnSp.Lemma 5.79 Let A be an SHKn-algebra and let D(A) = (D(A);�; �; g; s1; : : : ; sn)be the SHn-space associated with A by the Priestley duality for SHn-algebras.Then for every h 2 D(A), h � g(h) or g(h) � h.Proof : Assume that there exists an h 2 HomD01(A; f0; 1g) in D(A) suchthat h 6� g(h) and g(h) 6� h. Then there exist two elements of A, say a and bsuch that h(a) = 1, g(h(a)) = 0; and h(b) = 0, g(h(b)) = 1. But g(h(a)) = 0 ifand only if h(� a) = 1, and g(h(b)) = 1 if and only if h(� b) = 0.Therefore, there exist a; b 2 A such that h(a^ � a) = h(a) ^ h(� a) = 1and h(b_ � b) = h(b) _ h(� b) = 0. This is a contradiction, because h is ahomomorphism of algebras, hence h(a^ � a) � h(b_ � b) for every a; b 2 A. 2



5.4.2 SHKn-Logic 181De�nition 5.32 The category SHKnSp of SHKn-spaces has asObjects: spaces (X;�; �; g; s1; : : : ; sn�1) such that:(1) (X;�; �; g; s1; : : : ; sn�1) is an SHn-space,(2) for every x 2 X, x � g(x) or g(x) � x.Morphisms: continuous order-preserving mappings that(1) satisfy the condition (H20) and(2) preserve the operations g; s1; : : : ; sn�1.Lemma 5.80 Let (X;�; �; g; s1; : : : ; sn�1) be an SHKn-space. Let E(X) beits dual as an SHn-space. Then E(X) satis�es the Kleene law.Proof : Assume that there exist two elements f1; f2 2 E(X) = HomP (X; f0; 1g)such that f1^ � f1 6� f2_ � f2. Then there exists an x 2 X such thatf1(x)^ � f1(x) = 1 and f2(x)_ � f2(x) = 0, i.e. such that f1(x) = � f1(x) = 1and f2(x) = � f2(x) = 0. By the de�nition of � if follows then thatf1(x) = 1; f1(g(x)) = 0; f2(x) = 0; f2(g(x)) = 1. But in X we know thateither x � g(x) or g(x) � x, hence we should have either f1(x) � f1(g(x)) andf2(x) � f2(g(x)), or f1(g(x)) � f1(x) and f2(g(x)) � f2(x). Contradiction.This shows that for every f1; f2 2 E(X), f1^ � f1 � f2_ � f2. 2Theorem 5.81 The Priestley duality between the category of SHn-algebrasand that of SHn-spaces restricts to a dual equivalence between the category ofSHKn-algebras (which coincides with the category of  Lukasiewicz-Moisil alge-bras) and the category SHKnSp of SHKn-spaces.In what follows we will use the term \ Lukasiewicz-Moisil algebras" instead ofSHKn-algebras, because the varieties are the same; the Heyting implication ina  Lukasiewicz-Moisil algebra is expressed by x) y = y_Vn�1i=1 (� (Si(x)) _ Si(y)).Let  Ln be the algebra (f0; 1n�1 ; : : : ; n�2n�1 ; 1g;_;^;�; S1; : : : ; Sn�1; 0; 1), wherex_y = max(x; y); x^y = min(x; y);� x = 1�x, and for every i 2 f1; : : : ; n�1g,Si( jn�1) = ( 1 if i+ j � n0 if i+ j < n .  Ln is a  Lukasiewicz-Moisil algebra. On  Ln an-other operation (namely the Heyting implication) can be de�ned byx) y := y _ n�1̂i=1 (� (Si(x)) _ Si(y)) :It is well-known that the subdirectly irreducible algebras in Ln are  Ln andits subalgebras, each of which is simple. Thus, the variety of  Lukasiewicz-Moisilalgebras is generated by  Ln.Let D( Ln) be the Priestley dual of the n-element  Lukasiewicz-Moisil alge-bra. D( Ln) is isomorphic to the ordered set of the join-irreducible elementsof  Ln, namely with the ordered set D( Ln) = f 1n�1 ; 2n�1 ; : : : ; n�2n�1 ; 1g (these ele-ments correspond to the prime �lters " in�1 , i = 1; : : : ; n� 1). The additionaloperations g; s1; : : : ; sn�1 are de�ned by:



182 5 Fibered Representation and Universal Algebrag(" jn�1 ) = f kn�1 2  Ln j g( kn�1 ) 62" jn�1g = f kn�1 2  Ln j 1� kn�1 < jn�1g =" n�jn�1 ;si(" jn�1 ) = f kn�1 2  Ln j Si( kn�1 ) 2" jn�1g = f kn�1 2  Ln j Si( kn�1 ) � jn�1g = f kn�1 2 Ln j Si( kn�1 ) = 1g = f kn�1 2  Ln j i+ k � ng = f kn�1 2  Ln j kn�1 � n�in�1g = " n�in�1 , forevery i = 1; : : : ; n� 1.
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Figure 5.6: D( Ln): The Priestley Dual of  LnSince the variety Ln is generated by the n-element  Lukasiewicz-Moisil alge-bra  Ln, it follows thatSHKn j= � if and only if  Ln j= � = 1:By the remarks in Section 5.3.1, we can de�ne a relation rj= as follows:Let v : Var ! O(D( Ln)) be a meaning function that has as values order-�lters in D( Ln). Let � :  Ln ! O(D( Ln)) be the canonical bijection, and let ��1be its inverse. Let v : Fma(Var)! O(D( Ln)) be de�ned by v(�) = � �(��1 � v).We de�ne D( Ln) rj=v;x � if and only if x 2 v(�);D( Ln) rj=v � if and only if v(�) = D( Ln);D( Ln) rj= � if and only if for every v : Var! O(D( Ln));D( Ln) rj=v �:By Proposition 5.35, for every formula � in the SHKn-logic, we haveSHKn j= � if and only if D( Ln) rj= �:Lemma 5.82 The following holds:(1) D( Ln) rj=v;x �1 ^ �2 if and only if D( Ln) rj=v;x �1 and D( Ln) rj=v;x �2.(2) D( Ln) rj=v;x �1 _ �2 if and only if D( Ln) rj=v;x �1 or D( Ln) rj=v;x �2.(3) D( Ln) rj=v;x Si(�) if and only if D( Ln) rj=v;si(x) �.(4) D( Ln) rj=v;x g(�) if and only if D( Ln) 6 rj=v;g(x) �.



5.5 An Implementation 183Proof : (1) and (2) are obvious. In order to prove (3) note that, taking intoaccount the de�nition of si in O(D( Ln)) as si(U) = S�1i (U), D( Ln) rj=v;x Si(�)if and only if x 2 v(Si(�)) = � � (��1 � v)(Si(�)) = �((��1 � v)(Si(�))) =�(Si((��1 � v)(�))) = Si(�((��1 � v)(�))) = s�1i (�((��1 � v)(�))), if and onlyif si(x) 2 �((��1 � v)(�)) = v(�). Thus, D( Ln) rj=v;x Si(�) if and only ifD( Ln) rj=v;si(x) �. (4) follows similarly taking into account the de�nition of g.25.5 An ImplementationTheorem proving by resolution is essentially a two stage process. The �rst stepis translating a given assertion to clause form. The second step is the actualproof. The �rst step is the one which captures the logic; the second is a purelycomputational, algebraic process, independent of the underlying logic.The existing implementations of resolution-type methods for many-valuedlogics normally only present the solution of the �rst step, namely clause gen-eration. This is the case with the approach of Baaz and Ferm�uller and thatof H�ahnle. The second step, the actual proof by resolution is the most time-consuming; it would seem that creating an interface with an existing systemin which resolution is implemented (as Otter, Isabelle, etc.) would solve theproblem.In what follows we will present both an algorithm for translating formulaeto clause form and an algorithm (based on negative hyperresolution) for theactual proof.To understand the structure of the method, it is helpful to look at thegeneral structure of the algorithm:Algorithm for Resolution in Non-Classical LogicsInput: a formula �.Output: 2 if � is unsatis�able.Algorithm :Find a set F of clauses such that � is a theorem if and only if F isunsatis�able.Apply many-valued hyperresolution to F .Our theorem prover is implemented in SICStus Prolog. According with theremarks above, the automated proof procedure consists of a procedure for thetranslation to clause form and a proof procedure by negative hyperresolution.The implementation of the main procedure, prove(�; V;Ord), takes as in-put a formula �, a set of possible worlds V (corresponding to D(A)) and anordering Ord on V . The output is 2 if the formula is a theorem.



184 5 Fibered Representation and Universal AlgebraThe data structures used are lists (or atoms, in the case of variables). Werepresent the data as follows:� Every propositional variable p is represented as an atom p,� Every formula of the form op(t1; : : : ; tn) is represented as a list of the form[op; l1; : : : ; ln], where l1; : : : ; ln are the lists that represent, recursively, theformulae t1; : : : ; tn,� Every literal of the form x pt (resp. x pf ) is represented by [x; p; t](resp. [x; p; f ]),� The clauses are represented as lists of literals, such that the positive lit-erals occur �rst. Thus, a clause is negative if and only if it begins with anegative literal.We made our implementation in SICStus Prolog as modular as possible. Theparts that are logic-speci�c are either given as an argument to the procedure(as V and Ord) or are supposed to be given separately (as are the de�nitionsof the special operators on D(A)).Roughly, the structure of the prove(�; V;Ord) is as follows:prove(�;V;Ord)
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i i i ito� clauses(Fma;V;Ord) read� clauses(M;N) prove� hyperresolution(M;N;Ord)operationsHere are brief descriptions of the procedures:� to-clauses generates the set F of clauses, which are written in a separate�le.� read-clauses(M, N) reads the clauses and separates them in the list Mof nonnegative clauses and the list N of negative clauses.� prove-hyperresolution(M, N, Ord) applies negative hyperresolutionto the clauses M [ N , taking into account that the list M contains thenonnegative clauses and N the negative clauses.� operations contains de�nitions of the operations on V , corresponding tothe speci�c logic. It is used in generating the clauses, in the procedureto-clauses.



5.5.1 Implementation for the Translation to Clause Form 185These procedures will be presented into more detail in Sections 5.5.1 and5.5.2.For a more comfortable manipulation of lists we also de�ned some proce-dures of technical nature. They are contained in the source code and we willnot describe them here.5.5.1 Implementation for the Translation to Clause FormThe procedure for translation to clause form is based on Corollary 5.47 andLemma 5.48; if any other operations, like for example Heyting implication ormodal operators are involved, their transition to clause form is based on lemmassuch as Lemma 5.50 or Lemma 5.51.Corollary 5.47 states that � is a theorem if and only if the following con-junction of formulae is unsatis�able:( " (0; 1) pf�_ " (1; 0) pf� )^ ^x2D(Sn2 ) ^ subformula of �( x pf _ x  t )^( x pt _ x  f )The general structure of a procedure for transition to clause form, based onCorollary 5.47, is as follows:Algorithm for Translation to Clause FormInput: a formula �.Output: A set of clauses F such that � is a theorem if and only if F is un-satis�able.Algorithm to-clauses(�; V;Ord):Let p� be a new propositional symbol.C1 := f x pf� j x minimal in D(A)g,F := fC1g.for all subformulae  of � that are not variablesdoLet p be a new propositional symbol.F1 :=clauses-transform( x  t),F2 :=clauses-transform( x  f ),F := F [ ff x pf g [ C j C 2 F1g [ ff x pt g [ C j C 2 F2g.odThe procedure clauses-transform generates the clauses associated with x  tresp. x  f , according to the structure of  .



186 5 Fibered Representation and Universal AlgebraWe illustrate the ideas for the case of SHn-logics.Procedure clauses-transform for SHn-logicInput: an expression e of the form x  t or x  f , where  is not a proposi-tional variable.Output: A set of signed clauses F that is satis�able if and only of the expres-sion e is satis�able.Algorithm :We distinguish several cases:if e = x ( 1 _  2)t then F := ff x pt 1 ; x pt 2gg,if e = x ( 1 _  2)f then F := ff x pf 1g; f x pf 2gg,if e = x ( 1 ^  2)t then F := ff x pt 1g; f x pt 2gg,if e = x ( 1 ^  2)f then F := ff x pf 1 ; x pf 2gg,if e = x Sj( )t then F := ff sj(x)  tgg,if e = x Sj( )f then F := ff sj(x)  fgg,if e = x � ( )t then F := ff g(x)  fgg,if e = x � ( )f then F := ff g(x)  tgg,if e = x ( 1 )  2)t then F := ff y  1f ; y  2tg j y � xg,if e = x ( 1 )  2)f then F := ff maxfy j y � xg  1tg; f x  2fgg [ff x1  1t; x2  2fg j x1; x2 � x; x1 6= x2g,if e = x :( )t then F := ff y  fg j y � xg,if e = x :( )f then F := ff y  t j y � xgg,In the case of �rst-order logics we also have to take quanti�ers into consid-eration. The structure-preserving translation is done exactly as in the case ofpropositional logic.By Lemma 5.62 we additionally have the following cases:if e = x ((8u)A(u))t then F := ff x A(u)tgg for every (ground)term u,if e = x ((8u)A(u))f then F := ff x A(f(v))fgg where f is anew (Skolem) function and v is the set of all variables that appearunbound in (8u)A(u).if e = x ((9u)A(u))t then F := ff x A(f(v))tgg where f is anew (Skolem) function and v is the set of all variables that appearunbound in (8u)A(u).



5.5.1 Implementation for the Translation to Clause Form 187if e = x ((9u)A(u))f then F := ff x A(u)fgg for every (ground)term u.Our implementation in SICStus Prolog closely follows the algorithm de-scribed above. The parts that are logic-speci�c are either given as an argumentto the procedure (as V and Ord) or are supposed to be given separately (as arethe de�nitions of the special operators on D(A)).We briey describe the structure of our procedure for translation to clauseform in more detail. to� clauses(�;V;Ord)
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iclause� negation(�;V;Ord) clauses� equiv(�;V;Ord)operationsHere are brief descriptions of the procedures above:� clause-negation(�; V;Ord) generates the clause that is a consequenceof the fact that the formula � is supposed to be false, namely that thereis some minimal possible world x at which � is false. The clause is C1 :=f x pf� j x minimal in D(A)g.� clauses-equiv(�; V;Ord) generates the set F of clauses that are conse-quences of  , p for all subformulae  of �.The procedure generates all subformulae of �, and for every subformula  ,according to the structure of the formula and the operations on V (de�nedin operations) it constructs the set of clauses F = ff x pf g [ C j C 2F1g [ ff x pt g [ C j C 2 F2g, where F1 := clauses� transform( x  t)and F2 := clauses� transform( x  f ).We present some examples:Example 5.5 Consider the SHn-logic for n = 2. Let � = S1(p) _ :(S1(p)).The algebra S22 and its dual are represented in Figure 5.7.Thus, the dual D(S22) of S22 consists of two incomparable elements. Weknow that s1(" (1; 0)) =" (1; 0), s1(" (0; 1)) =" (0; 1), and g(" (1; 0)) =" (0; 1),g(" (0; 1)) =" (1; 0).We will denote D(S22) by V = [a; b], where Ord = []. The module opera-tions in this case contains the following de�nitions:d_s1(a, a).d_s1(b, b).d_sim_neg(a, b).d_sim_neg(b, a).
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(0, 1) (1, 0)(1, 0)
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Figure 5.7: S22 and its Priestley Dual.corresponding to the fact that s1(a) = a; s1(b) = b; g(a) = b; g(b) = a.The following set of clauses is obtained:| ?- to_clauses([or, [s1, p],[neg, [s1, p]]], [a, b], []).[[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]].[[a,p_s1_p,t],[a,p_neg_s1_p,t],[a,p_or_s1_p_neg_s1_p,f]].[[a,p_or_s1_p_neg_s1_p,t],[a,p_s1_p,f]].[[a,p_or_s1_p_neg_s1_p,t],[a,p_neg_s1_p,f]].[[a,p_s1_p,f],[a,p_neg_s1_p,f]].[[a,p_s1_p,t], [a,p_neg_s1_p,t]].[[a,p,t],[a,p_s1_p,f]].[[a,p_s1_p,t],[a,p,f]].[[b,p_s1_p,t],[b,p_neg_s1_p,t],[b,p_or_s1_p_neg_s1_p,f]].[[b,p_or_s1_p_neg_s1_p,t],[b,p_s1_p,f]].[[b,p_or_s1_p_neg_s1_p,t],[b,p_neg_s1_p,f]].[[b,p_s1_p,f],[b,p_neg_s1_p,f]].[[b,p_s1_p,t], [b,p_neg_s1_p,t]].[[b,p,t],[b,p_s1_p,f]].[[b,p_s1_p,t],[b,p,f]].Example 5.6 Consider now the SHn-logic for n = 3. Let � = S1(p)_:(S1(p))as above. The algebra S32 and its dual are represented in Figure 5.8.We know that s1(" (1; 0)) = s1(" (12 ; 0)) =" (1; 0) and s1(" (0; 1)) =s1(" (0; 12)) =" (0; 1); moreover, s2(" (1; 0)) = s1(" (12 ; 0)) =" (12 ; 0) ands2(" (0; 1)) = s1(" (0; 12)) =" (0; 12).We will denote D(S32) by V = [a; b; c; d], where Ord = [[a; b]; [c; d]].The module operations in this case contains the following de�nitions:
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Figure 5.8: S32 and its Priestley dual.d_s1(X, a) :- X = a; X = b.d_s1(X, c) :- X = c; X = d.d_s2(X, b) :- X = a; X = b.d_s2(X, d) :- X = c; X = d.d_sim_neg(a, d).d_sim_neg(d, a).d_sim_neg(b, c).d_sim_neg(c, b).corresponding to the fact that s1(a) = s1(b) = a; s1(c) = s1(d) = c, s2(a) =s2(b) = b; s2(c) = s2(d) = d, and g(a) = d; g(d) = a; g(b) = c; g(c) = b.The following set of clauses is obtained:| ?- to_clauses([or, [s1, p],[neg, [s1, p]]], [a, b, c, d], [[a, b], [c, d]]).[[a,p_or_s1_p_neg_s1_p,f],[c,p_or_s1_p_neg_s1_p,f]].[[a,p_s1_p,t],[a,p_neg_s1_p,t],[a,p_or_s1_p_neg_s1_p,f]].[[a,p_or_s1_p_neg_s1_p,t],[a,p_s1_p,f]].[[a,p_or_s1_p_neg_s1_p,t],[a,p_neg_s1_p,f]].[[a,p_s1_p,f],[a,p_neg_s1_p,f]].[[b,p_s1_p,f],[a,p_neg_s1_p,f]].[[a,p_s1_p,t], [b,p_s1_p,t], [a,p_neg_s1_p,t]].[[a,p,t],[a,p_s1_p,f]].[[a,p_s1_p,t],[a,p,f]].[[b,p_s1_p,t],[b,p_neg_s1_p,t],[b,p_or_s1_p_neg_s1_p,f]].[[b,p_or_s1_p_neg_s1_p,t],[b,p_s1_p,f]].



190 5 Fibered Representation and Universal Algebra[[b,p_or_s1_p_neg_s1_p,t],[b,p_neg_s1_p,f]].[[b,p_s1_p,f],[b,p_neg_s1_p,f]].[[b,p_s1_p,t], [b,p_neg_s1_p,t]].[[a,p,t],[b,p_s1_p,f]].[[b,p_s1_p,t],[a,p,f]].[[c,p_s1_p,t],[c,p_neg_s1_p,t],[c,p_or_s1_p_neg_s1_p,f]].[[c,p_or_s1_p_neg_s1_p,t],[c,p_s1_p,f]].[[c,p_or_s1_p_neg_s1_p,t],[c,p_neg_s1_p,f]].[[c,p_s1_p,f],[c,p_neg_s1_p,f]].[[d,p_s1_p,f],[c,p_neg_s1_p,f]].[[c,p_s1_p,t], [d,p_s1_p,t], [c,p_neg_s1_p,t]].[[c,p,t],[c,p_s1_p,f]].[[c,p_s1_p,t],[c,p,f]].[[d,p_s1_p,t],[d,p_neg_s1_p,t],[d,p_or_s1_p_neg_s1_p,f]].[[d,p_or_s1_p_neg_s1_p,t],[d,p_s1_p,f]].[[d,p_or_s1_p_neg_s1_p,t],[d,p_neg_s1_p,f]].[[d,p_s1_p,f],[d,p_neg_s1_p,f]].[[d,p_s1_p,t], [d,p_neg_s1_p,t]].[[c,p,t],[d,p_s1_p,f]].[[d,p_s1_p,t],[c,p,f]].Example 5.7 Consider the logic Lmn, discussed in Section 5.4.1, with m = 2and n = 1. Let � = f2(p) _ f(p). We know that g(0) = 1, g(1) = 1. We
10Figure 5.9: The space S21will denote S21 by [a; b], with Ord = []. The module operations in this casecontains the following de�nitions:d_f(a, b).d_f(b, b).



5.5.1 Implementation for the Translation to Clause Form 191The following set of clauses is obtained:| ?- to_clauses([or, [f, [f, p]], [f, p]], [a, b], []).[[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]].[[a,p_f_f_p,t],[a,p_f_p,t],[a,p_or_f_f_p_f_p,f]].[[a,p_or_f_f_p_f_p,t],[a,p_f_f_p,f]].[[a,p_or_f_f_p_f_p,t],[a,p_f_p,f]].[[b,p_f_p,f],[a,p_f_f_p,f]].[[b,p_f_p,t],[a,p_f_f_p,t]].[[b,p,f],[a,p_f_p,f]].[[b,p,t],[a,p_f_p,t]].[[b,p_f_f_p,t],[b,p_f_p,t],[b,p_or_f_f_p_f_p,f]].[[b,p_or_f_f_p_f_p,t],[b,p_f_f_p,f]].[[b,p_or_f_f_p_f_p,t],[b,p_f_p,f]].[[b,p_f_p,f],[b,p_f_f_p,f]].[[b,p_f_p,t],[b,p_f_f_p,t]].[[b,p,f],[b,p_f_p,f]].[[b,p,t],[b,p_f_p,t]].Example 5.8 Consider the logic Lmn, discussed in Section 5.4.1 with m = 3and n = 0. Let � = f3(p) _ p.
20 1

Figure 5.10: The space S30.We know that g(0) = 1, g(1) = 2 and g(2) = 0. We will denote S30by [a; b; c], with Ord = []. The module operations in this case contains thefollowing de�nitions:d_f(a, b).d_f(b, c).d_f(c, a).The following set of clauses is obtained:



192 5 Fibered Representation and Universal Algebra| ?- to_clauses([or, [f, [f, [f, p]]], p], [a,b,c], []).[[a,p_or_f_f_f_p_p,f],[b,p_or_f_f_f_p_p,f],[c,p_or_f_f_f_p_p,f]].[[a,p_f_f_f_p,t],[a,p,t],[a,p_or_f_f_f_p_p,f]].[[a,p_or_f_f_f_p_p,t],[a,p_f_f_f_p,f]].[[a,p_or_f_f_f_p_p,t],[a,p,f]].[[b,p_f_f_p,f],[a,p_f_f_f_p,f]].[[b,p_f_f_p,t],[a,p_f_f_f_p,t]].[[b,p_f_p,f],[a,p_f_f_p,f]].[[b,p_f_p,t],[a,p_f_f_p,t]].[[b,p,f],[a,p_f_p,f]].[[b,p,t],[a,p_f_p,t]].[[b,p_f_f_f_p,t],[b,p,t],[b,p_or_f_f_f_p_p,f]].[[b,p_or_f_f_f_p_p,t],[b,p_f_f_f_p,f]].[[b,p_or_f_f_f_p_p,t],[b,p,f]].[[c,p_f_f_p,f],[b,p_f_f_f_p,f]].[[c,p_f_f_p,t],[b,p_f_f_f_p,t]].[[c,p_f_p,f],[b,p_f_f_p,f]].[[c,p_f_p,t],[b,p_f_f_p,t]].[[c,p,f],[b,p_f_p,f]].[[c,p,t],[b,p_f_p,t]].[[c,p_f_f_f_p,t],[c,p,t],[c,p_or_f_f_f_p_p,f]].[[c,p_or_f_f_f_p_p,t],[c,p_f_f_f_p,f]].[[c,p_or_f_f_f_p_p,t],[c,p,f]].[[a,p_f_f_p,f],[c,p_f_f_f_p,f]].[[a,p_f_f_p,t],[c,p_f_f_f_p,t]].[[a,p_f_p,f],[c,p_f_f_p,f]].[[a,p_f_p,t],[c,p_f_f_p,t]].[[a,p,f],[c,p_f_p,f]].[[a,p,t],[c,p_f_p,t]].



5.5.1 Implementation for the Translation to Clause Form 193It can be seen from the examples above that in the propositional case thismethod is not always more e�cient than the method of direct veri�cation: inExample 5.5 (resp. 5.6) only one propositional variable occurs, hence there areonly 4 (resp. 9) possible values for this variable to be tested.In Example 5.7 and Example 5.8 the advantage of this method consists ofthe fact that we do not need to compute the algebra L21 (resp. L30) and candirectly use its dual space. However, this algebras have 22 = 4 (resp. 23 = 8)elements, hence a direct veri�cation is also possible.In general if there are few variables the method of direct veri�cation is moree�cient, whereas if many variables occur our method may be better. Never-theless, the real advantages of the use of resolution in many-valued theoremproving are in automated theorem proving for the �rst-order case, where nodirect veri�cation by plugging in truth values can be applied. In what followswe will illustrate the way clauses are generated in �rst-order logic.Example 5.9 Consider a �rst-order version of Example 5.5. Let A(x) be aformula in this logic, containing a free variable x and let � = (8x)S1(A(x)) _:(S1(A(x))).Therefore in this case a clause form for � is:| ?- to_clauses([[forall, x], [or, [s1, [a, x]], [neg, [s1, [a, x]]]]], [a, b],[]).[[a,p_forall_x_or_s1_a_x_neg_s1_a_x,f],[b,p_forall_x_or_s1_a_x_neg_s1_a_x,f]].[[a,[p_or_s1_a_x_neg_s1_a_x,x],t],[a,p_forall_x_or_s1_a_x_neg_s1_a_x,f]].[[a,p_forall_x_or_s1_a_x_neg_s1_a_x,t],[a,[p_or_s1_a_x_neg_s1_a_x,f1],f]].[[a,[p_s1_a_x,x],t],[a,[p_neg_s1_a_x,x],t],[a,[p_or_s1_a_x_neg_s1_a_x,x],f]].[[a,[p_or_s1_a_x_neg_s1_a_x,x],t],[a,[p_s1_a_x,x],f]].[[a,[p_or_s1_a_x_neg_s1_a_x,x],t],[a,[p_neg_s1_a_x,x],f]].[[a,[p_s1_a_x,x],f],[a,[p_neg_s1_a_x,x],f]].[[a,[p_s1_a_x,x],t], [a,[p_neg_s1_a_x,x],t]].[[a,[p_a_x,x],t],[a,[p_s1_a_x,x],f]].[[a,[p_s1_a_x,x],t],[a,[p_a_x,x],f]].[[b,[p_or_s1_a_x_neg_s1_a_x,x],t],[b,p_forall_x_or_s1_a_x_neg_s1_a_x,f]].[[b,p_forall_x_or_s1_a_x_neg_s1_a_x,t],[b,[p_or_s1_a_x_neg_s1_a_x,f2],f]].[[b,[p_s1_a_x,x],t],[b,[p_neg_s1_a_x,x],t],[b,[p_or_s1_a_x_neg_s1_a_x,x],f]].[[b,[p_or_s1_a_x_neg_s1_a_x,x],t],[b,[p_s1_a_x,x],f]].[[b,[p_or_s1_a_x_neg_s1_a_x,x],t],[b,[p_neg_s1_a_x,x],f]].[[b,[p_s1_a_x,x],f],[b,[p_neg_s1_a_x,x],f]].



194 5 Fibered Representation and Universal Algebra[[b,[p_s1_a_x,x],t],[b,[p_neg_s1_a_x,x],t]].[[a,[p_a_x,x],t],[b,[p_s1_a_x,x],f]].[[b,[p_s1_a_x,x],t],[a,[p_a_x,x],f]].5.5.2 HyperresolutionThe procedure for theorem proving by hyperresolution is an adaptation of thealgorithm given in [CL73].Algorithm for many-valued hyperresolutionInput: A set F of signed clauses.Output: 2 if F is unsatis�able.Algorithm :M := The set of all negative clauses in F ,N := The set of all non-negative clauses in F ,i := 0,A0 := ;, B0 := N ,repeatwhile Ai does not contain 2 and Bi 6= ;doWi+1 := The set of ordered resolvents of C1 against C2, whereC1 is an ordered clause or an ordered factor of an orderedclause in M;C2 is an ordered clause in B, the resolved lit-eral of C1 contains the \largest" predicate symbol in C1,and the resolved literal of C2 is the \last" literal of C2.Ai+1 := The set of negative ordered clauses in Wi+1,Bi+1 := The set of non-negative ordered clauses in Wi+1,i := i+ 1,odif Ai contains 2 then Return,T := A0 [ : : : [Ai, M := M [ T ,R := The set of ordered resolvents of C1 against C2, where C1 isan ordered clause or an ordered factor of an ordered clausein T;C2 is an ordered clause in N , and the resolved literalin C1 contains the \largest" predicate symbol in C1.(Note that the resolved literal in C2 can be any literal in C2,not necessarily the last literal.)A0 := The set of all negative literals in R,



5.5.2 Hyperresolution 195B0 := The set of all nonnegative literals in R.Our implementation in SICStus Prolog follows the algorithm described above.We briey describe the structure of our procedure for negative hyperresolution.prove� hyperresolution(M;N;Ord)hyper � aux(M;N;A;B;T;Ord)
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iresolvents � 1 resolvents � 2(B 6= []) (B = [])Here are brief descriptions of the procedures above:� prove-hyperresolution(M, N, Ord) calls hyper-aux(M, N, [], N,[], Ord)� hyper-aux(M, N, A, N, T, Ord) If B is not empty, this procedurecalls resolvents-1 which generates a set W of ordered clauses betweenM and B. Let A1 be the list of negative clauses in W , and B1 the list ofnon-negative clauses in W . A1 is added to T to form T1 (the list of newlygenerated negative clauses). Then hyper-aux is applied recursively toM;N;A1; B1; T1: This continues until either no non-negative clauses aregenerated or a contradiction is deduced.If B = [], the resolvents between T and N are generated with resolvents-2. Let A1; B1 be the lists of negative resp. non-negative clauses gen-erated this way. The procedure hyper-aux is applied recursively toM;N;A1; B1; [].� resolvents-1(M, B, M1, N1, Ord-Pred, Ord) generates the set ofordered resolvents of C1 against C2 where C1 is an ordered clause or anordered factor of an ordered clause in M , C2 is an ordered clause in B,the resolved literal of C1 contains the \largest" predicate symbol in C1;and the resolved literal of C2 is the \last" literal of C2.� resolvents-2(T, N, M1, N1, Ord-Pred, Ord) generates the set ofordered resolvents of C1 against C2 where C1 is an ordered clause or anordered factor of an ordered clause in T , C2 is an ordered clause in N ,and the resolved literal of C1 contains the \largest" predicate symbol inC1.Example 5.10 Consider the SHn-logic for n = 2, as described in Example 5.5.Let � = S1(p) _ :(S1(p)). In what follows we present the execution of the



196 5 Fibered Representation and Universal Algebraprocedure prove(�; [a; b]; []). All the clauses generated at every application ofresolvents-1 or resolvents-2 are explicitly printed.| ?- prove([or, [s1, p],[neg, [s1, p]]], [a, b], []).hyper_aux:M:1 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]2 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]3 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]B:1 [[a,p_s1_p,t],[a,p_neg_s1_p,t],[a,p_or_s1_p_neg_s1_p,f]]2 [[a,p_or_s1_p_neg_s1_p,t],[a,p_s1_p,f]]3 [[a,p_or_s1_p_neg_s1_p,t],[a,p_neg_s1_p,f]]4 [[a,p_s1_p,t],[a,p_neg_s1_p,t]]5 [[a,p,t],[a,p_s1_p,f]]6 [[a,p_s1_p,t],[a,p,f]]7 [[b,p_s1_p,t],[b,p_neg_s1_p,t],[b,p_or_s1_p_neg_s1_p,f]]8 [[b,p_or_s1_p_neg_s1_p,t],[b,p_s1_p,f]]9 [[b,p_or_s1_p_neg_s1_p,t],[b,p_neg_s1_p,f]]10 [[b,p_s1_p,t],[b,p_neg_s1_p,t]]11 [[b,p,t],[b,p_s1_p,f]]12 [[b,p_s1_p,t],[b,p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]2 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]3 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[a,p_neg_s1_p,f]]6 [[b,p,f],[b,p_neg_s1_p,f]]B1:hyper_aux: B = []T:1 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]2 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]3 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[a,p_neg_s1_p,f]]6 [[b,p,f],[b,p_neg_s1_p,f]]M:1 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]2 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]3 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]M1:1 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]2 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]3 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[a,p_neg_s1_p,f]]6 [[b,p,f],[b,p_neg_s1_p,f]]7 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]8 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]9 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]out of resolvents_2A1:1 [[a,p,f],[b,p_or_s1_p_neg_s1_p,f]]2 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]



5.5.2 Hyperresolution 1973 [[b,p,f],[a,p_or_s1_p_neg_s1_p,f]]4 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]5 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]B1:1 [[a,p_neg_s1_p,t],[b,p_or_s1_p_neg_s1_p,f]]2 [[b,p_neg_s1_p,t],[a,p_or_s1_p_neg_s1_p,f]]3 [[a,p_s1_p,t],[a,p_or_s1_p_neg_s1_p,f],[a,p,f]]4 [[b,p_s1_p,t],[b,p_or_s1_p_neg_s1_p,f],[b,p,f]]hyper_aux:M:1 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]2 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]3 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[a,p_neg_s1_p,f]]6 [[b,p,f],[b,p_neg_s1_p,f]]7 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]8 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]9 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]B:1 [[a,p_neg_s1_p,t],[b,p_or_s1_p_neg_s1_p,f]]2 [[b,p_neg_s1_p,t],[a,p_or_s1_p_neg_s1_p,f]]3 [[a,p_s1_p,t],[a,p_or_s1_p_neg_s1_p,f],[a,p,f]]4 [[b,p_s1_p,t],[b,p_or_s1_p_neg_s1_p,f],[b,p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]2 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]3 [[a,p_or_s1_p_neg_s1_p,f],[a,p,f],[a,p_neg_s1_p,f]]4 [[b,p_or_s1_p_neg_s1_p,f],[b,p,f],[b,p_neg_s1_p,f]]B1:hyper_aux: B = []T:1 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]2 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]3 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]4 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]5 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]6 [[a,p_or_s1_p_neg_s1_p,f],[a,p,f],[a,p_neg_s1_p,f]]7 [[b,p_or_s1_p_neg_s1_p,f],[b,p,f],[b,p_neg_s1_p,f]]M:1 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]2 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]3 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[a,p_neg_s1_p,f]]6 [[b,p,f],[b,p_neg_s1_p,f]]7 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]8 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]9 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]M1:1 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]2 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]3 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]4 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]5 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]



198 5 Fibered Representation and Universal Algebra6 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]7 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]8 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]9 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]10 [[a,p,f],[a,p_neg_s1_p,f]]11 [[b,p,f],[b,p_neg_s1_p,f]]12 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]13 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]14 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]out of resolvents_2A1:1 [[b,p_s1_p,f],[a,p,f]]2 [[b,p_neg_s1_p,f],[a,p,f]]3 [[a,p_s1_p,f],[b,p,f]]4 [[a,p_neg_s1_p,f],[b,p,f]]5 [[a,p_s1_p,f],[a,p,f],[a,p_neg_s1_p,f]]6 [[b,p_s1_p,f],[b,p,f],[b,p_neg_s1_p,f]]B1:1 [[a,p_s1_p,t],[b,p_neg_s1_p,f]]2 [[b,p_s1_p,t],[a,p_neg_s1_p,f]]hyper_aux:M:1 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]2 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]3 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]4 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]5 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]6 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]7 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]8 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]9 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]10 [[a,p,f],[a,p_neg_s1_p,f]]11 [[b,p,f],[b,p_neg_s1_p,f]]12 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]13 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]14 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]B:1 [[a,p_s1_p,t],[b,p_neg_s1_p,f]]2 [[b,p_s1_p,t],[a,p_neg_s1_p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[a,p_neg_s1_p,f]]2 [[b,p_neg_s1_p,f]]3 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]4 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]5 [[b,p_neg_s1_p,f],[a,p_neg_s1_p,f]]B1:hyper_aux: B = []T:1 [[b,p_s1_p,f],[a,p,f]]2 [[a,p_s1_p,f],[b,p,f]]3 [[a,p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f]]5 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]6 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]7 [[b,p_neg_s1_p,f],[a,p_neg_s1_p,f]]



5.5.2 Hyperresolution 199M:1 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]2 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]3 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]4 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]5 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]6 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]7 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]8 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]9 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]10 [[a,p,f],[a,p_neg_s1_p,f]]11 [[b,p,f],[b,p_neg_s1_p,f]]12 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]13 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]14 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]M1:1 [[b,p_s1_p,f],[a,p,f]]2 [[a,p_s1_p,f],[b,p,f]]3 [[a,p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f]]5 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]6 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]7 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]8 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]9 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]10 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]11 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]12 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]13 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]14 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]15 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]16 [[a,p,f],[a,p_neg_s1_p,f]]17 [[b,p,f],[b,p_neg_s1_p,f]]18 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]19 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]20 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]out of resolvents_2A1:1 [[a,p,f],[b,p,f]]B1:1 [[b,p_neg_s1_p,t],[a,p,f]]2 [[a,p_neg_s1_p,t],[b,p,f]]3 [[a,p_s1_p,t]]4 [[b,p_s1_p,t]]5 [[b,p_s1_p,t],[a,p_neg_s1_p,f]]6 [[a,p_s1_p,t],[b,p_neg_s1_p,f]]hyper_aux:M:1 [[b,p_s1_p,f],[a,p,f]]2 [[a,p_s1_p,f],[b,p,f]]3 [[a,p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f]]5 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]6 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]7 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]8 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]9 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]10 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]11 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]12 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]13 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]14 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]



200 5 Fibered Representation and Universal Algebra15 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]16 [[a,p,f],[a,p_neg_s1_p,f]]17 [[b,p,f],[b,p_neg_s1_p,f]]18 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]19 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]20 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]B:1 [[b,p_neg_s1_p,t],[a,p,f]]2 [[a,p_neg_s1_p,t],[b,p,f]]3 [[a,p_s1_p,t]]4 [[b,p_s1_p,t]]5 [[b,p_s1_p,t],[a,p_neg_s1_p,f]]6 [[a,p_s1_p,t],[b,p_neg_s1_p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[b,p,f]]2 [[a,p,f]]3 [[b,p_or_s1_p_neg_s1_p,f]]4 [[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[b,p,f]]6 [[b,p_neg_s1_p,f],[a,p_neg_s1_p,f]]B1:hyper_aux: B = []T:1 [[b,p,f]]2 [[a,p,f]]3 [[b,p_or_s1_p_neg_s1_p,f]]4 [[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[b,p,f]]6 [[b,p_neg_s1_p,f],[a,p_neg_s1_p,f]]M:1 [[b,p_s1_p,f],[a,p,f]]2 [[a,p_s1_p,f],[b,p,f]]3 [[a,p_neg_s1_p,f]]4 [[b,p_neg_s1_p,f]]5 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]6 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]7 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]8 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]9 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]10 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]11 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]12 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]13 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]14 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]15 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]16 [[a,p,f],[a,p_neg_s1_p,f]]17 [[b,p,f],[b,p_neg_s1_p,f]]18 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]19 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]20 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]M1:1 [[b,p,f]]2 [[a,p,f]]3 [[b,p_or_s1_p_neg_s1_p,f]]4 [[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[b,p,f]]6 [[b,p_s1_p,f],[a,p,f]]



5.5.2 Hyperresolution 2017 [[a,p_s1_p,f],[b,p,f]]8 [[a,p_neg_s1_p,f]]9 [[b,p_neg_s1_p,f]]10 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]11 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]12 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]13 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]14 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]15 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]16 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]17 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]18 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]19 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]20 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]21 [[a,p,f],[a,p_neg_s1_p,f]]22 [[b,p,f],[b,p_neg_s1_p,f]]23 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]24 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]25 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]out of resolvents_2A1:1 [[b,p_s1_p,f]]2 [[a,p_s1_p,f]]B1:1 [[b,p_s1_p,t],[a,p_neg_s1_p,f]]2 [[a,p_s1_p,t],[b,p_neg_s1_p,f]]hyper_aux:M:1 [[b,p,f]]2 [[a,p,f]]3 [[b,p_or_s1_p_neg_s1_p,f]]4 [[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[b,p,f]]6 [[b,p_s1_p,f],[a,p,f]]7 [[a,p_s1_p,f],[b,p,f]]8 [[a,p_neg_s1_p,f]]9 [[b,p_neg_s1_p,f]]10 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]11 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]12 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]13 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]14 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]15 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]16 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]17 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]18 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]19 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]20 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]21 [[a,p,f],[a,p_neg_s1_p,f]]22 [[b,p,f],[b,p_neg_s1_p,f]]23 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]24 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]25 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]B:1 [[b,p_s1_p,t],[a,p_neg_s1_p,f]]2 [[a,p_s1_p,t],[b,p_neg_s1_p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[a,p_neg_s1_p,f],[a,p,f]]



202 5 Fibered Representation and Universal Algebra2 [[b,p_neg_s1_p,f],[b,p,f]]3 [[b,p_neg_s1_p,f],[a,p_neg_s1_p,f]]B1:hyper_aux: B = []T:1 [[b,p_s1_p,f]]2 [[a,p_s1_p,f]]3 [[a,p_neg_s1_p,f],[a,p,f]]4 [[b,p_neg_s1_p,f],[b,p,f]]5 [[b,p_neg_s1_p,f],[a,p_neg_s1_p,f]]M:1 [[b,p,f]]2 [[a,p,f]]3 [[b,p_or_s1_p_neg_s1_p,f]]4 [[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p,f],[b,p,f]]6 [[b,p_s1_p,f],[a,p,f]]7 [[a,p_s1_p,f],[b,p,f]]8 [[a,p_neg_s1_p,f]]9 [[b,p_neg_s1_p,f]]10 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]11 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]12 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]13 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]14 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]15 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]16 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]17 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]18 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]19 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]20 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]21 [[a,p,f],[a,p_neg_s1_p,f]]22 [[b,p,f],[b,p_neg_s1_p,f]]23 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]24 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]25 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]M1:1 [[b,p_s1_p,f]]2 [[a,p_s1_p,f]]3 [[b,p,f]]4 [[a,p,f]]5 [[b,p_or_s1_p_neg_s1_p,f]]6 [[a,p_or_s1_p_neg_s1_p,f]]7 [[a,p,f],[b,p,f]]8 [[b,p_s1_p,f],[a,p,f]]9 [[a,p_s1_p,f],[b,p,f]]10 [[a,p_neg_s1_p,f]]11 [[b,p_neg_s1_p,f]]12 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]13 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]14 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]15 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]16 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]17 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]18 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]19 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]20 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]21 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]22 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]23 [[a,p,f],[a,p_neg_s1_p,f]]24 [[b,p,f],[b,p_neg_s1_p,f]]25 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]



5.5.2 Hyperresolution 20326 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]27 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]out of resolvents_2A1:B1:1 [[b,p_neg_s1_p,t]]2 [[a,p_neg_s1_p,t]]3 [[a,p_s1_p,t],[a,p_or_s1_p_neg_s1_p,f],[a,p,f]]4 [[b,p_s1_p,t],[b,p_or_s1_p_neg_s1_p,f],[b,p,f]]5 [[b,p_s1_p,t],[a,p_neg_s1_p,f]]6 [[a,p_s1_p,t],[b,p_neg_s1_p,f]]hyper_aux:M:1 [[b,p_s1_p,f]]2 [[a,p_s1_p,f]]3 [[b,p,f]]4 [[a,p,f]]5 [[b,p_or_s1_p_neg_s1_p,f]]6 [[a,p_or_s1_p_neg_s1_p,f]]7 [[a,p,f],[b,p,f]]8 [[b,p_s1_p,f],[a,p,f]]9 [[a,p_s1_p,f],[b,p,f]]10 [[a,p_neg_s1_p,f]]11 [[b,p_neg_s1_p,f]]12 [[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]13 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]14 [[b,p_s1_p,f],[a,p_neg_s1_p,f]]15 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]16 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]17 [[b,p_or_s1_p_neg_s1_p,f],[a,p,f]]18 [[a,p_or_s1_p_neg_s1_p,f],[b,p,f]]19 [[a,p_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]20 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]21 [[b,p_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]22 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]23 [[a,p,f],[a,p_neg_s1_p,f]]24 [[b,p,f],[b,p_neg_s1_p,f]]25 [[a,p_or_s1_p_neg_s1_p,f],[b,p_or_s1_p_neg_s1_p,f]]26 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]27 [[b,p_s1_p,f],[b,p_neg_s1_p,f]]B:1 [[b,p_neg_s1_p,t]]2 [[a,p_neg_s1_p,t]]3 [[a,p_s1_p,t],[a,p_or_s1_p_neg_s1_p,f],[a,p,f]]4 [[b,p_s1_p,t],[b,p_or_s1_p_neg_s1_p,f],[b,p,f]]5 [[b,p_s1_p,t],[a,p_neg_s1_p,f]]6 [[a,p_s1_p,t],[b,p_neg_s1_p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 []2 [[b,p_or_s1_p_neg_s1_p,f],[b,p,f],[a,p_neg_s1_p,f]]3 [[a,p_or_s1_p_neg_s1_p,f],[a,p,f],[b,p_neg_s1_p,f]]4 [[a,p_or_s1_p_neg_s1_p,f],[a,p,f],[b,p_or_s1_p_neg_s1_p,f]]5 [[b,p_or_s1_p_neg_s1_p,f],[b,p,f],[a,p_or_s1_p_neg_s1_p,f]]6 [[a,p_or_s1_p_neg_s1_p,f],[a,p,f],[a,p_neg_s1_p,f]]7 [[b,p_neg_s1_p,f],[a,p_neg_s1_p,f]]8 [[b,p_or_s1_p_neg_s1_p,f],[b,p,f],[b,p_neg_s1_p,f]]B1:



204 5 Fibered Representation and Universal AlgebraIs a theorem: Contradiction is foundNote that if we use the structure of D(Sn2) we can reduce the numberof clauses that are generated, for those formulae that do not contain the DeMorgan negation �. Namely, we can use the fact that D(Sn2) consists of twobranches and that the transformation rules for the operations in f_;^;:;)gpreserve the branch of D(Sn2). It is easy to see that it is su�cient to give arefutation for ( " (0; 1) pf�^^ î ^ subformula of � = 1� 2 ( (0; i) pf _ (0; i) (p 1�p 2)t )^( (0; i) pt _ (0; i) (p 1�p 2)f )^^ î ^ subformula of � =r 1 ( (0; i) pf _ (0; i) (rp 1)t ) ^ ( (0; i) pt _ (0; i) (rp 1)f ):(i.e. in just one of the branches of D(Sn2)); for the other branch a similarrefutation can be constructed by simply renaming the nodes, and they can bethen combined to a refutation by resolution for( " (0; 1) pf� _ " (1; 0) pf� )^^ ^x2D(Sn2) ^ subformula of � = 1� 2 ( x pf _ x (p 1 � p 2)t ) ^ ( x pt _ x (p 1 � p 2)f )^^ ^x2D(Sn2 ) ^ subformula of � =r 1 ( x pf _ x (rp 1)t ) ^ ( x pt _ x (rp 1)f ):Example 5.11 Consider the SHn-logic for n = 2, as described in Example 5.5,and let � = S1(p)_:(S1(p)). If we consider only the branch fag of D(S22), weobtain:| ?- read_clauses(M, N, res_1), prove_hyperresolution(M, N, []).hyper_aux:M:1 [[a,p_or_s1_p_neg_s1_p,f]]2 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]B:1 [[a,p_s1_p,t],[a,p_neg_s1_p,t],[a,p_or_s1_p_neg_s1_p,f]]2 [[a,p_or_s1_p_neg_s1_p,t],[a,p_s1_p,f]]3 [[a,p_or_s1_p_neg_s1_p,t],[a,p_neg_s1_p,f]]4 [[a,p_s1_p,t],[a,p_neg_s1_p,t]]5 [[a,p,t],[a,p_s1_p,f]]6 [[a,p_s1_p,t],[a,p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[a,p_s1_p,f]]2 [[a,p_neg_s1_p,f]]3 [[a,p,f],[a,p_neg_s1_p,f]]B1:



5.5.2 Hyperresolution 205hyper_aux: B = []T:1 [[a,p_s1_p,f]]2 [[a,p_neg_s1_p,f]]3 [[a,p,f],[a,p_neg_s1_p,f]]M:1 [[a,p_or_s1_p_neg_s1_p,f]]2 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]M1:1 [[a,p_s1_p,f]]2 [[a,p_neg_s1_p,f]]3 [[a,p,f],[a,p_neg_s1_p,f]]4 [[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]out of resolvents_2A1:1 [[a,p,f]]B1:1 [[a,p_neg_s1_p,t]]2 [[a,p_s1_p,t]]3 [[a,p_s1_p,t],[a,p_or_s1_p_neg_s1_p,f],[a,p,f]]hyper_aux:M:1 [[a,p_s1_p,f]]2 [[a,p_neg_s1_p,f]]3 [[a,p,f],[a,p_neg_s1_p,f]]4 [[a,p_or_s1_p_neg_s1_p,f]]5 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]B:1 [[a,p_neg_s1_p,t]]2 [[a,p_s1_p,t]]3 [[a,p_s1_p,t],[a,p_or_s1_p_neg_s1_p,f],[a,p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 []2 [[a,p,f]]3 [[a,p_or_s1_p_neg_s1_p,f],[a,p,f],[a,p_neg_s1_p,f]]B1:Is a theorem: Contradiction is foundNote that this is speci�c to the SHn-logics. In what follows we illustratethe general procedure for Lmn-logics.Example 5.12 Consider the Lmn logic, with m = 2 and n = 1, as describedin Example 5.7. Let � = f2(p)_ f(p). In what follows we present the executionof the procedure prove(�; [a; b]; []). All the clauses generated at every applicationof resolution-1 or resolution-2 are explicitly printed.| ?- prove([or, [f, [f, p]], [f, p]], [a, b], []).hyper_aux:M:1 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]



206 5 Fibered Representation and Universal Algebra2 [[b,p_f_p,f],[a,p_f_f_p,f]]3 [[b,p,f],[a,p_f_p,f]]4 [[b,p_f_p,f],[b,p_f_f_p,f]]5 [[b,p,f],[b,p_f_p,f]]B:1 [[a,p_f_f_p,t],[a,p_f_p,t],[a,p_or_f_f_p_f_p,f]]2 [[a,p_or_f_f_p_f_p,t],[a,p_f_f_p,f]]3 [[a,p_or_f_f_p_f_p,t],[a,p_f_p,f]]4 [[b,p_f_p,t],[a,p_f_f_p,t]]5 [[b,p,t],[a,p_f_p,t]]6 [[b,p_f_f_p,t],[b,p_f_p,t],[b,p_or_f_f_p_f_p,f]]7 [[b,p_or_f_f_p_f_p,t],[b,p_f_f_p,f]]8 [[b,p_or_f_f_p_f_p,t],[b,p_f_p,f]]9 [[b,p_f_p,t],[b,p_f_f_p,t]]10 [[b,p,t],[b,p_f_p,t]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]2 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]3 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]4 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]B1:1 [[a,p_f_f_p,t],[b,p,f]]2 [[b,p_f_f_p,t],[b,p,f]]hyper_aux:M:1 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]2 [[b,p_f_p,f],[a,p_f_f_p,f]]3 [[b,p,f],[a,p_f_p,f]]4 [[b,p_f_p,f],[b,p_f_f_p,f]]5 [[b,p,f],[b,p_f_p,f]]B:1 [[a,p_f_f_p,t],[b,p,f]]2 [[b,p_f_f_p,t],[b,p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:B1:hyper_aux: B = []T:1 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]2 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]3 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]4 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]M:1 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]2 [[b,p_f_p,f],[a,p_f_f_p,f]]3 [[b,p,f],[a,p_f_p,f]]4 [[b,p_f_p,f],[b,p_f_f_p,f]]5 [[b,p,f],[b,p_f_p,f]]M1:1 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]2 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]



5.5.2 Hyperresolution 2073 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]4 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]5 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]6 [[b,p_f_p,f],[a,p_f_f_p,f]]7 [[b,p,f],[a,p_f_p,f]]8 [[b,p_f_p,f],[b,p_f_f_p,f]]9 [[b,p,f],[b,p_f_p,f]]out of resolvents_2A1:1 [[a,p_f_f_p,f],[b,p_f_f_p,f]]2 [[a,p_f_p,f],[b,p_f_f_p,f]]3 [[a,p_f_f_p,f],[b,p_f_p,f]]4 [[a,p_f_p,f],[b,p_f_p,f]]B1:hyper_aux: B = []T:1 [[a,p_f_f_p,f],[b,p_f_f_p,f]]2 [[a,p_f_p,f],[b,p_f_f_p,f]]3 [[a,p_f_f_p,f],[b,p_f_p,f]]4 [[a,p_f_p,f],[b,p_f_p,f]]M:1 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]2 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]3 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]4 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]5 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]6 [[b,p_f_p,f],[a,p_f_f_p,f]]7 [[b,p,f],[a,p_f_p,f]]8 [[b,p_f_p,f],[b,p_f_f_p,f]]9 [[b,p,f],[b,p_f_p,f]]M1:1 [[a,p_f_f_p,f],[b,p_f_f_p,f]]2 [[a,p_f_p,f],[b,p_f_f_p,f]]3 [[a,p_f_p,f],[b,p_f_p,f]]4 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]5 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]6 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]7 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]8 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]9 [[b,p_f_p,f],[a,p_f_f_p,f]]10 [[b,p,f],[a,p_f_p,f]]11 [[b,p_f_p,f],[b,p_f_f_p,f]]12 [[b,p,f],[b,p_f_p,f]]out of resolvents_2A1:B1:1 [[a,p_f_p,t],[a,p_or_f_f_p_f_p,f],[b,p_f_f_p,f]]2 [[b,p_f_p,t],[b,p_f_f_p,f]]3 [[b,p_f_p,t],[a,p_f_f_p,f]]4 [[b,p,t],[b,p_f_f_p,f]]5 [[b,p,t],[a,p_f_f_p,f]]6 [[a,p_f_f_p,t],[a,p_or_f_f_p_f_p,f],[b,p_f_p,f]]7 [[b,p,t],[b,p_f_p,f]]8 [[a,p_f_f_p,t],[a,p_f_p,f]]9 [[b,p_f_f_p,t],[a,p_f_p,f]]10 [[b,p,t],[a,p_f_p,f]]hyper_aux:M:



208 5 Fibered Representation and Universal Algebra1 [[a,p_f_f_p,f],[b,p_f_f_p,f]]2 [[a,p_f_p,f],[b,p_f_f_p,f]]3 [[a,p_f_p,f],[b,p_f_p,f]]4 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]5 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]6 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]7 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]8 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]9 [[b,p_f_p,f],[a,p_f_f_p,f]]10 [[b,p,f],[a,p_f_p,f]]11 [[b,p_f_p,f],[b,p_f_f_p,f]]12 [[b,p,f],[b,p_f_p,f]]B:1 [[a,p_f_p,t],[a,p_or_f_f_p_f_p,f],[b,p_f_f_p,f]]2 [[b,p_f_p,t],[b,p_f_f_p,f]]3 [[b,p_f_p,t],[a,p_f_f_p,f]]4 [[b,p,t],[b,p_f_f_p,f]]5 [[b,p,t],[a,p_f_f_p,f]]6 [[a,p_f_f_p,t],[a,p_or_f_f_p_f_p,f],[b,p_f_p,f]]7 [[b,p,t],[b,p_f_p,f]]8 [[a,p_f_f_p,t],[a,p_f_p,f]]9 [[b,p_f_f_p,t],[a,p_f_p,f]]10 [[b,p,t],[a,p_f_p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[a,p_f_f_p,f]]2 [[b,p_f_f_p,f]]3 [[b,p_f_f_p,f],[b,p,f]]4 [[a,p_f_f_p,f],[b,p,f]]B1:hyper_aux: B = []T:1 [[a,p_f_f_p,f]]2 [[b,p_f_f_p,f]]3 [[b,p_f_f_p,f],[b,p,f]]4 [[a,p_f_f_p,f],[b,p,f]]M:1 [[a,p_f_f_p,f],[b,p_f_f_p,f]]2 [[a,p_f_p,f],[b,p_f_f_p,f]]3 [[a,p_f_p,f],[b,p_f_p,f]]4 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]5 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]6 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]7 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]8 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]9 [[b,p_f_p,f],[a,p_f_f_p,f]]10 [[b,p,f],[a,p_f_p,f]]11 [[b,p_f_p,f],[b,p_f_f_p,f]]12 [[b,p,f],[b,p_f_p,f]]M1:1 [[a,p_f_f_p,f]]2 [[b,p_f_f_p,f]]3 [[b,p_f_f_p,f],[b,p,f]]4 [[a,p_f_f_p,f],[b,p,f]]5 [[a,p_f_f_p,f],[b,p_f_f_p,f]]6 [[a,p_f_p,f],[b,p_f_f_p,f]]7 [[a,p_f_p,f],[b,p_f_p,f]]8 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]



5.5.2 Hyperresolution 2099 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]10 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]11 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]12 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]13 [[b,p_f_p,f],[a,p_f_f_p,f]]14 [[b,p,f],[a,p_f_p,f]]15 [[b,p_f_p,f],[b,p_f_f_p,f]]16 [[b,p,f],[b,p_f_p,f]]out of resolvents_2A1:B1:1 [[a,p_f_p,t],[a,p_or_f_f_p_f_p,f]]2 [[b,p_f_p,t]]3 [[a,p_f_p,t],[a,p_or_f_f_p_f_p,f],[b,p,f]]4 [[b,p_f_p,t],[b,p,f]]hyper_aux:M:1 [[a,p_f_f_p,f]]2 [[b,p_f_f_p,f]]3 [[b,p_f_f_p,f],[b,p,f]]4 [[a,p_f_f_p,f],[b,p,f]]5 [[a,p_f_f_p,f],[b,p_f_f_p,f]]6 [[a,p_f_p,f],[b,p_f_f_p,f]]7 [[a,p_f_p,f],[b,p_f_p,f]]8 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]9 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]10 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]11 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]12 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]13 [[b,p_f_p,f],[a,p_f_f_p,f]]14 [[b,p,f],[a,p_f_p,f]]15 [[b,p_f_p,f],[b,p_f_f_p,f]]16 [[b,p,f],[b,p_f_p,f]]B:1 [[a,p_f_p,t],[a,p_or_f_f_p_f_p,f]]2 [[b,p_f_p,t]]3 [[a,p_f_p,t],[a,p_or_f_f_p_f_p,f],[b,p,f]]4 [[b,p_f_p,t],[b,p,f]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 [[a,p_or_f_f_p_f_p,f],[b,p_f_f_p,f]]2 [[a,p_or_f_f_p_f_p,f],[b,p_f_p,f]]3 [[a,p_f_p,f]]4 [[b,p,f]]B1:hyper_aux: B = []T:1 [[a,p_or_f_f_p_f_p,f],[b,p_f_f_p,f]]2 [[a,p_or_f_f_p_f_p,f],[b,p_f_p,f]]3 [[a,p_f_p,f]]4 [[b,p,f]]M:1 [[a,p_f_f_p,f]]2 [[b,p_f_f_p,f]]3 [[b,p_f_f_p,f],[b,p,f]]



210 5 Fibered Representation and Universal Algebra4 [[a,p_f_f_p,f],[b,p,f]]5 [[a,p_f_f_p,f],[b,p_f_f_p,f]]6 [[a,p_f_p,f],[b,p_f_f_p,f]]7 [[a,p_f_p,f],[b,p_f_p,f]]8 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]9 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]10 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]11 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]12 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]13 [[b,p_f_p,f],[a,p_f_f_p,f]]14 [[b,p,f],[a,p_f_p,f]]15 [[b,p_f_p,f],[b,p_f_f_p,f]]16 [[b,p,f],[b,p_f_p,f]]M1:1 [[a,p_f_p,f]]2 [[b,p,f]]3 [[a,p_f_f_p,f]]4 [[b,p_f_f_p,f]]5 [[b,p_f_f_p,f],[b,p,f]]6 [[a,p_f_f_p,f],[b,p,f]]7 [[a,p_f_f_p,f],[b,p_f_f_p,f]]8 [[a,p_f_p,f],[b,p_f_f_p,f]]9 [[a,p_f_p,f],[b,p_f_p,f]]10 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]11 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]12 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]13 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]14 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]15 [[b,p_f_p,f],[a,p_f_f_p,f]]16 [[b,p,f],[a,p_f_p,f]]17 [[b,p_f_p,f],[b,p_f_f_p,f]]18 [[b,p,f],[b,p_f_p,f]]out of resolvents_2A1:1 [[a,p_f_f_p,f],[b,p_f_p,f]]B1:1 [[a,p_f_f_p,t],[a,p_or_f_f_p_f_p,f]]2 [[b,p,t]]3 [[a,p_f_p,t]]4 [[b,p_f_p,t]]hyper_aux:M:1 [[a,p_f_p,f]]2 [[b,p,f]]3 [[a,p_f_f_p,f]]4 [[b,p_f_f_p,f]]5 [[b,p_f_f_p,f],[b,p,f]]6 [[a,p_f_f_p,f],[b,p,f]]7 [[a,p_f_f_p,f],[b,p_f_f_p,f]]8 [[a,p_f_p,f],[b,p_f_f_p,f]]9 [[a,p_f_p,f],[b,p_f_p,f]]10 [[a,p_f_f_p,f],[b,p_or_f_f_p_f_p,f]]11 [[a,p_f_p,f],[b,p_or_f_f_p_f_p,f]]12 [[b,p_f_f_p,f],[a,p_or_f_f_p_f_p,f]]13 [[b,p_f_p,f],[a,p_or_f_f_p_f_p,f]]14 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]15 [[b,p_f_p,f],[a,p_f_f_p,f]]16 [[b,p,f],[a,p_f_p,f]]17 [[b,p_f_p,f],[b,p_f_f_p,f]]18 [[b,p,f],[b,p_f_p,f]]B:1 [[a,p_f_f_p,t],[a,p_or_f_f_p_f_p,f]]



5.5.2 Hyperresolution 2112 [[b,p,t]]3 [[a,p_f_p,t]]4 [[b,p_f_p,t]]resolvents_1 completed; hyper_aux followsRead clauses starts:A1:1 []2 [[a,p_or_f_f_p_f_p,f]]3 [[a,p_or_f_f_p_f_p,f],[b,p,f]]4 [[a,p_or_f_f_p_f_p,f],[b,p_f_f_p,f]]5 [[b,p_f_p,f]]B1:Is a theorem: Contradiction is foundWe present the execution times for several examples. All the experimentswere carried out under SICStus Prolog running on a SUN workstation with128MB RAM, equipped with a SPARC processor and a SPARC oating pointprocessor with the following parameters: 86.1 MIPS, 10.6 MFLOPS, 44.2 SPECint92,52.9 SPECfp92. The �eld \Re�ned" in the table containing the execution timesfor the resolution procedure refers to the fact that only one branch of the dualspace D(Sn2) was used, as illustrated in Example 5.11.Translation to clause formFormula Logic jAj jD(A)j Nr.Clauses Time�S1(p) _ :S1(p) SH2 4 2 15 50SH3 9 4 31 110SH4 16 6 49 170SH5 25 8 69 300SH6 36 10 91 470(p) q) _ (q ) p) SH2 4 2 19 70SH3 9 6 49 140SH4 16 6 99 270(r ) (p) r)) SH2 4 2 13 30((p) q)) r)) (r ) (p) r)) SH3 9 6 91 380f2(p) _ f(p) L21 4 2 15 40f3(p) _ p L30 8 3 28 60ResolutionFormula Logic jAj jD(A)j General Re�nedNr.Cl. Time� Nr.Cl. Time�S1(p) _ :S1(p) SH2 4 2 15 10480 8 330SH3 9 4 31 { 16 6369(p) q) _ (q ) p) SH2 4 2 19 { 10 449SH3 9 4 49 { 25 2079(r ) (p) r)) SH2 4 2 13 2510 7 240((p) q) ) r) ) (r ) (p) r)) SH3 9 4 91 { 46 4899f2(p) _ f(p) L21 4 2 15 4500 { {� Time is expressed in milliseconds.



212 5 Fibered Representation and Universal Algebra5.6 Comparison with Existing Approaches and FinalRemarksWe showed that for some classes of logics (e.g. those satisfying properties (P1) {(P3)) both a procedure for translation to clause from using structure-preservingrules, and a method for proving non-satis�ability of a set of clauses by negativehyperresolution.The idea of using literals of the form � P t and � P f occurred to us wheninvestigating the properties of SHn-logics and when we noticed that they aresound and complete with respect to the �nite SHn-frame D(Sn2), consisting ofall 0,1-lattice homomorphisms9 from Sn2 to f0; 1g. The work towards �ndinga procedure for automated theorem proving for this class of logics was inspiredby the papers of Baaz and Ferm�uller [BF95] and H�ahnle [H�ah94].We want to point out that our approach is not as general as that presentedin [BF95] or [H�ah93]. The goal of our approach is to exploit the �ner structureof the algebra of truth values of a given logic, and, when this structure allows it,to improve the e�ciency of the algorithm (i.e. to reduce the number of clausesthat are generated, or to avoid using the truth tables of the operations, andinstead use the tables for the corresponding operations on the dual space { withsmaller cardinality { and the corresponding transformation rules).In [BF95] it is shown that, applying structure-preserving rules, the clauseform of a formula with k occurrences of at most r-ary operators and m occur-rences of quanti�ers contains no more than(S) kjW jr +m2jW j + 1clauses, if optimal translation rules are used (whereW is the set of truth values).Thus, for a formula with k occurrences of at most r-ary operators and noquanti�ers, the clause form contains no more than kjW jr clauses.For instance it can be seen (by directly checking) that for � = S1(p)_:S1(p)the number of clauses generated with this very general method is n4 � 4n3 +8n2� 8n+ 4 if we consider Sn2 as a set of truth values. If we only consider theclauses generated by S1(p) _ :S1(p) 6=(1;1) and those induced by the de�nitionsof the subformulas Si(p) and :Si(p) we obtain 6n2 � 4n+ 1 clauses. Thus, 17clauses are generated for n = 2, 43 for n = 3, 81 for n = 4, 131 for n = 5, 193for n = 6, etc.The theoretical result of Baaz and Ferm�uller is very beautiful (it establishesa general method for resolution-based theorem proving in �nite-valued quan-ti�cational �rst-order logics, and in the same time it presents the resolutionprocedure in a new light). However, in practical applications, because of theexponential explosion of clauses in the resolution procedure, it is desirable toreduce as much as possible the number of clauses that occur during the pro-cess, either by improving the procedure for transformation to clause form, orby using re�nements of the resolution procedure.9Note that the idea of using \valuations" instead of values appears already in [Sco73], inthe context of  Lukasiewicz logics.



5.6 Comparison with Existing Approaches 213In [H�ah94] it is shown that in every n-valued logic L, for every signed for-mula S : � there is a CNF-representation � of � of length O(n2j�j) such thatS : � is valid if and only if the empty clause can be deduced by signed resolutionfrom �. This CNF-representation is also computed using structure-preservingtranslation rules. Moreover, a generalized concept of \polarity" for the de-�ned subformulae is taken into consideration in order to reduce the numberof clauses that are generated. It is also pointed out that for a certain classof �nitely-valued logics (called regular logics) the signed resolution rule can besimpli�ed: a generalized version of negative hyperresolution is presented thatworks very well for regular clauses.Our method described in this section extends the version of negative hyper-resolution developed by H�ahnle for regular logics to the case when the set oftruth values is not linearly ordered. It is e�cient especially in the cases whenthe set of truth values is not linearly ordered, i.e. when the algebra of truthvalues has considerably more elements than its dual space.For example, in the case of SHn-logics, the clause form of a formula withl subformulae (i.e. l occurrences of operators) has at most O(n3l), whereas theupper bound of the number of clauses computed in the general case is O((n2)2l)(because the algebra of truth values in this case has n2 elements).The di�erence is even more considerable in the case of Pmn-logics: by ourprocedure the clause form of a formula with l subformulae has at most 1 + 3 ml clauses, whereas the upper bound of the number of clauses computed in thegeneral case is O((2m)2l) (because the algebra of truth values has 2m elementsin this case).In the case of SHKn-logics, the method using \regular signs" developed in[H�ah94] is essentially the same as the one described here, since " i P t = � i Pand " i P f = � (i� 1) P .Running our Prolog program on several tests we noticed that not all theclauses generated were actually used in the resolution process. Preliminary ex-perimental results suggest that the number of generated clauses can be reducedusing a concept very similar to the concept of \polarity" introduced by H�ahnle.This will be subject for further work.We would like to make some remarks about  Lukasiewicz logics. The  Lu-kasiewicz-Moisil algebras of order n were created by Moisil as an algebraiccounterpart for the many-valued logics of Lukasiewicz. However, it turnedout that n-valued  Lukasiewicz-Moisil algebras are models for the n-valued log-ics of  Lukasiewicz only for n = 3 and n = 4. Rose showed that for n � 5the  Lukasiewicz implication (de�ned by x !L y = ( 1 if x � y1� (x� y) if x � y )cannot be expressed in terms of the  Lukasiewicz-Moisil algebra operations_;^;�;Di on  Ln. This can be seen by noticing that for every n � 5, Sn =f0; 1n�1 ; n�2n�1 ; 1g is a subalgebra with respect to the  Lukasiewicz-Moisil algebraoperations, but n�2n�1 !L 1n�1 = 2n�1 62 Sn.



214 5 Fibered Representation and Universal AlgebraIn [Cig82] Cignoli introduced so-called proper  Lukasiewicz algebras of ordern and showed that n-valued  Lukasiewicz logics are sound and complete withrespect to the class of proper  Lukasiewicz algebras of order n.Finding a Priestley-type representation for proper  Lukasiewicz algebras oforder n is (to our knowledge) still an open problem. Hence, our method cannotyet be applied for  Lukasiewicz logics.We would like to point out that analyzing our proofs above we noticedthat the restrictive condition imposed on the logic L (i.e. that the logic L issound and complete with respect to a variety V of algebras with an underlyingdistributive lattice structure, such that V is generated by one �nite algebraA and the Priestley duality extends to a dual equivalence between V and acategory VSp of Priestley spaces with operators) can be relaxed.In the procedure for automated theorem proving described above we didnot use all the duals of the algebras in the variety V, but only the dual of the�nite algebra A that generates V.As already said in Section 1.2 it seems that it su�ces if L is sound andcomplete with respect to a �nite Kripke-style frame (a �nite set endowed e.g.with an order relation and with additional relations associated to the opera-tions in the logic). We would like to investigate the degree of generality of thisapproach. In the thesis we decided to keep the initially imposed set of condi-tions on the logic L because the Priestley duality for the variety V furnished anintuitive description of the way such a �nite Kripke frame can be constructed.Moreover, it turned out that the duality theorem o�ers a general frameworkfor describing certain classes of Kripke models for these logics and a way ofde�ning the validity relation rj= for these Kripke models starting from validityrelation aj= on the algebraic models.



Chapter 6Towards a Sheaf Semantics forSystems of Interacting AgentsIn this chapter we give the main motivation for an approach to modeling inter-acting agents (robots) based on sheaf theory.At the beginning, as a motivation for our theoretical study, we illustratethe problems that appear on a simple example, adapted from [Pfa93]. This ex-ample leads to a formal de�nition of a system. We then show how morphismsbetween systems can be de�ned in general; thus, we introduce a category SYSof systems. We show that the admissible states and the admissible parallel ac-tions de�ne functors from SYSop to Sets (presheaves), and that the transitionsbetween states de�ned by the admissible parallel actions de�ne a natural trans-formation in PreSh(SYS), Tr : Act! 
St�St or, alternatively, that they de�nea subpresheaf Tr of Act � St � St. A natural question arises: is it possibleto de�ne a covering relation on SYS that induces a Grothendieck topology onSYS? In the next chapters we will answer this question. However, for the sakeof simplicity we do not consider the general case. Instead, in Chapter 7 andChapter 8 we restrict to the case when the morphisms are inclusions. A generaltheory that takes arbitrary morphisms between systems into account will besubject for future work.6.1 A Motivating ExampleWe begin with a simple example (adapted from [Pfa93]) as a motivation for ourtheoretical study, for the de�nitions that will be given, and for the assumptionsthat will be made.Let R0; R1; R2; R3 be four robots performing the following task:� R0 receives a work piece a and a work piece b and performs an assemblytask. The work piece r obtained from assembling a and b is placed on theassembly bench.� R1 furnishes pieces of type a. He checks whether there are pieces of type aleft in stock, and whether a piece of type a or an r resulting from assembling215



216 6 Towards a Sheaf Semantics for Systems of Interacting Agentsa and b is placed on the assembly bench of R0. If there are pieces of type ain stock, and if no a or r are placed on the table, R1 brings a piece of typea to R0.� R2 furnishes pieces of type b. He checks whether there are pieces of typeb left in stock, and whether a b or an r is placed on the table. If there arepieces of type b in stock, and no b or r is on the table, R2 brings a piece oftype b to R0.� After R0 has assembled a and b, R3 receives the result r and transports it tothe stock.Let S be the system resulting from the interaction of these robots. We canassume that the system can be \described" by the interconnected subsystemsS0, S1, S2, and S3, which correspond to the robots R0, R1, R2 and R3.6.1.1 StatesThe states of the system S can be expressed using the control variables de-scribed in the table below. The set of control variables relevant for system S0 isX0 = fpa, pb, prg, the one for S1 is X1 = fsa, pa, prg, for S2, X2 = fsb, pb, prg,and for S3, X3 = fprg. We will assume that the subsystems S0; : : : ; S3 com-municate via common control variables. In Figure 6.1 we show how the controlvariables are shared, and how they can be used for communication with \ex-ternal" systems (e.g. Stock-a, Stock-b).Variable Description Systemsa = in-stock-a \there is at least one piece of type a in stock" S1sb = in-stock-b \there is at least one piece of type b in stock" S2pa = on-table-a \a piece of type a is on the assembly bench" S0,S1pb = on-table-b \a piece of type b is on the assembly bench" S0,S2pr = on-table-res \the result r is on the assembly bench" S0, S1,S2, S3A state of the system S is a possible assignment of truth values to therelevant control variables. We might additionally assume that only some ofthese assignments are admissible, imposing some constraints on the values thatcan be taken by the control variables. This turns out to be especially usefulwhen the control variables are not independent.Let us assume for example that in the given system it is not allowed to havea result piece and a piece of type a or b on the working bench at the same time,but it is allowed to have a piece of type a and one of type b. That means thatpa and pr cannot both be true, and pb and pr cannot both be true. This can be



6.1.1 States 217expressed by a set of identities on the boolean algebra freely generated by thecontrol variables of the system, in this case Id = fpa ^ pr = 0; pb ^ pr = 0g:The agents R0 and R1 can \communicate" using the control variables com-mon to these systems, namely the set X01 = fpa, prg. Analogously, the agentsR0 and R2 can \communicate" using the set X02 = fpb, prg, and R1 and R2using the set X12 = fprg(= X3). We can therefore assume that the structureof the given systems of cooperating agents as an interconnection of subsystemsdetermines a topology on the set of control variables. Also the set of constraints(if they do not link variables in di�erent subsystems) can be \distributed" overthe subsystems in the same way.
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Figure 6.1: Control VariablesConsider the basis B = fX0;X1;X2;X3;X01;X02g, consisting of the setsof control variables corresponding respectively to the subsystems consisting ofthe robots R0; : : : ; R3, as well as to their \subsystems" by means of which thecommunication is done. The corresponding restrictions of the set of constraintsare fId0; Id1; Id2; Id3; Id01; Id02g, where Id0 = Id, Id1 = fpa ^ pr = 0g, Id2 =fpb ^ pr = 0g, and Id01 = Id02 = Id3 = ;, corresponding to the subsystemsmentioned above.The set of states of the system will be the set of those assignments of truthvalues to the control variables that satisfy this set of identities. Similarly, theset of states for system Si (corresponding to the agent Ri) is St(Si) = fsi :Xi ! f0; 1g j si j= Idig. Thus St(S0) = fs0 : X0 ! f0; 1g j s0(pa)s0(pr) =0; s0(pb)s0(pr) = 0g, St(S1) = fs1 : X1 ! f0; 1g j s1(pa)s1(pr) = 0g, St(S2) =fs2 : X2 ! f0; 1g j s2(pb)s2(pr) = 0g, and St(S3) = fs3 j s3 : X3 ! f0; 1gg.It is easy to see that for every family (si)i=0;:::;3 with the property that siis a state for the system Si (corresponding to Ri), and such that for every i; j,si and sj coincide on the common control variables, there is exactly one stateof the system, s, such that the restriction of s to the control variables Pi is sifor every i. This means that the following gluing condition is satis�ed:� For every fsBgB2B, where sB : B ! f0; 1g satis�es the equations in IdB =



218 6 Towards a Sheaf Semantics for Systems of Interacting Agentsfe 2 Id j V ar(e) � Bg, such that for every B1; B2 2 B, sB1 jB1\B2 =sB2 jB1\B2 , there exists a unique s : P ! f0; 1g that satis�es the set ofconstraints Id, such that for every B 2 B, sjB = sB.Since there are typical properties of a sheaf visible, this leads to the ideathat the link between local and global states could best be described by sheavesover a suitable topology on the set of control variables (or over a suitable Gro-thendieck topology on a category of systems) de�ned by the structure of thegiven system.Remark: Note that the gluing property described above does not hold forevery topology on the set X of control variables of the system. Consider forexample the discrete topology on X. Then X can be covered by the fam-ily ffsag; fsbg; fpag; fpbg; fprgg. Then the following family of assignments oftruth values to the control variables: sfsag(sa) = 0, sfsbg(sb) = 0, sfpag(pa) = 1,sfpbg(pb) = 1, sfprg(pr) = 1 agrees on common control variables (because the do-mains are disjoint), but no information about the constraints can be recovered,hence by \gluing" these mappings together one obtains a map s : X ! f0; 1gwhich does not satisfy the set Id of identities. This shows that an appropri-ate topology on X has to respect the way the constraints are shared betweensubsystems.6.1.2 ActionsThe system S is also characterized by a set of (atomic) actions. Below we willgive the list of the atomic actions (with pre- and postconditions) and the agentthat performs them.Action Description Precond. Postcond. Agent/Interpr.A Assemble a piece of type a pa = 1 pa = 0 R0: assemblewith one of type b pb = 1 pb = 0pr = 0 pr = 1Ba Bring a piece of type a pa = 0 pa = 1 R1: give-asa = 1 sa = 0 R0: receive-apr = 0 pr = 0Bb Bring a piece of type b pb = 0 pb = 1 R2: give-bsa = 1 sa = 0 R0: receive-bpr = 0 pr = 0Tr Store the result pr = 1 pr = 0 R3: receive-rR0: give-rWe can assume for example that R1 and R2 can perform the actions ofbringing a piece of type a respectively b in parallel but that R0 is not allowedto execute in parallel the action of taking a piece of type a and of giving theresult to R3. We also can assume that other actions, as for example give-a (byR1) and receive-a (by R0) have to be executed in the same time. Therefore, theyhave been \identi�ed" in the larger subsystem under the name Ba. Figure 6.2shows how actions are shared between subsystems, and some relations between
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Figure 6.2: Actionsthem (for the sake of simplicity we do not consider the actions get-a, get-b andtransport in what follows). It is also natural to suppose that some constraintsare given, expressing which of these actions can be performed in parallel, whichcannot, which must be executed in the same time, and so on.There are many possibilities to specify this kind of constraints. One solu-tion is to consider parallel actions as subsets of the set of atomic actions A, orequivalently by maps f : A! f0; 1g, where f(a) = 1 means that a is executedand f(a) = 0 means that a is not executed. In this case the constraints canbe described by imposing restrictions on the combinations of the values (0 or1) that can be assigned to the atomic actions in an admissible parallel action.This approach is very similar to the one adopted in the description of states(section 6.1.1). We will assume that the constraints can be described by identi-ties on the boolean algebra freely generated by the set of atomic actions A. (Onour example, among the constraints are: give-a = receive-a, give-b = receive-b,give-res = receive-res, give-res ^ receive-a = 0, give-res ^ receive-b = 0, etc.).There exist approaches for modeling concurrency where it is necessary tospecify which actions can be performed in parallel and which not. One suchapproach is based on considering a \dependence" relation on the set of (atomic)actions, i.e. a reexive and symmetric relation D � A�A: the parallel executionis then only allowed for those actions which are \independent" w.r.t. D. Thisleads to the study of partial-commutative monoids (cf. [Die90]). The link withthis approach is analyzed in Chapter 8.As when considering states, the structure of the system as an interconnec-tion of subsystems induces a topology on the set of all actions. Correspondingly,the constraints distribute over the subsystems (it seems natural to make the as-sumption that all the constraints are made \inside" some speci�ed subsystem).A basis B for this topology is obtained as explained in the study of states, tak-ing the family of all actions corresponding to the subsystems S0; : : : ; S3, as wellas to the \subsystems" by means of which the communication is done (i.e. �niteintersections of those sets). In the case where there are constraints that linkactions in di�erent subsystems (that could for example be expressed in some



220 6.2 Towards a Sheaf Semantics for Systems of Interacting Agentsspecial \scheduling systems"), the actions that correspond to these schedulingsystems will also be considered elements in the basis. Also in this case a similargluing property holds:� For every family of parallel actions ffBgB2B, where fB : AB ! f0; 1gsatis�es the constraints IdB = fe 2 Id j V ar(e) � Bg, such that for everyB1; B2 2 B, fB1 jB1\B2 = fB2 jB1\B2 , there exists a unique f : A ! f0; 1gthat satis�es Id such that for every B 2 B, fjB = fB.Note that the fact that the gluing property holds is strongly related to thespeci�c form of the constraints in CA (boolean equations in our case). If forexample a parallel action f : A! f0; 1g is allowed if and only if f�1(1) is �nite,then the in�nite gluing property does not hold.6.2 SystemsTaking into account the considerations in section 6.1, we will assume that asystem S is described by:� A set X of control variables of the system (where for every control variablex 2 X, a set Vx of possible values for x is speci�ed), and a set � ofconstraints, specifying which combinations of values for the variables areadmissible (i.e. satisfy �). An admissible combination of values of thecontrol variables will describe a state of the system S. The set of statesof the system will be denoted St(S),� A set A of atomic actions (where for every a 2 A, Xa denotes the minimalset of control variables a depends on and Tra � St(S)jXa � St(S)jXa arelation indicating how the values of these variables change when theaction a is performed), together with a set C of constraints that showswhich actions are incompatible and cannot be performed in parallel, orwhich actions have to be performed at the same time.We �rst say some words about a possible way of modeling interaction (com-munication) between systems. Consider for instance two agents (robots orproduction units). Every agent has its own set of control variables (parame-ters) and its own set of actions, together with a speci�cation of their pre- andpostconditions.In order for the two systems to be able to communicate they need a \dictio-nary", at least for some of these notions. The situation is pictorially representedin Figure 6.3.In what follows we assume that we can identify those elements that areshown equal by the dictionary, hence we can assume that communicating agentshave common control variables and common actions. We further assume thatthe sensors of the two agents are compatible, in the sense that the values ofthe common control variables \sensed" at a given moment of time by two suchagents are the same.
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Figure 6.3: Two agents that can communicate.Therefore, agents that communicate can be seen as part of the system ob-tained by their interconnection; they can be represented by putting into evi-dence their common part, identi�ed by the common \dictionary"(cf. Figure 6.3)as illustrated in Figure 6.4.
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Cond.Figure 6.4: The system obtained by interconnecting two agents that can com-municate.We begin with a formal de�nition of a system. The relationships betweensystems that make possible communication will be discussed in Section 6.3.In order to formally express the constraints on the possible combinations ofvalues for the control variables, we need a language in which these are expressed.De�nition 6.1 A system S = (�;X;�;M;A;C) consists of:



222 6.2 Towards a Sheaf Semantics for Systems of Interacting Agents(1) A language LS consisting of(1a) a signature � = ( Sort; O; P ) (Sort is the set of sorts, O the set ofoperation symbols, and P the set of predicate symbols),(1b) a (many-sorted) set of variables X = fXsgs2 Sort,(2) A set � � Fma�(X) closed with respect to the semantical consequencerelation1 j=M (the set of constraints of S),(3) A model M (structure of similarity type �),(4) A set of actions A; for every a 2 A a set Xa � X of variables on whichthe action a depends, and a transition relation Tra,(5) A set C of constraints, expressed by boolean equations over FB(A) (the freeboolean algebra generated by A) stating which actions can (or have to) beexecuted in parallel, and which cannot. (We impose that C contains allthe possible boolean equations that can be deduced by C.)Remarks:(1) In what follows we will consider, for the sake of simplicity, only �nitesystems, i.e. systems in which the signature, the set of control variables and theset of actions are �nite.(2) In De�nition 6.1 we �x a model M for the system S (correspondinge.g. to the real world) and as constraints we allow formulae in the many-sortedlanguage of the system.The formulae in Fma�(X) are formed as explained in Section 3.3, De�ni-tion 3.54. The semantical consequence relation j=M is de�ned by � j=M � ifand only if for every s : X !M with the property that if for every  2 �, s j= then s j= � (where the relation s j= � is de�ned as explained in Section 3.3,De�nition 3.56). The closure of a set of � of formulae under the consequencerelation j=M will be denoted by ��.Concerning the variables, we point out that in this approach they are con-sidered rather generators than simple variables as in �rst-order logic. Formulaeof the type � = 8x are allowed; such a formula is satis�ed at a given state ofs (assignment of values in M to the variables in X) if for every other state s0that agrees with s except possibly at x � holds at s0. Thus, in what follows, 8xhas the meaning \for every possible value of x in M".(3) Note also that we assume that the constraints on actions are expressedby boolean equations over the free boolean algebra FB(A). In what followswe will assume that the constraints are of the form a1 = a2, with a1; a2 2 A(expressing the fact that a1 and a2 have to be performed at the same time) ora1 ^ a2 = 0 (expressing the fact that a1 and a2 are not allowed to be performedin parallel).Given a system S, if not otherwise speci�ed, we will refer to its signature, setof variables, constraints on the values of the variables, model, set of actions1The relation j=M is de�ned by � j=M � if and only if for every assignment of values in Mto the variables in X, s : X !M , if s j=  for every  2 �, then s j= � (see also Remark (2))



6 Systems 223and constraints on actions by �S, XS , �S , MS , AS , CS respectively. For everyatomic action a 2 AS the minimal set of variables a depends on will be denotedby XSa , and the transition relation associated with a will be denoted by TrSa .If a family of systems fSigi2I is given, if not otherwise speci�ed we willrefer to the signature, set of variables, constraints on the values of the variables,model, set of actions and constraints on actions of Si by �i, Xi, �i, Mi, Ai, Ci,for every i 2 I. For every atomic action a 2 Ai the minimal set of variables adepends on will be denoted by Xia, and the transition relation associated witha will be denoted by TrSia .We will denote by Term(S) the algebra of terms of the system S, and byFma(S) the formulae of S.De�nition 6.2 (States) The states of a system S = (�;X;�;M;A;C) arethose interpretations s : X !M that satisfy all the formulae in �.The set of states of a system S is St(S) = fs : X !M j s j= �g.De�nition 6.3 (Admissible Parallel Actions) The set of admissible actionsof the system S = (�;X;�;M;A;C) will be the set Act(S) = ff : A! f0; 1g jf satis�es Cg.As pointed out before, in what follows we will assume that all the constraintsimposed on the actions can be expressed by boolean equations (in the booleanalgebra freely generated by A) of the form a1 = a2 with a1; a2 2 A or a1^a2 = 0.An equation of the form a1 = a2 expresses the fact that a1 and a2 have tobe performed in parallel. We assume that for every a1; a2 with a1 = a2 2 C (ordeducible from C) we have Xa1 = Xa2 and Tra1 = Tra2 .The set of admissible actions of the system S = (�;X;�;M;A;C) will bethe set Act(S) = ff : A! f0; 1g j f satis�es Cg.Let f 2 Act(S) be a parallel action. The set of variables on which f dependsis Xf = Sa;f(a)=1Xa.Without loss of generality we may identify the actions a1 and a2 if a1 = a2is deducible from C (i.e. we consider that they are one and the same action).The compatibility of the actions in an admissible parallel action can beexpressed, depending on the situation, by one of the following two propertiesof the transitions (which are not equivalent):(Gluing) If f 2 Act(S) and if s 2 St(S) such that for every a 2 A withf(a) = 1 there is a s0a 2 St(S)jXa such that (sjXa ; s0a) 2 Tra, then thenew local states \agree on intersections", i.e. for every x 2 Xa1 \ Xa2 ,s0a1(x) = s0a2(x). Then we can associate a transition relation Trf to f , thatshows how the state of the system changes after the action is performed,namely: TrSf � St(S)jXf � St(S)jXf , TrSf = f(s1; s2) j (s1jXa; s2jXa) 2Tra for every a such that f(a) = 1g.



224 6.2 Towards a Sheaf Semantics for Systems of Interacting AgentsThe transition on the states of S induced by f is TrS(f) = f(s1; s2) js1; s2 2 St(S); (s1jXa ; s2jXa) 2 Tra for every a such that f(a) = 1; ands1(x) = s2(x) if x 62 Sa;f(a)=1Xag:(Independence) Let f 2 Act(S) and s0 2 St(S). Let us identify all the el-ements a1; a2 2 A with a1 = a2 2 C and f(a1) = f(a2) = 1. After thisidenti�cations, let f�1(1) = fa1; : : : ; ang. Assume that for any subsetfa01; : : : ; a0mg of f�1(1) = fa1; : : : ; ang, if we have s0 a01! s1 a02! s2 : : : a0m! smthen for every permutation �, we have s0 a0�(1)! s01 a0�(2)! s02 : : : a0�(m)! sm (the�nal state is the same). Then we can associate a transition relation to f ,that shows how the state of the system changes after the action is per-formed, namely: TrS(f) � St(S)�St(S), de�ned by TrS(f) = f(s0; sn) jthere exist states s1; : : : ; sn�1 s.t. (si�1jXai ; sijXai ) 2 Trai ;81 � i � ng:It is easy to see that if (s0; sn) 2 TrS(f) then for every x 2 XSnXfs0(x) = sn(x). Thus TrSf can be de�ned by TrSf = f(s1jXf ; s2Xf ) j(s1; s2) 2 TrS(f)g.The property (Gluing) makes sense in situations when a parallel actionf : A! f0; 1g is admissible if and only if the actions do not \consume" commonresources. This happens for example if for every a1; a2 2 A with f(a1) =f(a2) = 1 we either have a1 = a2 2 C (i.e. a1 and a2 are to be executed atthe same time) or Xa1 and Xa2 are disjoint. In this case, obviously, a parallelaction f : A! f0; 1g can be applied at a state s if and only if its componentscan be applied locally, in the respective systems, at the corresponding restrictedstate. We might enforce this when de�ning a system by imposing a1 ^ a2 = 0whenever a1 and a2 do not have to be performed in parallel, and Xa1 \Xa2 6= ;.The property (Independence) represents the way transitions of parallelactions are interpreted when the actions to be performed in parallel actuallyconsume common resources. Moreover, it is speci�c to the situation when, afterexecuting an action, the state reached is uniquely determined (i.e. in the case ofdeterministic actions). In this case, the fact that all the components of a givenparallel action f : A! f0; 1g can be applied at a given state s0 is a necessarycondition for the action f to be applicable at state s0, but in general it is notsu�cient: additionally, one has to be sure that there are enough resources, suchthat all the actions can be performed.Let S be a system and let f 2 Act(S). In what follows we will denote byTr(f) the set of transitions between states induced by f , i.e.Tr(f) = f(s1; s2) j s1; s2 2 St(S); (s1jXf ; s2jXf ) 2 Trf ; and s1(x) = s2(x)8x 62 Xfg:If a is a single action we denote by Tr(a) the set of transitions between statesinduced by a, i.e.Tr(a) = f(s1; s2) j s1; s2 2 St(S); (s1jXa ; s2jXa) 2 Tra; and s1(x) = s2(x)8x 62 Xag:



6.3 The Category of Systems SYS 2256.3 The Category of Systems SYSSystems often arise in relationship with other systems. The correspondingrelationships between systems are expressed by morphisms. Obviously, there issome choice in how to de�ne appropriate morphisms, depending on the extentof the relationship between systems we want to express.For instance, a category of systems SYS can be de�ned, with systems asits objects. Intuitively, a morphism f in SYS from a system S1 to a systemS2 consists of a \translation" of the language (resp. actions) of S1 into thethe language (resp. actions) of S2 (i.e. a family of mappings f� : �1 ! �2,fX : X1 ! X2, fA : A1 ! A2) that maps the constraints of S1 to constraintsof S2.De�nition 6.4 There is a morphism f : S1 ! S2 if and only if(M1) There are maps fX : X1 ! X2; fA : A1 ! A2; and a morphism ofsignatures f� : �1 ! �2, i.e. a triple (fS ; fO; fP ), where fS : Sort1 !Sort2, fO is a Sort�1 � Sort1-indexed family of maps on operation symbols,f s1:::sn;sO : Os1:::sn;s ! O0fS(s1):::fS(sn);fS(s), and fP is a Sort�-indexed familyof maps on predicate symbols, f s1:::snP : Ps1:::sn ! P 0fS(s1):::fS(sn),(M2) The model M1 of S1 is the restriction of M2 to the signature �1 via f�(i.e. M1 = Str(f�)(M2)),(M3) f \Fma(�1) � �2,(M4) f \A(C1) � C2,where Str is the functor from the category Str�2 of �2-structures to the categoryStr�1 of �1-structures induced by the morphism of signatures f� (cf. Propo-sition 3.20), f \Fma is the unique morphism of �-structures from Fma(S1) toFma(S2) induced by f� and fX , and f \A is the unique extension to a morphismof Boolean algebras of fA.Remark: Conditions (M3) and (M4) express the fact that for every � 2 �1(resp. in C1) the \translation" of � to the language of S2 via f�, fX (resp. fA)is in �2 (resp. in C2).De�nition 6.5 (Local Morphism) A morphism f = (f�; fX ; fA) : S1 ! S2is a local morphism if it additionally satis�es(M5) If an action a 2 A2 depends on some variables in fX(X1), then a 2fA(A1), and SfA(b)=aX1b = f�1X (X2a).(M6) For every a 2 fA(A1) such that f�1(a) = fb1; : : : ; bng, let g : A1 ! f0; 1gbe de�ned by g(a1) = 1 i� fA(a1) = a.With this notation, for every s1; s2 2 St(S2) such that (s1jX2a ; s2jX2a) 2TrS2a , we have (s1 � fX jXg ; s2 � fX jXg) 2 TrS1g .



226 6 Towards a Sheaf Semantics for Systems of Interacting AgentsIt will be shown later that conditions (M5) and (M6) ensure that everytransition in S2 can be restricted to a valid transition in S1.Let SYSlm be the category with systems as objects and local morphisms asarrows.Lemma 6.1 Let f = (f�; fX ; fA) : S1 ! S2 be a morphism, where f� : �1 !�2, fX : X1 ! X2 and fA : A1 ! A2. Then there is a map St(f) : St(S2) !St(S1).Proof : For every state s : X2 !M2 of S2, consider s�fX : X1 !M2. Notethat for every x 2 (X1)s, fX(x) 2 (X2)fS(s), hence s(fX(x)) 2 (M2)fS(s) =(M2jf�)s = (M1)s. Therefore, s � fX : X1 ! M1. We will show that if s j= �2then s � fX j= �1. Note �rst that by the considerations in Section 3.3, we have:� There exists a unique morphism of O1-algebras, (fO;X)\Term : TO1(X1) !TO2(X2)jf� that extends fX : X1 ! X2, fS : Sort1 ! Sort2, and fO :O1 ! O2.� There exists a unique morphism of O2-algebras, s\Term : TO2(X2) ! M2,that extends s. This morphism induces a unique morphism of O1-algebras,s\Termjf� : TO2(X2)jf� !M1.� There exists a unique morphism of O1-algebras, (s � fX)\Term : TO1(X1)!M1 that extends s � fX .It can be checked that (s � fX)\Term and s\Termjf� � (fX)\Term coincide on X1,hence (s � fX)\Term = s\Termjf� � (fX)\Term. Similarly, by the universality propertyof the algebra of formulae it follows that (s � fX)\Fma = s\Fmajf� � (f�)\Fma. Let� 2 �1. Then (s � f�)\Fma(�) = s\Fmajf�((f�)\Fma(�)) = s\Fma((f�)\Fma(�)). By(M3), (f�)\Fma(�) 2 �2. Therefore, since s j= �2, s\Fma((f�)\Fma(�)) = 1, hences � fX j= �. 2Lemma 6.2 Let f = (f�; fX ; fA) : S1 ! S2 be a morphism, where f� : �1 !�2, fX : X1 ! X2 and fA : A1 ! A2. Then there is a map Act(f) : Act(S2)!Act(S1).Proof : Let h 2 Act(S2) then h : A2 ! f0; 1g and h j= C2. Let Act(f)(h) =h � fA : A1 ! f0; 1g. As in the case of states it is easy to show that:� There is a unique morphism of Boolean algebras (h � fA)\ : FB(A1) !f0; 1g that extends h � fA (from the universality property of FB(A1)).� There is a unique morphism of Boolean algebras h\ : FB(A2) ! f0; 1gthat extends h (from the universality property of FB(A2)).� There is a unique morphism of Boolean algebras fA\ : FB(A1)! FB(A2)that extends fA.



6.3 The Category of Systems SYS 227It is easy to see that h\ � fA\ and (h � fA)\ coincide on A1, hence they areequal. Let (e1; e01) 2 C1. By (M4), (f \A(e1); f \A(e01)) 2 C2. Since h j= C2,it follows that (h � fA)\(e1) = h\ � fA\(e1) = h\(fA\(e1)) = h\(fA\(e01)) =h\ � fA\(e01) = (h � fA)\(e01). Thus we proved that (h � fA) j= C1. 2Proposition 6.3 St : SYSop ! Sets and Act : SYSop ! Sets are presheaves.Proof : Follows from Lemma 6.1 and Lemma 6.2. 2It follows that St : SYSlmop ! Sets and Act : SYSlmop ! Sets are alsopresheaves.We now analyse the transitions induced by the admissible parallel actions.Lemma 6.4 Let f : S1 ! S2 be a local morphism. Let a 2 fA(A1) be suchthat f�1(a) = fb1; : : : ; bng, and let g : A1 ! f0; 1g be de�ned by g(a1) = 1 i�fA(a1) = a.For every s1; s2 2 St(S2) with (s1; s2) 2 TrS2(a), (s1 � fX ; s2 � fX) 2TrS1(g).Proof : Let a 2 fA(A1), and s1; s2 2 St(S2) with (s1; s2) 2 TrS2(a). Wewant to show that (s1 � fX ; s2 � fX) 2 TrS1(g), i.e. (s1 � fX jX1g ; s2 � fX jX1g ) 2TrS1g and for every x 62 X1g , s1 � fX(x) = s2 � fX(x).The fact that (s1 � fX jX1g ; s2 � fX jX1g ) 2 TrS1g follows by (M6). Assume nowthat s1 � fX(x) 6= s2 � fX(x) for some x 62 X1g . Then fX(x) 2 X2a , hencex 2 f�1X (X2a). But by (M5), f�1X (X2a) = Sb;f(b)=aX1b = X1g . Thus, it followsthat x 2 X1g , contradiction. Hence, for every x 62 X1g , s1 � fX(x) = s2 � fX(x).2Proposition 6.5 Assume that the transitions of parallel actions are composedusing the property (Gluing). Let f : S1 ! S2 be a local morphism in SYSlm.Let g 2 Act(S2), and let (s1; s2) 2 TrS2g . Then (s1 � fX ; s2 � fX) 2 TrS1g�fA .Proof : Let f : S1 ! S2 be a local morphism, g 2 Act(S2) and (s1; s2) 2TrS2g . We want to show that (s1 � fX ; s2 � fX) 2 TrS1g�fA , i.e. that(a) (s1 � fX jX1b ; s2 � fX jX1b ) 2 TrS1b for every b such that g(fA(b)) = 1,(b) s1 � fX(x) = s2 � fX(x) for every x 2 X1nSb;g(fA(b))=1X1b .In order to prove (a), note that if g(fA(b)) = 1, then (s1jX2fA(b) ; s1jX2fA(b)) 2TrS2fA(b). Then, by (M6) it follows that (s1 � fX jX1g ; s1 � fX jX1g ) 2 TrS1g , where g :A1 ! f0; 1g is de�ned by g(c) = 1 i� fA(c) = fA(b). By the property (Gluing)it follows that for every c with fA(c) = fA(b) we have (s1 � fX jX1c ; s1 � fX jX1c ) 2TrS1c . In particular, we have (s1 � fX jX1b ; s1 � fX jX1b ) 2 TrS1b .In order to prove (b), let x be such that s1 � fX(x) 6= s2 � fX(x). Thens1(fX(x)) 6= s2(fX(x)), hence fX(x) 2 X2a for some a 2 A2 with g(a) =1. Therefore, x 2 f�1X (X2a) = Sb;fA(b)=aX1b . Note that for every b with



228 6 Towards a Sheaf Semantics for Systems of Interacting AgentsfA(b) = a we have also g(fA(b)) = 1. Hence, x 2 f�1X (X2a ) = Sb;fA(b)=aX1b �Sb;g(fA(b))=1X1b . This proves that for every x 2 X1nSb;g(fA(b))=1X1b we haves1 � fX(x) = s2 � fX(x). 2Proposition 6.6 Assume that the transitions of parallel actions are composedusing the property (Independence). Let f : S1 ! S2 be a local morphism inSYSlm. Let g 2 Act(S2), and let (s1; s2) 2 TrS2g . Then (s1 � fX ; s2 � fX) 2TrS1g�fA.Proof : Let (s1; s2) 2 TrS2g . Assume that after identifying the elementsa1; a2 2 A2 with a1 = a2 2 C and g(a1) = g(a2) = 1, we have g�1(1) =fa1; : : : ; ang. By the property (Independence) we know that the �nal statein the sequence s1 = s00 a1! s01 a2! s02 a3! : : : an! s0n = s2 does not depend on theorder in which the actions are executed.For every i 2 f1; : : : ; ng, let gi be the parallel action composed of thoseb 2 A1 with g(b) = ai. Then by Lemma 6.4, (si�1 � fX ; si � fX) 2 TrS1(gi).Thus, s1 � fX = s00 � fX g1! s01 � fX g2! s02 � fX g3! : : : gn! s0n � fX = s2 � fX .We know that the �nal state of a sequence containing all elements b in A1with g(fA(b)) = 1 does not depend of the order in which they are executed.Therefore, (s1 � fX ; s2 � fX) 2 TrS1(g � fA). 2Let PreSh(SYSlm) be the category of presheaves over SYSlm.We now show that we can construct a natural transformation Tr from Actto 
St�St.Lemma 6.7 Let S 2 SYSlm. For f 2 Act(S), g : S0 ! S and s1; s2 2 St(S0),the set TrS(f)(S0)(g; s1; s2) = fS00 h! S0 j (s1 �hX ; s2 �hX) 2 TrS00(f � ga �ha)gis a sieve on S0.Proof : Let S00 be an arbitrary element of TrS(f)(S0)(g; s1; s2) (i.e. S00 h! S0such that (s1 � hX ; s2 � hX) 2 TrS00(f � ga � ha)). Let S00 be such that S00 h0! S00.Therefore, S00 h0! S00 h! S0, By Lemma 6.4, (s1 � hX � h0X ; s2 � hX � h0X) 2TrS00(f � ga � ha � h0a). Hence, S00 h�h0�! S0 2 TrS(f)(S0)(g; s1; s2). 2Lemma 6.8 Let TrS(f) : y(S)�St�St! 
 be de�ned, for every system S0, byTrS(f)(S0) : Hom(S0; S)�St(S0)�St(S0)! 
(S0), where for every g : S0 ! Sand every s1; s2 2 St(S0) TrS(f)(S0)(g; s1; s2) = fS00 h! S0 j (s1 �hX ; s2 �hX ) 2TrS00(f � ga � ha)g. Then TrS(f) is a natural transformation.Proof : In order to show that TrS(f) : y(S) � St � St ! 
 is a naturaltransformation we have to show that for every two objects in SYSlm and everyarrow between them the corresponding diagram is commutative.Let S0 u! S0. We show that the following diagram is commutative:Hom(S0; S)� St(S0)� St(S0)Hom(u)�St(u)�St(u)
��

TrS(f)(S0) // 
(S0)
(u)
��Hom(S 0; S)� St(S0)� St(S0) TrS(f)(S0) // 
(S0) (6.1)



6.3 The Category of Systems SYS 229Let (g; s1; s2) 2 Hom(S0; S)� St(S0)� St(S0). Then, on the one hand,
(u)(TrS(f)(S0)(g; s1; s2)) = fS 00 h! S0 j S00 u�h! S0 2 TrS(f)(S0)(g; s1; s2)g == fS 00 h! S0 j (s1 � uX � hX ; s2 � uX � hX) 2 TrS00(f � gA � uA � hA)g:On the other hand, we have TrS(f)(S0)(g � u; s1 � uX ; s2 � uX) = fS00 h!S0 j (s1 � uX � hX ; s2 � uX � hX) 2 TrS00(f � gA � uA � hA)g. Thus, the diagramcommutes. 2Consequence 6.9 For every system S and f 2 Act(S), TrS(f) 2 
St�St(S).Proof : Follows from the de�nition of 
St�St(S) in PreSh(SYSlm). 2Lemma 6.10 Tr : Act! 
St�St de�ned for every system S by TrS : Act(S)!
St�St(S) is a natural transformation in PreSh(SYSlm).Proof : We show that for every S �! S the following diagram commutes:Act(S)Act(�)
��

TrS // 
St�St(S)
St�St(�)
��Act(S) TrS // 
St�St(S) (6.2)Let f 2 Act(S). Then 
St�St(�)(TrS(f)) : y(S � St(S) � St(S) is de�nedfor every S0 u! S and s1; s2 2 St(S) by
St�St(�)(TrS(f))(S0)(u; s1; s2) = TrS(f)(S 0)(� � u; s1; s2) = fS00 h! S0 j(s1 � hX ; s2 � hx) 2 TrS00(f � �A � uA � hA)g = TrS(f � �A)(S 0)(u; s1; s2). 2It is also easy to see that Tr : SYSlmop ! Sets de�ned byTr(S) = f(f; s; s0) j f 2 Act(S); s; s0 2 St(S); (s; s0) 2 TrS(f)gis a subpresheaf of Act � St � St (follows from Proposition 6.5 resp. Propo-sition 6.6, depending on the rule applied for computing transitions of parallelactions).We showed that St and Act are presheaves and Tr de�nes a natural trans-formation (or, alternatively, a subpresheaf of Act� St� St).Until now we did not consider the interaction between systems, or the pos-sibility of expressing that a system arises by interconnecting (in a certain way)a given family of systems.Consider for example two systems that have a \common dictionary".The situation in Figure 6.5 can be described in terms of category theoryby the pushout of the diagram de�ned by the two systems S1; S2 together withtheir \dictionary" seen as a system S12 that is \translated" in both S1 and S2:
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==||||||||Thus, interconnecting systems can be modeled by taking colimits (cf. [Gog92]).A natural question arises: is it possible to de�ne a covering relation onSYSlm that induces a Grothendieck topology on SYSlm?For the sake of simplicity we will not consider the general case here: wewill restrict ourselves to the case where the morphisms are inclusions, i.e. theelements in a given family fSigi2I of interconnected systems are seen as \parts"(subsystems) of the system S obtained by interconnecting them; as parts of Sthey are supposed to communicate via their \common subsystems".A general theory that takes into account arbitrary morphisms between sys-tems will be subject for future work.



Chapter 7Categories of Systems withInclusions as MorphismsThere are cases when systems are not able to \communicate" using \dictionar-ies" or \translations", as described in Section 6.3; important is that the systemshave common subsystems by means of which the communication is done. Inwhat follows, we will focus on this last aspect. We will �rst present some sub-categories of the category SYS considered in Chapter 6, in which a morphismf : S1 ! S2 exists if S1 is a subsystem of S2 (possibly satisfying an additional\tightness" condition).In this case, communication between two systems is assumed to take placeonly via the common subsystems. This situation arises naturally if the systemsare assumed to be already \interconnected" and are regarded as parts of thesystem obtained by their interconnection.
����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

=

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

Var 1 Var 2

Act1 Act2

Var

Act

=

Figure 7.1: Interconnecting two systems with a common subsystem.We begin by studying the category SYSi that has systems as objects andinclusions as morphisms. Some categorical constructions in this category areillustrated and it is shown that two functors can be de�ned, one that associateswith every system S its set of states St(S), and one that associates with everysystem S its set of admissible parallel actions Act(S). We show that these231



232 7 Categories of Systems with Inclusions as Morphismsfunctors satisfy a \gluing" property with respect to colimits (interconnections)of systems.The colimit (interconnection) of a family fSi j i 2 Ig of systems has ascontrol variables the union X of the control variables Xi of the systems Si, andas atomic actions the union A of the atomic actions Ai of the systems Si.The sets Xi; i 2 I can be regarded as open sets in a suitable topology onX expressing some appropriate notion of \neighborhood". Similarly, the setsAi; i 2 I can be regarded as open sets in a suitable topology on A.But when considering an interconnection of systems we would like to takeinto account these topological spaces (as well as the repartitioning of the con-straints among systems) simultaneously, since the whole information character-izes a system.In this case topology is not su�cient. Therefore we consider the categorySYSi and { in order to be able to express the notion of covering between sys-tems { we de�ne a Grothendieck topology on SYSi; it is proved that states andparallel actions can be modeled by sheaves with respect to this Grothendiecktopology.We would like to point out that { although SYSi can be seen as a partiallyordered set { it is in general not a lattice (it does not have a largest element,neither do all �nite suprema (coproducts) nor all �nite in�ma (products) existin SYSi). Additionally, even in the case when the respective suprema and in-�ma exist, no distributivity condition is ful�lled in general, as will be shown inExample 7.2. Therefore, the category SYSi cannot be regarded as a locale (or,dually, as a frame).However, the category SYSi only captures the static aspect of systems. Itcan be the case that, if S1 ,! S2 and we regard a transition in S2 from theperspective of S1, some variables in S1 may change their values with no apparentcause. This happens when some actions in S2, unknown in S1, depend onvariables of S1. We call a subsystem S1 ,! S2 in which all changements of thevariables in S1 can be explained transition connected.We therefore consider SYSil, the subcategory of SYS having as objects sys-tems and as morphisms so-called transition-connected inclusions.We de�ne a Grothendieck topology J on SYSil and show that the presheavesSt;Act (where for every system S, St(S) is the set of states of S (i.e. possiblecon�gurations of values for the variables that control S), and Act(S) the setof admissible parallel actions) are sheaves with respect to this Grothendiecktopology. Moreover, we show that the transitions induced by admissible parallelactions de�ne a natural transformation Tr : Act! 
St�St (in Sh(SYSil; J)) (or,alternatively, a subsheaf of Act�St�St). We use these results for modeling thebehavior of the systems. We start with the formalism developed by Goguen in[Gog92], and slightly modify Goguen's de�nition for the behavior of a system,explicitly indicating for every moment of time not only the state of the systembut also the action performed at the given moment, and obtain a contravariantfunctor from the category of systems to the category of sheaves over time. Weshow that a contravariant functor from T to the category of sheaves over Sys



7.1 The Static Aspect: SYSi 233can also be de�ned.We conclude by investigating behavior by traces of execution. Assume thatall constraints between actions are of the form ai ^ aj = 0 (meaning thatai ^ aj = 0 cannot be performed in parallel). Then the functor that associatesto every system S the partially commutative monoid M(S) (obtained as aquotient of the free monoid freely generated by the set of actions of S by thecongruence generated by fab = ba j a; b independentg) is a sheaf only undervery restrictive conditions.7.1 The Static Aspect: SYSiFor a �rst approximation to representing the states of a system and the pos-sible parallel actions { in which only the \static aspects" are represented { noinformation about the transitions is needed.We therefore give a simpler de�nition of a system, namely as a tupleS = (�;X;�;M;A;C);and ignore the description of the variables on which each action depends, as wellas the description of transitions and the way transitions of admissible parallelactions are computed.In this context we can de�ne a notion of subsystem (\static", for the begin-ning).De�nition 7.1 Let S1 and S2 be two systems. We say that S1 is a subsystemof S2 (or S2 is an extension of S1) if and only if �1 � �2, X1 � X2, A1 � A2,the constraints in �1 (resp. C1) are consequences of the constraints in �2 (resp.C2), and the model M1 is the restriction of the model M2 to the signature of S1(M1 = U�2�1M2).Remark: Since we assumed that the sets �S and CS of constraints in a systemS are complete with respect to semantical consequence, it follows that thecondition \the constraints in �1 (resp. C1) are consequences of the constraintsin �2 (resp. C2)" in a subsystem in fact amounts to �1 � �2 (resp. C1 � C2).Let SYSi be the category having systems as objects, and a morphism fromS1 to S2 if and only if S2 is an extension of S1 (i.e. all morphisms are inclusions{ that is why we use the index i in the name of the category). We will brieydiscuss the meaning of the standard limit and colimit constructions in the cat-egory SYSi.7.1.1 Categorical Constructions in SYSi1. Limits:The pullback is the largest common subsystem of two systems that are known



234 7 Categories of Systems with Inclusions as Morphismsto be contained in a larger system.S1 �S S2 //

��

S2
��S2 // S (7.1)Namely, if for i = 1; 2 Si = (�i;Xi;�i;Mi; Ai; Ci) ,! S = (�;X;�;M;A;C),then S1 �S S2 = (�1 \�2;X1 \X2;�1 \ �2;M12; A1 \A2; C1 \C2) where M12is the restriction of M to the signature �1 \ �2.Pullbacks of this type always exist in SYSi.The product S1�S2 of two systems S1 and S2 (if it exists) is a system withthe following properties:� S1 � S2 is a subsystem of both S1 and S2,� For every system S that is a subsystem of both S1 and S2, S is a subsystemof S1 � S2,i.e. S1 � S2 is the \largest" common subsystem of S1 and S2. The product oftwo systems exists only if their models are compatible, in the sense that theirrestrictions to the common signature coincide.SYSi does not have a terminal object (i.e. there is no system that containsall the systems in SYSi).2. Colimits:Colimits play a special rôle in the study of systems. As already pointedout in Section 6.3 (cf. also [Gog92]), the system obtained by interconnectinga given family (diagram) of systems can be obtained computing the colimit ofthe given diagram.A coproduct S1 q S2 in SYS (the category with arbitrary morphisms) of adiagram consisting of only two systems S1 and S2 is the system obtained by tak-ing the disjoint union of their languages, control variables, actions, respectivelythe closures under consequence of the unions of the corresponding constraints.In SYSi the morphisms are inclusions. Therefore, the coproduct of thediagram consisting of only two systems S1 and S2 is the system S such that� S1; S2 are subsystems of S,� For every system T such that S1; S2 are subsystems of T , S is a subsystemof T .In other words, the coproduct in SYSi of S1 and S2 is the smallest system thatcontains both S1 and S2. Note that the coproduct in SYSi of the diagram con-sisting of S1 and S2 exists only if S1 and S2 are compatible, in the sense thatM1j�1\�2 = M2j�1\�2 . In this case, the coproduct in SYSi of S1 and S2 is thecolimit in SYS of the diagram de�ned by fS1; S2; S1�S2g (with the correspond-ing inclusions between them).



7.1.1 Categorical Constructions in SYSi 235It is easy to see that if S1 and S2 are independent systems then St(S1qS2) =St(S1)� St(S2), and Act(S1 q S2) = Act(S1)�Act(S2).The pushout S1 qS S2 in SYS (see diagram 7.2) represents the system ob-tained by interconnecting S1 and S2 \gluing" them via their common subsystemS. S
��

// S1
��S2 // S1 qS S2 (7.2)The pushout S1 qS S2 in SYSi coincides with the coproduct of S1 and S2 inSYSi.It is easy to see that if S1 and S2 have S as a largest common subsystem, thenSt(S1qSS2) = St(S1)�St(S)St(S2) andAct(S1qSS2) = Act(S1)�Act(S)Act(S2).In what follows we will be interested in colimits in SYSi of families of sub-systems of a given system S. We show here how colimits of such families canbe computed.Lemma 7.1 Let S = (�;X;M;�; A;C) be a system and fSi ,! S j i 2 Ig afamily of subsystems of S, closed under taking subsystems, where for every i 2 I,Si = (�i;Xi;Mi;�i; Ai; Ci). The colimit of this family of systems is S with�S = Si2I �i, XS = Si2I Xi, MS = MjSi2I �i , �S = (Si2I �i)�, AS = Si2I Ai,CS = (Si2I Ci)�.Proof : It is easy to see that S is a cocone. It remains to show that itsatis�es the universality property of a colimit. Let T be another cocone, i.e.such that Si ,! T for every i 2 I. Then obviously Si2I �i � �T , Si2I Xi � XT ,Mi = MT j�i , Si2I Ai � AT , and the constraints in Si2I �i (resp. Si2I Ci) areconsequences of the constraints in �T (resp. CT ), hence also their consequencesare consequences of the constraints in �T (resp. CT ). It follows that S ,! T .2Note that this colimit is equal to the colimit in SYS of the diagram obtainedfrom the family fSi j i 2 Ig by closing it under all subsystems.The initial object in SYSi is the empty system, denoted by ; (�; = X; =�; = A; = C; = ;).It is easy to see that a system may be subject to more constraints wheninterconnected with other systems than when considered independently, as canbe seen from the following example.

S2b
d caS1



236 7 Categories of Systems with Inclusions as MorphismsExample 7.1 Let � = f0; 1;�g be a signature where 0 and 1 are 0-ary functionsymbols and � is a binary predicate symbol. Let M = (f0; 1g; f0M ; 1M ;�Mg) bea �-structure where �M is an order relation and 0 �M 1. Consider the systemsS1 = (�; fa; b; dg; fa � bg;M;A1; C1);S2 = (�; fb; c; dg; fb � c; c � dg;M;A2; C2):Let S the system obtained by interconnecting S1 and S2.S = (�; fa; b; c; dg; fa � b; b � c; c � dg;M;A1 [A2; (C1 [C2)�):Note that for every s : fa; b; c; dg ! M such that s j= fa � b; b � c; c � dg wehave s(a) �M s(b) �M s(c) �M s(d), hence s(a) �M s(d). Thus, a � d is aconsequence of the constraints fa � b; b � c; c � dg.This shows that for every state s 2 St(S), we have sjS1 j= a � d. It followstherefore that for every s1; s2, with s1 2 St(S1), and s2 2 St(S2) and such thats1jX1\X2 = s2jX1\X2, s1 j= a � d.Intuitively, this expresses the fact that in S1 seen as a \part" of S, a � dhas to be satis�ed (by interconnecting systems new constraints may arise).7.1.2 A Grothendieck Topology on SYSiOur goal now is to de�ne a covering relation on the category SYSi. A �rstpossible notion of \covering" (we will call it quasi-covering) is given below. Weuse the name quasi-covering in this case because it will be shown that it doesnot induce a Grothendieck topology. Later (in De�nition 7.3) we will de�ne anotion of cover that does de�ne a Grothendieck topology.De�nition 7.2 A quasi-covering family for a system S = (�;X;�;M;A;C) isa family fSi ,! S j i 2 Ig of subsystems of S, with the property that Si �i = �,SiXi = X, SiAi = A, and such that � = (Si2I �i)� and C = (SiCi)�.It is easy to see that the states and parallel actions satisfy a gluing conditionon the quasi-covering families de�ned above.Proposition 7.2 Let S = (�;X;�;M;A;C) and fSj ,! S j j 2 Jg be a quasi-covering family for S, where for every j 2 J , Sj = (�j ;Xj ;�j ;Mj ; Aj ; Cj).Let fsj j j 2 Jg be a matching family of elements sj 2 St(Sj) (i.e. such thatfor every j1; j2 2 J , sj1 jXj1\Xj2 = sj2 jXj1\Xj2 ). Then there exists a uniques 2 St(S) such that sjXj = sj for every j 2 J .Proof : We can de�ne s : X !M , by s(x) = sj(x) if x 2 Xj . Let � 2 S�j .Then � contains exclusively symbols in Lj = (�j ;Xj) for some j, s satis�es �because its restriction to Xj , namely sj, does (we used Lemma 3.19). Therefores satis�es all constraints inS�j, hence also all their consequences, i.e. it satis�esall formulas in � = (S�j)�; so s 2 St(S). It is easy to see (by the de�nitionof s) that s is the unique element of St(S) such that for every i 2 I, sjXi = si.This proves that St is a sheaf. 2A similar result also holds for the parallel actions:



7.1.2 A Grothendieck Topology on SYSi 237Proposition 7.3 Let S = (�;X;�;M;A;C) and fSj ,! S j j 2 Jg be a coverof S, where for every j 2 J , Sj = (�j ;Xj ;�j ;Mj ; Aj ; Cj). Let ffi j i 2 Ig bea family of parallel actions fi 2 Act(Si) such that for every i; j 2 I, fijAi\Aj =fj jAi\Aj . Then there exists a unique f 2 Act(S) such that fjAi = fi.These gluing properties naturally raise the question whether the coveringrelation de�nes a Grothendieck topology such that St and Act are sheaves withrespect to this Grothendieck topology.We therefore have to check whether the notion de�ned before satis�es theproperties of a basis for a Grothendieck topology, cf. De�nition 3.96, namely:(1) fSg is a quasi-cover for S,(2) If fSi ,! S j i 2 Ig is a quasi-cover for S then for any morphism T ,! Sthe family of pullbacks fSi �S T ! T j2 Ig is a quasi-cover for T ;(3) If fSi ,! S j i 2 Ig is a quasi-cover for S and if for each i 2 I one hasa family fSij ! Si j j 2 Iig that is a quasi-cover for Si, then the familyfSij ,! S j i 2 I; j 2 Iig is a quasi-cover for S.Properties (1) and (3) are obviously satis�ed. It is however easy to see thatcondition (2) (similar to a distributivity property) is not satis�ed, as shownby the following example (for the sake of simplicity we assume that the set ofactions is empty):
S

a b

c

S1

S2T

Example 7.2 Let � = f0; 1;�g be a signature where 0 and 1 are 0-ary functionsymbols and � is a binary predicate symbol. Let M = (f0; 1g; f0M ; 1M ;�Mg)be a �-structure where �M is an order relation and 0 �M 1. Consider thefollowing systems: S1 = (�; fa; bg; fa � bg;M;A;C);S2 = (�; fb; cg; fb � cg;M;A;C);T = (�; fa; cg; fa � cg;M;A;C):Let S be the system obtained by interconnecting S1 and S2.S = (�; fa; b; cg; fa � b; b � c; a � cg;M;A;C):



238 7 Categories of Systems with Inclusions as MorphismsThe family fS1; S2; S1 \ S2g is a quasi-covering family for S, according to Def-inition 7.2. T is a subsystem of S, but S1 \ T = f�; fag; ;;M;A;C) andS2\T = f�; fcg; ;;M;A;C), hence fS1 \T; S2 \T; S1\S2\Tg does not coverT . This shows that the quasi-covering relation introduced in De�nition 7.2 doesnot de�ne a basis for a Grothendieck topology. Also, the induced \covering"relation J by sites,R 2 J(S) i� there exists a quasi-cover T for S such that T � Rdoes not satisfy property (2) of a Grothendieck topology (consider in Exam-ple 7.2 the sieve generated by fS1; S2g).This suggests that the obvious notion of quasi-cover de�ned above is notcompletely appropriate. We give a new de�nition of cover, trying to avoidsituations like the one described in the example above.De�nition 7.3 (Covering Family) Let S = (�;X;�;M;A;C) be a system.A covering family for S is a family S = fSi ,! S j i 2 Ig of subsystems of S,with the following properties:(C1) S is a sieve (i.e. it is closed under subsystems),(C2) S is a colimit of the diagram de�ned by the sieve S,(C3) For every T � S, T is the colimit of the diagram de�ned by the sieveT \ S = fSi 2 S j Si ,! Tg.It is easy to see that, with the notation used in Example 7.2, the sieve Sgenerated in SYSi by fS1; S2; S1 \ S2g is not a covering family for S accordingto De�nition 7.3 because T is a subsystem of S, but is not a colimit of thediagram de�ned by the sieve fSi 2 S j Si ,! Tg = fS1\T; S2 \T; S1\S2 \Tg.Proposition 7.4 The function J assigning for every system S the set J(S) ofall covering families for S is a Grothendieck topology on SYSi.Proof : We show that the axioms required in the de�nition of a Grothen-dieck topology are satis�ed:(1) Let S = fT j T ,! Sg be the sieve of all subsystems of S. Since S is anelement of S, it follows immediately that S is a colimit of the diagram de�nedby S, and since every T ,! S is an element of T \ S, it is the colimit of thediagram de�ned by the sieve T \ S. Thus S is a covering family for S.(2) Let S = fSi ,! S j i 2 Ig 2 J(S) and T ,! S. We show that the sieveT \ S = fSi 2 S j Si ,! Tg is a cover for T . It is obvious that it is a sieve andthat its colimit (as a diagram) is T (by (C3), since S 2 J(S)). Let T 0 ,! T . Bythe fact that T 0 \ (T \ S) = T 0 \ S, and since T 0 is in particular a subsystem



7.1.2 A Grothendieck Topology on SYSi 239of S, it follows that T 0 is the colimit of the diagram de�ned by T 0 \ (T \ S).Thus, T \ S = fSi 2 S j Si ,! Tg is a cover for T .(3) Let S = fSi ,! S j i 2 Ig 2 J(S), and R an arbitrary sieve on S such thatfor every Si 2 S, Si \R 2 J(Si) (we assume that for i 2 I, Si \R = fSij j j 2Iig).In order to show that R 2 J(S) we have to prove that (C1); (C2) and (C3)are ful�lled.(C1) is obviously true since R is a sieve.In order to prove (C2) note that the following holds:� = [i2I �i = [i2I;j2Ii �ij;X = [i2IXi = [i2I;j2IiXij ;Mlim�!R = MS j� = MS ;� =  [i2I �i!� = 0@ [i2I;j2Ii �ij1A� ;A = [i2IAi = [i2I;j2IiAij ; C = 0@ [i2I;j2IiCij1A� :In order to prove (C3), let T ,! S be a subsystem of S. We have to showthat T \R has T as a colimit.We show that in fact T \fSij j i 2 I; j 2 Iig has T as a colimit { and henceT is also the colimit of T \R.T \ fSij j i 2 I; j 2 Iig = fT \ Sij j i 2 I; j 2 Iig. It is easy to see that,since T \ Si ,! Si and fSij j j 2 Iig 2 J(Si), the following holds:[j2Ii(�ij \�T ) = [j2Ii �ij \ (�T \�i) = �T \�i;[j2Ii(Xij \XT ) = XT \Xi; [j2Ii(Aij \AT ) = AT \Ai;0@[j2Ii �ij \ �T1A� = �T \ �i;0@[j2IiCij \ CT1A� = CT \ Ci:Since S = fSi ,! S j i 2 Ig 2 J(S), T is the colimit of T \ S, i.e.�T = Si2I �T \ �i (similarly for XT and AT ), and the constraints in �T(resp. CT ) are exactly the consequences of the constraints in Si2I �T \�i (resp.Si2I CT \Ci).Therefore,�T = [i2I �T \ �i = [i2I [j2Ii(�ij \ �T );XT = [i2I [j2Ii(Xij \XT );�T =  [i2I �T \ �i!� = 0@[i2I0@[j2Ii �T \ �ij1A�1A� = 0@[i2I [j2Ii �T \ �ij1A� ;



240 7 Categories of Systems with Inclusions as MorphismsMT = MS j�T = MS jS�ij ; AT = [i2I [j2Ii(Aij \AT );CT =  [i2I CT \ Ci!� = 0@[i2I0@[j2IiCT \ Cij1A�1A� = 0@[i2I [j2IiCT \ Cij1A� :From this it follows that T is the colimit of the sieve fT \Sij j i 2 I; j 2 Iig.Since Sij 2 R for every i 2 I; j 2 Ii, this implies that T is the colimit of thesieve T \R. Thus we proved that R 2 J(S). 2Note that all the covering families according to De�nition 7.3 are also quasi-covering families according to De�nition 7.2. It is easy to see that in this casethe gluing properties for St and Act are indeed sheaf conditions. Therefore, thefollowing theorem holds.Theorem 7.5 The functors St;Act : SYSiop ! Sets are sheaves with respect tothe Grothendieck topology J .7.2 The Dynamic Aspect: SYSilIn order to also capture the \dynamic" aspect of systems, i.e. the way theyevolve in time, we have to be able to represent the way the states of a systemchange when actions are executed. So, besides the language and actions, moreinformation is needed in the de�nition of a system S. Namely, for every actionwe have to know which variables the action really depends upon, and the waythese variables change after the action is performed.Therefore, a system is represented asS = (�;X;�;M;A;C; fXaga2A; fTraga2A);where for every a 2 A, Xa is the (minimal) set of all variables in X action adepends upon, and Tra � f(s1jXa ; s2jXa) j s1; s2 2 St(S)g shows how the valuesof these variables may change if a is performed.It is easy to see that, given two systems S1 ,! S2, if we have a transition inS2 and regard it from the \perspective" of S1, it may happen that in S1 somevariables change their values with no apparent cause. This is usually the casewhen some actions in S2, that are unknown in S1, depend on variables of S1(and change their values).A subsystem S1 ,! S2 in which all changes of the variables in S1 can beexplained \internally" will be called transition connected. Below we give theformal de�nition.De�nition 7.4 (Transition Connected Subsystems) Let S1 ,! S2 be asubsystem. We say that S1 is a transition-connected subsystem of S2 if(TC1) For every a 2 A2, if Xa \X1 6= ; then a 2 A1, and X1a = X2a \X1,(TC2) For every a 2 A1 and for every s1; s2 2 St(S2) if (s1jX2a ; s2jX2a) 2 TrS2athen (s1jX1a ; s2jX1a) 2 TrS1a .



7.2 The Dynamic Aspect: SYSil 241The next result shows that if S1 � S2 is transition-connected then validtransitions in S2 restrict to valid transitions in S1.Lemma 7.6 Let S1 be a transition-connected subsystem of S2, and let a 2 A1.Let (s1; s2) 2 TrS2(a). Then (s1jX1 ; s2jX1) 2 TrS1(a).Proof : Let (s1; s2) 2 TrS2(a). Then (s1jX2a ; s2jX2a) 2 TrS2a , hence, since S1 isa transition-connected subsystem of S2, by (TC2), (s1jX2a\X1 ; s2jX2a\X1) 2 TrS1a .Let x 2 X1 be such that s1(x) 6= s2(x). Then x 2 X2a \ X1 = X1a . Thus, forevery x 2 X1 Xa, s1(x) = s2(x). This proves that (s1jX1 ; s2jX1) 2 TrS1(a). 2We will now show the link between local morphisms of systems and transition-connected systems. We begin by de�ning the image of a system S via a (local)morphism of systems.De�nition 7.5 Let f : S1 ! S2 be a local morphism. The image of S1 by f isf(S1) = (f�(�1); fX(X1); (f \Fma(�1))�;M2jf� ; fA(A1); (f \A(C1))�; fXf(S1)a ; T rf(S1)a ga2fA(A1)),where� for all actions a 2 fA(A1), Xf(S1)a = fX(SfA(b)=aX1b ), and� for every a 2 fA(A1) and s1; s2 2 St(f(S1)), let g : A1 ! f0; 1g bede�ned by g(b) = 1 i� fA(b) = a. Then Trf(S1)a = f(s1jXf(S1)a ; s2jXf(S1)a ) j(s1 � fX jXg ; s2 � fX jXg) 2 Tr1gg.Lemma 7.7 Let f : S1 ! S2 be a local morphism. Then for every a 2 fA(A1),Xf(S1)a = X2a \ fX(X1).Proof : By the de�nition of f(S1), for all actions a 2 fA(A1), Xf(S1)a =fX(SfA(b)=aX1b ).Since f is a local morphism, by (M5) it follows that for every a 2 fA(A1),SfA(b)=aX1b = f�1X (X2a). It remains to show that fX(f�1X (X2a)) = X2a \fX(X1).First note that if x 2 fX(f�1X (X2a)), then x = fX(x1) with x1 2 f�1X (X2a).Hence, x = fX(x1) 2 X2a \ fX(X1).Let now x 2 X2a \ fX(X1). Then x 2 X2a and x = fX(x1) with x1 2 X1.Therefore, fX(x1) 2 X2a , hence, x1 2 f�1X (X2a). Thus, x 2 fX(f�1X (X2a). 2Proposition 7.8 The following holds:(1) Let S1 be a transition-connected subsystem of S2. Then the inclusion ofS1 in S2 is a local morphism.(2) Let f : S1 ! S2 be a local morphism. Then f(S1) is a transition-connectedsubsystem of S2.



242 7 Categories of Systems with Inclusions as MorphismsProof : (1) Assume that S1 is a transition-connected subsystem of S2. Con-dition (M5) in the de�nition of a local morphism follows from condition (TC1),and condition (M6) follows from condition (TC2).(2) Let f : S1 ! S2 be a local morphism. It is easy to see that f(S1) is asubsystem of S2. We show that it is a transition-connected subsystem.Let a 2 A2 be such that Xa \ fX(X1) 6= ;. Then, by (M5), a 2 fA(A1).Let a 2 fA(A1). Then by, Lemma 7.7, Xf(S1)a = X2a \ fX(X1). Let s1; s2 2St(S2) such that (s1jX2a ; s2jX2a) 2 TrS2a . Then, by (M6), (s1 � fX jXg ; s2 � fX jXg) 2TrS1g , where g : A1 ! f0; 1g is de�ned by g(a1) = 1 if and only if fA(a1) = a.Therefore, by the de�nition of f(S1), (s1jXf(S1)a ; s2jXf(S1)a ) 2 Trf(S1)a . 2Remark 7.9 Assume that S1 is a transition-connected subsystem of S2, andS2 is a transition-connected subsystem of S3. Then S1 is a transition-connectedsubsystem of S3.Proof : Assume that S1 is a transition-connected subsystem of S2, and S2is a transition-connected subsystem of S3. Let a 2 A3 such that X3a \X1 6= ;.Since X1 � X2 it follows that X3a \ X2 6= ;, and by the fact that S2 is atransition-connected subsystem of S3 we have a 2 A2 and X2a = X3a \ X2.Hence, X2a \X1 6= ;, and thus, since S1 is a transition-connected subsystem ofS2 it follows that a 2 A1 and X1a = X2a \X1 = X3a \X2 \X1 = X3a \X1.Let now a 2 A1 and s1; s2 2 St(S3) such that (s1jX3a ; s2jX3a) 2 TrS3a . Then(s1jX2a ; s2jX2a) 2 TrS2a , and hence, (s1jX1a ; s2jX1a) 2 TrS1a . This shows that S1 isa transition-connected subsystem of S3. 2De�nition 7.6 SYSil will denote the category having as objects systems and amorphism between S1 and S2 if and only if S1 is a transition-connected subsys-tem of S2 (i.e. all morphisms are transition-connected inclusions).7.2.1 Categorical Constructions in SYSilProposition 7.10 The category SYSil has pullbacks.Proof : Let S1; S2 be two transition-connected subsystems of S, as shownin Diagram 7.3. S12
��

// S1
��S2 // S (7.3)Then M1 = Mj�1 , M2 = Mj�2 ; additionally, for every a 2 A1 (resp. inA2), X1a = XSa \X1 (resp. X2a = XSa \X2). It follows therefore that for everya 2 A1 \A2, X1a \X2 = X2a \X1 = XSa \X1 \X2.Let S12 = (�1 \ �2;X1 \ X2;�1 \ �2;MS j�1\�2 ; A1 \ A2; C1 \ C2), andsuch that for every a 2 A1 \ A2, X12a = X1a \ X2 = X2a \ X1 = XSa \ X1 \X2, and Tr12a = f(s1jX12a ; s2jX12a ) j s1; s2 2 St(S1); (s1jX1a ; s2jX1a) 2 TrS1a g [f(s1jX12a ; s2jX12a ) j s1; s2 2 St(S2); (s1jX2a ; s2jX2a) 2 TrS2a g.



7.2.1 Categorical constructions in SYSil 243It is easy to see that S12 is a transition-connected subsystem of both S1 andS2. As an example, we prove it for S1.Let a 2 A1 be such that X1a \ X1 \ X2 6= ;. Then X1a \ X2 6= ;, henceXSa \ X2 6= ;. Since S2 ,! S is transition-connected it follows that a 2 A2.Thus, a 2 A1 \A2.If a 2 A1 \A2, then X12a = X1a \X1 \X2 = X1a \X12, and if s1; s2 2 St(S1)with (s1jX1a ; s2jX1a) 2 TrS1a , then by the de�nition of Tr12a , (s1jX12a ; s2jX12a ) 2Tr12a . This shows that S12 is a transition-connected subsystem of S1. Analo-gously it can be shown that S12 is a transition-connected subsystem of S2.In order to check that S12 is indeed the pullback we show that it satis�es theuniversality property of a pullback: Let T be a transition-connected subsystemof both S1 and S2. We prove that T is a transition-connected subsystem of S12.It is easy to see that�T � �1 \ �2;XT � X1 \X2 = X12;�T � �1 \ �2 = �12;AT � A1 \A2 = A12; CT � C1 \ C2 = C12:Furthermore, we know that for every a 2 A1, ifX1a\XT 6= ; then a 2 A1\ATand XTa = X1a \ XT (and similarly for A2). Hence, if X12a \ XT 6= ; thena 2 A1\A2\AT = A12\AT , and XTa = X1a\XT = X2a\XT = X1a\X2a\XT =X12a \XT .We also know that if s1; s2 2 St(Si), such that (s1jXia ; s2jXia) 2 TrSia , (fori = 1 or i = 2), then (s1jXTa ; s2jXTa ) 2 TrTa .Let now a 2 AT and s1; s2 2 St(S12) such that (s1jX12a ; s2jX12a ) 2 Tr12a . Bythe de�nition of Tr12a , there are either s1; s2 2 St(S1) with (s1jX1a ; s2jX1a) 2 TrS1a ,or s1; s2 2 St(S2) with (s1jX2a ; s2jX2a) 2 TrS2a , such that s1 = s1jX12 ,s2 = s2jX12 .In both situations it follows that (s1jXTa ; s2jXTa ) 2 TrTa . This proves that T isa transition-connected subsystem of S12, and thus that S12 is the pullback ofDiagram 7.3. 2Proposition 7.11 Let S = (�;X;M;�; A;C) be a system and fSi ,! S j i 2Ig a family of transition-connected subsystems of S, where for every i 2 I,Si = (�i;Xi;Mi;�i; Ai; Ci). The colimit of this family in SYSil is the systemS with �S = Si2I �i, XS = Si2I Xi;MS = MjSi2I �i ;�S = (Si2I �i)�; AS =Si2I Ai; CS = (Si2I Ci)�, and where for every a 2 Si2I Ai XSa = Sa2Ai Xia,and TrSa = f(s1jXSa ; s2jXSa ) j s1; s2 2 St(S); and for every i 2 I with a 2Ai; (s1jXia ; s2jXia) 2 TrSia g.Proof : In order to see that for every i 2 I, Si is a transition-connectedsubsystem of S, note that if a 2 AS depends on x 2 Xi for some i 2 I itfollows that a 2 Ai (because a 2 AS � A, using the fact that Si is a transition-connected subsystem of S). Moreover, if a 2 Ai then XSa \Xi = �Sa2Aj Xja�\Xi = Xia (in order to prove the last equality note that, on the one hand, it isobvious that Xia � �Sa2Aj Xja� \ Xi, and on the other hand, since for everyj 2 I, Sj is a transition-connected subsystem of S, it follows that if a 2 Aj



244 7 Categories of Systems with Inclusions as Morphismsthen Xja = XSa \ Xj � XSa ; hence, Sa2Aj Xja � XSa , and �Sa2Aj Xja� \ Xi �XSa \Xi = Xia).Let a 2 Ai and s1; s2 2 St(S) be such that (s1jXSa ; s2jXSa ) 2 TrSa . By thede�nition of TrSa it follows that (s1jXia ; s2jXia) 2 TrSia . Thus, Si is a transition-connected subsystem of S for every i 2 I.In order to show that S satis�es the universality property of a colimit, let Tbe such that for every i 2 I, Si is a transition-connected subsystem of T . ThenSi2I �i � �T , Si2I Xi � XT , Si2I Ai � AT , and the constraints in Si2I �i(resp. Si2I Ci) are consequences of the constraints in �T (resp. CT ).We want to show that in this case S is a transition-connected subsystem ofT . Let a 2 AT be such that XTa \XS 6= ;. Then XTa \XSi 6= ; for some i 2 I,and since Si is a transition-connected subsystem of T , it follows that a 2 Ai �Si2I Ai = AS . Moreover, XTa \ XS = XTa \ (Si2I Xi) = Si2I �XTa \Xi� =Si2I:a2Ai Xia = XSa .Let s1; s2 2 St(T ), be such that (s1jXTa ; s2jXTa ) 2 TrTa . Then it follows that(s1jXia ; s2jXia) 2 TrSia for every i 2 I with a 2 Ai, hence, by the de�nition ofTrS, (s1jXSa ; s2jXSa ) 2 TrSa . Thus, S is a transition-connected subsystem of T .27.2.2 A Grothendieck Topology on SYSilIn order to de�ne a covering relation on SYSil we have to request additionallythat if a transition is \locally" de�ned on elements of a cover then from this\local" transitions a \global" transition can be constructed. In what follows, ifnot explicitely speci�ed otherwise, all morphisms S1 ,! S2 will be supposed tobe transition-connected.De�nition 7.7 (Covering Family) A family S = fSi ,! S j i 2 Ig oftransition-connected subsystems of S is a covering family for S i� it has thefollowing properties:(C1) S is a sieve (i.e. it is closed under all transition-connected subsystems),(C2) S is a colimit in SYSil of the diagram de�ned by the sieve S,(C3) For every transition-connected subsystem T ,! S, T is the colimit in SYSilof the diagram de�ned by the sieve T \ S = fSi 2 S j si ,! Tg.As in Proposition 7.4, it is easy to check that this notion of covering familyinduces a Grothendieck topology on SYSil.Proposition 7.12 The following holds:(1) The function J assigning for every system S the set J(S) of all coveringfamilies for S is a Grothendieck topology on SYSil.



7.2.3 Transitions within SYSil 245(2) The functors St;Act : SYSiop ! Sets are sheaves with respect to the Gro-thendieck topology J .Proof : (1) The proof closely follows the proof given in the case of SYSi.The �rst condition in the de�nition of a Grothendieck topology is obviouslysatis�ed. The proof of the second condition is the same as in the case of SYSi.In order to see that the third condition is also satis�ed, it only remains to checkthat if S = fSi j i 2 Ig is a cover for S and R a sieve on S such that for everyi 2 I, Si \R = fSij j j 2 Jig covers Si then:(i) for every a 2 AS , XSa = Sa2ASij XSija , and(ii) if a 2 As and s1; s2 2 St(S) are such that (s1jXij\XSa ; s2jXij\XSa ) 2 TrSijafor all Sij with a 2 ASij , then (s1jXSa ; s2jXSa ) 2 TrSa .For the �rst part, note that XSa = Si;a2ASi XSia = Si;a2ASi Sj;a2ASij XSija =Si;j;a2ASij XSija .For the second part, assume that a 2 As and s1; s2 2 St(S) are such that(s1jXij\XSa ; s2jXij\XSa ) 2 TrSija for all Sij with a 2 ASij . Note that for everyi; j, Xij \XSa = XSijs = Xij \XSia . Since fSij j j 2 Iig 2 J(Si), it follows thatif (s1jXij\XSa ; s2jXij\XSa ) 2 TrSija for all i 2 I and j 2 Ji with a 2 ASij , then(s1jXi\XSa ; s2jXi\XSa ) 2 TrSia for all i 2 I such that a 2 ASi . From the fact thatfSi j i 2 Ig 2 J(S) it then follows (s1jXSa ; s2jXSa ) 2 TrSa .(2) Follows immediately, since the covers in SYSil are in particular covers inSYSi. 27.2.3 Transitions within SYSilWe now study the relationships between transitions in the elements of a coveringfamily for a system S and the transitions in S.For atomic actions the following result holds.Lemma 7.13 Let fSi j i 2 Ig be a covering family for S. Let a 2 AS, ands1; s2 2 St(S) be such that (s1jXi ; s2jXi) 2 TrSi(a) for every i 2 I. Then(s1; s2) 2 TrS(a).Proof : Let s1; s2 2 St(S) be such that (s1jXi ; s2jXi) 2 TrSi(a) for everyi 2 I. Then, for every i 2 I with a 2 Ai, (s1jXi\XSa ; s2jXi\XSa ) 2 TrSia ands1(x) = s2(x) for all x 2 XinXSa . For every i 2 I with a 62 Ai, s1jXi = s2jXi .Since for every i 2 I with a 2 Ai, (s1jXi\XSa ; s2jXi\XSa ) 2 TrSia , it follows(by (C2)) that (s1jXSa ; s2jXSa ) 2 TrSa . If x 2 XSnXSa then x 2 XinXSa for somei 2 I, hence s1(x) = s2(x). 2Proposition 7.14 shows that a similar gluing property also holds for parallelactions, if transitions of composed actions satisfy (Gluing).



246 7 Categories of Systems with Inclusions as MorphismsProposition 7.14 Assume that the transitions associated to admissible parallelactions satisfy (Gluing). Let S = fSi j i 2 Ig be a cover for S in SYSil. Lets1; s2 2 St(S) and f 2 Act(S). Assume that (s1jXi ; s2jXi) 2 TrSi(fjAi) forevery i 2 I. Then (s1; s2) 2 TrS(f).Proof : Let s1; s2 2 St(S) and f 2 Act(S), and assume that (s1jXi ; s2jXi) 2TrSi(fjAi) for every i 2 I.Let a 2 AS with f(a) = 1. Then (s1jXSa \Xi ; s2jXSa \Xi) 2 TrSia for all i 2 Iwith a 2 Ai. Hence, by the property of a covering family, (s1jXSa ; s2jXSa ) 2 TrSa .For x 62 Sa;f(a)=1XSa we know that s1jXi(x) = s2jXi(x) if x 2 Xi, hence s1(x) =s2(x). Thus, by (Gluing), (s1; s2) 2 TrS(f). 2If we assume that the actions may consume common resources and are de-terministic, and the transitions of parallel actions are obtained according to the(Independence), then a similar results holds, but under stronger conditions.Lemma 7.15 Let fSi j i 2 Ig be a covering family for S. Assume that theactions in S and fSi j i 2 Ig are deterministic (the �nal state is uniquelydetermined by the initial state in case an action is applied).Let a 2 AS and let s 2 St(S) be such that for every i 2 I there exists a statesi 2 St(Si) such that (sjXi ; si) 2 TrSi(a) (i.e. if a 62 Ai then sjXi = si, otherwise(sjXi\XSa ; siXi\XSa ) 2 TrSia and s(x) = si(x) if x 2 XinXSa ). Then there is aunique state s 2 St(S) such that for all i 2 I, sjXi = si and (s; s) 2 TrS(a).Proof : By the determinism of actions and by the fact that fSi j i 2 Ig is asieve (hence, closed under pullbacks (\intersections") of systems), it follows thatfor every i; j 2 I, sijXi\Xj = sj jXi\Xj . Therefore there is a unique s 2 St(S)such that sjXi = si. It follows that (sjXi ; sjXi) 2 Tri(a) for every i 2 I, henceby Lemma 7.13, (s; s) 2 Tr(a). 2Remark: Note that in proving the previous lemma we used the fact that thecovering family S for S has the property that for every S1; S2 2 S, the pullbackS1 �S S2 is a transition-connected subsystem of both S1 and S2, hence is in S.This is true in SYSil, but might not be true in some of its subcategories, if theyare not closed under pullbacks. In Section 8 we will show that a similar resultholds for a certain subcategory of SYSil which is not closed under pullbacks.The next proposition shows that a gluing condition holds, similar to that ofProposition 7.14, under the assumption that the transitions of parallel actionssatisfy (Independence). Since one of the conditions in this case is that forevery a 2 A2, f�1(a) is �nite, we assume, for the sake of simplicity, that the setof atomic actions of the system S is �nite. Since we decided to consider only�nite systems, this is not a limitation.Proposition 7.16 Let S = fS1; : : : ; Sng be a covering family for S in SYSil.Assume that the transitions associated to admissible parallel actions obey (In-dependence). Let s1; s2 2 St(S) and f 2 Act(S). Assume that (s1jXi ; s2jXi) 2TrSi(fjAi) for every i 2 I. Then (s1; s2) 2 TrS(f).



7.2.3 Transitions within SYSil 247Proof : Assume that we have identi�ed all elements a1; a2 2 AS witha1 = a2 2 CS and f(a1) = f(a2) = 1, and after this identi�cation, f�1(1) =fa1; : : : ; ang. We proceed by induction on the number n of elements in f�1(1)after this identi�cation.If n = 1 then f consists of only one action, and the property is true byLemma 7.13.Assume that the property is true for every admissible action g such that(after identifying all elements a1; a2 2 AS with a1 = a2 2 CS and g(a1) =g(a2) = 1), the set g�1(1) has n� 1 elements.Let f 2 Act(S) with f�1(1) = fa1; : : : ; ang. Since all possible relationsbetween the actions in AS are of the form a ^ a0 = 0, it follows that also theparallel action g : A ! f0; 1g with g(a) = 1 i� a 2 fa2; : : : ; ang is admissible,i.e. g 2 Act(S), and so are all restrictions of g to elements in the covering familygjAi , for any i 2 I.We know that (s1jXi ; s2jXi) 2 TrSi(fjAi) for every i 2 I. By (Indepen-dence) it follows that for every i 2 I, fjAi can be applied at s1jXi in the systemSi, and the �nal state does not depend on the order in which the actions areapplied. Therefore we can assume that a1 is applied �rst in all systems Si witha1 2 Ai.Hence, for every i 2 I there exists a state si 2 St(Si) such that (s1jXi ; si) 2TrSi(a1) if a1 2 Ai, or such that s1jXi = si if a1 62 Ai. It also follows that gjAican be applied at si for every i 2 I (note that the �nal state does not dependon the order in which the actions are applied), i.e. that (si; s2jXi) 2 TrS(gjAi)for all i 2 I.By Lemma 7.15 and by the determinism of parallel actions guaranteed by(Independence) it follows that there is a unique state s 2 St(S) such thatsjXi = si and (s1; s) 2 TrS(a). Moreover, for every i 2 I, (sjXi ; s2jXi) 2TrSi(gjAi). Therefore, by the induction hypothesis, (s; s2) 2 TrS(g). Thisproves that (s1; s2) 2 TrS(f). 2Note again that, since in the proof we used Lemma 7.15, Proposition 7.16only holds if all covering families are closed under intersections (pullbacks).Therefore, it may not remain valid in subcategories in SYSil that are not closedunder pullbacks. In Section 8 we will show that for a particular such subcate-gory, Sys(InSys), the result is still true.In what follows we assume that the transitions of parallel actions are com-puted by (Gluing) or resp. (Independence) and show that transitions canbe expressed by natural transformations between the sheaves Act and 
St�Stover the site (SYSil; J) or resp. (SYSfil; J), where SYSfil is the full subcategory ofSYSil having as objects �nite systems.In what follows, SYS�il will denote either SYSil, if the transitions of paral-lel actions are computed by (Gluing), or (SYSfil; J) in case the transitions ofparallel actions obey (Independence).Lemma 7.17 Let S 2 SYS�il. Let f 2 Act(S) be an admissible parallel action,g : S0 ,! S a transition-connected subsystem, and s1; s2 2 St(S0). Then the



248 7 Categories of Systems with Inclusions as Morphismsset TrS(f)(S0)(g; s1; s2) = fS00 h,! S0 j (s1jX00 ; s2jX00) 2 TrS00(f � gA � hA)g is aclosed sieve on S0.Proof : Let S00 h,! S0 2 TrS(f)(S0)(g; s1; s2), and let S00 h0,! S00 h,! S0. Wewant to show that S00 h0,! S00 h,! S0 2 TrS(f)(S0)(g; s1; s2).Since S00 h,! S0 2 TrS(f)(S0)(g; s1; s2) it follows that (s1jX00 ; s2jX00) 2 TrS00(f�gA �hA). Therefore, by Proposition 6.5 resp. Proposition 6.6, (s1jXS00 ; s2jXS00 ) 2TrS00(f � gA � (hA � h0A)). Hence, S00 h�h0,! S0 2 TrS(f)(S0)(g; s1; s2). This provesthat TrS(f)(S0)(g; s1; s2) is a sieve on S0.In order to prove that it is a closed sieve, let S h,! S and assume thatfSi hi,! S h,! S j i 2 Ig covers S, where for every i 2 I, (s1jXSi ; s2jXSi ) 2TrSi(f �gA�hA�hiA)g. By Proposition 7.16 it then follows that (s1jXS ; s2jXS) 2TrS(f � gA � hA), i.e. S 2 TrS(f)(S0)(g; s1; s2). Hence, TrS(f)(S0)(g; s1; s2) isa closed sieve. 2A proof analogous to the one given in Lemma 6.8 leads to the followingresult.Lemma 7.18 TrS(f) : y(S) � St � St ! 
, de�ned, for every system S0,by TrS(f)(S0) : HomSYS�il (S0; S) � St(S0) � St(S0) ! 
(S0), where for everyg : S0 ! S and s1; s2 2 St(S0), TrS(f)(S0)(g; s1; s2) = fS00 h! S0 j (s1 � hX ; s2 �hX) 2 TrS00(f � ga � ha)g, is a natural transformation.Consequence 7.19 For every system S and f 2 Act(S), TrS(f) 2 
St�St(S).Proof : 
St�St is de�ned in Sh(SYS�il) as follows: for every S 2 SYS�il,
St�St(S) = f� : y(S)� St� St! 
 j � natural transformationg.In Lemma 7.18 we showed that TrS(f) : y(S) � St � St ! 
 is a naturaltransformation. Hence, TrS(f) 2 
St�St(S). 2Proposition 7.20 Tr : Act ! 
St�St de�ned for every system S by TrS :Act(S)! 
St�St(S) is a natural transformation in Sh(SYS�il).Proof : We have to show that for every i : S1 ,! S2, where S1 is a transition-connected subsystem of S2, the following diagram is commutative:Act(S2)Act(i)
��

TrS2// 
St�St(S2)
St�St(i)
��Act(S1) TrS1// 
St�St(S1) (7.4)Let f 2 Act(S2). Then 
St�St(i)(TrS2(f)) : y(S1)�St�St! 
 is de�nedfor every g : S1 ,! S1 and s1; s2 2 S1 by
St�St(i)(TrS2(f))(S1)(g; s1; s2) = TrS2(f)(S1)(i � g; s1; s2) = fS00 h,! S1 j(s1jX00 ; s2jX00) 2 TrS00(f � (iA � gA) � hA)g.



7.2.4 Temporal Behavior of Systems in SYSil 249On the other hand, TrS1(fjA1) is de�ned for every g : S1 ,! S1 and s1; s2 2 S1by TrS1(fjA1)(S1) = fS00 h,! S1 j (s1jX00 ; s2jX00) 2 TrS00((f � iA) � gA � hA)g.This proves that the diagram commutes. 2It is also easy to see that Tr : SYS�ilop ! Sets de�ned byTr(S) = f(f; s; s0) j f 2 Act(S); s; s0 2 St(S); (s; s0) 2 TrS(f)gis a subsheaf of Act � St � St (a short direct proof of this fact can be given:from Proposition 6.5 resp. Proposition 6.6 it follows that it is a subpresheaf,and from Proposition 7.14 resp. Proposition 7.16 it follows that it is a sheaf).7.2.4 Temporal Behavior of Systems in SYSilThe starting point of our approach to dealing with temporal behavior is theformalism developed by J. Goguen in [Gog92]. He starts with the assump-tion that every system can be described by a set of attributes X, each at-tribute x 2 X having a prescribed set of values Vx. In what follows we as-sume that time is considered to be discrete. In this particular situation, in[Gog92] the behavior of a given system S in time is modeled by a functorF : T op ! Sets, where T is the basis for the topology on N consisting of allthe sets f0; 1; : : : ; ng; n 2 N . Intuitively, for every open set U = f0; 1; : : : ; ng,F (U) represents the \observations" in the interval of time U . Formally, thefunctor F is de�ned on objects by F (U) = fh : U ! Qp2P Vp j K(h)g whereK(h) represents a set of conditions that have to be satis�ed by h | usuallysome prescribed rules indicating how the states of the system can change, re-ecting the pre- and postconditions of the relevant actions. It is de�ned onmorphisms by F (�UV )(h) = hjV for every �UV : V ,! U and every h 2 F (U). Inorder to study the behavior of a system consisting of several subsystems theintercommunication between the subsystems is taken into account. A system isseen as a diagram of subsystems, where the morphisms represent inheritance.Goguen shows that the behavior of the system can be described by F (U) =ffhi j i 2 Ig j hi 2 Fi(U) and if �e : Si ! Si0 then �e(hi) = hi0g, where for ev-ery i 2 I, Fi is a sheaf that describes the behavior of the system Si. Therefore,the behavior of a system is the limit of the behaviors of its subsystems (fordetails see [Gog92]).In what follows we will develop the idea of representing behavior in time ofsystems by sheaves over time. We modify the de�nition for the behavior of asystem slightly, by also taking into account the actions that are performed atevery step. We will assume that all actions need one unit of time. In futurework the more realistic case where actions can have di�erent durations will beconsidered.De�nition 7.8 Let S be a system in SYSil. The behavior of S is a functorBS : T op ! Sets de�ned for every U 2 T by BS(U) = fh : U ! St(S)�Act(S) jK(h;U)g, where K(h;U) can be expressed by



250 7 Categories of Systems with Inclusions as Morphismsfor every n, if n; n + 1 2 U and h(n) = (s; f), h(n + 1) = (s0; f 0)then (s; s0) 2 Tr(f),and for every � : V � U , BS(�) : BS(U)! BS(V ) is the restriction to V .Thanks to the particular form of the open sets of T (all f0; 1; : : : ; ng forsome n), it can easily be shown that BS is a sheaf.Let � : S1 ,! S2 in SYSil. We de�ne �S2S1 : BS2 ! BS1 by �S2S1(U) : BS2(U)!BS1(U) for every U 2 T , where for every h : U ! St(S2)�Act(S2), �S2S1(U)(h) =hSt(�); Act(�)i � h : U ! St(S1) � Act(S1) (with St(�)(s) = sjX1 for everys 2 St(S2) and Act(�)(f) = fjA1). In what follows, for every U 2 T and everyh 2 BS1(U), we will abbreviate �S2S1(U)(h) by hjS1 .(SYS�il will denote either SYSil, if the transitions of parallel actions are com-puted by (Gluing), or (SYSfil; J) in case the transitions of parallel actions obey(Independence).)Lemma 7.21 Let U 2 T be arbitrary but �xed. Let B0U : SYS�ilop ! Sets bede�ned for every object S 2 SYS�il by B0U (S) = BS(U) and for every morphism� : S1 ,! S2 by B0U (�) = �S2S1 : BS2(U)! BS1(U). Then B0U is a sheaf.Proof : Let S 2 SYS�il and fSj ,! S j j 2 Jg be a cover of S. Let fhjgj2Jbe such that for every j 2 J , hj 2 BSj (U) is a matching family, i.e. such thatfor every j1; j2 2 J , hj1 jSj1�SSj2 = hj1 jSj1�SSj2 . We show that there is a uniqueh 2 BS(U) such that hjSj = hj for every j 2 J .From the de�nition of the behavior of a subsystem, for all j 2 J and everyt 2 U , hj(t) = (stj; f tj), where stj 2 St(Sj) and f tj 2 Act(Sj), and if t; t+ 1 2 Uthen (stj ; st+1j ) 2 Tr(f tj).The family fhj j j 2 Jg is compatible; therefore for every t 2 U and everyj1; j2 2 J , stj1 jX1\X2 = stj2 jX1\X2 and f tj2 jA1\A2 = f tj2 jA1\A2 . Since St andAct are sheaves, it follows that for every t 2 U there is a unique st 2 St(S)such that stjXj = stj for every j 2 J , and a unique f t 2 Act(S) such thatf tjAj = f tj for every j 2 J . De�ne h : U ! St(S) � Act(S) by h(t) = (st; f t)for every t 2 U . Note that if t; t + 1 2 U , then (stj ; st+1j ) 2 Tr(f tj) for everyj 2 J , hence (stjXj ; st+1jXj ) 2 Tr(f tjAj ) for every j 2 J . By Proposition 7.14 orProposition 7.16 (depending on the rule which is applied for the computationof transitions of parallel actions), (st; st+1) 2 Tr(f t). It follows that h satis�esalso the conditions K(f). Then h 2 B(S) and for every j 2 J , hjSj = hj . 2Proposition 7.22 Let B : SYS�ilop ! Sh(T ) be de�ned for every object S ofSYS�il by B(S) = BS : T op ! Sets, and for every morphism � : S1 ,! S2 byB(i) = �S2S1 : B(S2)! B(S1), and let B0 : T op ! Sh(SYS�il) be de�ned for everyU 2 T by B0(U) : SYS�ilop ! Sets, B0(U)(S) = BS(U). Then B and B0 arefunctors.Proof : By the fact that all morphisms in SYS�il are transition-connected in-clusions and from Proposition 6.5 resp. 6.6 (depending of the rule for computing



7.2.4 Temporal Behavior of Systems in SYSil 251transitions of parallel actions) it follows that if S1 ,! S2 is a morphism in SYS�il,then for every h 2 BS2(U), �S2S1(h) 2 BS1(U), i.e. that �S2S1 is well-de�ned. It iseasy to see that �S2S1 : BS2 ! BS1 is a natural transformation. Let V � U , andlet iUV be the inclusion of V in U . Then the following diagram commutes:BS2(U)BS2 (iUV )
��

�S2S1(U)
// BS1(U)BS1(iUV )

��BS2(V ) �S2S1(V )// BS1(V ) (7.5)Hence, B is a functor. In order to show that B0 is a functor, note �rst that fromLemma 7.21 it follows that B0 is well-de�ned on objects. Let i : V ,! U be theinclusion between the open sets U; V 2 T . Let us de�ne B0(i) : B0(U)! B0(V )by B0(i)(S) : BS(U) ! BS(V ) by B0(i)(S)(h) = BS(iUV )(h) = hjV for everyh : U ! St(S)�Act(S) 2 BS(U). B0(i) is a natural transformation between thesheaves B0(U) and B0(V ). This follows from the commutativity of diagram 7.5.2Proposition 7.22 suggests that it might be possible to de�ne behavior as asheaf Bhv : (SYS�il � T )op ! Sets for a suitable Grothendieck topology on theproduct category SYS�il � T . One possible notion of covering is presented inwhat follows.De�nition 7.9 A covering family for (S;U) 2 jSYS�il � T j is a family thatcontains a family of the form fSi j i 2 Ig � fUg where fSi j i 2 Ig is a coverfor S in J .Lemma 7.23 The map that associates with every system (S;U) the familyK(S; T ) of covering families for (S;U) in the sense of De�nition 7.9, is a basisfor a Grothendieck topology on SYS�il � T .Proof : (1) The �rst property from the de�nition of a basis for a Grothen-dieck topology is satis�ed, since f(S;U)g is a cover for (S;U) according toDe�nition 7.9.(2) Let (S0; U 0) ,! (S;U), and let S 2 K(S) contain fSi j i 2 Ig � fUg. ThenS \ (S0; U 0) contains (S \ S0) � fU \ U 0g. Therefore it is a cover for (S0; U 0),since S \ S0 is a cover of S0.(3) Let S 2 K(S;U). Assume that S contains the family fSi j i 2 Ig � fUg.For every i 2 I, let Si 2 K(Si; U). Assume that for every i 2 I, Si contains thefamily (fSij j j 2 Iig � fUg).Therefore, fT j T 2 Si; i 2 Ig contains fSij j i 2 I; j 2 Iig � fUg. Weknow that fSij j i 2 I; j 2 Iig is a cover for S; it therefore follows thatfT j T 2 Si; i 2 Ig covers (S;U). 2Let JST be the Grothendieck topology generated by the basis K.



252 7 Categories of Systems with Inclusions as MorphismsProposition 7.24 The functor B : (SYS�il�T )op ! Sets de�ned by B(S;U) =BS(U) is a sheaf with respect to the Grothendieck topology JST .Proof : Let (S;U) be an object in SYS�il�T and let S = f(Si; Ui) j i 2 Ig 2JST (S;U). Let (hi)i2I be such that for every i 2 I, hi : Ui ! St(Si)�Act(Si),and for every i; j 2 I, the restriction to Ui \ Uj of hijSi�SSj is equal to therestriction to Ui \Uj of hj jSi�SSj . We will show that there is a unique h : U !St(S)�Act(S) such that for every i 2 I, hj(Si;Ui) = hi.Since S 2 JST , it follows that it contains a family of the form (fSk j k 2Kg � fUg) where fSi j i 2 Ig is a cover for S in J . We will denote the indexin S of (Sk; U), k 2 K, by ik.Since (hi)i2I is compatible, it follows that, in particular, its subfamily(hik)k2K is compatible. Therefore, there is a unique h : U ! St(S) � St(S)such that hSik = hik . From the compatibility of the family (hi)i2I it followsthat hj(Si;Ui) = hi for every i 2 I. 2Proposition 7.22 also suggests that the theory can be developed in twofurther directions:(1) Regard the category of systems as an internal category in Sh(T ). Thismight o�er some generalizations to the study of systems that vary in time,and is left as a topic for future research.(2) Regard T as an internal category in Sh(SYS�il; J). That is, regard everytime interval U in T as a sheaf in Sh(SYS�il; J). This can easily be doneif for every U 2 T we consider the sheaf U : SYS�ilop ! Sets obtained byshea��cation from the constant presheaf U : SYS�ilop ! Sets, de�ned onobjects by U(S) = U , and for every h : S1 ,! S2 by U(h) = IdU .This approach will be analyzed in Section 8.5.2 (in the particular casewhen only those systems are considered that arise by interconnecting agiven family of systems), and used in order to express temporal propertiesof systems.We will show that the representation of time intervals as sheaves over(SYS�il; J) in a natural way allows to have \di�erent time cycles" for in-dependent systems.Now we focus on simpler models for the behavior of systems, namely thosethat only take the actions performed into account, and ignore the states.7.2.5 Models for the Behavior of Systems: Monoids and Lan-guagesIn what follows we will assume that all the constraints on actions are of theform ai ^ aj = 0 (the constraints state which actions are dependent and cannotbe performed in parallel).



7.2.5 Models for the Behavior of Systems 253In the model proposed in Section 7.2.4, the behavior of a system was de-scribed by a functor BS : T op ! Sets, de�ned for every U 2 T by BS(U) =fh : U ! St(S)�Act(S) j K(h;U)g, where K(h;U) can be expressed byfor every n, if n; n+1 2 U and h(n) = (s; f), then h(n+1) = (s0; f 0)such that (s; s0) 2 Tr(f),and for every � : V � U , BS(�) : BS(U)! BS(V ) is the restriction to V .If we ignore the states of the system, then for every system S we can expressthe behavior of S byLS = ff1 : : : fn j n 2 N; fi 2 Act(S) : 8i 2 f1; : : : ; ng;9h 2 BS(f1; : : : ; ng);9si 2St(S); s.t. 8i 2 f1; : : : ; ng; h(i) = (si; fi)g.The elements of LS are strings of elements in Act(S).For every system S, let Act(S)� be the free monoid freely generated byAct(S), where the empty action 0 : AS ! f0; 1g, 0(a) = 0 for every a 2 AS isidenti�ed with the identity ".Let S1 ,! S2 be a transition-connected subsystem. The restriction mapAct(S2)! Act(S1) extends in a canonical way to a morphism of monoids,Act(S2)� ! Act(S1)�:Note that in general, if arbitrary constraints on actions are allowed, this canon-ical morphism of monoids is not necessarily surjective: since in S2 more con-straints may exist, not every parallel action that is allowed in S1 is also allowedin S2.Lemma 7.25 Assume that all the constraints on actions are of the form ai ^aj = 0. Let S1 ,! S2. Then the following a�rmations are equivalent:(1) For every action f 2 Act(S1) there exists an action f 2 Act(S2) such thatf jA1 = f .(2) C1 = C2 \ F 2B(A1).Proof : (1) ) (2) : Assume C1 6= C2 \ F 2B(A1), i.e. there is a constraintai ^ aj = 0 2 C2, with ai; aj 2 A1, but ai ^ aj = 0 62 C1.Let f : A1 ! f0; 1g such that f(ai) = f(aj) = 1. Then there is nof 2 Act(S2) such that f jA1 = f2.(2)) (1) : Assume C1 = C2\F 2B(A1). Let f 2 Act(S1). Let f : A2 ! f0; 1gbe de�ned by f(a) = f(a) for every a 2 A1 and f(a) = 0 for every a 2 A2nA1.Let ai ^ aj = 0 be a constraint in C2. If ai; aj 2 A1, then ai ^ aj = 0 2 C1,hence f(ai) ^ f(aj) = f(ai) ^ f(aj) = 0.If at least one of ai; aj 62 A1 (say ai) then f(ai) = 0, hence f(ai)^f(aj) = 0.This proves that f j= C2. 2Let now S be a system and fSi j i 2 Ig a cover of S. For every i 2 I, letpi : Act(S)� ! Act(Si)� be the canonical morphism of monoids that extendsthe restriction map, and let �i = ker(pi). Let � = Vi2I �i.
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Figure 7.2: A simple robotics scenarioFor every i; j 2 I such that Si ,! Sj let pji : Act(Sj)� ! Act(Si)� be theunique morphism of monoids that extends the restriction function from Act(Sj)to Act(Sj). Let D be the diagram de�ned by fAct(Si) j i 2 Ig with morphismspji for every Si ,! Sj . Then the limit of this diagram islim �DAct(Si)� = f(wi)i2I j pji (wj) = wi for every i; j 2 I s.t. Si ,! Sjg:Then the canonical morphism p : Act(S)� ! lim �DAct(Si)�, de�ned byp(f1 : : : fn) = (f1jAi : : : fnjAi)i2I , is such that ker(p) = �.Remark: Note that the morphism p : Act(S)� ! lim �Act(Si)� is not necessarilyinjective (in general � 6= �), as can be easily seen from the following example(in what follows we will denote by a the parallel action consisting only of a):Example 7.3 Consider the example given in Section 6.1 and described in Fig-ure 7.2. Let S the system covered by the sieve generated by S1; S2; S1 \ S2. Letf; g 2 Act(S)�, f = bring-a � bring-b, g = bring-b � bring-a. Then fjS1 = gjS1 =bring-a, fjS2 = gjS2 = bring-b, and fjS1\S2 = gjS1\S2 = ". Similarly, for anyother system S0 in the sieve generated by S1; S2; S1\S2 we have fjS0 = gjS0 = ".However, f 6= g.Remark: Note that the morphism p : Act(S)� ! lim �i2IAct(Si) is not neces-sarily surjective. There may be compatible families (even if we only considersingleton parallel actions) of sequences of actions that cannot be \glued to-gether" to a sequence of actions on Act(S), as can be seen in the followingexample:Example 7.4 Let S1; S2; S3 be three systems all having the same language, thesame constraints on variables and the same model for the variables, such thatAS1 = fa; bg; CS1 = fa ^ b = 0g;AS2 = fb; cg; CS2 = fb ^ c = 0g;



7.2.5 Models for the Behavior of Systems 255AS3 = fa; cg; CS3 = fa ^ c = 0g:Let S be the system obtained by interconnecting S1; S2; S3. ThenAS = fa; b; cg; CS = fa ^ b = 0; b ^ c = 0; a ^ c = 0g:Consider w1 = ab 2 Act(S1)�, w2 = bc 2 Act(S2)�, w3 = ca 2 Act(S3)�.It is easy to see that p112(w1) = p212(w2) = b, p223(w2) = p323(w3) = c,p113(w1) = p313(w3) = a, but there is no w 2 Act(S)� such that wjSi = wi; i =1; 2; 3.It follows that the (injective) map �,Act(S)�=� �,! lim �Act(Si)� ,!Yi2IAct(Si)�:is not necessarily surjective. This shows that the functor Act� : SYSilop ! Setsde�ned by Act�(S) = Act(S)�, is in general not a sheaf: neither the existencenor the uniqueness of a \global" sequence of actions that extends a compatiblefamily of \local" sequences of actions is guaranteed.The phenomenon illustrated by Example 7.4 | namely the fact that theremay exist \compatible" families of \local" sequences of actions that cannot beglued together to a \global" sequence of actions | has been studied in the (lessgeneral) context of asynchronous models for computations. In what follows webriey present some results concerning modeling behavior in the asynchronouscase, by using partially commutative monoids, and then make the link betweenour approach and such models. For the basic de�nitions cf. Section 4.3.1; fordetails see also [Die90].De�nition 7.10 Let S be a system, with set of actions AS and set of con-straints CS. Assume that all the constraints in CS are of the type ai ^ aj = 0.(1) Let DS � AS � AS be de�ned by (a; b) 2 DS i� a ^ b = 0 2 CS. Thedependence alphabet (AS ;DS [ �AS), denoted D(S), is the dependencealphabet of S.(2) The partially commutative monoid M(D(S)), denoted M(S), is the par-tially commutative monoid of S.(3) The graph (AS ;DS), denoted G(S), is the dependence graph of S.Let S1 ,! S2 in SYSil. Then AS1 � AS2 and DS1 � DS2 . By Theo-rem 4.21, there is a unique canonical projection, p21 : M(S2) ! M(S1) (whichis surjective). The canonical projection p21 is the unique morphism of (free)partially commutative monoids that extends the map h : AS2 ! AS1 de�nedby h(a) = ( a if a 2 AS1 ;" if a 62 AS1 :



256 7 Categories of Systems with Inclusions as MorphismsLet S be a system and S = fSi j i 2 Ig a covering family for S. Forevery i 2 I, there is a canonical projection pi : M(S) ! M(Si) (which issurjective). Moreover, if Si ,! Sj, then we denote the canonical projection bypji : M(Sj) ! M(Si), and if Si; Sj 2 S, then pjij : M(Sj) ! M(Si \ Sj), andpiij : M(Si)!M(Si \ Sj) are the canonical mappings.Proposition 7.26 Let S a system and S = fSi j i 2 Ig a covering family forS.(1) If the covering S is �nite, then there is a canonical embeddingi : M(S)! f(mi)i2I j mi 2M(Si);8i 2 I and piij(mi) = pjij(mj);8i; j 2 Ig:The canonical embedding is an isomorphism if and only if every chordlesscycle in the dependence graph GS of S is a cycle in a subgraph GSi forsome i 2 I.(2) If the covering S is in�nite, and if for every a 2 AS there are at most�nitely many i 2 I such that a 2 ASi , then there is an injective morphismM(S) ! Li2IM(Si), where LM(Si) = f(wi)i2I j wi 2 M(Si); wi =" almost everywhereg is the weak product of the family fM(GSi)gSi2 In-Sys.Proof : (1) The �rst part of the a�rmation follows from Consequence 4.22.The second part follows from Theorem 4.23 (see also [Die90], [MP86]).(2) The a�rmation follows from the comments following Consequence 4.22(see also [Die90]). 2Remark: Intuitively, a�rmation (2) can be explained by the fact that thetraces have to be of �nite length: if in�nitely many systems are working inparallel this has to be \controlled" by requiring that a family (mj)j2J hasalmost all its components equal to ".(Note also that weak products are special cases of global sections of sheavesof algebras (namely of sheaves over the co-�nite topology on the index set)[KC79].)It follows that the presheaf M : SYSil ! FPCM satis�es a gluing propertyfor those �nite covers S = fSj j j 2 Jg of an object S that have the additionalproperty that every chordless cycle in the dependence graph of S is a cycle inthe dependence graph of Sj for some j 2 J .



Chapter 8Interconnecting a GivenFamily of Interacting SystemsIn concrete applications we usually are only interested in some subcategory ofSYSil, having as objects those systems relevant for the given application (in theexample in Section 6.1 the relevant systems are S0; : : : ; S3 together with theircommon subsystems, and the systems obtained by interconnecting them).In what follows we will assume a family InSys of interacting systems given.To enforce the compatibility of models on common sorts, we may assume thatall these systems are subsystems of a �nite \universal system" SU . We assumethat they are transition-connected subsystems of SU . We further assume thatthe family InSys is closed under intersections (pullbacks in SYSil as subsystemsof SU ) i.e. it contains all those subsystems by means of which intercommuni-cation is done. The elements of InSys are the \building blocks" from whoseinterconnection larger systems arise.We can regard a system obtained by interconnecting the elements of thefamily InSys either as a system on its own, or as the set of all elements of InSysby whose interaction it arises (i.e. as a downwards-closed subset of InSys). Wewill analyze both these approaches, and then the relationship between them.First we study the category Sys(InSys) that has as objects all the systemsthat can be obtained by interconnecting elements in InSys.Note that, as in the case of SYSi and SYSil, although Sys(InSys) is a par-tially ordered set, it is in general not a lattice (meets may not exist) and evenif the corresponding meets and joins exist the distributivity law is not alwayssatis�ed. Thus, Sys(InSys) is not a locale.We de�ne a Grothendieck topology J on Sys(InSys) and show that in thiscase admissible states and parallel actions de�ne sheaves with respect to theGrothendieck topology J . Transitions are also analyzed: we show that also inthis case they de�ne a natural transformation between Act and 
St�St.Often it is useful to regard systems that arise when interconnecting elementsin InSys as \diagrams", or equivalently, as subsets of InSys closed under all pos-257



258 8 Interconnecting a Given Family of Interacting Systemssible subsystems. Let 
1(InSys) consist of all families of elements of InSys whichare closed under subsystems. We can regard it as a partially ordered set withrespect to set inclusion. Alternatively, if we assume given a coverage relationC on the elements in InSys we can instead consider the free frame generated by(InSys; C). If no system in InSys can be covered by other systems this frame isexactly 
1(InSys)n;. In what follows we will denote by InSys� the set InSysn;and by 
(InSys�) the Heyting algebra of all downwards-closed subsets of InSys�.(
(InSys�) is isomorphic to 
1(InSys)n;.)States and parallel actions can be de�ned component-wise; it can be easilyseen that they de�ne again sheaves (over the topological space (InSys�;
(InSys�)).Behavior can also be analyzed in this case: this can be done as in the case ofSYSil. We also analyze the behavior given by traces of executions. Our ap-proach is di�erent from the approach presented in [MP86]: we apply a theoremby Davey [Dav73] on the existence of a sheaf of algebras having as �bers quo-tients of a given algebra, and obtain a result similar to the one given in [MP86],but for partially commutative monoids instead of monoids. It shows that thereis a sheaf of monoids having as �bers the free partially commutative monoids as-sociated to the systems in InSys, but that only under very restrictive conditionsthe monoid of global sections is isomorphic to the free partially commutativemonoids associated to the system obtained by interconnecting the elements inInSys.In order to study the link between the categories Sys(InSys) and 
(InSys), weshow that there is an adjunction � : Sys(InSys)! 
(InSys) and � : 
(InSys)!Sys(InSys) such that the functor � preserves the covering relation. This adjointpair induces a geometric morphism f : Sh(InSys)! Sh(Sys(InSys); J).In order to express properties about systems we need a language in which toformulate them, and an interpretation in di�erent categories. Since many suchproperties are statements about states, actions and transitions, and we showedthat they can be expressed by sheaves in both cases considered above, it seemsnatural to de�ne a language and interpret it in Sh(Sys(InSys); J) and Sh(InSys).Therefore, we use geometric logic, having as goal to analyze the links be-tween properties of the systems in InSys and those of the system obtained byinterconnecting these systems. We show how certain sorts (denoting e.g. states,actions, pairs of states, sets of states) and function symbols (e.g. for represent-ing transitions) can be interpreted in the toposes analyzed above. If we considerthe topos Sh(InSys), we note that the stalk functors (inverse image functors)preserve the validity of so-called coherent axioms; since they are also collec-tively faithful they also reect it. On the other hand, the global section functoris an example of direct image functor (it preserves limits), hence it preservesthe validity of so-called cartesian axioms. If the topological space 
(InSys�) iscompact and totally disconnected (i.e. if there are �nitely many independentsystems) then the restrictions about uniqueness for the existentially quanti�edvariables are not necessary anymore.These considerations help in deciding which properties are inherited by thesystem obtained by interconnecting a family of given systems. Several examples



8.1 Sys(InSys) 259are provided: determinism, deadlock freedom, fairness of execution, as well asa discussion of general properties of the behavior of systems in time.In this chapter, if not explicitly speci�ed otherwise, S1 ,! S2 will denote atransition-connected morphism.8.1 The Category of Systems Obtained by Intercon-necting Elements of InSys, Sys(InSys)De�nition 8.1 (Interconnection) Let fSi j i 2 Ig be a family of elements inInSys. The system obtained by their interconnection is the colimit of the familyfSi j i 2 Ig, computed in SYSil.De�nition 8.2 The category Sys(InSys) has as objects all systems that can beobtained by interconnecting elements in InSys, and a morphism from S1 to S2if and only if S1 is a transition-connected subsystem of S2.It is easy to see that as a subcategory of SYSil, Sys(InSys) is closed undercolimits (colimits of colimits of elements in In-Sys are again colimits of elementsin In-Sys), but it is in general not closed under pullbacks: it can happen thatthe pullback in SYSil of two systems that are colimits of elements in InSys isnot the colimit of elements in InSys, as the following example will show.Example 8.1 Let � = f0; 1;�g be a signature where 0 and 1 are 0-ary functionsymbols and � is a binary predicate symbol. Let M = (f0; 1g; f0M ; 1M ;�Mg)be a �-structure where �M is an order relation and 0 �M 1. For the sake ofsimplicity we assume that in what follows the set A of atomic actions and theset C of constraints are empty.Assume that InSys consists of the systems:S1 = (�; fa; bg; fa � bg;M;A;C);S2 = (�; fb; cg; fb � cg;M;A;C);T = (�; fa; c; e; fg; fa � c; e � fg;M;A;C);together with their intersections. The family InSys is represented in Figure 8.1Let S be the system obtained by interconnecting S1 and S2.S = (�; fa; b; cg; fa � b; b � c; a � cg;M;A;C)is the colimit of the diagram fS1; S2; S1 \ S2g in SYSil, hence S 2 Sys(InSys).Consider the pullback S \ T of S and T (as subsystems of the systemsobtained by interconnecting all elements in InSys) in SYSil,S \ T = (�; fa; cg; fa � cg;M;A;C):It is easy to see that S \ T is not a colimit of elements in InSys.
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Figure 8.1:The covering families are de�ned as in SYSil.De�nition 8.3 Let S be a system in Sys(InSys). A family S = fSi j i 2 Ig oftransition-connected subsystems of S, in Sys(InSys) is a covering family for Sif and only if(C1) S is a sieve in Sys(InSys),(C2) S is a colimit of the diagram de�ned by S,(C3) For every transition connected subsystem T of S in Sys(InSys),T \ S = fSi 2 S j Si transition-connected subsystem of Tghas T as colimit.Example 8.2 We give two examples:(1) Consider the family InSys introduced in Example 8.1, and represented inFigure 8.1. It is easy to see that fS1; S2; S1\S2; S1\ST ; S2\ST g is a cover of S.(2) Assume that InSys consists of the systems:S1 = (�; fa; bg; fa � bg;M);S2 = (�; fb; cg; fb � cg;M);T = (�; fa; cg; fa � cg;M);together with their intersections (where �;M;A;C are as in Example 8.1). Thefamily InSys is represented in Figure 8.2.Let S be the system obtained by interconnecting S1 and S2, i.e.S = (�; fa; b; cg; fa � b; b � c; a � cg;M;A;C)is the colimit of the diagram fS1; S2; S1 \ S2gIt is easy to see that fS1; S2; S1 \S2g is not a covering family for S becausein particular T ,! S is a transition-connected subsystem, but fT \S1; T \S2; T \S1 \ S2g does not have T as a colimit.



8.1 Sys(InSys) 261
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Figure 8.2:Proposition 8.1 The function J assigning for every system S the set J(S) ofall covering families for S is a Grothendieck topology on Sys(InSys).Proof : The proof closely follows the proof given in the case of SYSil. 2Lemma 8.2 Let S be an object in Sys(InSys). Then the family of all transition-connected subsystems of S contained in InSys, fSi 2 InSys j Si ,! Sg is acovering family for S.Proof : S is an object of Sys(InSys), hence S = lim�!fRk j k 2 Kg, whereRk 2 InSys for every k 2 K. The set fRk j k 2 Kg is contained in the setfSi 2 InSys j Si ,! Sg, hence by the universality property of the colimit itfollows that S = lim�!fSi 2 InSys j Si ,! Sg.Let T ,! S be a subsystem of S in Sys(InSys). Then T = lim�!fTl j l 2 Lg,with Tl 2 InSys for every l 2 L. Since Tl ,! T and T ,! S, it follows that fTl jl 2 Lg � fSi 2 InSys j Si ,! Sg, hence fTl j l 2 Lg � fSi 2 InSys j Si ,! Tg.Thus, by the universality property of the colimit it follows that T is the colimitof fSi 2 InSys j Si ,! Tg.This shows that all conditions in the de�nition of a cover are ful�lled, andthat fSi 2 InSys j Si ,! Sg is a covering family for S. 2Proposition 8.3 Assume that in InSys no system is a colimit of other sub-systems. Let S be a system in Sys(InSys). Then every covering family of Scontains all the elements of InSys that are subsystems of S.Proof : Let S = fSi j i 2 Ig be a cover of S. Let T 2 InSys be a transition-connected subsystem of S. Then, by the de�nition of a covering family it followsthat T is covered by fSi j Si 2 S; Si ,! Tg.We know that for every i 2 I, Si is covered by the family S(Si) = fSij 2InSys j Sij ,! Sig. Hence, the family fSij j Sij 2 S(Si); Si ,! Tg covers T .It follows that T = Sij for some Sij 2 S(Si), where Si ,! T . Thus, we haveT ,! Si, hence, T = Si for some i 2 I. 2De�nition 8.4 A �nest cover is a cover none of whose elements can be furtherdecomposed via a cover (except the trivial one).



262 7 Categories of Systems with Inclusions as MorphismsConsequence 8.4 Assume that in InSys no system is a colimit of other sys-tems. Then every system S in Sys(InSys) has a �nest cover, namely fSi 2InSys j Si ,! Sg.Until now, all categories taken into consideration had pullbacks. Hence,when checking whether a functor is a sheaf it su�ced to use Proposition 3.32.Since Sys(InSys) does not have pullbacks, we will need to use the generalde�nition of a sheaf, as given in De�nition 3.98 in what follows, namely:A presheaf F over Sys(InSys) is a sheaf if and only if for every object Sin Sys(InSys) and each cover S of S in Sys(InSys), the following diagram is anequalizer: F (C) e�! YSi,!S2SF (Si) p //a //
YT ,!Sj ;Sj ,!S2SF (T ): (8.1)Lemma 8.5 The functors St : Sys(InSys)op ! Sets and Act : Sys(InSys)op !Sets de�ned by St(S) = fs : XS ! MS j s j= �Sg and Act(S) = ff : AS !f0; 1g j f j= CSg are sheaves.Proof : In order to prove that for every cover S = fSi j i 2 Ig of S, St(S) isthe coequalizer from diagram 8.1 (with F correspondingly replaced by St), wehave to show that every family fsigi2I , such that for every i 2 I, si 2 St(Si),and for every Sj ,! Si, sijXj = sj can be amalgamated to a unique s 2 St(S).Let fsigi2I be such that for every i 2 I, si 2 St(Si), and for every i; j 2 Iwith Sj � Si, sijXj = sj. We �rst show that for every Si1 ; Si2 2 S there existsa system Sj 2 S such that Xj = Xi1 \Xi2 .Let Si1 ; Si2 2 S be arbitrary but �xed. Si1 = lim�!fT 1j j j 2 J1g, Si2 =lim�!fT 2k j k 2 J2g, where T 1j ; T 2k are elements of InSys.By the fact that InSys is closed under intersections and from the universalityproperty of colimits it follows that T = lim�!fT 1j \ T 2k j j 2 J1; k 2 J2g is atransition-connected subsystem of both Si1 and Si2 . Moreover, T is a systemin Sys(InSys), so, since S is a sieve, T is in S. Thus, T = Sj for some j 2 I.Therefore, si1 jXj = sj = si2 jXj . It is easy to see that Xj = Xi1 \Xi2 . Thus,we proved that for every i1; i2 2 I, si1 jXi1\Xi2 = si2 jXi1\Xi2 .Then it follows immediately that there is a unique s : X ! M such thatsjXi = si for all i 2 I. Since for every i 2 I, si j= �i, it follows that s j=(Si2I �i)� = �S.The fact that Act is a sheaf can be proved analogously. 28.1.1 Transitions within Sys(InSys)We now study the properties of transitions in Sys(InSys).



8.2 
(InSys) 263The fact that for every arrow S1 ,! S2 in Sys(InSys) valid transitions in S2restrict to valid transitions in S1 is a consequence of Proposition 6.5, Proposi-tion 6.6 and Proposition 7.8.Concerning the relationship between transitions in the elements of a coveringfamily for a system S and the transitions in S, note �rst that the proof ofProposition 7.14 also holds in this case. Hence, if the transitions associated toadmissible parallel actions satisfy (Gluing) and S = fSi j i 2 Ig is a cover forS in Sys(InSys) then for every s1; s2 2 St(S) and f 2 Act(S), (s1jXi ; s2jXi) 2TrSi(fjAi) for every i 2 I implies (s1; s2) 2 TrS(f).If we assume that the actions may consume common resources and aredeterministic, and the transitions of parallel actions are obtained according tothe rule (Independence), then it turnes out that Proposition 7.14 also holdsfor Sys(InSys), although this category is not closed under pullbacks.Proposition 8.6 Let fSi j i 2 Ig be a covering family for S. Assume thatthe actions in S and fSi j i 2 Ig are deterministic (the �nal state is uniquelydetermined by the initial state in case an action is applied).Let a 2 AS and let s 2 St1(S) such that for every i 2 I there exists astate si 2 St1(Si) such that (sjXi ; si) 2 TrSi(a) (i.e. if a 62 Ai then sjXi = si,otherwise (sjXi\Xa ; siXi\Xa) 2 TrSia and s(x) = si(x) if x 2 XinXa). Thenthere is a unique state s 2 St1(S) such that for all i 2 I, sjXi = si and(s; s) 2 TrS(a).Proof : From the hypothesis we know that for every i 2 I there exists astate si 2 St1(Si) such that (sjXi ; si) 2 TrSi(a). By the determinism of actionsit follows that the family fsigi2I is such that for every i 2 I, si 2 St(Si) and forevery Sj ,! Si, sijXj = sj (from the fact that if Sj ,! Si, (sjXj ; sijXj ) 2 TrSj (a),and from the determinism of a in Sj).By Proposition 8.5, this family can be amalgamated to a unique s 2 St(S).It follows that (sjXi ; sjXi) 2 TrSi(a) for every i 2 I, hence by Lemma 7.13,(s; s) 2 TrS(a). 2All the other results from Section 7.2.3 also hold for the category Sys(InSys).Thus also in this case transitions de�ne a natural transformation betweensheaves in Sh(Sys(InSys); J), Tr : Act! 
St�St.As in Section 7.2.3, note that Tr : Sys(InSys)op ! Sets de�ned byTr(S) = f(f; s; s0) j f 2 Act(S); s; s0 2 St(S); (s; s0) 2 TrS(f)gis a subsheaf of Act� St� St.8.2 The Category of Downwards-closed Subsets ofInSys 
(InSys)It is often useful to regard systems that arise when interconnecting elements inInSys as \diagrams", or equivalently, as subsets of InSys closed under all possible



264 8 Interconnecting a Given Family of Interacting Systemssubsystems. We now show that, if we assume that the elements in InSys areindependent then the family of those \diagrams" of elements in InSys consist-ing of subsets of InSysn; closed under all possible subsystems is the free framefreely generated by InSys together with the constraint that the empty family ofsystems covers the empty system.We assumed that the \building blocks" form a meet-semilattice InSys. Let Cbe a coverage relation on InSys, i.e. a function assigning to each S 2 InSys a setC(S) of subsets of # S, called coverings of S, with the following \meet-stability"property:If R 2 C(S) then for all T ,! S; T 2 InSys; fR \ T j R 2 Rg 2 C(T ):Let FF(InSys;C) be the free frame freely generated by the meet semilat-tice InSys with the coverage relation C. It is known ([Joh82], pp.57-59) thatFF(InSys;C) is isomorphic (as a frame) with the frame of all C-ideals of InSys (aC-ideal of InSys is an order-ideal I of the meet-semilattice InSys that satis�esIf 9R 2 C(S) such that R � I then S 2 I:)In what follows we assume that the systems in InSys are independent, inthe sense that no (non-empty) element in InSys is the colimit of other elementsof InSys. (However, the empty system ; is the colimit of the empty family ofsystems.) This de�nes a covering relation C on InSys. Let FF(InSys;C) be thefree frame freely generated by InSys together with the covering relation C. Weknow that FF(InSys;C) is isomorphic to the set of all C-ideals of InSys. It iseasy to see that an order-ideal I of InSys is a C-ideal if and only if it containsthe empty set.Therefore, the free frame freely generated by InSys together with the cover-ing relation C is the family of those order-ideals that contain the empty system.Let 
1(InSys) consist of all families of elements of InSys which are closedunder subsystems. We can regard it as a partially ordered set with respect toset inclusion. It is easy to see that there is an isomorphism of frames betweenFF(InSys;C) and 
1(InSys)n;. But 
1(InSys)n; is isomorphic (as a frame) withthe set of downwards-closed subsets of InSys that do not contain ;.Therefore, in what follows we will consider the set 
(InSys) of those downwards-closed subsets of InSys that do not contain ; (it is easy to see that this is indeeda topology on InSysn;).We will denote by Sh(InSys) the category of sheaves over InSysn; with thetopology 
(InSys).States and parallel actions of such \diagrams" of systems can be expressedcomponent-wise.Let St : 
(InSys)op ! Sets be de�ned on objects bySt(U) = f(si)Si2U j si 2 St(Si); and if Si ,! Sj then si = sj jXig;and such that for � : U1 � U2, St(�) : St(U2)! St(U1) is de�ned by St(�)((si)Si2U2) =(si)Si2U1 .



8.2 
(InSys) 265Let Act : 
(InSys)op ! Sets be de�ned on objects byAct(U) = f(fi)Si2U j fi 2 Act(Si); and if Si ,! Sj then fi = fj jAig;and such that for � : U1 � U2, Act(�) : Act(U2) ! Act(U1) is de�ned byAct(�)((fi)Si2U2) = (fi)Si2U1 .Proposition 8.7 St and Act are objects in Sh(InSys) (as a topological space)with the topology consisting of all downwards-closed sets.Proof : Obvious. 2In what follows, for every Si 2 InSys we will denote by # Si the set of allelements in InSys that are contained in S.Lemma 8.8 Let F : 
(InSys)op ! Sets be a sheaf. Then for every Si 2 InSys,the stalk of F at Si, FSi is in bijective correspondence with F (# Si).Proof : We know that the stalk of F at Si, FSi = lim�!Si2UF (U). It is easyto see that, if U is a downwards-closed set with Si 2 U , then # Si � U . It iseasy to show that F (# Si) satis�es the universality property of the colimit ofthe diagram fF (U) j Si 2 Ug (with the appropriate morphisms F (U) �UV! F (V )for every V � U). This shows that there is a bijection between FSi and F (# Si).2Consequence 8.9 For every Si 2 InSys, the stalk of St at Si, StSi is in bijec-tive correspondence with St(# Si) and the stalk of Act at Si, ActSi is in bijectivecorrespondence with Act(# Si).Proof : Follows from Lemma 8.8, since St and Act are sheaves. 2Proposition 8.10 Let U 2 
(InSys) be a downwards-closed set, and let S bethe colimit of the diagram de�ned by U . There is a bijective correspondencebetween St(S) and St(U), and a bijective correspondence between Act(S) andAct(U).Proof : The colimit of the diagram de�ned by U = fSi j i 2 Ig is the systemS, with �S = Si2I �i;XS = Si2I Xi;MS = MU j�S ;�S = (Si2I �i)�; AS =Si2I Ai; CS = (Si2I Ci)�.Let s 2 St(S). Then s : Si2I Xi ! M , hence for every i 2 I, si = sjXi :Xi !Mi 2 St(Si). De�ne f(s) = (si)Si2U . Then f(s) 2 St(U).Conversely, for every (si)Si2U such that si 2 St(Si) and if Si ,! Sj, si =sj jXj , there exists a unique s 2 St(S) such that sjXi = si, for every i 2 I(follows from the fact that InSys is closed under intersections). This proves thebijectivity of f . 2Consequence 8.11 For every Si 2 InSys there are bijective correspondencesbetween the stalk StSi at Si and St(Si), and between the stalk ActSi at Si andAct(Si).



266 8 Interconnecting a Given Family of Interacting Systems8.2.1 Transitions within 
(InSys)We now study the transitions between systems. Recall that for every system Siin InSys and every action a 2 Ai, the transition de�ned by a in Si is denotedby TrSi(a). For every f 2 Act(Si), we denote the transition associated to f inSi by TrSi(f).For every U 2 
(InSys) and every f = (fi)Si2U 2 Act(U) we will denote byTrU (f) the set f(s; s0) j s = (si)i2U ; s0 = (s0i)i2U 2 St(Si) and 8i 2 U; (si; s0i) 2TrSi(fi)g.We want to show that, like in the category SYSil, transitions can be modeledby a natural transformation Tr : Act! 
St�St. We proceed as in Section 7.2.3:For every U 2 
(InSys) and every f = (fi)Si2U 2 Act(U), let TrU (f) :y(U)� St� St! 
 be de�ned for every U 0 � U and every s; s0 2 St(U 0) byTrU (f)(U 0)(s; s0) = fU 00 � U j 8Si 2 U 00; (si; s0i) 2 TrSi(fi)g:Lemma 8.12 For every U;U 0 2 
(InSys) with U 0 � U , every f = (fi)Si2U 2Act(U), and every s = (si)i2U 0 ; s0 = (s0i)i2U 0 2 St(U 0), TrU (f)(U 0)(s; s0) is aclosed sieve.Proof : It is easy to see that TrU (f)(U 0)(s; s0) is a sieve. We prove that itis closed.Let fU 00k gk2K be a cover for U 00. Assume that for every k 2 K, U 00k 2TrU (f)(U 0)(s; s0), i.e. for every Si 2 U 00k , (si; s0i) 2 TrSi(fi). Let Si 2 U 00.Then Si 2 U 00k for some k 2 K, hence (si; s0i) 2 TrSi(fi). This proves thatU 00 2 TrU (f)(U 0). Thus, TrU (f)(U 0) is a closed sieve. 2Lemma 8.13 Let f = (fi)Si2U 2 Act(U). Then TrU (f) : y(U)�St�St! 
,de�ned for every U 0 2 
(InSys) and every s = (si)i2U 0 ; s0 = (s0i)i2U 0 2 St(U 0)by TrU (f)(U 0)(s; s0) = fU 00 � U 0 j 8Si 2 U 00; (si; s0i) 2 TrSi(fi)g, is a naturaltransformation.Proof : It is easy to see that for every U1 � U2 � U 0 the following diagramis commutative: St(U2)� St(U2)St(i)�St(i)
��

TrU (f)(U2) // 
(U2)
(i)
��St(U1)� St(U1)TrU (f)(U1) // 
(U1) (8.2)Indeed, for every (s; s0) 2 St(U2) � St(U2) such that s = (si)i2U2 and s0 =(s0i)i2U2 , we have on the one hand
(i)(TrU (f)(U2)(s; s0)) = fU 00 � U1 j U 00 � U1 � U2 2 TrU (f)(U2)(s; s0)g == fU 00 � U1 j (si; s0i) 2 TrSi(fi);8i 2 U 00g;and on the other hand, TrU (f)(U1)(sjU1 ; s0jU1) = fU 00 � U1 j (si; s0i) 2 TrSi(fi);8i 2U 00g. This proves that the diagram commutes. 2



8.3 Temporal Behavior in Sys(InSys) and 
(InSys) 267Consequence 8.14 For every U 2 
(InSys) and f 2 Act(S), TrU(f) 2
St�St(U).Proposition 8.15 Tr : Act! 
St�St de�ned for every U 2 
(InSys) by TrU :Act(U)! 
St�St(U) is a natural transformation in Sh(InSys).Proof : We show that for every U1 � U2 2 
(InSys) the following diagramcommutes: Act(U2)Act(i)
��

TrU2// 
St�St(U2)
St�St(i)
��Act(U1) TrU1// 
St�St(U1) (8.3)Let f = (fi)i2U2 2 Act(U2). Then 
St�St(i)(TrU2(f)) is de�ned for everyU 0 � U1 and s; s0 2 St(U 0) by 
St�St(i)(TrU2(f))(U 0)(s; s0) = fU 00 � U 0 j(sjU 00 ; s0jU 00) 2 TrU2(fjU 00g = TrU2(fjU1)(U 0)(s; s0). 2Also, Tr : 
(InSys)op ! Sets de�ned byTr(U) = f(f; s; s0) j f = (fi)Si2U 2 Act(U); s = (si)Si2U ;s0 = (s0i)Si2U 2 St(U); (si; s0i) 2 TrSi(fi);8Si 2 Ugis a subsheaf of Act�Act�Act.8.3 Temporal Behavior in Sys(InSys) and 
(InSys)For the sake of simplicity, in what follows Sys will denote one of the cate-gories Sys(InSys) or 
(InSys). The objects of the category (either systems ofdownwards-closed subsets of InSys) will be denoted by S; S1; S2; : : : ; Si; : : :.On both these categories we have a suitable notion of covering, that inducesGrothendieck topologies. By St, Act, and Tr we will denote either the sheavesSt, Act resp. the natural transformation Tr if Sys = Sys(InSys) or St;Act, andTr in the case when Sys = 
(InSys).De�nition 8.5 Let S be a system in Sys. The behavior of S is a functorBS : T op ! Sets de�ned for every T 2 T by BS(T ) = fh : T ! St(S)�Act(S) jK(h; T )g, where K(h; T ) can be expressed byfor every n, if n; n + 1 2 T and h(n) = (s; f), h(n + 1) = (s0; f 0)then (s; s0) 2 Tr(f),and for every � : T1 � T2, BS(�) : BS(T2)! BS(T1) is the restriction to T1.Thanks to the particular form of the open sets of T (all f0; 1; : : : ; ng forsome n), it can easily be shown that BS is a sheaf.



268 8 Interconnecting a Given Family of Interacting SystemsLet � : S1 ,! S2 in Sys. We de�ne �S2S1 : BS2 ! BS1 by �S2S1(T ) : BS2(T ) !BS1(T ) for every T 2 T , where for every h : T ! St(S2)�Act(S2), �S2S1(T )(h) =hSt(�); Act(�)i � h : T ! St(S1) � Act(S1) (with St(�)(s) = sjX1 for everys 2 St(S2) and Act(�)(f) = fjA1). In what follows, for every T 2 T and everyh 2 BS1(T ), we will abbreviate �S2S1(T )(h) by hjS1 .Lemma 8.16 Let T 2 T be arbitrary but �xed. Let B0T : Sysop ! Sets bede�ned for every object S 2 Sys by B0T (S) = BS(T ) and for every morphism� : S1 ,! S2 by B0T (�) = �S2S1 : BS2(T )! BS1(T ). Then B0T is a sheaf.Proof : Let S 2 Sys and fSj ,! S j j 2 Jg be a cover of S. Let fhj j j 2 Jg,hj 2 BSj (T ) be a matching family. We show that there is a unique h 2 BS(T )such that hjSj = hj for every j 2 J .From the de�nition of the behavior of a subsystem, we know that for allj 2 J and every t 2 T , hj(t) = (stj; f tj), where stj 2 St(Sj) and f tj 2 Act(Sj),and if t; t+ 1 2 T then (stj; st+1j ) 2 TrSj (f tj).Since fhj j j 2 Jg is a matching family, the families fstj j j 2 Jg andff tj j j 2 Jg are matching families for every t 2 T .Since St and Act are sheaves, it follows that for every t 2 T there is a uniquest 2 St(S) such that stjSj = stj for every j 2 J , and a unique f t 2 Act(S) suchthat f tjSj = f tj for every j 2 J . De�ne h : T ! St(S)�Act(S) by h(t) = (st; f t)for every t 2 T . Note that if t; t + 1 2 T , then (stj ; st+1j ) 2 TrSj (f tj) for everyj 2 J , hence (stjSj ; st+1jSj ) 2 TrSj (f tjSj ) for every j 2 J . By Proposition 7.14adapted to Sys(InSys) or Proposition 8.6 (depending on the rule which is appliedfor the computation of transitions of parallel actions) if Sys = Sys(InSys), resp.by the de�nition of Tr, if Sys = 
(InSys), we know that (st; st+1) 2 TrS(f t). Itfollows that also h satis�es the conditions K(f). Then h 2 B(S) and hjSj = hj .2Proposition 8.17 Let B : Sysop ! Sh(T ) be de�ned for every object S ofSys by B(S) = BS : T op !Sets, and for every morphism � : S1 ,! S2 byB(i) = �S2S1 : B(S2) ! B(S1), and let B0 : T op ! Sh(Sys) be de�ned for everyT 2 T by B0(T ) : Sysop ! Sets, B0(T )(S) = BS(T ), and for every T2 �� T1 byB0(�) : B0(T1)! B0(T2), where for every system S, B0(�)S = BS(�) : BS(T1)!BS(T2). Then B and B0 are functors.Proof : We know that in both Sys(InSys) and 
(InSys) for every arrowS1 ,! S2, transitions in S2 restrict to transitions in S1. It follows that ifS1 ,! S2 is a morphism in Sys, then for every h 2 BS2(T ), �S2S1(h) 2 BS1(T ),i.e. that �S2S1 is well-de�ned. It is easy to see that �S2S1 : BS2 ! BS1 is a naturaltransformation. Let T1 � T2, and let iT2T1 be the inclusion of T1 in T2. Then the



8.4 Models for Behavior in 
(InSys): Traces 269following diagram commutes:BS2(T2)BS2 (iT2T1 )
��

�S2S1 (T2)// BS1(T2)BS1 (iT2T1 )
��BS2(T1)�S2S1 (T1)// BS1(T1) (8.4)Hence, B is a functor. In order to show that B0 is a functor, note �rst that fromLemma 8.16 it follows that B0 is well-de�ned on objects. Let i : T1 ,! T2 bethe inclusion between the open sets T1; T2 2 T . Let us de�ne B0(i) : B0(T2)!B0(T1) by B0(i)(S) : BS(T2) ! BS(T1) by B0(i)(S)(h) = BS(i)(h) = hjT1 forevery h : T2 ! St(S)�Act(S) 2 BS(T2). B0(i) is a natural transformation be-tween the sheaves B0(T2) and B0(T1). This follows also from the commutativityof diagram 8.4. 2Similar functors, BSt, B0St, resp. BAct, B0Act can be de�ned, in which only theinformation about states (resp. actions) is encoded. Natural transformationscan be de�ned: e.g. for every object T of T , �T1 : B0(T ) ! B0St(T ) and �T2 :B0(T )! B0Act(T ) de�ned for every system S by �T1 (S)(h) = �1 �h : T ! St(S)and �T2 (S)(h) = �2 � h : T ! Act(S).8.4 Models for Behavior in 
(InSys): TracesIf we ignore the states of the system, then we can express the behavior of anydiagram of systems V 2 
(InSys) byLS = ff1 : : : fn j n 2 N; fi 2 Act(V )8i 2 f1; : : : ; ng;9h 2 BS(f1; : : : ; ng);9si 2 St(S); such that 8i 2 f1; : : : ; ng; h(i) = (si; fi)g:The elements of LS are strings of elements in Act(V ).In what follows we will assume that all constraints on actions are of theform ai ^ aj = 0 (the constraints state which actions are interdependent andtherefore cannot be performed in parallel).Consider the family fAct(Si)� j Si 2 InSysg, where for every Si 2 InSys,Act(Si)� is the monoid freely generated by Act(Si). For every Si; Sj 2 InSyssuch that Si ,! Sj, let �SjSi : Act(Sj) ! Act(Si) be the restriction to Si. Therestriction extends in a canonical way to a homomorphism of monoids, pji :Act(Sj)� ! Act(Si)�.Let M = f(wi)Si2InSys j wi 2 Act(Si)� and 8Si ,! Sj; pji (wj) = wig.Lemma 8.18 M is the limit of the diagram fAct(Si)� j Si 2 InSysg (with theappropriate morphisms pji for every Si ,! Sj).



270 8 Interconnecting a Given Family of Interacting SystemsProof : It is easy to see that M de�nes a cone and satis�es the universalityproperty of a limit. 2For every V 2 
(InSys) let M(V ) be de�ned by M(V ) = f(wi)Si2V j wi 2Act(Si)� and wijSj = wj for every Sj ,! Sig. M(V ) is the limit of the diagramfAct(Si)� j Si 2 V g (with the corresponding morphisms).Proposition 8.19 Let M : 
(InSys)op ! Sets be de�ned on objects by M(U) =f(wi)Si2V j wi 2 Act(Si)� and wijSj = wj for every Sj ,! Sig, and for ev-ery � : U1 � U2 by M(�) : M(U2) ! M(U1) de�ned for every (wi)Si2U2 byM(�)((wi)Si2U2) = (wi)Si2U1. Then M is a sheaf of monoids.Proof : Let U 2 
(InSys) and fUk j k 2 Kg be a cover for U . Let fwkgk2Kbe a family of elements, such that for every k 2 K, wk = (wik)Si2Uk and forevery k1; k2 2 K, if Si 2 Uk1 \ Uk2 then wik1 = wik2 .Let w = (wi)Si2U be de�ned as follows: for every Si 2 U , Si 2 Uk for somek. Then wi is de�ned to be wik. It is easy to see that wi is well-de�ned, becauseof the compatibility of the family fwkgk2K . It is clear that pUUk(w) = wk forevery k 2 K. The uniqueness of w follows easily from the fact that for everyw0 = (w0i)Si2U such that pUUk(w0) = wk for every k 2 K we have w0i = wki forevery Si 2 Uk. 2However, note that in general M(U) is not in bijective correspondence withthe monoid Act(S)�, where S is the colimit of the diagram de�ned by U .In what follows we will focus on \one-element" actions, i.e. take into ac-count models for asynchronous systems. Instead of using the method describedin [MP86], we will use the results on sheaves of algebras presented in Sec-tion 4.1.1. This method seems to be more natural, since intuitively, whenstudying a system of interacting systems we start by studying the \�bers", notthe open sets. We will deduce (in a slightly more general form) results similarto those given in [MP86].Let S be the colimit of the diagram de�ned by InSys. Let (AS ;DS) be thedependence alphabet of S, and M(S) = M(AS ;DS). For every Si 2 InSys,Si 6= ;, let M(Si) = M(Ai;Di) be the partially commutative monoid associ-ated with the dependence alphabet of Si. We know that AS = SSi2InSysAiand DS = SSi2InSysDi. By Theorem 4.21, for every Si 2 InSys there is acanonical projection pi : M(S) ! M(Si) (which is surjective)1. Moreover, ifSj ,! Si, then we denote the canonical projection by pij : M(Si)!M(Sj), andif Si; Sj 2 S, then pjij : M(Sj) ! M(Si \ Sj), and piij : M(Si) ! M(Si \ Sj)are the canonical mappings. Note that by Theorem 4.21 all homomorphismspij : M(Si)!M(Sj) and piij : M(Si)!M(Si \ Sj) are surjective.1The canonical projection pi is the unique morphism of (free) partially commutativemonoids that extends the map hi : A! Ai de�ned by hi(a) = � a if a 2 Ai" if a 62 Ai .



8.4 Models for Behavior in 
(InSys): Traces 271For every Si 2 InSys let �i = ker(pi). Then M(Si) 'M(S)=�i.From the de�nition of the canonical projections pi it follows that for everySj ,! Si, the following diagram is commutative:M(Si)pij
��

M(S)piddI I I I I I I I Ipjzzu u
u u
u u
u u
uM(Sj) (8.5)

Lemma 8.20 
(InSys) is a S-topology (cf. De�nition 4.2).Proof : We have to show that for every m1;m2 2M(S), if pi(m1) = pi(m2)then there exists an open neighborhood U of Si in 
(InSys) such that for everySj 2 U , pj(m1) = pj(m2).Let m1;m2 2 M(S). Assume that pi(m1) = pi(m2). Let U =# Si be thedownwards-closed subset of InSysn; generated by Si. It is an open set, and fromthe commutativity of Diagram 8.5, pj(m1) = pij(pi(m1)) = pij(pi(m2)) = pj(m2)for every Sj 2 U . 2Let (F; f; InSys) be de�ned by F = `Si2InSysM(Si), and f : F ! InSysbe the natural projection. Assume that a subbasis for the topology on F isSB = f[m](U) j U 2 
(InSys);m 2 M(S)g, where [m](U) = fpi(m) j Si 2 Ug.Since 
(InSys) is an S-topology, by Theorem 4.3 and Corollary 4.4 it followsthat: (1) (F; f; InSys) is a sheaf space of algebras,(2) The stalk at Si 2 InSys is isomorphic to M(Si),(3) In M(S) �! �(InSys; F ) � QSi2InSysM(Si) �i!M(Si):(3.i) �i � � is an epimorphism,(3.ii) M(S) is a subdirect product of the family fM(Si)gSi2InSysif and only if � is a monomorphism.Lemma 8.21 Let s : InSys ! `Si2InSysM(Si) be such that s(Si) 2 M(Si) forevery Si 2 InSys. Let m 2 M(S) and U 2 
(InSys). Then Si 2 s�1([m](U)) ifand only if Si 2 U and s(Si) = pi(m).Proof : Note that s�1([m](U)) = fSi 2 InSys j s(Si) 2 [m](U)g = fSi 2InSys j s(Si) 2 fpj(m) j Sj 2 Ugg.For proving the direct implication assume that Si 2 s�1([m](U)). Thens(Si) = pj(m) for some Sj 2 U . Since f � s(Si) = Si, it follows that Si =f(s(Si)) = f(pj(m)) = Sj , hence Si 2 U and s(Si) = pi(m).To prove the converse, assume that Si 2 U and s(Si) = pi(m). Thens(Si) 2 fpj(m) j Sj 2 Ug, hence Si 2 s�1([m](U)).This shows that Si 2 s�1([m](U)) if and only if Si 2 U and s(Si) = pi(m).2



272 8 Interconnecting a Given Family of Interacting SystemsLemma 8.22 Let � be the topology on F = `Si2InSysM(Si) generated by SBas a subbasis. Then s : InSys! `Si2InSysM(Si) such that for every Si 2 InSys,s(Si) 2 M(Si) is continuous if and only if for every Si; Sj 2 InSys such thatSj ,! Si, pij(s(Si)) = s(Sj).Proof : Since SB is a subbasis for the topology on F = `Si2InSysM(Si),s : InSys� ! `Si2InSysM(Si) is continuous if and only if for every [m](U) 2 SB,s�1([m](U)) 2 
(InSys).In order to prove the direct implication, assume that s : InSys! `Si2InSysM(Si)is continuous. Let Si; Sj 2 InSys be such that Sj ,! Si. We prove thatpij(s(Si)) = s(Sj). Let U = # Si 2 
(InSys) and let m 2 M(S) be such thatpi(m) = s(Si) (the existence ofm is ensured by the fact that pi : M(S)!M(Si)is surjective).From the continuity of s we know that s�1([m](# Si)) 2 
(InSys). Obviously,Si 2 s�1([m](# Si)). Therefore, since Sj ,! Si, Sj 2 s�1([m](# Si)), hence,by Lemma 8.21, s(Sj) = pj(m). Therefore, s(Sj) = pj(m) = pij(pi(m)) =pij(s(Si)).Conversely, assume that for every Si; Sj 2 InSys such that Sj ,! Si it holdsthat pij(s(Si)) = s(Sj). We prove that s is continuous.Let [m](U) 2 SB, where m 2 M(S) and U 2 
(InSys). We prove thats�1([m](U)) 2 
(InSys). Let Si 2 s�1([m](U)). Then Si 2 U and s(Si) =pi(m). Let Sj ,! Si. Then Sj 2 U and by the hypothesis, s(Sj) = pij(s(Si)) =pij(pi(m)) = pj(m). Thus, Sj 2 s�1([m](U)). Therefore s�1([m](U)) 2 
(InSys).2Lemma 8.23 The set �(InSys; F ) of global sections of F has the form�(InSys; F ) = f(mi)Si2InSys j mi 2M(Si) and 8Sj ,! Si 2 InSys; pij(mi) = mjg:Proof : �(InSys; F ) = fs : InSys! `Si2InSysM(Si) j s continuous and s(Si) 2M(Si);8Si 2 InSysg. So, the elements of �(InSys; F ) are indexed elements(s(Si))Si2InSys. We show by double inclusion that �(InSys; F ) = f(mi)Si2InSys j8Si 2 InSys;mi 2M(Si) and 8Sj ,! Si 2 InSys; pij(mi) = mjg.Let s : InSys ! `Si2InSysM(Si) be continuous. Then by Lemma 8.22 itfollows that for every Sj ,! Si 2 InSys, pij(s(Si)) = s(Sj).Let now (mi)Si2InSys be such that for every Si 2 InSys;mi 2 M(Si) and ifSj ,! Si 2 InSys then pij(mi) = mj. De�ne s : InSys ! `Si2InSysM(Si) bys(Si) = mi for every Si 2 InSys. Hence, for every Sj ,! Si 2 InSys, pij(s(Si)) =s(Sj), and by Lemma 8.22 it follows that s is continuous. 2Therefore, the following result holds:Proposition 8.24 Let (F; f; InSys) be de�ned as above. Then (F; f; InSys) is asheaf of algebras, and the stalk at Si 2 InSys is isomorphic to M(Si). The setof global sections is�(InSys; F ) = f(mi)Si2InSys j mi 2M(Si) and 8Sj ,! Si 2 InSys; pij(mi) = mjg:



8.5.1 Properties of the Topology 
(InSys) 273Additionally the following holds:(1) If InSys is �nite, then M(S) ,! �(InSys; F ) � QSi2InSysM(Si) �i! M(Si)is a subdirect product.The embedding M(S) ,! �(InSys; F ) is an isomorphism if and only ifevery chordless cycle in the dependence graph GS of S is a cycle in asubgraph GSi for some Si 2 InSys.(2) If InSys is in�nite, and if for every a 2 AS there are at most �nitelymany Si 2 InSys such that a 2 Ai, then there is an injective morphismM(S) ! Li2IM(Si), where LM(Si) = f(wi)i2I j wi 2 M(Si); wi =" almost everywhereg is the weak product of the family fM(GSi)gSi2 In-Sys.Proof : The form of the set of global sections of F follows from Lemma 8.23.The next results follow from Corollary 4.22 and the subsequent comments. 28.5 Some More Remarks Concerning 
(InSys)We make some comments about the topology 
(InSys) and about an internalrepresentation of time in Sh(InSys).8.5.1 Properties of the Topology 
(InSys)We make some remarks about the topological space (InSysn;;
(InSys)).It is easy to see that this space is separated if and only if for every twoelements S1; S2 2 InSys, their largest common transition-connected subsystemS1 \ S2 is the empty system.Moreover, it is easy to see that if this is the case then (InSys;
(InSys)) istotally disconnected.The space (InSysn;;
(InSys)) is Hausdor� compact if InSys is �nite, and allelements in InSys are independent, in the sense that they do not have commonsubsystems.Proposition 8.25 Assume that InSys is �nite and all the elements in InSys areindependent (they have no common (nonempty) subsystems). Then the sheafM : 
(InSys)op ! Sets has the property that for every U 2 
(InSys), if S is thecolimit of the diagram de�ned by U , and M(S) is the trace language associatedwith S, then M(S) is isomorphic to the set of global sections of M .8.5.2 Internal Representation of Time in Sh(InSys)The remarks in Section 7.2.4 suggest that, in order to reason about the evo-lution in time of systems, it may be useful to express time internally in thecategory Sh(InSys) (or in Sh(Sys(InSys); J)).In what follows we assume that the time is discrete, hence it can be modeledby the set N of natural numbers. Let N : 
(InSys)op ! Sets be the constant



274 8 Interconnecting a Given Family of Interacting Systemspresheaf de�ned by N (U) = N , for every U 2 
(InSys), and for every U i� V ,N (i) : N (V ) ! N (U) is the identity of N . It is easy to see that N is notnecessarily a sheaf. Let N : 
(InSys)op ! Sets be the shea��cation of N .The shea��cation N of N (denoted (N+)+ in [MLM92] p.130) can be con-structed as follows:(1) Construct N+ : 
(InSys)op ! Sets, de�ned by N+(U) = N if U 6= ; andN+(;) = 1 (for the empty cover there is exactly one matching family,namely the empty one).(2) Construct (N+)+ : 
(InSys)op ! Sets. An element of (N+)+(U) is anequivalence class of sets of elements ij 2 N (Uj) for some open coveringfUj j j 2 Jg of U , which match (ij1 = ij2) whenever the overlap Uj1 \Uj2is nonempty. Thus, these elements \glue" together to give a functioni : U ! N , with the property that every point of U has some openneighborhood on which the function is constant.Therefore, for every U 2 
(InSys), N(U) = fi : U ! N j f locally constant2g .It also follows that there are arrows (in Sh(InSys)), 1 0! N s! N: The sheaf N isthe natural number object in Sh(InSys). (For details on the construction of theassociated sheaf functor for a given presheaf we refer to [MLM92] pp.128-134.)Assume that all the systems in InSys are independent from each other (i.e.for every S1; S2 2 InSys, S1 \ S2 = ;). Therefore, 
(InSys) is the set of allsubsets of InSysn;, i.e. the discrete topology. Let U 2 
(InSys). In this caseany function f : U ! N is locally constant.From the above remarks it follows that the internal representation of time inSh(InSys) by the sheaf N enables us to model the fact that independent systemsmay have independent clocks.8.6 Relationship between Sys(InSys) and 
(InSys)We can de�ne a functor � : Sys(InSys) ! 
(InSys), that associates to everysystem S of Sys(InSys) the family of all elements of InSys which are transition-connected subsystems of S. It is easy to see that if S1 ,! S2 are systems inSys(InSys), then every member of �(S1) is also a transition-connected subsystemof S2, hence it is contained in �(S2). So � is order-preserving and hence afunctor.We can also de�ne a functor � : 
(InSys) ! Sys(InSys) that associates toevery downwards-closed family U of elements from InSys its colimit (the system2f : U ! X is locally constant if for every x 2 U there is an open neighborhood U1 � Uof x on which f is constant.



8.6 Relationship between Sys(InSys) and 
(InSys) 275obtained by the interconnection of the elements in U). It is easy to see that �is order preserving.Proposition 8.26 The functors � : Sys(InSys)! 
(InSys) and � : 
(InSys)!Sys(InSys) de�ne an adjoint pair.Proof : It is easy to see that for every system S, �(�(S)) = S, hence�(�(�(S))) = �(S) and for every U 2 
(InSys) �(�(�(U))) = �(U). Moreover,for every set U 2 
(InSys) U � �(�(U)). Therefore it follows that there aretwo natural transformations, � : id
(InSys) ! �� and � : ��! idSys(InSys), whichsatisfy the following two triangular identities (which state that � is a rightadjoint of �): ���
��

id�
  B

BB
BB

BB
BB

� �� //id�   B
BB

BB
BB

BB
�����
����� �� // � � 2It is easy to see that 
(InSys) is a Heyting algebra, whereas Sys(InSys) isa partially ordered set (in which meets, when they exist, do not in generaldistribute over joins).Moreover, being a right adjoint, the functor � preserves limits (if they exist),but in general it does not preserve the colimits (joins). Similarly, being a leftadjoint, � preserves colimits.Proposition 8.27 The functor � preserves the covering relation.Proof : Let fSi j i 2 Ig be a covering family for S. For every i 2 I, let Ui =�(Si) = fSij 2 InSys j Sij ,! Sig, and let U = �(S) = fTk 2 InSys j Tk ,! Sg.We prove that U = Si2I Ui.It is easy to see that Si2I Ui � U , since for every i 2 I, if Sij ,! Si thenSij ,! S.Let Tk 2 InSys be such that Tk ,! S. By Lemma 8.2 we know that forevery i 2 I, �(Si) = fSij 2 InSys j Sij ,! Sig is a cover for Si. Moreover, sincefSi j i 2 Ig is a covering family for S, we know that fSij j i 2 I; j 2 Jig is acovering family for S. Therefore, since Tk ,! S, it follows that Tk is a colimitof fTk \ Sij j i 2 I; j 2 Jig.Since InSys is closed under intersection, and we assumed that no elementin InSys is the colimit of other (di�erent) elements in InSys, it follows thatTk = Tk \ Sij for some i 2 I and j 2 Ji. Hence, Tk � Si for some i 2 I, i.e.Tk 2 �(Si) for some i 2 I. 2Remark: In general � does not map covers to covers, as can be seen fromthe following example.Example 8.3 Consider the situation described in Example 8.2 (2), and repre-sented in Figure 8.3 where InSys is supposed to be fS1; S2; T; S1\S2; T \S1; T \
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Figure 8.3:S2g. Let U = fS1; S2; S1 \ S2; T \ S1; T \ S2g, U1 = fS1; S1 \ S2; T \ S1g,U2 = fS2; S1 \ S2; T \ S2g, U12 = fS1 \ S2g, U1T = fT \ S1g, U2T = fT \ S2g.Then U;U1; U2; U12; U1T ; U2T are downwards-closed sets, and U = U1[U2[U12[U1T [U2T . However, �(U1) = S1, �(U2) = S2, �(U12) = S1\S2, �(U1T ) =S1 \ST , �(U2T ) = S2 \ST , and �(U) = S, but fS1; S2; S1 \S2; T \S1; T \S2gis not a covering family for S.So far we proved that there is an adjoint pair� : Sys(InSys)! 
(InSys) � : 
(InSys)! Sys(InSys)where � is right adjoint of �, and additionally that � preserves covers. In orderto point out the link between the sheaves over the two sites, we use the followingtheorem.Theorem 8.28 (cf. [MLM92] p.412) Let (C; J) and (D;K) be sites, and let� : D ! C and � : C ! D be functors such that � is left adjoint to �. If �preserves covers, then there is an induced geometric morphism f : Sh(D;K) !Sh(C; J), with inverse and direct image functors described, for sheaves F on(C; J) and G on (D;K) by f�(F ) = a(F � �) and f�(G) = G � �:Consequence 8.29 The adjoint pair � : Sys(InSys)! 
(InSys), � : 
(InSys)!Sys(InSys) induces a geometric morphism f : Sh(InSys) ! Sh(Sys(InSys); J),with inverse and direct image functors described, for sheaves F on (Sys(InSys); J)and G on 
(InSys), byf�(F ) = a(F��) : 
(InSys)op ! Sets f�(G) = G�� : Sys(InSys)op ! Sets:Remark: For every sheaf F on (Sys(InSys); J), f�(F ) is the shea��cation ofF � �, where (F � �)(U) = F (S), with S = lim�!fSi j Si 2 Ug. For every sheaf Gon 
(InSys), and every object S of Sys(InSys), f�(G)(S) = G(�(S)) = G(fSi 2InSys j Si ,! Sg).In particular, for St;Act 2 Sh(Sys(InSys); J), note that St � � and Act � �are again sheaves. Hence, f�(St); f�(Act) : 
(InSys)op ! Sets are de�ned byf�(St)(U) = St(lim�!fSi j i 2 Ug);



8.7 Geometric Logic, Preservation of Axioms 277f�(Act)(U) = Act(lim�!fSi j i 2 Ug):Consider now St;Act 2 Sh(InSys). f�(St); f�(Act) : Sys(InSys)op ! Sets arede�ned byf�(St)(S) = St(fSi 2 InSys j Si ,! Sg) == f(si)Si2InSysSi,!S j si 2 St(Si)8Si 2 InSys and 8Si ,! Sj; sj jXi = sig;f�(Act)(S) = Act(fSi 2 InSys j Si ,! Sg) == f(fi)Si2InSysSi,!S j fi 2 Act(Si)8Si 2 InSys and 8Si ,! Sj; sj jXi = sig:Concerning behavior, note that for the sheaf of monoids M : 
(InSys)op !Mon, its image via f�, f�(M) : Sys(InSys)! Sets is de�ned byf�(M)(S) = f(mi)Si2InSysSi,!S j mi 2M(Si) and 8Si ,! Sj;mj jSi = mig;and by the remarks made in Section 8.4, it is in general di�erent from M(S).8.7 Geometric Logic, Preservation of AxiomsWe showed so far that for both categories considered in this section, namelySys(InSys) and 
(InSys), states and parallel actions can be expressed by sheavesSt;Act (resp. St;Act), and transitions by a subsheaf Tr of Act�St�St (resp.a subsheaf Tr of Act� St� St). Additionally, we showed that behavior over a�xed interval of time T can be described by a sheaf, BT . Similarly, the set ofobservations of states of the system over the interval T can be described by asheaf, BStT , and the set of observations of actions of the system over the inter-val T can be described by a sheaf, BActT . There exist natural transformations�St : BT ! BStT and �Act : BT ! BActT . Also, we can single out the emptyaction ", which can be considered a constant of sort Act, " : 1! Act.Some properties about systems can be expressed in terms of states, actionsor behavior in time. In order to be able to express these properties in a uniformway we will now introduce a many-sorted language L, having among its sortsSt (for states), Act (for actions), T ime for time, and BT ime, BStT ime resp. BActT imefor the behavior in time, relations as =X� X �X for every sort X and Tr �Act� St� St, etc.Let E = Sh(InSys), F = Sh(Sys(InSys); J). The above mentioned sorts,function and relation symbols of the language L can be interpreted in both Eand F as will be showed in what follows.On the other hand, for every system S we know that St(S) represents theset of states of S, Act(S) the set of states of S, etc. Thus, for every system weobtain a concrete interpretation in Sets of the language L.We have therefore the following possible interpretations of the language Lin the topoi E = Sh(InSys), F = Sh(Sys(InSys); J), and Sets:



278 8 Interconnecting a Given Family of Interacting SystemsE = Sh(InSys) F = Sh(Sys(InSys); J) SetsX XM XN XMSSt St St St(S)Act Act Act Act(S)T ime NE NF NBT ime BNE BNF BN (S)" : 1! Act "E "F " 2 Act(S)=X� X �X =E =F =Tr � Act� St� St Tr Tr TrSWe recall that if M is an interpretation of a language in a topos E , then theinterpretations of the formulae are de�ned as follows:If � = t1(x1; : : : ; xn) = t2(x1; : : : ; xn), then the subobject f(x1; : : : ; xn) jt1 = t2g is the equalizer of the arrows tM1 and tM2 ,f(x1; : : : ; xn) j t1 = t2g // XM1 � : : :�XM2 //// YMIf � = R(t1; : : : ; tk) for a relation symbol R and terms ti of sort Yi (each withfree variables among x1; : : : ; xn with sorts X1; : : : ;Xn), then f(x1; : : : ; xn) jR(t1; : : : ; tk)gM is the pullback of the subobject RM (the interpretation of R)along ht1; : : : ; tki:f(x1; : : : ; xn) j R(t1; : : : ; tk)gM //

��

RM
��XM1 � : : : �XMn ht1;:::;tki // YM1 � : : :� YMk (8.6)(Note that it may happen in particular cases that some of the terms (say ti)does not involve all the variables x1; : : : ; xn, and so de�nes a morphism XMi1 �: : :�XMip ! YMi for some 1 < i1 < i2 < : : : < ip < n; if so, we simply composewith the appropriate product projection XM1 � : : :�XMn ! XMi1 � : : :�XMip .)Let T be a theory in L. M is a model for T if all the axioms of T are validin M .Example 8.4 Assume that s0 : 1! St is a constant of sort St. Let Deadlocks0be the formula that expresses that s0 is a deadlock state.Deadlocks0 = (8a : Act)(8s : St)(Tr(a; s0; s)) (a = ") ^ (s = s0)):Let M be the interpretation of L in E described above. Deadlocks0 is truein M if f(a; s) j Tr(a; s0; s)gM is a subobject of f(a; s) j (a = ") ^ (s = s0)gMin E .Let sM0 : 1! St be an interpretation of s0. We briey explain how f(a; s) jTr(a; s0; s)gM and f(a; s) j (a = ") ^ (s = s0)gM are constructed.



8.7 Geometric Logic, Preservation of Axioms 279(1) f(a; s) j Tr(a; s0; s)gM is the pullback of TrM along the terms t1(a; s) = a,t2(a; s) = s0 and t3(a; s) = s. The interpretation in M of t1 : Act� St!Act is the �rst projection tM1 : Act�St! Act. Similarly, tM3 : Act�St!St is the second projection and tM2 : Act � St ! St is the compositionAct� St !! 1 sM0! St.f(a; s) j Tr(a; s0; s)gM //

��

Tr = f(a; s0; s) j Tr(a; s0; s)g
��Act� St htM1 ;tM2 ;tM3 i // Act� St� St(2) f(a; s) j (a = ")^ (s = s0)gM is the pullback in E of f(a; s) j a = "gM andf(a; s) j s = s0gM . f(a; s) j a = "gM is the equalizerf(a; s) j a = "gM // Act� St �1 //" // Actwhere �1 : Act� St! Act is the �rst projection, whereas " : Act� St!Act is the composition Act� St !! 1 "M! Act:Similarly, f(a; s) j s = s0gM is the equalizerf(a; s) j s = s0gM // Act� St �1 //s0 // Stwhere �2 : Act�St! St is the second projection, whereas s0 : Act�St!Act is the composition Act� St !! 1 sM0! St:Example 8.5 Consider the formula that expresses determinism:Determ = (8s; s0; s00 : St)(8a : Act)((Tr(a; s; s0) ^ Tr(a; s; s00))) (s0 = s00)):The formula Determ is valid inM if f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gMis a subobject in E of f(a; s; s0; s00) j s0 = s00gM .(1) f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM is the pullback in E of f(a; s; s0; s00) jTr(a; s; s0)gM and f(a; s; s0; s00) j Tr(a; s; s00)gM .(2) f(a; s; s0; s00) j s0 = s00gM is the equalizerf(a; s; s0; s00) j s0 = s00gM // Act� St� St� St �3 //�4 // Stwhere �3 is the third projection and �4 is the fourth projection.We know that if E1 and E2 are topoi and f : E2 ! E1 a geometric morphism,then the inverse image functor f� yields for every interpretation M of L in E1an interpretation f�M of L in E2, such that



280 8 Interconnecting a Given Family of Interacting Systems(1) Xf�M = f�(XM ) for every sort X;(2) Rf�M = f�(RM ) � Xf�M1 � : : : � Xf�Mn for every relation symbol R �X1 � : : :�Xn;(3) Let g be a function symbol of arity X1� : : :�Xn ! Y . The interpretationof g is translated similarly:f�(XM1 � : : :�XMn )f�(gM ) // f�(YM )Xf�M1 � : : : �Xf�Mn gfM // Y f�MIn what follows we will use these facts in order to study the link betweenmodels in di�erent topoi.8.7.1 The Stalk Functors: Preservation PropertiesFor every Si 2 InSys let fi : f�g ! InSys de�ned by fi(�) = Si. The correspond-ing inverse image functor f�i : Sh(InSys)! Sets is the functor that associates toevery sheaf F 2 Sh(InSys) the stalk at Si, FSi , which by Lemma 8.8 is isomor-phic to F (# Si). Therefore, for all Si 2 InSys the functor f�i : Sh(InSys)! Setspreserves the validity of coherent axioms. The stalk functors are collectivelyfaithful, hence they also reect the validity of coherent axioms (cf. also [Joh82],p.178).This shows that the topos Sh(InSys) satis�es a coherent axiom � if and onlyif each stalk satis�es �. For example, we can say that Sh(InSys) has (internally)property � if and only if Si has property � for every system Si 2 Sh(InSys).We now point out how coherent axioms in the language L are translated bythe stalk functions:For every sort F of L, let FM 2 Sh(InSys) be its interpretation in Sh(InSys).Then, the corresponding sort in Sets induced by f�i is f�i (FM ) = FMSi , the stalkat Si of the sheaf FM . Similarly, for every function symbol f : F1 ! F2 in L,let fM : FM1 ! FM2 be its interpretation in Sh(InSys). Then, the correspondingfunction in Sets induced by f�i is f�i (fM ) : f�i (FM1 ) ! f�i (FM2 ), i.e. the imageof fM by the stalk functor, fMSi : FM1 Si ! FM2 Si . The translation of relationsymbols is done in a similar way.Example 8.6 Consider the formula Deadlocks0 analyzed in Example 8.4, namely:Deadlocks0 = (8a : Act)(8s : St)(Tr(a; s0; s)) (a = ") ^ (s = s0)):Let M be the interpretation of L in E . Assume that Deadlocks0 is true inM i.e. f(a; s) j Tr(a; s0; s)gM is a subobject of f(a; s) j (a = ") ^ (s = s0)gM inE .



8.7.1 The Stalk Functors: Preservation Properties 281By the remarks above we know that f(a; s) j Tr(a; s0; s)gM is a subobjectof f(a; s) j (a = ") ^ (s = s0)gM in E if and only if f�i (f(a; s) j Tr(a; s0; s)gM )is a subobject of f�i (f(a; s) j (a = ") ^ (s = s0)gM ) in Sets for every Si 2 InSys.We now analyze what is the form of f�i (f(a; s) j Tr(a; s0; s)gM ) resp. f�i (f(a; s) j(a = ") ^ (s = s0)gM ).(1) Since f(a; s) j Tr(a; s0; s)gM is the pullback of TrM along the termst1(a; s) = a, t2(a; s) = s0 and t3(a; s) = s:f(a; s) j Tr(a; s0; s)gM //

��

Tr = f(a; s0; s) j Tr(a; s0; s)g
��Act� St // Act� St� Stand f�i commutes with pullbacks it follows that f�i (f(a; s) j Tr(a; s0; s)gM )is the pullback (in Sets):f�i (f(a; s) j Tr(a; s0; s)gM ) //

��

f�i (Tr) = f�i (f(a; s0; s) j Tr(a; s0; s)g)
��f�i (Act)� f�i (St) // f�i (Act)� f�i (St)� f�i (St):Taking into account that f�i (Act), f�i (St) resp. f�i (Tr) are in bijectionwith Act(Si), St(Si) and Tr(Si) = f(f; s; s0) j (s; s0) 2 TrSi(f)g it followsthat f�i (f(a; s) j Tr(a; s0; s)gM ) is the pullback (in Sets):f�i (f(a; s) j Tr(a; s0; s)gM ) //

��

Tr(Si)
��Act(Si)� St(Si) // Act(Si)� St(Si)� St(Si)Thus, f�i (f(a; s) j Tr(a; s0; s)gM ) = f(a; s) j Tr(a; s0; s)gMSi .(2) f(a; s) j (a = ")^ (s = s0)gM is the pullback in E of f(a; s) j a = "gM andf(a; s) j s = s0gM , where f(a; s) j a = "gM is the equalizerf(a; s) j a = "gM // Act� St �1 //" // Actand f(a; s) j s = s0gM is the equalizerf(a; s) j s = s0gM // Act� St �1 //s0 // St:Since f�i preserves equalizers, it follows thatf�i (f(a; s) j a = "gM ) // Act(Si)� St(Si) �1 //" // Act(Si)



282 8 Interconnecting a Given Family of Interacting Systemsis an equalizer in Sets, andf�i (f(a; s) j s = s0gM ) // Act(Si)� St(Si) �1 //s0 // St(Si)is an equalizer in Sets. Thus, f�i (f(a; s) j a = "gM ) = f("; s) j s 2 St(Si)gand f�i (f(a; s) j s = s0gM ) = f(a; s0(Si)) j a 2 Act(Si)g.Moreover, f�i (f(a; s) j (a = ") ^ (s = s0)gM ) is the pullback in Sets off�i (f(a; s) j a = "gM ) and f�i (f(a; s) j s = s0gM ). Thus, f�i (f(a; s) j (a =") ^ (s = s0)gM ) = f("; s0(Si))g.Thus, Deadlocks0 is valid in the interpretation M in E is and only if for everySi 2 InSys (s0(Si); s0) 2 TrSi(a) implies a = " and s0 = s0(Si).Example 8.7 Now consider Example 8.5. LetDeterm = (8s; s0; s00 : St)(8a : Act)((Tr(a; s; s0) ^ Tr(a; s; s00))) (s0 = s00))be the formula that expresses determinism. The formula Determ is valid in Mif f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM is a subobject in E of f(a; s; s0; s00) js = s0gM .For every Si 2 InSys we explain how f�i (f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM )and f�i (f(a; s; s0; s00) j s = s0gM ) can be computed.(1) f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM is the pullback in E of f(a; s; s0; s00) jTr(a; s; s0)gM and f(a; s; s0; s00) j Tr(a; s; s00)gM . These are computed asequalizers in E . Therefore, f�i (f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM ) isthe pullback in Sets of f�i (f(a; s; s0; s00) j Tr(a; s; s0)gM ) and f�i (f(a; s; s0; s00) jTr(a; s; s00)gM ).It is easy to see that f�i (f(a; s; s0; s00) j Tr(a; s; s0)gM ) = f(a; s; s0; s00) j(s; s0) 2 TrSi(a)g, and f�i (f(a; s; s0; s00) j Tr(a; s; s00)gM ) = f(a; s; s0; s00) j(s; s00) 2 TrSi(a)g. Hence, f�i (f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM ) =f(a; s; s0; s00) j (s; s0) 2 TrSi(a) and (s; s00) 2 TrSi(a)g.(2) f(a; s; s0; s00) j s0 = s00gM is the equalizerf(a; s; s0; s00) j s0 = s00gM // Act� St� St� St�3 //�4 // StTherefore, f�i (f(a; s; s0; s00) j s0 = s00gM ) is the equalizerf�i (f(a; s; s0; s00) j s0 = s00gM ) // Act(Si)� St(Si)� St(Si)� St(Si)�3 //�4 // St(Si)in Sets, i.e. f�i (f(a; s; s0; s00) j s0 = s00gM ) = f(a; s; s0; s00) j a 2 Act(Si); s; s0; s00 2St(Si); s0 = s00g.Thus, Determ is valid in interpretation M in E if and only if for everySi 2 InSys, for every a 2 Act(Si) and every s; s0; s00 2 St(Si), (s; s0) 2 Tr(a)and (s; s00) 2 Tr(a) implies s0 = s00.



8.7.2 The Global Section Functor: Preservation Properties 2838.7.2 The Global Section Functor: Preservation PropertiesConsider now the unique map g : InSys! f�g. The corresponding direct imagefunctor, g� : Sh(InSys) ! Sets is the global section functor g�(F ) = F (InSys)for every sheaf F 2 Sh(InSys).Direct image functors preserve limits but in general they do not preserveunions or images, hence they do not preserve the validity of coherent axioms.Following Johnstone [Joh82], we de�ne a formula to be cartesian relativeto a a given theory T if it is constructed from atomic formulae using onlyconjunction and existential quanti�cation over \T -provably unique" variables(i.e. variables whose values, in any model of T , are uniquely determined by thevalues of the remaining free variables). Similarly, one de�nes cartesian axioms(relative to a given theory T ) as axioms of the form (8x)(�(x) )  (x)) wherethe formulae � and  are cartesian relatively to T . We say that a theory iscartesian if its axioms can be ordered such that each is cartesian relative tothose which precede it. Then it follows that models of cartesian theories arepreserved by direct image functors (in particular by global section functors).For every sort F of L, let FM 2 Sh(InSys) be its interpretation in Sh(InSys).Then, the corresponding sort in Sets induced by g� is g(FM ) = �(InSys; FM ),the set of global sections of FM .For every function symbol f : F1 ! F2 in L, let fM : FM1 ! FM2 be itsinterpretation in Sh(InSys). Then, the corresponding function in Sets inducedby g is g�(fM ) : �(InSys; FM1 ) ! �(InSys; FM2 ). The translation of relationsymbols is done in a similar way.Example 8.8 Consider the formula Deadlocks0 analyzed in Example 8.4, namely:Deadlocks0 = (8a : Act)(8s : St)(Tr(a; s0; s)) (a = ") ^ (s = s0)):Assume that Deadlocks0 is true in M i.e. f(a; s) j Tr(a; s0; s)gM is a subobjectof f(a; s) j (a = ") ^ (s = s0)gM in E .We know that if f(a; s) j Tr(a; s0; s)gM is a subobject of f(a; s) j (a =")^(s = s0)gM in E then g�(f(a; s) j Tr(a; s0; s)gM ) is a subobject of g�(f(a; s) j(a = ") ^ (s = s0)gM ) in Sets.We now analyze the form of g�(f(a; s) j Tr(a; s0; s)gM ) and g�(f(a; s) j (a =") ^ (s = s0)gM ).(1) f(a; s) j Tr(a; s0; s)gM is the pullback of TrM along the terms t1(a; s) = a,t2(a; s) = s0 and t3(a; s) = sf(a; s) j Tr(a; s0; s)gM //

��

Tr = f(a; s0; s) j Tr(a; s0; s)g
��Act� St htM1 ;tM2 ;tM3 i // Act� St� St:



284 8 Interconnecting a Given Family of Interacting SystemsSince g� commutes with pullbacks,g�(f(a; s) j Tr(a; s0; s)gM ) //

��

g�(Tr) = g�(f(a; s0; s) j Tr(a; s0; s)g)
��g�(Act)� g�(St) // g�(Act)� g�(St)� g�(St):is an equalizer in Sets. Let S be the system obtained by interconnecting allelements of InSys. It is easy to see that up to a bijection, g�(Act) = Act(S),g�(St) = St(S), g�(Tr) = Tr(S). Hence,g�(f(a; s) j Tr(a; s0; s)gM ) //

��

Tr(S)
��Act(S)� St(S) // Act(S)� St(S)� St(S)is an equalizer in Sets. Thus, g�(f(a; s) j Tr(a; s0; s)gM ) = f(a; s) 2Act(S) � St(S) j (s0; s) 2 TrS(a)g.(2) f(a; s) j (a = ")^ (s = s0)gM is the pullback in E of f(a; s) j a = "gM andf(a; s) j s = s0gM , where f(a; s) j a = "gM is the equalizerf(a; s) j a = "gM // Act� St �1 //" // Actand f(a; s) j s = s0gM is the equalizerf(a; s) j s = s0gM // Act� St �1 //s0 // St:Since g� preserves equalizers, it follows thatg�(f(a; s) j a = "gM ) // Act(S)� St(S)�1 //" // Act(S):is an equalizer in Sets, andg�(f(a; s) j s = s0gM ) // Act(S)� St(S) �1 //s0 // St(S)is an equalizer in Sets. Thus, g�(f(a; s) j a = "gM ) = f("; s) j s 2St(S)g and g�(f(a; s) j s = s0gM ) = f(a; s0(S)) j a 2 Act(S)g. Moreover,g�(f(a; s) j (a = ") ^ (s = s0)gM ) is the pullback in Sets of g�(f(a; s) ja = "gM ) and g�(f(a; s) j s = s0gM ). Thus, g�(f(a; s) j (a = ") ^ (s =s0)gM ) = f(";�(InSys; s0)g.Thus, if Deadlocks0 is valid in the interpretation M in E then for every a 2Act(S) and s0 2 St(S), (s0(S); s0) 2 TrS(a) implies a = " and s0 = �(InSys; s0).



8.7.3 Link Between Sh(InSys) and Sh(Sys(InSys), J) 285Example 8.9 Now consider Example 8.5. LetDeterm = (8s; s0; s00 : St)(8a : Act)((Tr(a; s; s0) ^ Tr(a; s; s00))) (s0 = s00))be the formula that expresses determinism. The formula Determ is valid in Mif f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM is a subobject in E of f(a; s; s0; s00) js0 = s00gM .(1) f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM is the pullback in E of f(a; s; s0; s00) jTr(a; s; s0)gM and f(a; s; s0; s00) j Tr(a; s; s00)gM . These are computed asequalizers in E . Therefore, g�(f(a; s; s0; s00) j Tr(a; s; s0)^Tr(a; s; s00)gM ) isthe pullback in Sets of g�(f(a; s; s0; s00) j Tr(a; s; s0)gM ) and g�(f(a; s; s0; s00) jTr(a; s; s00)gM ). It is easy to see that g�(f(a; s; s0; s00) j Tr(a; s; s0)gM ) =f(a; s; s0; s00) j (s; s0) 2 TrS(a)g, and g�(f(a; s; s0; s00) j Tr(a; s; s00)gM ) =f(a; s; s0; s00) j (s; s00) 2 TrS(a)g. Hence, g�(f(a; s; s0; s00) j Tr(a; s; s0) ^Tr(a; s; s00)gM ) = f(a; s; s0; s00) j (s; s0) 2 TrS(a) and (s; s00) 2 TrS(a)g.(2) f(a; s; s0; s00) j s0 = s00gM is the equalizerf(a; s; s0; s00) j s0 = s00gM // Act� St� St� St �3 //�4 // StTherefore, g�(f(a; s; s0; s00) j s0 = s00gM ) is the equalizerg�(f(a; s; s0; s00) j s0 = s00gM ) // Act(S)� St(S)� St(S)� St(S) �3 //�4 // St(S)in Sets, i.e. g�(f(a; s; s0; s00) j s0 = s00gM ) = f(a; s; s0; s00) j a 2 Act(S); s; s0; s00 2St(S); s0 = s00g.Thus, if Determ is valid in interpretation M in E then for every a 2 Act(S) andevery s; s0; s00 2 St(S), (s; s0) 2 Tr(a) and (s; s00) 2 Tr(a) implies s0 = s00.8.7.3 Relationship between Sh(InSys) and Sh(Sys(InSys), J)In Proposition 8.26 we showed that there is a geometric morphism f : Sh(InSys)!Sh(Sys(InSys); J), with inverse and direct image functorsf� : Sh(Sys(InSys); J)! Sh(InSys) and f� : Sh(InSys)! Sh(Sys(InSys); J)described, for sheaves F on (Sys(InSys); J) and G on 
(InSys), byf�(F ) = a(F��) : 
(InSys)op ! Sets f�(G) = G�� : Sys(InSys)op ! Sets:f� preserves the validity of geometric axioms, and f� the validity of coherentaxioms.Let S be the colimit in SYSil of all elements of InSys.Let 1 be the category with only one object, namely �, and only one arrow,namely the identity arrow.



286 8 Interconnecting a Given Family of Interacting SystemsLet �S : 1 ! Sys(InSys) de�ned by �(�) = S, and �(id�) = idS , and let : Sys(InSys) ! 1 be de�ned for every T 2 Sys(InSys) by  (T ) = � and forevery h : T1 ,! T2 by  (h) = id�.Then there exist natural transformations � : idSys(InSys) ! �S and " : �S ! id1.For every system T in Sys(InSys), �T : T ,! S is the canonical inclusion,and for � in "� : � ! � is the identity.Moreover, the following diagrams commute:  �
��

id 
""D

DD
DD

DD
DD

�S ��S //id�S ##G
GG

GG
GG

GG
�S �S�S"

�� �S " //  �S (8.7)(for every object T of Sys(InSys),  (�S( (T ))) = � =  (T ) and �S( (�S(�))) =S = �S(�)).Thus,  is left adjoint to �S . Let J� be a covering relation on 1 de�ned byJ(�) = ff�gg. It is easy to see that it induces a Grothendieck topology on 1.It is obvious that �S preserves covers,Therefore, by Theorem 8.28,  and �S induce a geometric morphismhS : Sh(Sys(InSys); J)! Sh(1; J�)with inverse and direct image functors described, for sheaves F on Sh(1; J�) andG on Sh(Sys(InSys), J) by h�S(F ) = a(F �  ) and hS�(G) = G � �:Since Sh(1; J�) = Sets, the direct image functor hS� : Sh(Sys(InSys); J) !Sets is de�ned by hS�(F ) = F (S).8.7.4 Concluding RemarksIn conclusion, we have the following (direct and inverse geometric functions):SetsSets Sh(Sys(InSys); J)hS�oo
f� // Sh(InSys)f�oo

f�i 99sssssssss g�
%%K

KK
KK

KK
KK SetsA geometric formula �, holds (internally) in Sh(InSys) if and only if it holds inSi for every Si 2 InSys.If � is a cartesian axiom (with respect to a cartesian theory T ) and it holds(internally) in Sh(InSys), then it holds in S, where S is the system obtained byinterconnecting all elements in InSys.If � is a cartesian axiom (with respect to a cartesian theory T ) and it holds(internally) in Sh(InSys), then it also holds (internally) in Sh(Sys(InSys); J).



8.7.4 Concluding Remarks 287If � is a cartesian axiom (with respect to a cartesian theory T ) and it holds(internally) in Sh(Sys(InSys); J), then it holds also in S, where S is the systemobtained by interconnecting all elements in InSys.If additionally all the elements in InSys are independent (do not have com-mon subsystems) (we assumed that there are �nitely many elements in InSys)then the global section functor g� also preserves image factorization, hence itpreserves the truth of all formulas that contain only conjunction and existentialquanti�cation.Example 8.10 Let �1 be the formula that expresses determinism:�1 = (8s : St)(8a : Act)(8s0 : St)(8s00 : St)��Tr(a; s; s0) ^ Tr(a; s; s00)�) s0 = s00� :�1 is a cartesian axiom. The theory presented above and the Examples 8.7 and8.9 show the following:If �1 is true in all systems in InSys (i.e. if for every Si 2 InSys, (s; s0) 2TrSi(a) and (s; s00) 2 TrSi(a) implies s0 = s00) then �1 is true (internally) inSh(InSys), and it is also preserved by the global section functor. Moreover, it isalso true (internally) in F = Sh(Sys(InSys)) and its truth is preserved by hS�.Example 8.11 We analyze the formula that expresses deadlock freedom:�2 = (8s : St)(9a : Act)(9s0 : St)(Tr(a; s; s0) ^ (s 6= s0)):It can be seen that this formula is not a geometric axiom (it contains the nega-tion sign), hence it is not necessarily preserved by direct and inverse geometricmorphisms, in particular it is not preserved by the global section functor, norby the stalk functors.Therefore, we cannot infer anything about the system obtained by intercon-necting a family of systems, if we know that the components are deadlock free.Intuitively, it is easy to see that it is possible that all the systems in InSys canbe deadlock free while in the system obtained by interconnecting them deadlockmay occur, because the corresponding actions ai that can be \locally" executedat a given state s (or the �nal states s0i) may not form a matching family.Example 8.12 Consider now the formula expressing fairness of execution:�3 = (8h : B0(N))(8a : Act)(8i : N)((9s : St)Tr(a; �St(h(i)); s)) (9j)(j � i ^ �Act(h(j)) = a))�3 is a geometric axiom. However it is not a coherent axiom. Hence, it is notpreserved by the global section functor.Assume that the systems in InSys are independent, in the sense that theydo not have common nonempty subsystems. In this case �3 is preserved by theglobal section functor.



288 8 Interconnecting a Given Family of Interacting SystemsOf course, many other properties of systems can be formulated in the lan-guage L as in the above examples. We will now present some classes of prop-erties of systems taken from [Kr�o87] and will explain under which conditionsthese classes of properties can be expressed in L, and use the theoretical re-sults established so far for explaining the way these properties are preserved byinterconnection.Example 8.13 Taking a more general viewpoint, we now consider translationsin the language of sheaves of classes of properties of programs adapted from[Kr�o87]. Let h : B0(N) be a possible behavior in time in Sh(InSys).(a) Safety (or invariance) properties: Safety properties are properties ofthe form (8j)(P (h(0)) ) Q(h(j))), where P and Q are formulae in L.Examples of such properties are:(a1) Partial Correctness: (8j)(P (h(0)) ^ Final(h(j))) Q(h(j)));(a2) Global Invariance of Q: (8j)(P (h(0)) ) Q(h(j)).(b) Liveness (or eventuality) properties: Liveness properties are proper-ties of the form P (h(0)) ) (9j)(Q(h(j))): Examples of such propertiesare:(b1) Total correctness and termination: P (h(0)) ) (9j)(Final(h(j)) ^Q(h(j))),(b2) Accessibility: (h(0) = s0)) (9j)(h(j) = sf ).(c) Precedence properties: Precedence properties are properties of the form(8j)(P (h(0)) ^A(h(j))) ) Q(h(j)):(a1) Partial Correctness: We make the following assumptions:(1) the �nal states form a subsheaf Stf of St (this happens for example ifin the de�nition of a system �nal states are speci�ed by additional con-straints, and in de�ning the covering relation this information is alsoused). Let i : Stf ! St be the inclusion.In this case the property Final(s) can be expressed by (9s0 : Stf )(i(s0) =s). Since Stf is a subobject of St, it is easy to see that if such a stateexists, it is unique.(2) the properties P and Q can be expressed in the language L, and canbe interpreted in Sets (for every system Si in InSys expressing the corre-sponding property of Si) as well as in E and F .Then, the formula that describes partial correctness is preserved under in-verse image functors if in the de�nitions of P and Q appear only conjunction,disjunction and existential quanti�cation.



8.7.4 Concluding Remarks 289It is preserved by both direct and inverse functors if in the de�nitions of Pand Q occur only conjunctions and the existential quanti�er (requiring unique-ness; existential quanti�cation without requiring uniqueness is allowed if allsystems in InSys are independent).(a2) Global Invariance of Q: Assume that the properties P and Q can beexpressed in the language L, and can be interpreted in Sets (for every systemSi in InSys expressing the corresponding property of Si) as well as in E and F .The formula that describes the fact that Q is a global invariant is preservedunder inverse image functors if in the de�nitions of P and Q appear only con-junction, disjunction and existential quanti�cation. It is preserved by bothdirect and inverse functors if in the de�nitions of P and Q only conjunctionsand the existential quanti�er (requiring uniqueness; existential quanti�cationwithout requiring uniqueness is allowed if all systems in InSys are independent).(b1) Total Correctness and Termination: We make the following assumptions:(1) the �nal states form a subsheaf Stf of St,(2) the properties P and Q can be expressed in the language L, and canbe interpreted in Sets (for every system Si in InSys expressing the corre-sponding property of Si) as well as in E and F .It was shown that under these assumptions Final(s) can be expressed by(9s0 : Stf )(i(s0) = s). Therefore, the formula describing total correctness andtermination is a geometric formula. It is therefore preserved under inverse imagefunctors if in the de�nitions of P and Q appear only conjunction, disjunctionand existential quanti�cation. It is preserved by both direct and inverse functorsif in the de�nitions of P and Q only conjunctions and the existential quanti�er(requiring uniqueness; existential quanti�cation without requiring uniquenessis allowed if all systems in InSys are independent).(b2) Accessibility: The formula describing the accessibility of sf from s0 in h,is a geometric axiom, hence it is preserved by inverse image functors.If the existence of j is provably unique (with respect to some cartesian the-ory T ), or if all systems in InSys are independent, then the formula is alsopreserved by direct image functors.(c) Precedence properties: Assume that the properties P andQ can be expressedin the language L.Formulas describing precedence properties are preserved under inverse im-age functors if in the de�nitions of P , A, and Q appear only conjunction,disjunction and existential quanti�cation. They are preserved by both directand inverse functors if in the de�nitions of P , A, and Q only conjunctionsand the existential quanti�er (requiring uniqueness; existential quanti�cationwithout requiring uniqueness is allowed if all systems in InSys are independent).



Chapter 9ApplicationsThis chapter contains applications of the theoretical results in the previouschapters. We present several problems that occur in distributed systems. Thesolutions to some of these problems will be presented as algorithms.� given a set of actions decide using only \local information" if they can beperformed in parallel,� \parallelize" a sequence of atomic actions,� study whether plans elaborated \locally" can be \glued together" to aglobal plan,� study the link between properties of component parts and properties ofthe system obtained by interconnecting them.We would like to point out that many of the problems that appear in mod-eling distributed systems can be formulated as particular cases of \divide-and-conquer" problems: the domain of the problem is \split" (e.g. by �nding a coverfor a given system), then \local subproblems" are solved locally and �nally thelocal solutions are combined (if possible) to a global solution.Finally, we will present a case study, part of our joint research togetherwith J. Pfalzgraf and K. Stokkermans, towards possible uses of �bered modelsfor describing robotics scenarios in which space- and time-dependent formulaeappear.9.1 Checking Whether a Set of Atomic Actions canbe Performed in Parallel in a Distributed SystemLet a family InSys of interacting systems be given, satisfying the conditionsimposed in Chapter 8. We assume that no element in InSys is the colimit ofother elements of InSys. Sys(InSys) denotes the category of all systems obtainedby interconnecting elements in InSys. In Chapter 8 we studied the propertiesof Sys(InSys). We showed that a Grothendieck topology J can be de�ned on290



9.1 Distributing an Action in a Distributed System 291Sys(InSys) such that a family S is a covering family for a system S if and onlyif S contains all the elements of InSys that are transition-connected subsystemsof S. Therefore, a �nest1 cover exists for every object S in Sys(InSys), namelyfSi 2 InSys j Si ,! Sg.Description of the problem:Given: a system S in Sys(InSys), a state s0 of S and a set of actions f � AU .Task: Decide whether all the actions in f can be executed in parallel in states0 in S, and if so compute the �nal state.In order to make the problem computationally tractable, we make the ad-ditional assumption that InSys is �nite (and all its elements are �nite systems).In this situation all objects in the site (Sys(InSys); J) are �nite, and a �nestcover exists for each object and is �nite.Usually, a system S is speci�ed by giving a cover S = fSi j i 2 Ig for S byelements of InSys. If the system S is complex (i.e. is obtained by interconnectingmany components), it may be quite time consuming to actually construct Sand then \globally" decide if the action f can be performed in S. Many of thesystems that compose S may not even be involved in executing the action.A \modular approach" seems to be more appropriate. Namely, we do notconstruct S, but analyze the components in S one by one, and see if the corre-sponding restrictions of f are admissible parallel actions in these components.If this is the case, we obtain a compatible family of elements ffi j i 2 Ig,where fi = fjSi and fi 2 Act(Si), that has a unique amalgamation, namelyfjS 2 Act(S).If additionally f � AS , then it follows that f 2 Act(S).The �nal state can then be computed from the local �nal states by applyingProposition 7.14 (if transitions of parallel actions are obtained according to rule(Gluing)) or Proposition 8.6 (if all the actions are deterministic and transitionsof parallel actions are obtained according to rule (Independence)).The data can be represented as follows:Data Structure:� InSys: a �nite set of �nite systems.� Every Si 2 InSys will be represented by{ Xi, the set of control variables (ordered list);{ Ai, the set of atomic actions (ordered list);{ Ci, the set of constraints on atomic actions;of the form ai ^ aj = 0 or ai = aj (ordered list of constraints);{ St(Si) the set of states, where every state s 2 St(Si) is represented asan ordered list ((x1; v1)(x2; v2) : : : (xn; vn));{ Tr(a) � St(Si) � St(Si), the set of transitions induced by a, for everya 2 Ai;1A �nest cover is a cover none of whose elements can be further decomposed via a cover.



292 9 Applications� Every element S of (Sys(InSys); J) will be represented by its �nest cover.Distributing Parallel Actions in Distributed SystemsGiven :A �nite family of �nite systems InSys,a system S in Sys(InSys) (a �nest cover S for S),an initial state s0 of S,a parallel action f = ff1; : : : ; fng.Task : Decide whether f can be performed at state s0 in S. If so, determinethe active subsystems of S, and the �nal state.Sketch of the Algorithm :[Step0] Decompose SLet S = fSj j j 2 Jg be the �nest cover for S in (Sys(InSys); J).[Step1] Check if f is contained in AS[Step1a] Solve SubproblemsFor every i 2 f1; : : : ; ng; j 2 J test if fi 2 ASj .Let fSi1 ; : : : ; Sikg be the set of those systems in the cover thatcontain at least one action in f .For every i 2 fi1; : : : ; ikg let fjSi be the set of all actions in fcontained in ASi .[Step1b] ComposeIf there exists some action in f that is not contained in ASj forany j then Return(f not known in S).Otherwise f is known in S; goto [Step2].[Step2] Check if f = ff1; : : : ; fng 2 Act(S)[Step2a] Solve SubproblemsFor every j 2 Jif fjSj 62 Act(Sj) then Return(f 62 Act(S)).if fjSj 2 Act(Sj) and cannot be applied in state s0jXjthen Return(f cannot be applied at s0).if fjSj can be applied in state s0jXj let sj be the stateof Sj reached after performing fjSj .[Step2b] ComposeUse the sheaf property of Act to deduce that f 2 Act(S).Use the sheaf property of St to glue the family of locally com-puted states fsjgj22J together. The amalgamation of this fam-ily is in this case the �nal state.



9.1 Distributing an Action in a Distributed System 293
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Figure 9.1: ActionsExample 9.1 Consider the situation described in Section 6.1. Let R0, R1, R2,R3 be the four robots, and let S0; S1; S2; S3 be the corresponding systems.We have: InSys = fS0; S1; S2; S3g [ f\i2I Si j I � f0; 1; 2; 3gg:Input:(1) S, the system obtained by interconnecting S0; S1; S2; S3,(2) s0 a state of S, and(3) f = fbring-a, bring-bg.Task:Decide whether f can be performed at s0 in S, and if so, which are the subsys-tems of S that are active and what is the �nal state.We can proceed as follows:The actions in f are bring-a and bring-b. bring-a is known in the systems S1and S0; bring-b is known in the systems S2 and S0. We know that the parallelaction f bring-a, bring-b g is allowed in S0.If bring-a can be executed at s0jS1 in S1 and bring-b can be executed ats0jS2 in S2, and bring-a jj bring-b can be executed at s0jS0 in S0, then by theproperties of transitions in Sys(InSys) (cf. Section 8.1.1) it follows that f = fbring-a, bring-b g can be executed at s0 in S. Additionally, it can be seen thatthe subsystems (in InSys) of S that have a rôle in performing f are S0; S1; S2.We can compute the transition (in S) associated with this action by com-puting (locally) the transitions associated with f , and then gluing the �nalstates together.Example 9.2 Consider now f = f bring-a, give-res g.The actions in f are bring-a and give-res. bring-a is known in S0 and S1 andgive-res is known in S0 and S3.



294 9 Applications
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Figure 9.2: ActionsHence, they are both known in S0, but in S0 we have the additional con-straints bring-a ^ receive-res = 0 and receive-res = give-res, so they cannot beperformed in parallel in S0. It follows that they cannot be performed in parallelin S.9.2 Parallelizing Global PlansPlans in complex systems can be described as successions of actions. We illus-trate the notion, referring again to the example described in Section 6.1.Consider the following problem:Given: Initial state:3 pieces of type a are in Stocka, and2 pieces of type b are in Stockb.Nothing on the assembly bench.No robot holds a piece.(i.e. sa = 3; sb = 2; ha = hb = 0; pa = pb = pr = 0).Task: Assemble two pieces of type r and move them to the stock.A possible plan is the following:get-a, get-b, bring-a, bring-b, assemble, give-res, transport,get-a, get-b, bring-a, bring-b, assemble, give-res, transport.Assume that the following constraints on actions are imposed:R0 :assemble ^ bring-a = 0, assemble ^ bring-b = 0, assemble ^ give-res = 0,bring-a ^ give-res = 0, bring-b ^ give-res = 0,bring-a = receive-a = give-a,give-res = receive-res,



9.2 Parallelizing Global Plans 295R1 :get-a ^ bring-a = 0, bring-a = give-a = receive-a,R2 :get-a ^ bring-a = 0, bring-a = give-a = receive-a, get-b ^ bring-b = 0,bring-b = give-b = receive-b,R3 :give-res ^ transport = 0, give-res = receive-res.Therefore, the plan given before can for instance be parallelized as follows:[get-a jj get-b], [bring-a jj bring-b], [assemble jj get-a jj get-b], give-res, [transportjj bring-a jj bring-b], assemble, give-res, transport.At this level of generality we assume that all actions need the same amountof time. The parallelization of sequences of actions (considered \plans") whenall actions need the same amount of time, taking into account which actionsare independent can be done for instance by computing the Foata normal form(for the de�nition see Section 4.3.1). For an algorithm for computing the Foatanormal form we refer to [Die90] p.30. In what follows we just give the mainidea of the algorithm:Let S be a system and let G(S) = (AS ;D(S)) be the associated dependencygraph. Let fG1; : : : ; Gkg be a covering of G(S) by cliques (i.e. complete sub-graphs), Gi = (Ai; Ai � Ai) for every i 2 f1; : : : ; kg. By Theorem 4.22 thereexists a canonical embedding M(S) ,! Qki=1A�i .The algorithm in [Die90] has an input a sequence w of atomic actions inAS = Sni=1Ai. The algorithm can be schematically represented as follows:Data structure� Every system S will be represented by its dependence graph (A;D(S)),(A : list, D(S) : list of pairs of elements in A),� Every clique Si is represented by its set of vertices Ai (list),� A word w 2 A� is represented as a list.Foata Normal FormGiven :A system S = (A;D(S)) and a �nite covering of its dependency graph bycliques fSi j i 2 Ig,w 2 A�Task : Find elementary steps F1; : : : Fm with [w] = [F1] : : : [Fm] in M(S) suchthat for every i 2 f1; : : : mg a; b 2 Fi implies (a; b) 62 D(S) and forevery i 2 f2; : : : mg and every a 2 Fi there exists a b 2 Fi�1 such that(a; b) 2 D(S).



296 9 ApplicationsSketch of the Algorithm :S := 1,while w 6= " do:F := min(w),S := S � F ,w := F�1wendwhileend.If w = w1w2 in M(S) then w�11 w is by de�nition w2. min(w) provides theset of the \minimal" elements of w, i.e. the set of F of atomic actions a withthe property that a is the �rst symbol in wjAi for every i such that a 2 Ai.Finding Minimal Elements (min(w))Given: A system S and a covering of its dependency graph by cliques,w 2M(S).Task : Find the set F of atomic actions a with the property that a is the �rstsymbol in wAi for every i such that a 2 Ai.Sketch of the Algorithm min(w) :b := true,F := ;,I := fi 2 f1; : : : ; kg j wjAi 6= "g,while I 6= ; dochoose i 2 I, I := Infig,a := first(wjAi); J := fi j a 2 Aignfig,while J 6= ; and b dochoose j 2 J ,if j 2 I and a = first(wjAj) then I := Infig; J :=Jnfjg,else b := falseif b then F := F [ fag,else b := trueendwhile,return Fend.



9.3 Putting Together Local Plans 297Restrict a word to a subalphabet (wjAi)Given: A word w 2 A� and Ai � A,Task : Find the restriction wi = wjAi 2 A�i of w to Ai.Sketch of the Algorithm :wi := nil;while w 6= nil doa := first(w);w := rest(w);if a 2 Ai then wi := concatenate(wi; (a)),endwhile end.The parallelization in the example above can be obtained choosing the cov-ering by cliques of D(S) as shown in Figure 9.3.
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Figure 9.3: Covering of the Dependence Graph by Cliques9.3 Putting Together Local PlansAnother problem that often arises in decentralized planning is that of puttingtogether compatible local plans to a global plan.Consider the following example:Given: Initial state:3 pieces of type a are in Stocka, and2 pieces of type b are in Stockb.Nothing on the assembly bench.The robots hold no pieces.



298 9 ApplicationsTask: Assemble one piece of type r and move it to the stock.We assume that every agent knows the problem and elaborates a \local"plan for solving it. For instance, assume that the local plans are as follows:R0: bring-a, bring-b, assemble, give-res,R1: get-a, bring-a,R2: get-b, bring-b,R3: give-res, transport.It is easy to see that these plans are compatible, in the sense that for everytwo systems, if we \delete" actions that do not belong to both of them, weobtain the same sequences of actions.These plans can be \glued together" to a global plan, for instance to:get-a, get-b, bring-a, bring-b, assemble, give-res, transport.This global plan can be further parallelized as discussed before, for exampleto: [get-a jj get-b], [bring-a jj bring-b], assemble, give-res, transport.Theorem 4.23 (based on the results in [CM85], [MP86] and [Die90]) showsthat it is always possible to glue together compatible local plans in the aboveexample.The theorem states that for every �nite system S obtained by interconnect-ing the family fS1; : : : ; Sng, if G = Sni=1G(Si) then the following assertions areequivalent:(1) Every compatible family of local plans fw1; : : : ; wng, where forevery i, wi 2 A�i , can be glued to a global plan w 2 (Sni=1Ai)�.(2) Every chordless cycle in the graph G is a cycle in a subgraphG(Si) for some i 2 f1; : : : ; ng.In the example described above the condition is satis�ed, as can be seenfrom the dependence graph of the system represented in Figure 9.4.From the proof of Theorem 4.23 given in [MP86] (for the case when G(Si)is complete for every Si 2 InSys) it is easy to deduce a way of constructing w 2A� = (Sni=1Ai)� such that wjAi = wi for every matching family fw1; : : : ; wng,where wi 2 A�i for every i 2 f1; : : : ; ng.In what follows we present a method that, given a a matching family ofelements wi 2M(Si), provides a way of computing the element w 2M(S) withthe property wjAi = wi, under the assumption that every chordless cycle in thegraph G is a cycle in a subgraph G(Si) for some i 2 f1; : : : ; ng.We �rst recall that for every system S every trace w = a1 : : : an 2M(S) canbe represented by a directed graph (that has a set of vertices fv1; : : : ; vng, each
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TransportFigure 9.4: Dependence Graphvertex vi being labelled with the value ai, and for every i < j there is a directededge from vi to vj if and only if (xi; xj) 2 D(S)). In what follows, in order todistinguish di�erent occurrences of the same symbol a we will represent theseoccurrences by (a; 1); (a; 2); : : : ; (a; k) (where (a; k) occurs before (a; l) if andonly if k < l). For two occurrences (a; k) and (b; l) at vertex vi respectively vjwe say that (a; k) occurs before (b; l) if there is a directed path from vi to vj. Itis easy to see that for every two occurrences (a; k) and (b; l) in w either (a; k)occurs before (b; l) or (b; l) occurs before (a; k), but not both.Lemma 9.1 Let fw1; : : : ; wng be a matching family of elements wi 2 A�i .(1) Let a 2 A. If a occurs in some wi 2 A�i then it occurs in every wj 2 A�jsuch that a 2 Aj.For every wi with a 2 Ai, a has a �nite number of occurrences in wi. Werepresent these occurrences by (a; 1); (a; 2); : : : ; (a; k) (where (a; k) occurs before(a; l) if and only if k < l).(2) If a 2 Aj for some other Sj the number of occurrences of a in wi and wjis the same.Let � be the relation on the set of occurrences de�ned by (a; k)�(b; l) if andonly if a; b 2 Ai for some i, and (a; k) occurs before (b; l) in wi.(3) Assume that every chordless cycle in the graph G is a cycle in a subgraphG(Si) for some i 2 f1; : : : ; ng. Then there is an occurrence (a; k) that hasno �-predecessor.



300 9 ApplicationsProof : (1) and (2) follow immediately from the compatibility of the familyfw1; : : : ; wng.(3) Consider the directed graph (V;E; �) obtained by taking the union ofthe directed graphs fG(wi) j i 2 Ig corresponding to the family fwi j i 2 Ig, byidentifying the vertices labeled with the same occurrence symbol. Such a unionexists because the family fwi j i 2 Ig is a matching family. Note that for everyi 2 I, G(wi) does not contain any directed cycle.Assume that every occurrence (a; k) has a �-predecessor. In this case it iseasy to see that the graph (V;E; �) contains (directed) cycles. Let (x1; : : : ; xn)be a directed cycle of minimal length. It is easy to see that the assumptionthat every chordless cycle is a cycle in a subgraph G(Si) for some i 2 f1; : : : ; ngimplies that n � 3. (If (x; y) 2 E then (y; x) 62 E; otherwise both \�(x)precedes �(y)" and \�(y) precedes �(x)" hold in some wi, which is absurd.)We show that in this case the actions in the labels �(x1); : : : ; �(xn) are alldi�erent. Assume that for i 6= j we have �(xi) = (a; ki) and �(xj) = (a; kj).Without loss of generality we can assume that i; j are the minimal indices withthis property, i < j and i � 1 6= j (mod n). Let �(xi�1) = (b; l). Since thereis an edge between xi�1 and xi, it follows that (b; a) 2 D(Sm) for some m 2 I.Thus, we have either (xi�1; xj) 2 E or (xj ; xi�1) 2 E. In the �rst case wefound a shorter cycle, namely (x1; : : : ; xi�1; xj ; : : : ; xn), contradiction. In thesecond case, (xj ; xi�1; xi; : : : ; xj�1) is a shorter cycle if j + 1 6= i� 1 (mod n).If j + 1 = i� 1 (mod n), we distinguish again several cases:Case 1: i+ 1 = j (mod n). In this case we havexi�1 // xi
~~} }
} }
} }
} }xjbbE E E E E E E EThis is impossible since on the one hand it follows that (a; kj) precedes (b; j) inSm, which precedes (a; ki), and on the other hand, (a; ki) precedes (a; kj).Case 2: i + 1 6= j (mod n). Assume that �(xi+1) = (c; r). From the factthat (xi; xi+1) 2 E it follows that (a; c) 2 D(Sp) for some p 2 I, hence either(xi+1; xj) 2 E or (xj ; xi+1) 2 E.If (xi+1; xj) 2 E we obtain on the one hand that (a; kj) precedes (a; ki) inwm and on the other hand that (a; ki) precedes (a; kj) in wp. Contradiction.If (xj ; xi+1) 2 E we can �nd a shorter cycle, namely (xi+1; xi+2; : : : ; xjg ifi + 1 < j � n or fxi+1; xi+2; : : : ; xn; x1; : : : ; xj�1g if n is between i + 1 and j.Contradiction.Thus, all the labels �(x1); : : : ; �(xn) are di�erent, and f�(x1); : : : ; �(xn)g isa chordless cycle in the dependence graph G(S), hence, it is contained in thedependence graph G(Si) for some i 2 I. This impossible because the restrictionto Si of the graph (V;E; �) is the graph G(wi) which does not contain cycles.2Lemma 9.2 Let fS1; : : : ; Sng be a cover of S. Assume that every chordlesscycle in the graph G is a cycle in a subgraph G(Si) for some i 2 f1; : : : ; ng. Let



9.3 Putting Together Local Plans 301fw1; : : : ; wng where for every i 2 f1; : : : ; ng, wi 2M(Si) be a matching family.Then there exists w 2M(S) such that for every i 2 f1; : : : ; ng, wjSi = wi.Proof : We proceed by induction on the number of occurrences in the familyfw1; : : : ; wng.If w1 = w2 = : : : = wn = " then w = " has the required property.Assume that at least one element of fw1; : : : ; wng is di�erent from ". Let mbe the number of occurrences in fw1; : : : ; wng. We assume that the property istrue for every family fv1; : : : ; vng with at most m� 1 occurrences.Determine the set M of occurrences (a; k) that have no �-predecessor. Thenfor every Si, wi = [MjSi ]vi (where [MjSi ] = Qfa j (a; k) 2 M and a 2 Aig). Itis easy to see that fv1; : : : ; vng is a compatible family of elements vi 2M(Si).There are strictly less occurrences of atomic actions in fv1; : : : ; vng than infw1; : : : ; wng. Then, by the induction hypothesis there exists a v 2M(S) suchthat for every i 2 f1; : : : ; ng, vjAi = vi. It is easy to see that w = [M ]v has theproperty that for every i 2 f1; : : : ; ng, wjAi = wi. 2The \amalgamation" of the family fw1; : : : ; wng can then be recursivelyconstructed as follows:Given: A family of systems Si = (Ai;D(Si)), satisfying the condition in (3),A matching family fw1; : : : ; wng, wi 2M(Si).Task: Find w 2M(S) such that for every i 2 f1; : : : ; ng, wjAi = wi.Sketch of the Algorithm (glue(w1; : : : ; wn))If w1 = : : : = wn = " then w := ", exit.Determine the relation �;Determine the set M of occurrences (a; k) that have no �-predecessor;For every i 2 f1; : : : ; ngdetermine vi 2M(Si) such that wi = [MjSi ]vi;v := glue(v1; : : : ; vn);w := [M ]vend.We conclude with a classical example in which it can be seen that thereare situations when compatible local plans cannot be glued together to a globalplan.Example 9.3 (cf. [MP86, Gog92]) Let n philosophers sitting around a cir-cular table the center of which always contains a plate of food. This food mustbe eaten seated at the table with one fork in each hand. The table has n forks,one between each two adjacent chairs. Philosophers can be seen as \agents" that



302 9 Applications

      n = 2
Dining Philosophers
            n = 4

Dining Philosophers Figure 9.5:have as goal to eat. For the sake of simplicity we assume that a philosophereats i� he has a fork in each hand, and that this process takes one unit of time.The system (in the case n = 2) can be described as follows:The individuals considered are Philosopher1;Philosopher2 ;Fork1;Fork2.(1) Philosopheri, i = 1; 2, can execute two actions: take-forki1, take-forki2.(2) Forki, i = 1; 2, can execute two actions: to-philosopheri1 , to-philosopheri2.We assume that take-forkij if and only if to-philosopherji , hence they can beidenti�ed.Consider the following local plans:Philosopher1: take-fork11, take-fork12Philosopher2: take-fork22, take-fork21Fork1: to-philosopher12 (= take-fork21), to-philosopher11 (= take-fork11)Fork2: to-philosopher21 (= take-fork12), to-philosopher22 (= take-fork22).It can be easily seen that these global plans cannot be glued to a global plan.The reason is that in this case the dependence graph, represented in Figure 9.6,contains a cycle that is not contained in the dependence graph of any of itscomposing subsystems.9.4 Properties of the Interconnection of a Family ofSystemsFrom the remarks in Section 8.7 we know that those properties that can be ex-pressed in terms of states, actions, transitions, possibly involving behavior overan interval of time, are \inherited" by the system obtained by interconnecting
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2Figure 9.6: Dining Philosophers (n = 2), Dependence Grapha given family of systems if these properties can be expressed by cartesian setsof axioms (i.e. sets of axioms that can be ordered in such a way that each iscartesian relative to those which precede it).Therefore a \modular" approach to checking whether a system S satis�essuch axioms could be formulated as follows:Given :A �nite family of �nite systems InSys,A cartesian set of axioms T involving information about states, actions,transitions, behavior over time (N).Task : Decide whether the system S obtained by interconnecting the elementssatis�es the axioms in T .Sketch of the Algorithm :[Step1] Solve subproblemsFor every system Si 2 InSys check whether the axioms in T holdin Si.[Step2] ComposeIf for all system in InSys the axioms in T hold, Return(T holdsin S).Note that if there exists one system in InSys where one axiom in T does nothold, we do not know whether T holds in S or not.9.5 Description of a Time and Space Dependent Sce-narioWe now present a scenario in which time- and space-dependency arise in anatural way. This is part of joint work with J. Pfalzgraf and K. Stokkermans inwhich �bered structures are used for modeling cooperating agents cf. [PSS96b].



304 9 ApplicationsThe following scenario is based on the original sample scenario of [Pfa91].However, it is signi�cantly extended in that it now reects a generic way todeal with time and space dependency.
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Stock-a Stock-resFigure 9.7: Partition of the WorkspacesMixing space and time dependency, formally we have in mind the productof space and time, as follows. Let X denote the space (physically, this canbe the coordinatized ground oor in a working hall, for example) and T theentire set of time parameters (possibly a union of time intervals or clock cyclescorresponding to individual agents). Then time constraints arise in cooperationof agents (synchronization constraints) and this can depend on that part of theworking cell of an agent where he cooperates with others. Thus, if D � Xdenotes such a subdomain and if �1 : X � T ! X is the �rst projection map,then in ��11 (D) we are modeling the time dependent processes, including timeconstraints arising over subdomains D where cooperation of di�erent agentstakes place.The following scenario is taken from [PSS96b] and contains three robots,R0, R1, and R2. They perform an assembly task similar to those described in[PSS95, PSS96a].� R0 receives a work piece a and a work piece b and performs an assemblytask. The work piece r obtained from assembling a and b is placed onthe assembly bench, at a part reachable for both R1 and R2 (so in theintersection of all three workspaces).� R1 furnishes pieces of type a. He checks whether there are pieces of typea left in stock, and whether a piece of type a or an r resulting fromassembling a and b is placed on the assembly bench of R0. If there arepieces of type a in stock, and if no a or r are placed on the table, R1brings a piece of type a to R0 (and places it in the intersection of theirworkspaces).



9.5 Description of a Time and Space Dependent Scenario 305� R2 furnishes pieces of type b. He checks whether there are pieces of typeb left in stock, and whether a b or an r is placed on the table. If there arepieces of type b in stock, and no b or r is on the table, R2 brings a pieceof type b to R0, placing it in the intersection of their workspaces.� After R0 has assembled a and b, either R1 or R2 transports the result rfrom the table to the �nal storage; under certain circumstances, the tworobots R1 and R2 will have to cooperate to transport the piece r though;this will be described below.Since the agents are performing complex and di�erent tasks (taking pieces,transporting them, assembling) and are able to cooperate, we can assume thattheir working space can be partitioned in di�erent subdomains where speci�ctasks are performed. A partition of the workspaces for the example describedabove is illustrated in Figure 9.7.Moreover we will assume that every agent knows \where" in space he is (atleast in which domain) and that at the moment when a given agent begins toexecute an action A, an internal clock cycle begins. Moreover, at this momentthe agent knows the time tA needed for accomplishing A. If this limit timeis reached with the action not accomplished, a signal to a control device C isactivated (meaning that something is going wrong). C will then correct thesituation.In the scenario described here, we assume that in the di�erent regions oftheir workspace the robots can do speci�c actions and can have access to certaininformation (in the form of values for control variables). This is described inTable 9.8 (where A is the action being performed and tA is a maximal duration,assumed to be su�cient for performing A).One possible development of the scenario is the following:Initial State: The agents R1 and R2 are at the positions x1 2 D1transport(resp. x2 2 D2transport). There are no pieces of type a in stock and thereis at least one piece of type b in stock. No piece is on the table.Goal: Transport the piece r obtained by assembling a piece of type a and oneof type b in the stock of pieces of type r.A Possible Plan (note that the logical state spaces of agents { control vari-ables, activation values for actions { vary depending on the moment of timeand the position in space of the agents).(1) Agent R1 moves to the stock (in D1stock). His internal clock is set to0. He reaches the stock at moment ts (the normal time necessary forreaching the stock), and attempts to take a piece from the stock. Theinternal clock is set to 0 again. Since no piece of type a is left in stock,after the time ta (su�cient in normal circumstances for taking a piece oftype a from the stock) the action is still not accomplished. Therefore at
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Agent Domain Time Variables Actions(int. clock:[0; tA))R1 D1stock 0 � t < tA sa; x1; t1; ha take-a,move-to-D1transportt = tA in addition: alarm-C(A) call-C(A)D1transport 0 � t < tA x1; t1; ha move-to-D1table,move-to-D1stockt = tA in addition: alarm-C(A) call-C(A)D1table 0 � t < tA pa; pr; x1; t1; ha give-a,move-to-D1transportt = tA in addition: alarm-C(A) call-C(A)R2 D2stock 0 � t < tA sb; x2; t2; hb take-b,move-to-D2transportt = tA in addition: alarm-C(A) call-C(A)D2transport 0 � t < tA x2; t2; hb move-to-D2table,move-to-D2stockt = tA in addition: alarm-C(A) call-C(A)D2table 0 � t < tA pb; pr; x2; t2; hb give-b,move-to-D2transportt = tA in addition: alarm-C(A) call-C(A)R1; R2 D12table 0 � t < tA pr; x1; t1; ha; x2; t2; hb take-rest = tA in addition: alarm-C(A) call-C(A)R0 D0assemble 0 � t < tA pa; pb; pr; x0; t0 assemble,move-to-D1table,move-to-D2table,move-res-to-D12tablet = tA in addition: alarm-C(A) call-C(A)D1table 0 � t < tA pa; pr; x0; t0 receive-a,move-a-to-D0assemblet = tA in addition: alarm-C(A) call-C(A)D2table 0 � t < tA pb; pr; x0; t0 receive-b,move-b-to-D0assemblet = tA in addition: alarm-C(A) call-C(A)D12table 0 � t < tA pr; x0; t0 put-res,move-to-D0assemblet = tA in addition: alarm-C(A) call-C(A)Figure 9.8: Description of Space and Time Dependencies
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Figure 9.9: Time Cyclesmoment ta a signal is activated, by which R1 asks the control device Cfor help. C takes care that the stock is provided with more pieces of typea, and R1 can eventually perform the action of picking a piece. He bringsit to the assembly bench and puts it there.(2) Agent R2 does an analogous task for pieces of type b. Since there stillare pieces of type b in stock, the intervention of C is not necessary in thiscase.(3) A piece of type a and a piece of type b are on the assembly bench. RobotR0 starts to assemble the pieces. At the beginning of the process theinternal clock of R0 is set to 0. Assume that the assembly process isnot successful, in the sense that after the time tas, normally su�cient forassembling the pieces, they are still not assembled. Then at the momenttas a signal is activated, by which R0 asks for help from C.C discovers which of the pieces causes the problem and gives the corre-sponding agent the command to bring another piece of that type. Afterthis is provided and the assembly process is completed, R0 puts the resulton the assembly bench.(4) The result has to be transported to a stock with pieces of type r (by one orboth agents). R1 moves to the table (region D12table, which is accessible toall the robots) and tries to lift r. Its internal clock is set to 0. If after thetime tr (su�cient for lifting r) the action has not yet been accomplished,R1 activates a signal which is sent to C. The control device then calls R2to help lifting and transporting the piece.



308 9 ApplicationsThe cooperation between R1 and R2 is only possible in the domainsD12table and D12transport.The robot R2 comes to help R1. Together they lift the piece r and trans-port it to the stock. While R1 and R2 work together, their internal clocksmust be synchronized.The behavior in time of the system is illustrated in Figure 9.9. For the sakeof simplicity, the error situation described in (3) above is omitted. The localclock-cycles are denoted by intervals of the form [0; tA), where tA is a maximalduration, assumed to be su�cient for executing a given action A. We used thistype of notation in order to emphasize the fact that at the moment tA the statespace changes: if the action is not yet accomplished a signal is switched on, andthe robot asks for help from the control device C.The way these local time-cycles synchronize and build one time-cycle forthe whole system is represented in Figure 9.10.
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Chapter 10Conclusions and Plans ofFuture WorkIn this thesis we pointed out some applications of �bered structures in computerscience, namely in solving algorithmic problems in algebra and logic, as well asin modeling interacting systems. We will give a summary here, and indicatesome directions for future research.10.1 Applications for Solving Algorithmic Problemsin Universal Algebra and LogicIn Chapter 5 we presented representation theorems in universal algebra { suchas sheaf representation and Priestley type representation theorems { and theirapplications in solving algorithmic problems in algebra or logic.We started with a motivating example, namely that of the SHn-logics,because the idea of the approach to automated theorem proving presented herecame to us when studying SHn-logics.We presented two representation theorems for the algebraic models of SHn-logics, namely a sheaf representation theorem, which is an easy consequence of atheorem due to Werner about the representability of algebras in discriminatorvarieties as sheaves of algebras over boolean spaces, and a duality theoremderived from the Priestley duality for distributive lattices with 0 and 1.The common feature of these representation theorems is that they statethat every element of a given SHn-algebra A can be regarded as a continuousmap s : I ! `i2I Ai, with the property that for every i 2 I, s(i) 2 Ai, andwhich additionally might preserve some relations de�ned on I and `i2I Ai.Note that also the notion of Logical Fiberings (cf. [Pfa91]) is based on the ideaof decomposing logics by de�ning a \base space" and \�bers".In what concerns sheaf representation and applications, we specialized thetheorems on the existence of most general uni�ers for discriminator varietiesdue to Burris (cf. [Bur92]) to the variety SHn, and obtained a method ofgenerating most general uni�ers in this variety. We also showed that, givena discriminator variety V, L�owenheim's theorem on �nding the reproductivesolutions for systems of Boolean equations can be extended to a theorem that309



310 10 Conclusions and Plans of Future Workshows how \most general solutions" can be found for systems of equations inV. We showed next that the Priestley representation can be used in order togive a procedure for automated theorem proving for some classes of logics.We noticed that the dual spaces associated to SHn algebras are in particularspecial SHn-frames (as de�ned in [IO96]), where the relation is a partial order.We showed that the propositional SHn-logic is sound and complete withrespect to the Kripke model with 2(n� 1) elements D(Sn2).We gave a transformation procedure to clause form and a refutation proce-dure based on negative hyperresolution.Moreover, we extended the ideas illustrated for the case of SHn-logics tomore general classes of logics, namely those logics that are sound and completewith respect to a class of algebras with a distributive lattice reduct such thatthe variety is generated by a single �nite algebra and such that the Priestleyduality for distributive lattices extends to a dual equivalence between the givenvariety and a suitable category of Priestley spaces endowed with operationsand relations. The relationships between algebraic and relational models werestudied, and a possibility of de�ning frames and models (as done in [IO96] forthe case of SHn-logics) was discussed. A natural way of deducing the de�ni-tion of the satis�ability relation in such frames { starting from the well-knownsatis�ability notion with respect to an algebra { was presented. Then an auto-mated theorem proving procedure was given in this general case. For the sakeof simplicity, this procedure was �rst presented for the propositional case, thenit was extended to certain classes of �rst-order logics.Note that analyzing the proofs in Chapter 5 we noticed that the conditionimposed on the logic L (namely that it is sound and complete with respect toa variety V of algebras with an underlying distributive lattice structure, suchthat V is generated by one �nite algebra A and the Priestley duality extendsto a dual equivalence between V and a category VSp of Priestley spaces withoperators) can be relaxed.In all these proofs we only use the fact that the logic L is sound and completewith respect to a �nite Kripke-style frame (�nite set endowed e.g. with an orderrelation and with additional relations associated to the operations in the logic).A formal treatment of this fact will be subject of future work. In the thesiswe decided to impose the additional, more restrictive, condition concerning theexistence of the dual equivalence between the class of algebraic models of thelogic L and a suitable category of Priestley spaces with operations because itfurnishes an intuitive description of how such a Kripke frame can be constructed.We �nished by giving some examples of logics where this procedure can beapplied (Pmn-logics and SHKn-logics).At the end of Chapter 5 we presented an implementation in Prolog of theprocedure and tested it on several examples. Then, a comparison with otherexisting approaches was made.



31110.1.1 Plans of Future WorkWe conclude the description of our research in this area by sketching somedirections of future work.Let us analyze the two representation theorems for SHn-algebras describedin Section 5.1 more closely:Sheaf Representation Theorem Priestley Duality TheoremIndex set: Maximal congruences Maximal congruencesw.r.t. the signature w.r.t. the signaturef_;^;:;);�; s1; : : : ; sn�1g f0; 1;_;^g(also r)Subbasisfor topology E(a; b), Xa = E(x; 1),D(a; b) XnXa = E(x; 0) = D(x; 1)Order: discrete de�ned pointwiseFibers: Subalgebras of Sn2 f0; 1g(all simple SHn-algebras) (all simple 0,1-distributive lattices)and the one-point algebraThis suggests that other types of representations { \intermediate" betweenthe sheaf representation and the Priestley representation { might be possible.The rôle of such a representation would be to \separate" di�erent types ofoperators, including some of them in the �bers (if they are easy to manipulate)and expressing the other ones as relations on the base space (if they are harderto manipulate).It still has to be seen whether such representations would bring any ad-vantages, for example in improving the e�ciency or parallelizing automatedtheorem proving procedures.10.2 Modeling Cooperating AgentsThe second direction of work presented in the thesis is the use of sheaf theoryfor modeling systems that are obtained by interconnecting interacting agents.Starting from a motivating example we proposed a de�nition of systemsas well as a de�nition of morphisms between systems. Two categories of sys-tems, SYS and SYSlm, were de�ned, both having as objects systems, with themorphisms reecting di�erent types of relationships between systems: the mor-phisms in SYS can be seen as \translations" from the language of one system tothe language of another system that preserve constraints and satisfy a compat-ibility condition with respect to the models, whereas the morphisms in SYSlmadditionally satisfy a certain \tightness" condition with respect to transitions.We showed that two contravariant functors St and Act { expressing states andparallel actions { from these categories of systems to Sets can be de�ned. In



312 10 Conclusions and Plans of Future Workthe category SYSlm { considering St and Act as functors from SYSlm to Sets {we showed that transitions de�ne a natural transformation Tr : Act! 
St�St(morphism in the category of presheaves).We then continued by considering a category SYSi having only inclusionsbetween systems as morphisms, and a category SYSil having so-called transition-connected inclusions as morphisms (this was necessary in order to express thefact that there is a morphism from S1 to S2 if S1 is a subsystem of S2 andtransitions in S2 \restrict" to transitions in S1).Notions of covering were de�ned in both SYSi and SYSil and it was shownthat these covering relations induce Grothendieck topologies on both these cat-egories.States, actions and transitions were also analyzed in this context. It turnedout that states and parallel actions de�ne sheaves (with respect to the abovementioned Grothendieck topologies) in both SYSi and SYSil, and that the tran-sitions de�ne a natural transformation Tr : Act ! 
St�St in the category ofsheaves over SYSil (in some cases a certain �niteness condition was required)with the corresponding Grothendieck topology.Temporal behavior of systems in SYSil was also analyzed { the starting pointis the approach of Goguen [Gog92]. We took into account both the state andthe action executed at a given moment of time, and showed that two types of\gluing" conditions hold: one with respect to the basis of observation over timeand the other with respect to the structure of the system.Also the possibility of modeling the behavior of a system by monoids andlanguages was considered.In concrete applications we usually are only interested in some subcategoryof SYSil, having as objects those systems relevant for the given application.Therefore, we continued by considering the category of those systems obtainedby interconnecting a given family InSys of interacting systems, all contained in agiven �nite system SU (to enforce compatibility of models as well as �niteness)and which was assumed to be closed under all subsystems by means of whichcommunication can be done. A system obtained by interconnecting the elementsof the family InSys can be regarded either as a system on its own, or as the set ofall elements of InSys by whose interaction it arises (a downwards-closed subsetof InSys).We showed that on both categories de�ned this way, Sys(InSys) resp. 
(InSys),suitable Grothendieck topologies can be de�ned, expressing the way systemsarise from smaller subsystems. We showed that in both these approaches onecan de�ne notions as states and parallel actions, and showed that these de-�ne sheaves St and Act, resp. St and Act, with respect to the correspondingGrothendieck topologies. Moreover, transitions can be expressed in both casesby natural transformations Tr : Act ! 
St�St, resp. Tr : Act ! 
St�St (oralternatively as a subsheaf of Act� St� St resp. Act� St� St). The link be-tween the categories Sys(InSys) and 
(InSys) was also investigated: we showedthat an adjunction between these two categories exists; additionally, the rightadjoint preserves covers, which implies that a geometric morphism between thecategory of sheaves over Sys(InSys) and the category of sheaves over 
(InSys)



313(with the corresponding Grothendieck topologies) can be established.Also in this case we studied the behavior in time of systems { we showed thatboth gluing properties (with respect to time and with respect to the structure ofthe systems) established for the case SYSi also hold for the categories Sys(InSys)and 
(InSys).All these results were used in the last chapter, where { by using classicalresults in sheaf theory and geometric logic { we investigated the links betweenthe properties of the elements of InSys and the system obtained by interconnect-ing them. The theoretical considerations were illustrated on three examples:deadlock freedom, determinism, and fairness of execution.10.2.1 Prospects of Future WorkThere are many directions of future work in modeling cooperating agents. Webriey refer to them, without entering into too much detail.First of all, in the approach presented here we assumed that the executiontime for all actions is taking one unit of time. We would like to analyze themore complex and realistic approach in which for every action a duration for itsaccomplishment is given. The problem of representing di�erent durations forthe actions is not trivial. The representation of the behavior in time by monoidsand languages turns out to be more di�cult if we consider di�erent durations forthe actions. One possible solution could be to use results from timed automatatheory [AD94]. This might also have applications in scheduling.Another direction of future work is towards generalizing the notion of \ob-servation in time", in the sense of using a \path category" as done in [Win96,CW96] instead of the basis for observation in time used here.We would like to obtain a better understanding of the links between Priestleyduality, Kripke models and the approach to the study of concurrency describedin the thesis. The main observation that suggests that there is such a relation-ship is the following: Let S be a system with a set X of variables that can onlytake the values 0 (false) and 1 (true). Assume that the relationships betweenthese variables can be described by a set � of Boolean equations in variablesfrom X. Then a state of the system S is an assignment s : X ! f0; 1g thatsatis�es the set � of Boolean equations. Note however that there is a bijectionbetween the set fs : X ! f0; 1g j s j= �gand the setfs : FB(X)! f0; 1g j s Boolean algebra homomorphism and s j= �g;i.e. with the setfs j s : FB(X)= =�! f0; 1g Boolean algebra homomorphismg;where FB(X) is the free Boolean algebra generated by X and =� is the con-gruence relation on FB(X) generated by the set � of Boolean equations.



314 10 Conclusions and Plans of Future WorkNote that the set fs j s : FB(X)= =�! f0; 1g Boolean algebra homomorphismgis the Stone space of the Boolean algebra FB(X)= =�.In [JNW94, CW96] a parallel is drawn between so-called P -open maps (withrespect to a path category) and bounded morphisms of Kripke models. In thesame line of research, we would like to investigate whether the set of statescan de�ne (in a certain way) a Kripke model for a suitable logic expressing theproperties of the actions.In this thesis we de�ned a general notion of morphisms, but when consider-ing interconnections of systems we only considered inclusions between systemsas morphisms. We would like to continue this research in two directions:(1) Consider categories that have even more special types of inclusions asmorphisms (e.g. conservative extensions, de�nitional extensions).(2) Study the possibility of de�ning a Grothendieck topology on the categoryof systems SYS or on SYSlm (i.e. with arbitrary morphisms).Finally, we point out one more direction for future research. In this thesiswe showed that transitions de�ne natural transformations between sheaves, Tr :Act! 
St�St. In this way, a \generic transition system" can be associated to agiven category of systems, where both states and actions are sheaves, and suchthat the transitions can be expressed by natural transformations. We would liketo apply the results of Ad�amek and Trnkov�a [AT90] on de�ning automata ina category to the concrete category of sheaves over a category of systems witha suitable Grothendieck topology (this category has the properties required inorder to apply the theory from [AT90]), and see how general constructions asfor instance minimal realization can be carried out.
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