Fibered Structures and Applications to
Automated Theorem Proving in Certain Classes of
Finitely-Valued Logics

and to
Modeling Interacting Systems

Dissertation

zur Erlangung des akademischen Grades
“Doktor der technischen Wissenschaften”

Eingereicht von
Viorica Sofronie-Stokkermans

Marz 1997

Erster Begutachter: ~ Univ.-Prof. Dr. Jochen Pfalzgraf
Zweiter Begutachter: Univ.-Prof. Dr. Gunter Pilz

Angefertigt am: Forschungsinstitut fiir symbolisches Rechnen
Technisch-Naturwissenschaftliche Fakultat
Johannes Kepler Universitat Linz

Eidesstattliche Erklarung

Ich versichere, daf§ ich die Dissertation selbstandig verfafit habe, andere als
die angegebenen Quellen und Hilfsmittel nicht verwendet und mich auch sonst
keiner unerlaubten Hilfe bedient habe.

Linz, am 19. Marz 1997 Viorica Sofronie-Stokkermans

Support
This research was partially supported by:

e OAD doctoral fellowship (Osterreichischer Akademischer Austauschdi-
enst),

e Doctoral fellowship offered by RISC Linz for collaboration in the following
research projects:

PARAGRAPH (Parallel Computer Graphics), BMWF,

MEDLAR II (Mechanising Deduction in the Logics of Practical Reason-
ing), ESPRIT Basic Research Project, nr. 6471, FWF,

Cooperation with ProFactor in the domain of multi-agent systems with
applications in production (ProFactor),

e TEMPUS JEP-2692-92/2 (support for attending some of the courses and
seminars of the TEMPUS Semester in “Categorical and Algebraic Meth-
ods of Computer Science” held in Prague WS 1993).

e COST action 15 (MVL) (grant for a short-term mission at the University
Claude Bernard Lyon 1).

Kurzfassung

Das Ziel dieser Dissertation ist die Untersuchung von Anwendungen von
gefaserten Strukturen in der Informatik, genauer im automatischen Beweisen
sowie in der Modellierung kooperierender Systeme. Wir préasentieren und un-
tersuchen Situationen, wo gefaserte Strukturen und Garben (moglicherweise
beziiglich Grothendieck Topologien auf gewissen Kategorien) auftreten.

Die Dissertation umfafit zwei Hauptarbeitszweige, die stark miteinander
zusammenhangen.

Die erste Richtung der Arbeit beschaftigt sich mit dem Zerlegen von vorge-
gebenen Strukturen in einfachere Strukturen und zwar so, dafl gewisse Klassen
von Eigenschaften der gegebenen Struktur reduzierbar sind auf Eigenschaften
der einfacheren Strukturen. Der Hauptbeitrag in dieser Richtung befafit sich
mit einer Priestley-artigen Darstellung fur distributive Verbande mit Opera-
toren und der Anwendung zur Redizierung der Komplexitat beim automati-
schen Beweisen in einigen Klassen von mehrwertigen Logiken. Diese Methoden
werden zuerst fur den Fall von SHn-Logiken diskutiert und dann auf allge-
meinere Klassen von Logiken erweitert. Eine Implementierung in Prolog wird
prasentiert und Vergleiche mit verwandten Ansatzen werden gezogen.

Die zweite Richtung der Arbeit beschaftigt sich mit dem Zusammenbrin-
gen von verschiedenen Strukturen und der Analyse der Eigenschaften solcher
Kompositionen; insbesondere mit dem Studium des Zusammenhangs zwischen
den Eigenschaften der einzelnen Komponenten und ihrer Komposition. Wir
préasentieren einen garbentheoretischen Ansatz des Begriffs “Concurrency”. Beim
Studium von komplexen Systemen, die aus mehreren kooperierenden “Agen-
ten” zusammengesetzt sind, ist es von grundlegendem Interesse, das gesamte
System durch die Eigenschaften seiner Teile auszudriicken. Wir schlagen einen
Begriff von System vor, sowie verschiedene Varianten von entsprechenden Mor-
phismen zwischen Systemen. Wir definieren dann Grothendieck Topologien auf
den damit definierten Kategorien, welche “Uberdeckungsbeziehungen” zwischen
Systemen ausdrucken. Es stellt sich heraus, daf} ein Grofiteil der Information zur
Beschreibung von Systemeigenschaften ausgedriickt werden kann durch Garben
beziiglich dieser Grothendieck Topologien: zum Beispiel Zustdnde (“states”)
und parallele Aktionen werden von Garben St bzw. Act modelliert; Uberginge
(“transitions”) von einer Untergarbe von Actx Stx St; das Verhalten tiber einer
fixen Zeitskala ({0,1,...,n},n € N oder N) wird von einer anderen Garbe
modelliert. Wir beniitzen geometrische Logik zur Erklarung des Zusammen-
hangs zwischen gewissen Eigenschaften einer gegebenen Familie miteinander
verkniipfter Systeme und der Eigenschaften des aus der Verkniipfung resul-
tierenden Systems.

Abstract

The goal of this thesis is to study the applications of fibered structures in
computer science, more precisely in automated theorem proving in many-valued
logics, and in modeling cooperating systems. We present and study situations
in which fibered structures and sheaves (possibly with respect to Grothendieck
topologies on certain categories) arise.

The thesis contains two main directions of work, strongly interrelated:

The first direction of work is concerned with finding decompositions of given
structures in terms of simpler structures, in such a way that certain classes of
properties of the given structure can be reduced to properties of the simpler
structures. The main contribution in this direction of work concerns Priestley-
type representation of distributive lattices with operators, and its application
for reducing the complexity of automated theorem proving in classes of finitely-
valued logics. These methods are first discussed for the case of SHn-logics and
then extended to more general classes of logics. An implementation in Prolog
is given and comparisons with related approaches are made.

The second direction of work is concerned with putting together (intercon-
necting) different structures and studying the properties of the result of this
interconnection; in particular with studying the link between the properties of
the component parts and the result of their interconnection. We give a sheaf-
theoretic approach to the study of concurrency. In studying complex systems
consisting of several interconnected “agents”, given a class of agents (a de-
scription of every agent, and a description of the way they interact) it is often
necessary to study the properties of the system obtained by the interconnection
of the agents in this class. We propose a notion of system and several variants
of a corresponding notion of morphism, depending on the extent of the rela-
tionship between systems that we want to express. We define Grothendieck
topologies on the categories defined this way, that express “covering relation-
ships” between systems. It turns out that much of the information relevant for
expressing properties about systems can be expressed by sheaves with respect to
these Grothendieck topologies: for instance states and parallel actions are mod-
eled by sheaves St, Act; transitions are expressed by a subsheaf of Act x St x St;
and behavior over a fixed range of time (of the form {0,1,...,n},n € N or N)
can be modeled as a sheaf too. We use geometric logic in order to explain the
link between certain properties of a given family of interconnected systems and
the properties of the system that results from their interconnection.

Acknowledgements

There are many people who helped and encouraged me in various ways
during the preparation of this thesis, and influenced the work on my thesis
either directly or indirectly.

First of all I would like to thank Professor Bruno Buchberger who, as chair-
man and founder of the RISC institute, was directly responsible for creating
a very stimulating and pleasant atmosphere at this institute. I would like to
thank him for the useful comments he made concerning my work, but also for
organizing the classes on “Thinking, Speaking, Writing”, that proved to be very
useful in the preparation of this thesis, and also for his initiative of organizing
an English class for the RISC students who needed it (as I did at that time).
Especially, I would like to thank him for all the efforts he invested to impose
and maintain a high standard at the institute, and also for all the time and
energy he had to spend raising funds in order to allow a better development of
the institute.

My sincerest thanks go to Professor Jochen Pfalzgraf, my advisor, who di-
rected my interest to the field of modeling cooperating agents with the help of
“fibered structures”, for his enthusiasm, constant encouragement and interest
and for his permanent preoccupation in maintaining contacts with various other
groups working in category theory or in logic, and for organizing the visit to
Linz of several researchers working in these areas, as for instance (in chrono-
logical order) Dr. Barry Jay, Professor Jifi Addmek, Professor Jifi Rosicky,
Professor William Lawvere, Professor Jim Cunningham, Dr. Reiner Hahnle,
Professor Ewa Orlowska. I also would like to mention the cooperation we had
in MEDLAR, for which he was the coordinator at RISC (and which was also my
source of income during the years 1994-1996), as well as his fruitful efforts in
establishing links with other groups working in the field of many-valued logics
and applications, which concretized when our group joined the COST action 15
on many-valued logics. Moreover, Jochen Pfalzgraf set up the working group
on applied and computational category theory at RISC and organized a very
interesting seminar with this group.

I would also like to thank Professor Dana Scott who, during his one-year
stay at RISC, organized the seminar of the category theory group together
with Jochen Pfalzgraf. It was a great privilege to attend this seminar; both
because of the highly interesting topics Professor Dana Scott disclosed to us
— in his talks and by the questions during the talks of the other participants
— (including details and links between various areas that are hard to find in
books), and because he showed us what research and teaching can mean.

I want to thank Professor Gunter Pilz for his willingness to be the second
“Gutachter” of my thesis and for giving me the opportunity to attend the
seminar of his group and the possibility to present my own work in this seminar,
where I found a very friendly atmosphere.

I would also like to thank Professor Matthias Baaz for his many interesting
courses on various topics such as semantics of programming languages, temporal
logic, analogical reasoning, and automated theorem proving in non-classical

logics that he gave at the University of Linz. The course in automated theorem
proving in non-classical logics — in which among other very interesting topics he
also presented his own research on automated theorem proving by resolution in
finitely-valued logics — was an important source of inspiration for the part of my
thesis where I present a method for automated theorem proving in some classes
of finitely-valued logics. I also would like to thank him for giving our group the
possibility of presenting its work in a special session of the Kurt Godel Society
in Vienna in June 1996.

I would also like to thank Professor Addmek and Professor Rosicky for
inviting our RISC group to a seminar at the Charles University in Prague in
May 1993, where I had the opportunity of attending very interesting talks of
Professor Adamek, Professor Pultr, Professor Rosicky, and Professor Trnkova,
and for inviting the RISC group to become part of the TEMPUS project, so
enabling our group to visit the seminars held during the TEMPUS semester in
1993 in Prague and to attend the highly interesting talks of Professor Adamek
and Professor Pultr.

I thank Dr. Reiner Hahnle for the very interesting discussions on many-
valued logics and automated theorem proving we had during his visit at RISC.

I thank Professor Ricardo Caferra and Professor Ewa Orlowska for the con-
tribution they had in strenghtening the relationships between RISC and other
groups in the COST 15 action on many-valued logics. I would especially like
to thank Professor Ewa Orlowska for sending me one of her papers (writen
together with Professor Iturrioz) on a Kripke semantics for SHn-logics, that
actually gave me the idea of the method for automated theorem proving that
I describe in Chapter 5 of the thesis. I thank her also for the very inspiring
discussions we had during her visit at RISC, as well as for her generosity to
provide me with copies of papers and chapters of books which were difficult for
me to access.

Sincere thanks also to Professor Luisa Iturrioz, for accepting my application
for a short-term mission at the University Claude Bernard in Lyon in the frame
of the COST 15 action on many-valued logics in February 1997, and for giv-
ing me the possibility of presenting my work in the seminar of the Laboratory
of Discrete Mathematics at the University Claude Bernard in Lyon. I thank
her for giving me numerous bibliographical references concerning representation
theorems for Lukasiewicz, Post, and Heyting algebras, for her very interesting
remarks on the development of Lukasiewicz and Post logics, and on the relation-
ships between Lukasiewicz logics and the so-called Lukasiewicz-Moisil algebras
as well as with the proper Lukasiewicz algebras. I also thank her for reading
parts of my thesis and making several valuable suggestions, which helped me
to improve Chapter 5.

I would also like to thank my professors and colleagues at RISC who, in one
way or another helped me in my scientific work. It would be hard to single out
everyone of them for thanking them for their friendship and help. However, I
would like to thank Dr. Hoon Hong for his suggestions concerning the way of
presenting my ideas. I would also like to thank all former and present mem-
bers of the category theory group at RISC: Eugen Ardeleanu, Olga Caprotti,
Drew Dean, Wolfgang Gehrke, Manfred Minimair, Victor Pollara, Josef Schicho,

Karel Stokkermans, Frederik van den Plancke, Kim Ritter Wagner, Yasushige
Watase, and Todd Wilson.

I would like to also thank my professors during my stay at the University
of Lisbon, Portugal in 1992, especially to Professor Gabriela Hauser Bordalo
for her course on universal algebra and lattice theory, and for advising me in
the preparation of a seminar talk on Priestley duality for Ockham algebras. 1
used this in Section 5.4.1 as an example for the approach to automated theorem
proving presented in Chapter 5. Many thanks also to Professor Gracinda Gomes
for her very interesting course in semigroup theory and for the kindness with
which she helped me to get financial support in order to attend the Summer
school on semigroup theory held in York in 1993.

Last, but not least I would like to express many thanks to all my professors
at the University of Bucharest in Romania. Among them I would especially
like to thank Professor Mircea Malita, my diploma thesis advisor, for teaching
me the first notions on automated theorem proving, for suggesting me critical-
pair/completion algorithms such as the Knuth-Bendix algorithm and Buch-
berger’s algorithm for computing Grobner bases in polynomial ideal theory as a
topic for the diploma thesis, and for later introducing me to non-classical logics,
and encouraging my idea of using the Knuth-Bendix algorithm for automated
theorem proving in some classes of modal logics by rewriting in the associated
equational theories. Warm thanks also to Professor Solomon Marcus for his
courses in which he put a very strong emphasis on the real understanding of
mathematics and its beauty, for the way he encouraged and led his students to
research, for his constant encouragement during the time when I was a student,
and for the support in the times when I applied for grants; Professor Sergiu
Rudeanu for his excellent lectures in universal algebra and for encouraging me
to attend the seminar on sheaf theory at the University of Bucharest in 1991;
Professor Virgil Emil Cazanescu for his highly rigorous courses and seminars in
logic, category theory and denotational semantics.

And, most importantly, T would like to thank my parents and my husband
Karel for all their love, understanding, and support over the years.

Contents

Introduction

1.1 Presentation of the Main Results
1.2 A Short Summary of Results
1.3 Structure of the Thesis

Motivation
2.1 Background and Motivationo 0L
2.2 Brief Overview of Related Results

Background

3.1 Universal Algebra — Basic Notions
3.1.1 Lattices
3.1.2 General Notions of Universal Algebra
3.1.3 Polynomial Functions, Algebraic Functions
3.1.4 Discriminator Varieties

3.2 Logic — Basic Notions
3.2.1 Generalities
3.2.2 Basic Properties of Propositional Logics
3.2.3 Basic Properties of First-Order Logic.
3.2.4 Link Between Logic and Algebra

11
11
14

46

3.3 Brief Overview on Many-Sorted Structures and Many-Sorted Logic 48

3.4 Automated Theorem Proving: The Resolution Principle
3.4.1 The Resolution Principle
3.4.2 Semantic Resolution
3.4.3 Hyperresolution. 0oL
3.5 Category Theory — Basic Notions
3.5.1 Limits and Colimits
3.5.2 Functors and Natural Transformations
3.5.3 On the Yoneda Lemma
3.5.4 Adjoint Functors
3.5.5 Other Categorical Notions
3.6 Sheaf and Topos Theory — Basic Notions
3.6.1 Sheaves over Topological Spaces
3.6.2 Grothendieck Topologies
3.6.3 SheavesonaSite,
3.6.4 Topol

55

ii

3.6.5 Geometric Morphisms 72

3.6.6 Morphismsof Sites 73
3.6.7 Geometric Logic 74
4 A Brief Overview of Related Results 77
4.1 Representations of Algebras 7
4.1.1 Sheaves of Algebras 7
4.1.2 Sheaf Representation Theorems in Universal Algebra . . . 81
4.1.3 Applications: Unification in Discriminator Varieties . . . 82
4.1.4 Priestley Duality for Distributive Lattices 86
4.1.5 Sheaf Representation and Priestley Representation seen
as Fiberings Lo 87
4.2 Resolution in Many-Valued Logics 89
4.3 Models for Cooperating Agents and Concurrency 92
4.3.1 Classical Approaches to Concurrency 92
4.3.2 Links Between These Models 102
4.3.3 Approaches Based on Multi-Modal Logic 103
434 Fibered Models 103
5 Fibered Representation and Universal Algebra 111
5.1 A Motivating Example: SHn-logics 112
5.1.1 An Algebraic Semantics for SHn-logics 112
5.1.2 A Kripke Semantics for SHn-logics 114
5.1.3 Decomposition L. 116
5.1.4 Sheaf Representations for SHn-algebras and Applications 118
5.1.5 Priestley Duality for the Variety of SHn-algebras. 120
5.1.6 Link Between Algebraic Semantics and Kripke-style Se-
mantics L 127
5.2 Automated Theorem Proving in SHn-logics 132
5.2.1 An Efficient Translation into Clause Form 133
5.2.2 A Resolution Procedure 141
5.3 A General Approach oL 143
5.3.1 Theoretical Considerations 144
5.3.2 Towards a Link Between Algebraic and Relational Models 146
5.3.3 Automated Theorem Proving 155
5.3.4 Translation to Clause Form 156
5.3.5 A Resolution Procedure 162
5.3.6 An Approach to Automated Theorem Proving in First-
Order Logic o 163
54 Examples e 176
54.1 Pyp-logics . . . o oo 176
54.2 SHKn-Logic, 180
5.5 An Implementation L 0L 183
5.5.1 Implementation for the Translation to Clause Form 185
5.5.2 Hyperresolution. L. 194
5.6 Comparison with Existing Approaches and Final Remarks 212

iii

6 Towards a Sheaf Semantics for Systems of Interacting Agents215

6.1 A Motivating Example 0. 215
6.1.1 Stateso 216
6.1.2 Actions 218
6.2 Systems L 220
6.3 The Category of Systems SYS 225
7 Categories of Systems with Inclusions as Morphisms 231
7.1 The Static Aspect: SYS; 233
7.1.1 Categorical Constructions in SYS; 233
7.1.2 A Grothendieck Topology on SYS; 236
7.2 The Dynamic Aspect: SYSy 240
7.2.1 Categorical Constructions in SYS; 242
7.2.2 A Grothendieck Topology on SYS; 244
7.2.3 Transitions within SYS;, 245
7.2.4 Temporal Behavior of Systems in SYS;. 249
7.2.5 Models for the Behavior of Systems: Monoids and Lan-
BUALES i e 252
8 Interconnecting a Given Family of Interacting Systems 257
8.1 The Category of Systems Obtained by Interconnecting Elements
of InSys, Sys(InSys) 259
8.1.1 Transitions within Sys(InSys) 262
8.2 The Category of Downwards-closed Subsets of InSys Q(InSys) . . 263
8.2.1 Transitions within Q(InSys) 266
8.3 Temporal Behavior in Sys(InSys) and Q(InSys) 267
8.4 Models for Behavior in Q(InSys): Traces 269
8.5 Some More Remarks Concerning Q(InSys) 273
8.5.1 Properties of the Topology Q(InSys) 273
8.5.2 Internal Representation of Time in Sh(InSys) 273
8.6 Relationship between Sys(InSys) and Q(InSys) 274
8.7 Geometric Logic, Preservation of Axioms 277
8.7.1 The Stalk Functors: Preservation Properties. 280
8.7.2 The Global Section Functor: Preservation Properties . . . 283
8.7.3 Relationship between Sh(InSys) and Sh(Sys(InSys), J) . . . 285
8.74 Concluding Remarks 286
9 Applications 290
9.1 Checking Whether a Set of Atomic Actions can be Performed in
Parallel in a Distributed System 290
9.2 Parallelizing Global Plans 294
9.3 Putting Together Local Plans 297
9.4 Properties of the Interconnection of a Family of Systems 302

9.5 Description of a Time and Space Dependent Scenario. 303

iv

10 Conclusions and Plans of Future Work 309
10.1 Applications for Solving Algorithmic Problems in Universal Al-

gebra and Logic oL 309

10.1.1 Plans of Future Work 311

10.2 Modeling Cooperating Agents
10.2.1 Prospects of Future Work 313

Chapter 1

Introduction

The goal of this thesis is to study the applications of fibered structures in com-
puter science, more precisely in automated theorem proving in many-valued
logics, and in modeling cooperating systems.

The notions of fiber bundle and sheaf were originally developed in geom-
etry and topology. Sheaf theory is a particularly effective tool in those areas
which ask for global solutions to problems whose hypotheses are local: it was
developed in mathematics because of the necessity of studying such relation-
ships between local and global phenomena. The concept of sheaf was formally
introduced by Jean Leray and Henry Cartan in 1950. Originally, the theory of
sheaves was conceived as a tool in topology and algebraic geometry, for axiom-
atizing notions such as “local coefficient system”. The influence of sheaf theory
has spread since then in many areas of mathematics: besides the fields where its
origins are, such as analysis, topology (the study of germs of holomorphic func-
tions, see e.g. [Lerdb, Car50]) and algebraic geometry ([Hirb56, Zar56, God58]),
it is now also used in algebra (representations of algebras by continuous sec-
tions; global subdirect products see e.g. [Hof72], [Dav73], [Wer75], [KCT79]), and
logic (for details see also [FS79], [MLM92]).

In algebraic geometry it was soon discovered that the topological notion of
a sheaf was not entirely adequate: the Zariski topology on an abstract algebraic
variety turned out to not have “enough open sets” to provide a geometric notion
of localization, and furthermore, it turned out that it was important to replace
monomorphisms between neighborhoods of points by more general mappings
(not necessarily injective). For this reason A. Grothendieck introduced the
notion of “Grothendieck topology” on an arbitrary category, and a generalized
notion of sheaf for such a topology. For more information on the history and
development of sheaf theory see [Gra79, Joh82, Gol84, MLM92].

In the thesis we present and study situations in which sheaves (possibly with
respect to Grothendieck topologies on certain categories) or fibered structures
arise. The thesis contains two main directions of work, strongly interrelated:
We use the Priestley representation theorem in order to reduce the complex-
ity of automated theorem proving in finitely-valued logics, and then we give a
sheaf-theoretic approach to the study of concurrency.

2 1 Introduction

The main topics of the thesis are the following:
e Fibered structures in universal algebra.

— Sheaf representation theorems in universal algebra and applications
to unification in discriminator varieties,

— Priestley-type representations for distributive lattices with opera-
tors, and applications to automated theorem proving in many-valued
logics,

e A sheaf-theoretical approach to modeling cooperating agents.

The first direction of work is concerned with finding decompositions of given
structures in terms of simpler structures, in such a way that certain classes of
properties of the given structure can be reduced to properties of the simpler
structures.

The second direction of work is concerned with putting together (intercon-
necting) different structures and studying the properties of the result of this
interconnection; in particular with studying the link between the properties of
the component parts and the result of their interconnection.

There is a strong link between these two main directions of work, as will be
shown in what follows.

1.1 Presentation of the Main Results

In what follows I give a succinct presentation of the main results and contribu-
tions contained in the thesis.

1. Fibered representations in algebra with applications in auto-
mated theorem proving

Representation theorems in universal algebra — such as sheaf representation and
Priestley type representation theorems — are presented, and their applications
are investigated, as explained in what follows.

la. Sheaf representation in Universal Algebra. Concerning sheaf repre-
sentation theorems my contribution is only tangential: I prove that a theorem
in [Bur92] - that shows that in discriminator varieties a most general unifier
of two terms can be constructed from a particular unifier — can be extended to
systems of equations in discriminator varieties.

A sheaf representation theorem in universal algebra due to [Dav73] is used
in the study of cooperating agents.

1b. Priestley representation for distributive lattices with operators
and applications in automated theorem proving. My main contribution
in this direction of work concerns Priestley-type representation for distributive
lattices with operators, and its application in automated theorem proving in

1.1 Presentation of the Main Results 3

classes of finitely-valued logics. The explanation of the notions used in what
follows can be found in Chapter 5.

I start with a study of the propositional SHn-logics (first introduced by L.
Iturrioz in [Itu82]), as a motivating example, since the idea of using the Priestley
dual of the algebra of truth values for automated theorem proving occured to
me when studying S Hn-logics. An algebraic as well as a Kripke semantics for
these logics are known [Itu83, I096]. Additionally a topological representation
theorem induced by the Priestley representation theorem is proved in [Itu83]. I
extended the topological representation in [Itu83] to a dual equivalence between
the category of SHn-algebras and a suitable category SHnSp of Priestley spaces
with operators. I also made the properties of the additional operators on these
Priestley spaces explicit. It turned out that the objects of SHnSp are SHn-
frames in the sense of [I096]. The study also gave hints about the way of
defining morphisms between S Hn-frames, and thus defining a category of S Hn-
frames.

In [Itu83] it is proved that for every n € N, the SHn-logic is sound and
complete with respect to the variety of SHn-algebras, which is generated by
the finite algebra S,2. As a consequence, it turned out that a formula is a
S Hn-theorem if and only if it is valid in the finite SHn-frame defined by the
dual space D(S,2) of S,:.

Since the dual space D(S,2) has 2(n — 1) elements whereas S, has n
elements, the idea occurred to me that one might define a more efficient proof
procedure using the dual space. I begin by considering the propositional case: in
this case I define positive and negative literals as being of the form pt, resp.
pf, where z € D(S,2) and p an atomic formula; clauses (sets of literals),
and a notion of satisfiability. I give a procedure that for every formula ¢ in the
language of S Hn-logic constructs a set ® of clauses such that ¢ is a theorem if
and only if ® is unsatisfiable. The unsatisfiability of ® can be checked with a
procedure called signed negative hyperresolution: it turns out that the proof of
[AB70] can be adapted to this case without major modifications. This proves
the correctness of the procedure.

2

Next, I consider a more general case, namely the case of logics £ that are
sound and complete with respect to a variety V of algebras that satisfies the
following properties:

(i) V= HSP(A), where A is a finite algebra;

(ii) The algebras in V are distributive lattices with operators, and
the Priestley duality induces a dual equivalence between ¥V and
a suitable category VSp of Priestley spaces.

The form of operations on the dual category in the case when the additional
operators considered are morphisms, antimorphisms, join-hemimorphisms and
meet-hemimorphisms are analyzed.

I show that the dual category VSp provides a class of topological Kripke
models for the logic £; a way of defining notions such as satisfiability and
validity in these models is discussed.

4 1 Introduction

The isomorphism between the finite algebra A and the set of order-filters of
its dual D(A) induces a notion of satisfiability (resp. validity) of a formula in
the dual space D(A).

I prove a similar result, namely that a formula in the logic £ is a theorem
in £ if and only if it is valid in D(A). As in the case of the SHn-logics, I give
a procedure for automated theorem proving (consisting of two steps, namely
transformation to clause form and negative hyperresolution). I also consider
the first-order logic having A as a set of truth values, and show that both the
translation to clause form and the signed hyperresolution procedure can be
extended to first-order formulas.

2. A sheaf-theoretical approach to modeling cooperating agents
scenarios

In studying complex systems consisting of several interconnected “agents”, the
problems that arise can be described as follows:

Given: A family {S; | ¢ € I} of interconnected agents, i.e.
— a description of every agent, and
— a description of the way they interact.

Task: Study the properties of the system obtained by their interconnection.

The basic idea of my formalism is that even relatively simple agents, such as
a robot that provides an assembly bench with pieces, is in fact a complex system
composed of interacting subsystems, like joints and wrists, a locomotion mod-
ule, etc. Complex systems as well as their component parts can be essentially
described in the same way; the level at which we “stop” the refinement process,
and consider a subsystem as being “atomic” depends on the given application
and on the degree of accuracy needed!.

Therefore instead of “individual” agents, a category of “systems” is consid-
ered. I study in detail a subcategory of this category, where the objects are
systems and the morphisms describe the relation “is a subsystem of”, and show
that under certain (non-restrictive) hypotheses a Grothendieck topology (de-
scribing a “covering” relation between systems) can be defined on this category.
In addition, within this framework, the states of systems as well as their admis-
sible parallel actions can be modeled by sheaves. Then, I restrict to a category
SYS; having systems as objects and transition-connected inclusions as mor-
phisms (in order to impose the condition that transitions in a system restrict to
valid transitions in its subsystems), and show that this category has pullbacks
and colimits of families of systems that are all transition-connected subsystems
of a given system. In concrete applications we usually are interested only in
some subcategory of SYS;;, having as objects those systems relevant for the given
application. Therefore I continue by considering the category of those systems

!This situation is somehow similar to the situation that arises in geometry, when defining
the notion of a point. Intuitively, a point can be defined as the “limit” of a family {U; | i € I}
of “spots” that (informally said) get smaller and smaller (for instance, such that I = N and
for every i < j, U; C U;).

1.1 Presentation of the Main Results 5

obtained by interconnecting a given family InSys of interacting systems, all con-
tained in a given system Sy (to enforce compatibility of models) and which is
assumed to be closed under all subsystems by means of which communication
can be done. A system obtained by interconnecting the elements of the family
InSys can be regarded either as a system on its own, or as the set of all elements
of InSys by whose interaction it arises (a downwards-closed subset of InSys).

I show that on both categories defined this way, Sys(InSys) resp. Q(InSys),
suitable Grothendieck topologies can be defined, expressing the way systems
arise from smaller subsystems. In both these approaches one can define notions
as states and parallel actions, and show that these define sheaves St;, resp. Act;
(1 = 1,2) with respect to the corresponding Grothendieck topologies. Moreover,
transitions can be expressed in both cases by natural transformations T'r; :
Act; — Q5t%St (j = 1,2) (or, alternatively, by subsheaves of Act; x St; x St;).
The link between the categories Sys(InSys) and Q(InSys) is also investigated: I
show that an adjunction between these two categories exists; additionally the
right adjoint preserves covers, which implies that a geometric morphism between
the category of sheaves over Sys(InSys) and the category of sheaves over Q(InSys)
(with the corresponding Grothendieck topologies) can be established.

I continue by studying the behavior in time of systems. The starting point
of my approach is the formalism developed in [Gog92]. Assume that time is
discrete and the execution of every action needs one unit of time. Let T be
the category of all subsets {1,...,n},n € N (and includes N itself), with
inclusions as arrows. A result in [Gog92] states that the behavior of a system
can be modeled as a sheaf over 7. I show that actually two gluing properties
hold: one with respect to covers on the category 7, and one with respect to
covers on the category Sys of systems (one of the two categories considered
above). This is expressed by introducing two functors, B : Sys?®? — Sh(T), and
B' : T°? — Sh(Sys,J). A possible model for the behavior of interconnected
systems by sheaves of partially commutative monoids is also considered.

All these results are used in the last section of Chapter 8, where I use
classical results in sheaf theory and geometric logic to investigate the links
between the properties of the elements of InSys and the system obtained by
interconnecting them. These theoretical considerations are illustrated on three
examples: deadlock freedom, determinism, and fairness of execution.

These two directions of work are strongly interrelated, as will be shown in
what follows.

On the one hand, the Priestley representation for distributive lattices can
be regarded as follows: Let L be a set of truth values that has an underlying
distributive lattice structure. In practical situations, e.g. in robotics, the differ-
ent truth values may be checked by sensors; it may also happen that the sensors
cannot distinguish between all the values of L.

Assume that the sensors can only return the values 0 (false) and 1 (true); and
additionally, that they respect the order of truth values (i.e., if x is perceived
as “true” and x <y in L then y will also be perceived as “true”) as well as the
lattice operations V and A. (For example, if L = {0, -1 ... 2=2 1}, the truth

e R R

6 1 Introduction

value (in L) of a parameter v can be completely reconstructed if we assume
given an ordered set of n—1 2-valued sensors, S; < ... < S,,_1, such that for
every i, the sensor S; perceives as “true” a parameter if its value (in L) is
greater than or equal to ﬁ and as false otherwise.)

The set of 2-valued sensors necessary in order to recover the information
about the values of parameters in L is then exactly the (ordered) set of all
{0, 1}-lattice homomorphisms from L into {0, 1}, i.e. exactly the Priestley dual
of the algebra L.

On the other hand, in the study of agents (e.g. in robotics), the description
of states plays a fundamental réle. The actions induce then transitions between
states. In a multi-modal logic approach to the study of agents, these states can
be seen for instance as possible worlds, and the transitions between states can
be expressed by corresponding relations between these worlds. Thus, Kripke
models arise in a natural way.

This is the idea dynamic logic (also known as the logic of programs) re-
lies upon (for an introduction to dynamic logic we refer to [Har84]). In the
propositional case the algebraic models for dynamic logic are dynamic alge-
bras (Boolean algebras endowed with operators that satisfy certain properties)
and the Kripke models are sets endowed with families of relations that satisfy
suitable properties.

However, it seems that the same ideas can be applied in more general con-
texts, for example in situations when the underlying logic is not classical (propo-
sitional) logic.

Finally, we point out one more link between the theoretical study of sheaves
of algebras mentioned before and the theory of cooperating agents. The behav-
ior of a given agent can be expressed for instance as the set of all sequences of
actions the agent can execute. Sometimes the order in which two actions are
executed is not relevant. If we specify an independence relation on the set of
actions, this relation induces a congruence on the set of all finite sequences of
actions of the given agent. When putting together a family S = {S; | i € I}
of interacting agents, one of the problems that may occur is to decide if “local
plans” can be glued together to a “global plan”. That is, given a family of
sequences of actions {w;}icr, where each w; is a finite sequence of actions for
the agent S;, such that the elements of this family are compatible on common
subsystems (in a sense that will be explained in Section 7.2.4), the problem is
to decide if there exists a finite sequence of actions for the system S (obtained
by interconnecting the agents in &) that contains all the sequences {w;}icr
as substrings. It turns out that this problem can be formulated in terms of
sheaf theory; namely one has to decide whether the (partially commutative)
monoids expressing the finite sequences of actions of the systems in the family
{S; | i € I} define a sheaf of monoids, and whether the set of global sections of
this sheaf is isomorphic to the (partially commutative) monoid expressing the
finite sequences of actions of S.

1.2 A Short Summary of Results 7

1.2 A Short Summary of Results

The thesis includes the following contributions:

e A comparative study of the sheaf representation theorems and Priestley
representation theorems: we show that both induce a notion of fibering.
The similarities and the differences are analyzed, and some directions of
future work are indicated.

e Sheaf representation theorems in universal algebras

1. An extension of the construction of a most general unifier in discrim-
inator varieties to systems of equations.

e Priestley representation for S Hn-algebras.

— Theoretical Considerations:

1. An extension of the topological representation for .SHn-algebras
given in [Itu83] to a dual equivalence between the categories of
S Hn-algebras and S Hn-spaces,
A restriction of the dual equivalence between the categories of
S Hn-algebras and SHn-spaces to a dual equivalence between
the category of SH Kn-algebras (which is the category of Luka-
siewicz-Moisil algebras) and the category of SH Kn-spaces.

2. The proof of the fact that SHn-spaces are in particular SHn-
frames, according to the definition in [I096],

3. A possible way of defining morphisms between S Hn-frames (and
thus of defining a category of SHn-frames),

4. The link between valuations in S Hn-algebras and S Hn-spaces,

5. The link between provability in SHn-logics and validity in the
SHn-frame D(S,,2).

— A procedure for automated theorem proving by resolution that uses
the dual space of a SHn-algebra:

1. A procedure for transformation to clause form (also definitions
for signed literals, clauses, satisfiability),

2. A signed hyperresolution procedure (proof of correctness).
e Extension to larger classes of logics

— We study logics £ that are sound and complete with respect to vari-
eties V of algebras with an underlying distributive lattice structure,
that are generated by one finite algebra, and with the property that
the Priestley duality extends to a dual equivalence between V and a
category VSp of Priestley spaces with operators.

a
1. We analyze the way the satisfiability relation |= with respect to
rc

algebras in V induces a satisfiability relation = with respect to
Priestley spaces in VSp.

1 Introduction

rc

2. We show that showing - ¢ reduces to testing whether D(A) =
0.
— We study the properties of distributive lattices with operators, in

order to obtain a better understanding of the link between algebraic
and relational models.

1. The starting point is the theory presented in [Gol89], where dis-
tributive lattices endowed with join- and meet-hemimorphisms
are considered. We additionally consider homomorphisms and
antimorphisms.

The corresponding operations (resp. relations) induced on the
dual space are analyzed.

2. We define accordingly a notion of frames (partially-ordered sets
endowed with operations and relations).

3. We discuss a notion of satisfiability (resp. validity) in such frames.
The link between satisfiability (validity) in these frames and sat-
isfiability (validity) with respect to algebraic models is also dis-
cussed.

— A procedure for automated theorem proving by resolution for logics
L (sound and complete with respect to varieties V of algebras with
an underlying distributive lattice structure, such that V is generated
by one finite algebra A and the Priestley duality extends to a dual
equivalence between V and a category VSp of Priestley spaces with
operators). This automated theorem proving procedure uses the dual
space D(A) of A.

1. Definitions for signed literals, clauses, satisfiability,
2. A procedure for transformation to clause form,
3. A signed hyperresolution procedure (proof of correctness),

4. Extension to first-order logics.

— An implementation in Prolog.

Note that it turned out that the condition we imposed on the logic L,
namely that it should be sound and complete with respect to a variety
V of algebras with an underlying distributive lattice structure, such that
V is generated by one finite algebra A and the Priestley duality extends
to a dual equivalence between V and a category VSp of Priestley spaces
with operators, can be relaxed, as we now explain.

In the description of the procedure for automated theorem proving (and
in its proof of correctness) we only use the fact that the logic £ is sound
and complete with respect to a finite Kripke frame endowed with an or-
der relation and with additional relations associated to the operations in
the logic. We would like to investigate the degree of generality of this
approach. We kept the initially imposed set of conditions on the logic £
because it furnishes an intuitive description of how such a Kripke frame
can be constructed.

1.3 Structure of the Thesis 9

e A sheaf-theoretic approach to cooperating robotics scenarios:

1. definition of a system,

2. definition of a morphism between systems; category of systems SYS;
expressing states, parallel actions, transitions in this category,

3. consider other types of morphisms depending on the extent of the
relationship between systems to be expressed; we focus on categories
having inclusions as morphisms,

4. definition of Grothendieck topologies on different categories of sys-
tems; study of states, transitions and behavior in these categories
(gluing properties are satisfied, which suggest that a sheaf-theoretical
approach is appropriate in order to express the link local-global),

5. the links between these categories are analyzed,

6. classical results from sheaf theory (geometric logic) are used in order
to study properties of systems that are preserved by interconnection.

1.3 Structure of the Thesis

The thesis is structured as follows:

Chapter 2 begins with a look at the background and motivation of fibered
structures and their use in computer science. It continues with a brief presen-
tation of related results, and the way these influenced our work.

In Chapter 3 we give a brief review of the main concepts from universal
algebra, logic, category theory and sheaf theory that will be used in our work.
This is done in order to make the thesis self-contained.

In Chapter 4 we review concepts and results that are directly linked to our
own results that will be presented in the thesis, as well as related work. This
includes sheaf representation theorems in universal algebra and the Priestley
representation theorem for distributive lattices, as well as various models for
concurrency.

In Chapter 5 we present an approach to automated theorem proving for
certain finitely-valued logics, based on the Priestley dual of the algebra of truth
values.

In Chapter 6 we begin a study of distributed agents, having as goal a better
modeling of the link between local and global properties in complex systems,
composed by interconnecting intercommunicating agents. As a motivation for
this theoretical study, we illustrate the problems that appear on a simple exam-
ple, adapted from [Pfa93]. This example leads to a formal definition of a system.
We then define morphisms between systems, and introduce a category SYS of
systems, and study states, parallel actions and transitions in this category.

In Chapter 7 we study the category SYS; (that has systems as objects and
inclusions of systems as morphisms). In a first approximation we pay no atten-
tion to the transitions between states induced by the actions. We show that
states and parallel actions can nevertheless be modeled by sheaves with respect

10 1 Introduction

to a suitable Grothendieck topology. In order to capture the dynamical as-
pect of systems we then take into account also transitions induced by actions.
We consider therefore SYS;, the subcategory of SYS having as objects systems
and as morphisms so-called transition-connected inclusions (which ensure that
valid transitions in a system restrict to valid transitions in its subsystems). The
properties of states, actions, transitions and behavior are studied also for this
category.

In Chapter 8 we analyze the situation arising from interconnecting a given
family InSys of communicating systems. We can regard the system obtained
by interconnecting the elements of InSys either as a system on its own, or
as the set of all elements of InSys by whose interaction they arise (i.e. as a
downwards-closed subset of InSys). We analyze both these approaches, and then
the relationship between them. We use these results for expressing properties
of systems and reasoning about them. We show that results from sheaf theory,
in particular geometric logic help us in deciding which properties are inherited
by the system obtained by interconnecting a family of given systems. Several
examples are provided.

Chapter 9 contains applications of the theoretical results above (presented
as algorithms).

In Chapter 10 we summarize the main results and indicate the directions
for future research.

Chapter 2

Motivation

This chapter begins with a look at the background and motivation of fibered
structures and their use in computer science. It continues with a brief presen-
tation of related results, and the way these influenced our work.

2.1 Background and Motivation

The goal of the thesis is to study some of the applications of so-called fibered
structures in computer science.

Informally, a fiber bundle consists of a set B (called base space) and a family
of mutually disjoint sets £ = {Ep | b € B}, together with a projection map
p : lpes Ev — B (where [[yc5 Ep is the disjoint union — i.e. the coproduct in
Sets — of the family {Ej | b € B}) that for every z € E = [[,cp Es associates
b € B if ¢ € Ep; such a fiber bundle is denoted by (B, E,p). The sets Ej,
b € B are called fibers or stalks. These notions originally were developed in
geometry and topology. The construction presented above is very general. The
sets £ and B can be endowed for example with a topology, with relations, or
with an algebraic structure. For instance, we could just work in the category
of topological spaces instead of sets, and impose that the projection map p
respects the corresponding structure of the spaces, for example it has to be a
continuous map in the category of topological spaces (we can think in this case
of the family {E, | b € B} as being “continuously indexed” by B). A fibre
bundle (B, E,p) where B and E are topological spaces is called a sheaf space
if p: E — B is a local homeomorphism, (i.e. for every point z € E there exists
a neighborhood U of x in E such that p(U) is open and p : U — p(U) is a
homeomorphism).

Many of the representation theorems in universal algebra lead to the oc-
curence of fiber bundles or even sheaves with the property that the stalks have
a certain algebraic structure.

The basic idea of representation theorems is to provide decompositions of
certain structures in terms of simpler structures. In what follows we will refer to
two kinds of representation theorems, namely to sheaf representation theorems
for discriminator varieties and to the Priestley duality for distributive lattices.

11

12 2 Motivation

Also the inverse process, namely that of combining structures, that arises
for example in modeling concurrency, can be modeled using fiber bundles, and
— as shown in this thesis — the link between local and global properties can be
expressed in certain situations using sheaf theory.

Since in what follows we will make use of sheaf theory (including sheaves
of algebras), we would like to point out the importance of sheaf theory (and
geometric logic) in universal algebra. The following considerations are inspired
by the ideas stated in [KC79], and turned out to be also a source of inspiration
for our approach to modeling concurrency.

The basic idea behind representation theorems in universal algebra is to
“decompose” a given structure into “simpler” structures in such a way that
the properties of the given structure can be “reduced” to properties of the
simpler structures. The theorem of Birkhoff, one of the best known theorems in
universal algebra, asserts that every algebra is isomorphic to a subdirect product
of subdirectly irreducible algebras. This theorem is however not a satisfactory
representation theorem in universal algebra for two reasons: first, usually it is
very difficult to determine the subdirectly irreducible factors; second, even when
these factors are known, subdirect products are so “loose” that very little can
be inferred about an algebra from the properties of the factors. An example
of “good” representation is the direct sum representation for abelian groups.
That is because direct sums are special subdirect products which are “tight”
enough such that significant information can be obtained from the properties
of the factors. Unfortunately, for important classes of rings interesting direct
sum representations are not known. This situation provided the motivation
for the development of sheaf representations for algebras, i.e. representations of
algebras as sheaves of global sections over a certain topological space.

One of the properties that make structures of global sections “tight” subdi-
rect products is the “patchwork property”: structures of global sections patch
over the so-called equalizer topology. (However, unrestricted patching is usually
hard to verify in applications. In some cases, unrestricted patching can usually
be reduced to finite patching via a compactness argument.)

Another reason is the fact that the global section functor (an example of a
direct image functor) preserves limits (but in general it does not preserve unions
and images); therefore it preserves the validity of cartesian formulae relative to
a given theory T, i.e. the formulae constructed from atomic formulae using only
conjunction and existential quantification over “I'-provably unique” variables.

Sheaf representation theorems also have applications in solving algorithmi-
cal problems, as for example unification. In 1966 Dauns and Hoffmann study
algebras of global sections of sheaves of algebras over Boolean spaces, named
Boolean products in 1979 by Burris and Werner. For such products one can
analyze not only equations but also positive primitive sentences (sentences of
the form 3z A(p;(z) = gi(x))) in terms of the behavior of the stalks [BW79], i.e.
we can solve a system of equations in a Boolean product if and only if we can
solve it in every stalk of the Boolean product, and a given sequence of elements
is a solution if and only if it provides a solution in each stalk. Based on these
results, [Bur92] proves that discriminator varieties have unitary unification and

2.1 Background and Motivation 13

gives a method for constructing most general unifiers starting from particular
unifiers.

The Priestley representation theorem for distributive lattices states that ev-
ery distributive lattice L is isomorphic to the set of continuous, order-preserving
functions from the Priestley space D(L) of all prime filters of L to the 2-element
chain {0,1}. Thus, “fibered structures” appear also in this context; here the
base space is endowed — besides the topology — also with an order relation,
and, in the case of extensions of the Priestley representation theorem to dis-
tributive lattices with operators, with additional operations and relations that
correspond to these operators, whereas the “fibers” are all isomorphic to the
2-element lattice. In the thesis we point out the relation between Kripke mod-
els and this type of spaces and use the result for giving an automated theorem
proving procedure in non-classical logics.

The inverse process, namely that of combining structures, that arises for
example in modeling concurrency, can be also modeled using fiber bundles.
Fibered models for cooperating agents scenarios have already been used by
[Pfa91], see also [Pfa96], and developed in [PS92, PSS95, PSS96a, PSSS95,
PSS96¢, PSS96b]. The notion this model is based on is that of fiber bundle.
The main idea is that the general concept of fiberings allows to mix different
structures (spaces of different types) by taking them as fibers over a certain
index system (base space). This is important when looking for a unifying
mathematical framework for modeling complex and heterogenous interacting
structures. We also refer here to the extensive research of Gabbay on Labelled
Deductive Systems and to his method for combining logics based on the notion
of “fibred semantics” [Gab92, Gab94, Gab96].

In [Sof96], when studying states and admissible parallel actions of systems
by interconnecting communicating systems, we noticed that they satisfy a gluing
property similar to the property of a sheaf. Thus, the idea occurred that sheaf
theory can be an appropriate tool for modeling cooperating agents scenarios.
This is not surprising. In what follows we would like to explain why we think
that sheaf theory can be a useful framework for modeling cooperating agents
scenarios.

As pointed out before, sheaf theory was developed in mathematics because
of the necessity of studying the relationship between “local” and “global” phe-
nomena. The same situation arises in the study of interacting systems: when
modeling states or behavior it is often necessary to make a link between “local”
properties (characteristic for given subsystems) and “global” properties (rele-
vant for the whole system). The goal of our study is an analysis of subsystem
interaction, taking into account the contribution of subsystems to the behavior
of the whole system. The interaction between systems can be described through
common behavior (or states) at shared “locations”.

The alternance “local - global” that occurs in this case suggests that it
would be natural to use sheaf theory when studying systems of cooperating
agents (and in the study of concurrency in general).

14 2 Motivation

Moreover, the tools of sheaf theory (and of topos theory in general, in par-
ticular geometric logic cf. [MLM92]), should explain why some properties of
systems are preserved when restricting to subsystems, and why there are cases
when properties of subsystems are not transferred to the system obtained by
their interconnection (we will illustrate this on several examples, among which
the properties of deadlock freedom, determinism, and fairness of execution).

2.2 Brief Overview of Related Results

We give a brief overview of previous work in the fields considered in the the-
sis, namely representation theorems in universal algebra (sheaf representations
in universal algebra and Priestley representation for distributive lattices with
operators); automated theorem proving in non-classical logics; and models for
cooperating agents and concurrency. Details about those results and methods
that are relevant to our work will be given in Chapter 4.

Sheaf representation theorems in universal algebra as well as the Priestley
duality theorems can both be seen as “fiberings”. This link is discussed and
illustrated in Section 4.1.5. We briefly give here some historical milestones in
the development of the corresponding theories.

Sheaf representation of algebras. The use of sheaf representations in var-
ious parts of algebras have become popular in the late 60’s and early 70’s.
There exist sheaf representation theorems for rings [AK48, DH66, Hof72], semi-
groups [Kei70], l-groups (lattice-ordered groups) [Kei71], distributive lattices
[Dav72] and universal algebras [Com71, Dav73, Wer75, KC79]. In 1953 Foster
[Fosb3a, Fos53b] proved that every n-valued Post algebra is isomorphic to the
algebra of global sections of a sheaf having as fibers the Post algebra P, with
n elements (so-called Boolean power of P,). [Cig72] showed that Lukasiewicz-
Moisil algebras embed in algebras of global sections of sheaves (and that in the
case of Post algebras this embedding is an isomorphism). A sheaf representa-
tion (up to isomorphism) for Lukasiewicz-Moisil algebras follows as a particular
case of a theorem by Werner [Wer75]. In [BW79], elementary properties of
sheaf constructions are investigated, and in [Bur92] these results are used in
order to study the unification problem in discriminator varieties. These results
generalize methods already known for the variety of Boolean algebras. (For the
description of a program that uses these methods for solving systems of Boolean
equations we refer to [Sof89].)

In the thesis we show that one of the results in [Bur92] - concerning the
construction of most general unifiers for discriminator varieties from a given
unifier of two given terms — can be extended to systems of equations.

Priestley duality for distributive lattices with operators. The Priestley
duality theorem for distributive lattices is due to Priestley [Pri70, Pri72]. It has
been extended to duality theorems between various classes of distributive lat-
tices with operators and corresponding categories of Priestley spaces endowed

2.2 Brief Overview of Related Results 15

with additional operations: we refer e.g. to [CF77] that establishes a Priest-
ley duality for de Morgan algebras; to [Urq79] and [Gol81] that establish such
a dual equivalence for varieties of Ockham algebras; to [BP90] where relative
Ockham lattices are studied and their order-theoretic and algebraic character-
ization is given (see also [BP94] for further results); to [Tra77] that establishes
a Priestley duality for Post algebras; to [Fil80] that gives a duality theorem for
f-valued Lukasiewicz algebras without negation; to [Ior84] that gives a duality
theorem for #-valued Lukasiewicz algebras with negation; and to [Mar90] that
gives a Priestley duality theorem for Wajsberg algebras. We especially refer to
[Itu83] where a topological (Priestley-type) representation theorem for SHn-
algebras is given. Note that in [Itu83] only the objects are considered; in this
thesis we extend the representation theorem given in [Itu83] to a dual equiva-
lence theorem between suitable categories, and show that the dual equivalence
between the category of SHn-algebras and the category of SHn-spaces re-
stricts to a dual equivalence between the category of so-called SH Kn-algebras
(Lukasiewicz-Moisil algebras of order n) and a suitable category of Priestley
spaces with operators. We also refer to [CLP91] for some further remarks on
the Priestley duality for distributive lattices with unary operators that are join-
respectively meet-hemimorphisms, and to [Cig91], where distributive lattices
with quantifiers are analyzed and a Priestley duality theorem for this type of
structures is given. Goldblatt [Gol89] studies such representation theorems in
a more general framework, i.e. for distributive lattices endowed with operators
that are join- and meet-hemimorphisms (i.e. maps with arbitrary (finite) arity
that preserve joins (resp. meets) in all the components). His research is mainly
motivated by the study of algebraic and set-theoretical (Kripke) semantics for
propositional modal logics. A modal algebra is a single unary operation on
a Boolean algebra, while a Kripke model is a particularly simple kind of re-
lational structure: a single binary relation. Jénsson and Tarski [JT51, JT52]
studied varieties of Boolean algebras with operators and the link between these
varieties and classes of relational structures. Inspired by Jénsson and Tarski’s
work, [Gol89] considers distributive lattices endowed with a family of join- and
meet-hemimorphisms, and establishes a Priestley duality theorem between the
category of distributive lattices with operators and a suitable category of Priest-
ley spaces endowed with relations. Then, relational structures (similar to the
Kripke frames in modal logic) are introduced. They are in this case spaces
endowed with a family of binary relations with certain properties. The goal
of [Gol89] is to explain the extent to which the “modal case” can be seen as
the simplest illustration of a general theory that forms a chapter of universal
algebra.

Since the research of [Gol89] makes reference to Kripke models, we present
the main idea behind this type of models.

Kripke models. Kripke frames were introduced by Kripke for the study of
modal logic [Kri63]. A Kripke frame is a set (of “possible worlds”) endowed with
one relation (called also “accessibility relation”) between the possible worlds.
Kripke models are Kripke frames endowed additionally with valuations (or
meaning functions). It turned out that Kripke-style semantics can be given

16 2 Motivation

also for other types of logics — like for instance intuitionistic logic and temporal
logic. Generalizations of Kripke frames and models (in the sense that several re-
lations are defined on the set of possible worlds) are used for giving a semantics
for the dynamic logic of programs: the relations can be seen as “accessibility
relations” between possible worlds, induced by corresponding “programs”.

Kripke models can be seen as fibered structures. Usually, one assumes that,
given a meaning function, the “local logic” at every possible world (used for
evaluating formulae) is classical. There exist attempts of mixing logics by using
their Kripke models, in the following sense: given two logics say £1 and Lo, one
considers a Kripke model K; of £1, and at every possible world in K7, a Kripke
model for £5. This principle is presented in [Gab92, Gab94] and further used
for combining logics. A more general approach to combining logics (in a more
general framework) appears in [Gab96].

Automated theorem proving in non-classical logic We begin by saying
some words about automated theorem proving in classical logic. For proposi-
tional logic this reduces to testing all the combinations of truth values 1 (true)
and 0 (false) for the variables. In the case of classical first-order logic a classi-
cal method for automated theorem proving is the resolution principle, due to
Robinson [Rob65]. For some refinements of the resolution principle that help
in reducing the number of clauses that are generated we refer to [CL73]. Also
rewriting techniques have been applied for automated theorem proving. We re-
fer here to the well-known algorithm due to Buchberger [Buc65] for computing
Grobner bases in polynomial ideal theory. This algorithm provides algorithmic
solutions to a whole class of problems in polynomial ideal theory and also in var-
ious other fields where polynomial ideal theory can be used; the algorithm has
been extended also to more general reduction rings [Buc83] and non-associative
reduction structures [Sti93].

Also based on the notion of rewriting is the algorithm due to Knuth and
Bendix, for solving word problems in equational theories [KB67]. For some of
its extensions and refinements we refer to [Hue80, PS81, JK86].

Ideas of rewriting have been applied in automated theorem proving in clas-
sical logic. A good overview of the different methods developed can be found
in [HKLR92]. The fundamental idea behind the term rewriting approach to
equational theorem proving based on resolution is to treat boolean formulae
as rewriting rules, and then to apply suitable superposition inferences in order
to produce new rules. By means of certain reduction inferences the boolean
terms are then simplified using the boolean rules discovered and the process is
continued until the contradictory rule 1 — 0 is generated.

A first approach based on this idea, due to Hsiang and Dershowitz, appeared
in [HD83], and it was followed by the approaches of Kapur and Narendran
[KN85], and Hsiang [Hsi87]. In [Buc85], Buchberger presents for the first time
the resolution procedure in the framework of general “critical-pair/completion”
algorithms, together with the algorithm for computing Grobner bases and with
the Knuth-Bendix completion algorithm. We refer also to the work of Winkler
[Win84], where the connection between Buchberger’s algorithm for computing
Grobner bases and the Peterson-Stickel algorithm for first-order terms mod-

2.2 Brief Overview of Related Results 17

ulo a equational theory is analyzed, and to the work of Stokkermans [Sto95],
where the “critical-pair/completion” algorithms are analyzed in a unifying way
with the tools of category theory, and where a generic (categorical) “critical-
pair/completion” algorithm is proposed.

There exist various attempts to automated theorem proving in non-classical
logic. Since non-classical logics are so different in nature, it is natural that these
methods are adapted to the specific characteristics of the respective logics. For
finitely-valued propositional logics the problem is simple: test all combinations
of truth values for the variables that appear. There are however some attempts
to improve the efficiency of these methods. [CRAB91] for instance presents an
approach where polynomials are associated to formulae in many-valued logics
and the proof of validity of a formula reduces to proving that 1 belongs to the
ideal generated by the corresoponding set of polynomials.

Concerning non-classical first-order logics, there are various approaches to
automated theorem proving. There is no uniform method, and it is not possible
to say that there is a “best approach”, due to the diversity of non-classical logics.

We distinguish clausal and non-clausal methods of automated theorem prov-
ing. (The methods based on tableauz systems are non-clausal, whereas the
methods based on resolution are clausal.)

The formal proof system called semantic (or analytic) tableaux was intro-
duced by Beth [Bet55, Bet59] (see also [Bet86]) and Hintikka [Hin55], its ances-
tors being Gentzen systems. Smullyan [Smu68] defined a particularly elegant
notion of tableaux which largely increased their popularity. We refer also to
[H&ah93] for more details on analytic tableaux and tableaux-based provers.

From the approaches based on tableaux systems we would like to mention
here the approach of Surma [Sur84]|, further developed by Carnielli [Car87] (see
also [Car91]), the method due to Suchon [Suc74] for the special case of n-valued
logics (which has the advantage of yielding much shorter proofs than the ones
obtained by Surma’s approach) and the method of Hahnle who defined a gener-
alized notion of signs in tableaux that makes it possible to speak concisely about
the truth values a formula can take at a certain stage during the construction
of the tableau [Hah90, Hah91, Hah93].

A very active research group in the field of automated theorem proving in
non-classical logics (and a former partner of RISC in the MEDLAR project) is
the group led by Ricardo Caferra at Leibnitz IMAG in Grenoble. An implemen-
tation of a theorem prover based on Carnielli and Surma’s approach for proposi-
tional logic was developed in [CZ90al; the propositional part of Carnielli’s work
is used to implement a theorem prover for some modal logics. From the work of
this group we would also like to mention [CZ90b, CHZ91, CZ92, CDH93]. (The
diversity of the methods for automated theorem proving in non-classical logics
is reflected very well in the work of this group, which has as goal to combine
efficiency with generality and user-friendliness, in order to build a large set of
user-oriented inference tools.)

Automated theorem proving by resolution in non-classical logic consists of
two steps: the first step, clause gemeration takes into account the properties

18 2 Motivation

of the given logis, and the second step, proof by resolution is a “logic-free”
approach, that reduces to a simple manipulation of symbols.

There are two general directions in theorem proving by resolution in non-
classical logics, depending on the way the given logic is described: the logic can
for instance be described by giving the semantics, or by providing a (Gentzen-
type) calculus.

The simplest example of logics described by their semantics are the many-
valued logics. These logics are supposed to be sound and complete with respect
to a given model (seen as a set of truth values). A method for automated
theorem proving in first-order finitely-valued logics, due to Baaz and Fermuller
[BF92, BF95] uses (many-valued) resolution. This method is very general, being
suitable for all finitely-valued logics; for clause generation only the truth-tables
of the operators and the definition of the quantifiers are used. Results along
similar lines appear in the work of Hahnle, [Hih94, Hih96b]. Other approaches
to automated theorem proving based on resolution (in which a different view is
taken) appear in [Mor76] and [Orl78]. Orlowska was the first (to our knowledge)
to introduce the notion of “resolution-interpretability of a logic in another logic”
and applied it for constructing theorem proving systems for algorithmic and m-
valued Post logics [Orl79, Orl80].

There are however situations when a logic is not characterized by a single
model, but by a class of models. A method for clause-generation for Gentzen-
type logical systems, as well as for the generation of resolution rules is due to
Maslov and Mints [Mas64, Min90].

Similar problems also arise in modal logics. Modal logics have two types
of models: modal algebras and Kripke models. Among methods that use the
Kripke models in automated theorem proving we refer to a method due to
Ohlbach [Ohl93], who uses possible worlds semantics to express the validity of
formulas, and then encodes the semantics into (classical) first-order logic.

A method for automated theorem proving in several systems of propositional
modal logic by rewriting in the equational theories corresponding to the classes
of modal algebras that characterize those logics, as well as an implementation,
can be found in [Sof88]. However, there are systems of propositional modal logic
for which this method cannot be applied because in the process of completion
infinitely many rules are generated.

In this thesis we define an automated proof procedure by resolution for
logics that are sound and complete with respect to a variety V of algebras (all
with an underlying distributive lattice structure) that has the property that

(i) V is generated by a single finite algebra A,

(ii) the Priestley duality induces a dual equivalence between the
variety V and a suitable category of ordered topological spaces
endowed with functions and possibly also relations.

This means that the logic is sound and complete with respect to the algebra
A, which can be seen as a set of truth values. We show that instead of the
algebraic model A its dual, which usually has less elements, can be used. Thus,

2.2 Brief Overview of Related Results 19

in this case, less clauses will be generated than with the very general procedure
described in [BF95].

Models for Cooperating Agents and Concurrency There exist several
models for concurency and distributed computation that are used and stud-
ied within theoretical computer science. Among these we mention transition
systems (which provide the basic operational semantics for Milner’s Calcu-
lus of Communicating Systems (CSS) [Mil80, Mil89]; for a presentation cf.
[WN93]), Petri nets (cf. [Pet62a, Pet62b], [WN93]), trace languages (notion due
to Mazurkiewicz [Maz77], cf. also [Die90]), and event structures. Common to
all these models is the fact that they rest on the central idea of atomic actions,
over which the behavior of the system is defined. The models differ mainly
with respect to what behavioral features of the systems are represented. Some
models are more abstract than others, and this fact is often used in informal
classifications of the models with respect to expressibility.

In [WNO93], category theory is used as a common language for the study
of the relationships between the models for concurrency mentioned above. By
using adjunctions, it is possible to study the links between these models and
transfer techniques specific to one model to other models.

We briefly mention some newer approaches: higher dimensional automata
[Pra9l], partially ordered multisets [Pra82, Pra86, Gis88, Cre91, Cas91], geo-
metric automata (for a brief presentation see [Gup94]), and Chu spaces [Pra94,
Gup94].

There also exist approaches to multi-agent systems based on modal logic.
We refer for example to [Cos90].

In addition, there already exist a number of approaches based on “fiberings”,
presheaf and sheaf theory. Among them, [Pfad91], [Gog92], [Mal94], [Lil93],
[MP86], [JNW94], [Win96], [CW96]. We will now briefly point out the main
ideas of the approaches based on fiber bundles and (pre-)sheaf theory.

Since the starting point, as well as the main motivation, of our work in
this direction came from the idea of logical fiberings due to Jochen Pfalzgraf,
we start by presenting his approach to modeling cooperating agents scenarios
based on logical fiberings.

Approaches to Concurency Based on Fibered Structures. The idea
of “logical fiberings” originates from J. Pfalzgraf’s work on polycontextural
logics, cf. also [Pfa91], [PS95], [Pfa96]. In [PS92], Pfalzgraf sketches a novel
approach characterized by a so-called “logical controller” for robotics scenarios
cf. also [DPSS91], [PS92]. That approach is based on so-called logical fiber-
ings introduced in [Pfa91] as a concept for mathematical modeling of a system
of (possibly different) logical spaces (the fibers) residing over a base manifold
(index system), forming as a whole the logical fibering. In a series of papers,
Pfalzgraf develops the idea of “logical fiberings”, having as goal the develop-
ment of a (non-classical) “fibered logical calculus”, by means of which one could
construct logical controllers for multi-tasking scenarios in a formal way; in later
papers space- and time-depencency of formulas is taken into account (for de-
tails see e.g. [Pfa93], [Pfa96], [PS95], [PSS95], [PSS96a], [PSSS95], [PSS96¢],

20 2 Motivation

[PSS96Db]). In [Pfa96], he points out that the notion of a fibering is closely
related to indexed systems (indexed categories).

These methods and concepts arose from concrete scenario modeling prob-
lems (see [Pfa91]) and have been illustrated, in the frame of the MEDLAR
project, on concrete toy examples (see for example [PSS95], [PSS96a], [PS95]).

Presheaf and Sheaf-Theoretical Approaches to Concurrency. Concern-
ing the existing approaches to concurrency based on sheaf semantics, we would
like to point out the approach due to Goguen [Gog92], further developed by
Lilius [Lil93], Malcolm [Mal94] and Cirstea [Cir95]; the approach of Monteiro
and Pereira [MP86]; and the approach of Winskel and Cattani [Win96, CW96].

In [Gog92], a sheaf semantics aimed at modeling the behavior of concurrent
interacting objects is presented. The approach is based on an earlier paper
[Gog75]. These ideas have been applied to Petri nets by Lilius [Lil93]. The
ideas from [Gog92] have been developed further by Malcolm in [Mal94], where
a formalization of object classes and systems of objects is given, in order to
study basic properties of ways in which systems of objects may be intercon-
nected. He defines an adjunction between PO-systems (functors S : C? — Obyj,
where C is a partially ordered set) and sheaves of objects (PO-systems S : C? —
Obj where C is a complete Heyting algebra), and expresses the hope that, by
using a more general notion of sheaf as a functor on a category with a Gro-
thendieck topology, an adjunction between system specifications and sheaves
of objects can be obtained. In this thesis we show that (for our definition of
a system) a similar adjunction can be defined; moreover we show that this ad-
junction preserves the covering relation and thus induces a geometric morphism
between the corresponding topoi of sheaves over the respective sites. In [Cir95]
Cirstea shows how transition systems and sheaves can be related by means of
an adjunction between the corresponding categories and uses this in giving a
sheaf-theoretic formalization of the distributed semantics for the programming
language FOOPS developed in [Cir95].

In [MP86] the authors aim at developing a structural theory of concurrency
in which the locality of interaction between subsystems is described with the
mathematical tools of sheaf theory. They show that the behavior of a given
family of interconnected systems can be modeled by so-called behavior monoids
(which form sheaves of monoids). Also possible behaviors are analyzed (prefix-
closed languages contained in these free monoids).

[Win96] investigates presheaf models for process calculi with value passing;
denotational semantics in presheaf models are shown to correspond to oper-
ational semantics in the sense that bisimulation obtained from the so-called
“open maps” is proved to coincide with bisimulation as defined traditionally
from the operational semantics. A presheaf model and denotational semantics
are proposed for a language allowing process-passing. [CW96] is concerned with
modeling process constructions on presheaves, showing that these preserve open
maps, and with transferring such results to traditional models for processes.

Approaches to logic and the study of modularity. There are several
approaches to modularity in logic and automated theorem proving. Among

2.2 Brief Overview of Related Results 21

them we mention [BHK90, DGS91, Fia96]. These approaches are intrinsically
linked to concurrency, although they are not always presented as approaches
to concurrency; the motivation for these approaches came from programming
languages and specifications for parallelism. However we were influenced (and
helped) in our work by the results presented there. In [BHK90] an axiomatic al-
gebraic calculus of modules is given, based on operators “combination/union”,
“export”, “renaming” and “taking visible signature”. Reusability of modules
is discussed. In [DGS91] properties of logical systems that support the def-
inition, combination, parametrization and reuse of modules are investigated.
Links between the preservation of various kinds of conservative extensions un-
der pushouts, various distributive laws for information hiding over sums, and
Craig-style interpolation properties are established. The logical systems are
represented by institutions. In [Fia96] a categorical semantics of parallel pro-
gram design is given.

The starting point and the main motivation of our own work comes from the
idea of logical fiberings due to Jochen Pfalzgraf. The notion of logical fiberings
introduced by [Pfa91], as well as the general modeling principle based on logical
fiberings are very general: to each point of the basis set (corresponding to an
agent) the logical system of that agent is associated; communication between
different fibers is modeled by so-called transjunctions.

In our approach, we specialize this very general notion, by pointing out a
possibility of describing the way information and actions are represented for ev-
ery agent, as well as a possible way in which interaction between different agents
can be modeled. This offers us the possibility of obtaining a general framework
in which several of the existing sheaf-theoretic approaches to concurrency fit in
in a natural way.

Due to the fact that we allow the existence of some relationships between the
control variables (described by a set of formulae) it turnes out that some of the
categories of systems we define (such as SYS;, SYS;, Sys(InSys); all partially-
ordered sets) do not satisfy a distributivity of meets over joins (when these
exist). Therefore, we have to introduce a more general notion of Grothendieck
topology on these categories (they cannot be seen as locales).

It turns out that much of the information relevant when expressing proper-
ties about systems can be expressed by sheaves with respect to this Grothen-
dieck topology:

e states and parallel actions are modeled by sheaves St, Act,

e transitions are expressed by a subsheaf of Act x St x St,

e time (e.g. N) can be expressed internally as a sheaf (allowing also to
express the fact that independent systems may have independent time

cycles),

e behavior in a fixed interval of time (e.g. N) can be modeled as a sheaf.

22 2 Motivation

Behavior of systems in time can be expressed either by observations over a
“basis of observations” over time (as done in [Gog92]) or as sheaves of monoids
[MP86] or partially-commutative monoids [Die90] (we give a sheaf-theoretic
formulation and a new proof to the results from [Die90] concerning the study
of the partially-commutative monoids and interacting systems).

The possibility of applying general results from topos theory to the study of
concurrency is pointed out in [Gog92] as a topic for future research. Since many
properties of systems involve statements about their states, actions, transitions,
we decided to express these properties in a many-sorted language £ having
among its sorts St (for states) and Act (for actions), relations like =xC X x X
Tr C Actx Stx St etc. We give interpretations of £ in the topoi discussed in the
previous chapters, £ = Sh(InSys) and F = Sh(Sys(InSys), J), and use geometric
logic in order to explain the link between certain properties of a given family of
interconnected systems and the properties of the system that results from their
interconnection.

Chapter 3

Background

We will now briefly review the main concepts that will be used in our work. In
the beginning we present basic notions on universal algebra and (many-sorted)
first-order logic. We also present the basic ideas concerning the resolution prin-
ciple. We continue by giving an overview of the basic definitions in category
theory and sheaf theory, and then give the more general definitions for a Gro-
thendieck topology on a category and for sheaves on a site. Finally, we recall
some basic properties of topoi and geometric logic. Further details can be found
in [ML71], [Joh82], and [MLM92] among others.

3.1 Universal Algebra — Basic Notions

We begin by a brief presentation of lattices. Then we continue by a brief
presentation of the basic results in universal algebra: the isomorphism theorem,
basic constructions in universal algebras, definitions for varieties and equational
classes. We continue then with some brief remarks concerning polynomial and
algebraic functions, and then we define discriminator varieties and give some
examples. For more details we refer to [BS81] and [MMT87].

3.1.1 Lattices

There are two ways of defining lattices: the first is algebraic, namely as sets
endowed with a family of operations that satisfy certain identities, and the other
as ordered sets.

We first present the algebraic definition.

Definition 3.1 (Lattice) A non-empty set L together with two binary opera-
tionns V and N on L is called lattice if it satisfies the following identities:

(L1) zVy=yVez (L") zAhy=yAzx

(L2) zV(yVz)=(xVy)Vz (LZ) zAN(yANz)=(xAy) Az
(L3) z==zV(zAy) (L) z=zAN(zVy)

(L{) zNVz==x (L{) xzAhNz==x

Note that (L4) and (L/') are consequences of (L1), (L1'), (L2), (L2), (L3),
(L%).

23

24 3 Background

The second definition is based on the notion of partial order.

Definition 3.2 (Partial Order) A binary relation < on a set P is a partial
order on P if the following conditions hold for every x,y,z € P:

(i) z <=,
(i) x <y and y < x implies © =y,
(i) x <y and y < z implies v < z.

A set P endowed with a partial order is called partially ordered set, or for
short poset.

Let P be a poset and S C P. An element p € P is an upper bound for S
if x < p for every x € S. An element p € P is the least upper bound of S (or
supremum of S) if p is an upper bound, and z < y for every x € S impliesp < y
(i.e. p is the smallest among the upper bounds of S). In this case we denote
p=sup S or p = l.u.b(S). Similarly we can define the notion of lower bound of
S and greatest lower bound (or infimum) of S. If p is the greatest lower bound
of S we write p = inf S or p = ¢.1.b(S).

Definition 3.3 A poset L is a lattice if and only if for every elements x,y € L
both sup {z,y} and inf {z,y} exist (in L).

It is easy to see that the two definitions are equivalent. For more details see
also [BS81], pp.3-21.

Definition 3.4 (Distributive Lattice) A distributive lattice is a lattice that
satisfies either of the distributive laws (which are equivalent in a lattice):

(D1) z AN (yVz)=(zxAy)V(zAz)

(D2) zV (yANz)=(zVy) A(zVz2)

Definition 3.5 (Modular Lattice) A modular lattice is a lattice that satis-
fies the modular law:
(M) If e <y thenxV (yANz)=yA(zVz).

Every distributive lattice is modular, but there exist modular lattices that
are not distributive. There also exist lattices that are not even modular. Cri-
teria for distributivity and modularity in terms of forbidden substructures, as
well as further details concerning complete and algebraic lattices can be found
in [BS81], pp.11-21.

Definition 3.6 (Complete Lattice) A lattice L is complete if suprema and
infima of arbitrary families of elements exist in L.

We say that a lattice L has a first (least) element if there is an element
0 € L such that 0 < z for every = € L. A lattice L has a last (greatest) element
if there is an element 1 € L such that = <1 for every = € L.

3.1.1 Lattices 25

Definition 3.7 (Pseudocomplement) Let L be a lattice with first element
0. For x € L an element " is called pseudocomplement of z if it is the largest
element in L such that x A " = 0.

Definition 3.8 (Complement with respect to V) Let L be a lattice with
last element 1. The complement of z with respect to V, denoted by =" is the
smallest element in L with the property that x V " = 1.

In general it can happen that both the pseudocomplement, z”*, and the
complement z" of z with respect to V exist and are different. If L is distributive,
then 2" < zV. If the two complements are equal, say "' = 2V = z' we say that

x has a complement, namely z’. In this case,
zVe=1land z' Az =0.

Definition 3.9 (Boolean Algebra) A Boolean algebra B = (B, V,A,0,1,-)
is a complemented distributive lattice, i.e. (B,V,) is a distributive lattice with
first and last elements 0 resp. 1, and such that for every x € B, —x is the
complement of x.

Definition 3.10 (Relative pseudo-complement) Let L be a lattice and x,y
two elements of L. The pseudo-complement of x relative to y is the largest el-
ement z € L such that © A z < y. The pseudocomplement of x relative to y is
denoted by x — y.

Definition 3.11 (Relatively pseudo-complemented lattice) A lattice L
1s relatively pseudo-complemented if for every x,y € L the pseudo-complement
of x relative to y, © — y, exists.

Every relatively pseudo-complemented lattice includes a greatest element, 1.
For every x € L, 1 = ¢ — x. Moreover, every relatively pseudocomplemented
lattice is distributive. For more details we refer to [Ras74] and the literature
quoted there.

Definition 3.12 (Heyting Algebra) A lattice L is a Heyting algebra (also
called pseudo-Boolean algebra or pseudo-complemented lattice) if it is a rela-
tively pseudocomplemented lattice with a smallest and a greatest element 0 and
1. Then for every x € L the pseudocomplement z” of x exists and 2" =z — 0.
The definition of the relative pseudocomplement is characterized by

2 < (z—y) if and only if z Nz < y.

Definition 3.13 (Complete Heyting Algebra) A complete Heyting alge-
bra is a Heyting algebra which is complete as a lattice, i.e. suprema and infima
of arbitrary families of elements exist.

If A is a complete Heyting algebra and {a; | ¢ € I} is a family of elements
in A and b € A, then the infinite distributive law holds in A:

\/(b/\ai) :b/\\/ai.

icl i€l

26 3 Background

Definition 3.14 (De Morgan Algebra) A distributive lattice L = (L,V,)
endowed with an additional operation ~ is a de Morgan algebra if ~ satisfies
the following conditions:

(DM1) ~~x =

(DM2) ~ (x Vy) =~zA ~y

The de Morgan algebras are called also quasi-boolean algebras in [Ras74].

We present two more examples of classes of lattices with operators, namely
the class of Lukasiewicz-Moisil algebras and the class of Post algebras.

The Lukasiewicz-Moisil algebras (sometimes called Lukasiewicz algebras)
were created by Moisil in 1940 (n = 3) and 1960 (arbitrary n) [Moi63, Moi65]
as an algebraic counterpart for the many-valued logics of Lukasiewicz. How-
ever, it turned out that n-valued Lukasiewicz-Moisil algebras are models for
the n-valued logics of Lukasiewicz only for n = 3 and n = 4. Nevertheless,
Lukasiewicz-Moisil algebras are an interesting subject of study in themselves,
and are models for another class of many-valued logics (SH Kn-logics) as will be
pointed out in Section 5.4.2. In what follows we present an equational definition
for Lukasiewicz-Moisil algebras due to Cignoli.

Definition 3.15 (Lukasiewicz-Moisil Algebra) A Lukasiewicz-Moisil alge-
bra of order m is an algebra L = (L,V,\,~,S1,...,S,-1,0,1) satisfying the
following properties:

(L0) (L,V,A,0,1) is a distributive lattice,

(L1) ~~z =2y~ (z Ay) =~ (2)V ~ (y) (De Morgan Laws),

(L2) Si(zAy) = Si(z) A Si(y); Si(zVy) = Si(z)V Si(y), for every1 <i<n-—1,
(L3) Si(z) < S;(x), for every 1 <i<j<n-—1,

(L4) Si(z)V ~ (Si(z)) = 1, Si(z)A ~ (Si(z)) =0, for every 1 <i<n—1,
(L5) Si(~ (z)) =~ (Sn-i(x)), for every 1 <i<n-—1,

(L6) Si(S;(z)) = Sj(x), for every 1 <i,j <n—1,

(L7) Si(z) <z < Spoa(z),

(L8) ~ (z) A Si(x) =0, ~ (x) V Sp-1(x) =1,

(L9) Si(0) =0,8;(1) =1, for every 1 <i<n —1,

(L10) y < zA ~ (Si(x)) A Sit1(y), for every 1 <i<n — 2.

Example 3.1 (L,,) The n-element Lukasiewicz-Moisil algebra is the algebra

1 -2
Ln:({o’ 717""ni1’1}’\/7/\’N,S]-’"'7S727170’ 1)’
where x Vy = maz(z,y),z Ny = min(z,y),~ (z) = 1 — x, and for every

1 fi+j>n

i€{l,...,n 1}, Si(zL5) = 0 fitjen

3.1.1 Lattices 27

The n-element Post algebras have been introduced by Rosenbloom in 1942
as an algebraic counterpart of Post logics. The initial definition involved a
very small number of axioms, and was quite difficult to use. In 1963 Traczyk
gave another definition, by means of equations. In what follows we present
a definition due to Cignoli, that showed that Post algebras are Lukasiewicz-
Moisil algebras endowed with a chain such that some additional conditions are
satisfied.

Definition 3.16 (Post Algebra) A Post algebra is an algebra
P = (P,\/,/\,N,Sl, ey Spno1,0,1eq, ... ,enfg)

such that (P,V,N\,~,S1,...,S8,.1,0,1) is a Lukasiewicz algebra and e; < ... <
en_o are n distinguished constants, such that for every 1 <i <n —1 and every

stants, e
Oﬁjﬁnl;sz‘(@j):{ gity=n

0 ifitj<n It is convenient to define eg = 0
and ep,_1 = 1.

Example 3.2 (n-element Post Algebra) The n-element Post algebra is the
algebra

1 n— 2
Pn = ({07 n_la"'an_ 171}7\/a/\)la071)7

_ — s 1 -2
where xVy = maz(z,y), xA\y = min(z,y), and for everyz € {0, .=, ..., ~=1,1},
D ﬁ ifx#0 _

1 ife=20

It can be seen that every finitary map h : P¥ — P, can be expressed in terms
. : 1 -2

of the operations {V,A,",0,1}. In particular, the'constants {0,' = g 2
as well as the operations ~ z = 1 — 2z, ~ (55) = 1 — -L5 and for every

1 ifi+j>n

i€{l,...,n 1}, Si(zL5) = 0 ifitj<n

can be expressed in terms of

the signature {V,A,,0,1}.
It can also be shown that =’ can be expressed in function of the operations ~,
Si, i€ {1l,...,n— 1}, and the constants {0, ﬁ R Z—j, 1}. Therefore we can
regard the n-valued Post algebra as a Post algebra according to definition 3.16
1 n—2 1 n—2

1L VoA, ~,81,...,58,.1,0,1, ——, ...
_17 an_la }a AT B 7n17aan_1a an_l

).

The relationships between different lattices can be expressed by lattice ho-
momorphisms.

Definition 3.17 (Lattice homomorphism) Let Ly, Ly be two lattices. A
map h : Ly — Ly is a lattice homomorphism if h is join-preserving and meet-
preserving, i.e. if for every x,y € L, h(z Vy) = h(z) V h(y) and h(z N y) =
h(z) A h(y). A bijective homomorphism is a (lattice-)isomorphism.

28 3 Background

If Ly and Loy are lattices with both least and greatest element 0 resp. 1, it is
often appropriate to consider homomorphisms h : L1 — Ly such that h(0) =0
and h(1) = 1. Such maps are called {0, 1}-homomorphisms.

If By and Bj are Boolean algebras, then a map h : By — Bj is a morphism
of Boolean algebras if h is a {0, 1}-homomorphism and additionally for every
r € By, h(—z) = —h(x).

We continue by briefly presenting some well-known representation theorems
for certain classes of lattices. We begin with representation theorems for finite
Boolean algebras, continue with a representation theorem for finite distribu-
tive lattices, and at the end we mention the Stone representation theorem for
Boolean algebras. The Priestley duality theorem for distributive lattices will
be presented separately in Section 4.1.4.

Definition 3.18 (Atom) Let L be a lattice with least element 0. An element
a € L is called an atom if 0 < a and for everyy € L, 0 < y < a implies y = 0.
The set of atoms of L is denoted by A(L).

It may happen that a lattice has no atoms at all (the chain of non-negative
real numbers is such an example). Even a Boolean algebra may have no atoms
(e.g. let B be the family of all finite unions of subintervals of R of the following
types: (—oc,a),|a,b),[b,00), where —0o < a < b < oo, together with . Then
B is a Boolean algebra with no atoms).

Theorem 3.1 (Representation theorem for finite Boolean algebras)
Let B be a finite boolean algebra. Then the map n: B — P(A(B)), defined by

na) = {x € A(B) |z < a)
is a lattice isomorphism between B and P(A(B)).

Definition 3.19 (Join and meet irreducible elements) Let L be a lattice.
An element x € L is called join irreducible if x # 0 (in case L has a 0) and
x cannot be expressed as the join of two other elements in L, i.e. if it has the
property that x =y V z implies y = x or z = x.

An element © € L is called meet irreducible if # 1 (in case L has a 1)
and it has the property that t =y A z implies y =« or z = x.

We denote the set of join-irreducible elements of L by J(L) and the set of
meet-irreducible elements of L by M(L). Each of these sets inherits the order
relation of L and will be regarded as an ordered set.

Theorem 3.2 (Birkhoff’s representation of finite distributive lattices)
Let L be a finite distributive lattice. Let n: L — O(J (L)) be defined by

n(a) = {z € J(L) |« < a}.

Then n is a lattice isomorphism between L and O(J(L)).

3.1.1 Lattices 29

Theorem 3.3 Let P be a finite ordered set. Then the map € : P — J(O(P))
defined by e(x) =] = is an order-isomorphism!' from P onto J(O(P)).

Theorems 3.2 and 3.3 assert that
L~ O(P(L)) and P ~ J(O(P))

for all finite distributive lattices L and all finite partially ordered sets P.

Note that for every distributive lattice L the partially ordered set J(L) is
generally much smaller and less complex than the lattice itself. This means
that lattice problems concerning finite distributive lattices are likely to become
simpler when translated into problems about finite partially ordered sets. We
may regard the maps L — J(L) and P — O(P) as playing a role analogous to
that of the logarithm and exponential functions. For more details we refer to
[DP90], p.172.

We now briefly present the representation theorem for Boolean algebras due
to Stone. The representation theorem for distributive lattices due to Priestley
will be presented in Section 4.1.4.

Definition 3.20 (Ideal) Let L be a lattice. A non-empty subset J of L is
called an ideal if

(I1) z,y € J imply x Vy € J,

(I2) x e L,y € J and x <y imply z € J.
A non-empty subset F' of L is called a filter if

(F1) x,y € J imply x Ny € J,

(F2)z e L,yeJandy <x imply z € J.

Thus, an ideal is a non-empty down-set closed under join and a filter is a non-
empty upwards-closed set closed under meet. An ideal or filter is called proper
if it does not coincide with L.

For every z € L the set | = {y € L | y < z} is an ideal (the principal ideal
generated by x); dually, the set T = {y € L | z < y} is a filter (the principal
filter generated by z). Given any non-empty subset A of L there is a smallest
ideal containing A, namely

(Aj={zeL|z< \/T for some finite subset T' of A}.
Similarly, the smallest filter containing A is
[A)={x€L|z> \/T for some finite subset T' of A}.

Definition 3.21 (Prime Ideal, Prime Filter) Let L be a lattice and J a
proper ideal in L. The ideal J is said to be prime if

(PI) z,y € Landx ANy € J implyx € J ory € J.
The set of prime ideals of L is denoted by Z,(L). It is ordered by set inclusion.
A prime filter is defined dually, i.e. it is a filter that satisfies

(PF) z,y€ L andxVy€eJ implyz e JoryéelJ.
The set of prime filters is denoted by F,(L).

! An order-isomorphism between two partially ordered sets is a bijective map that preserves
the order.

30 3 Background

Theorem 3.4 (Stone’s representation theorem for Boolean algebras)
Let B be a Boolean algebra. Let X = I,(B) be the set of prime ideals of B en-
dowed with the topology T generated by B = {X, | a € B} as a basis, where for
everya € B, X ={I € I,(B) | a ¢ I}. Then the following hold:

(1) Each element of B is clopen in Z,(B) (because X\ X, = X,).

(2) Every clopen subset of (X,) is of the form X, for some a € B.

(3) (X,7) is a compact totally disconnected® topological space.

(4) The map n: B — B defined by n(a) = X, is a Boolean algebra isomor-
phism between B and the Boolean algebra B = {X, | a € B} of clopen subsets
of the space (X,).

We briefly note that the set of all prime filters of a lattice L (as well as the
set of all prime ideals of L) is in bijective correspondence with the set of all
{0, 1}-lattice homomorphisms from L to the lattice with 2 elements {0, 1}.

Namely, for every {0,1}-lattice homomorphism & : L — {0,1}, A~1(0) is
a prime ideal and h1(1) is a prime filter. Conversely, if I is a prime ideal of
L, then the map h : L — {0,1} defined by h(z) = 0 if and only if x € I is
a {0, 1}-lattice homomorphism. Similarly, if F' is a prime filter of L, then the
map h : L — {0,1} defined by h(z) =1 if and only if z € F is a {0, 1}-lattice
homomorphism.

These results are used in Section 4.1.4, where Priestley’s representation
theorem for distributive lattices is presented.

3.1.2 General Notions of Universal Algebra

Let ¥ be a signature, i.e. a set of operation symbols endowed with an arity
function a : ¥ — N. A X-algebra is a structure A = (A, {04}sex), where for
every o € ¥ with a(o) =n, o4 : A — A. We also say that the algebra A is of
similarity type 3.

Definition 3.22 (Subalgebra) Given two X-algebras A = (A, {ca}sex) and
B = (B,{0B}sex), we say that A is a subalgebra of B if A C B and for every
o € X and every ay,...,a44) € A, 0a(al, ..., a,44)) € A.

If A, B are two algebras of the same similarity type, then “B is a subalgebra
of A” will be symbolised by B < A4 .

A subuniverse of A = (A,{oa}scx) is a subset B of A which is closed under
the fundamental operations of 4, i.e. if o € ¥ with a(c) =n and ay,...,a, € B
then o4(aq,...,a,) € B. The set of all subuniverses of A is denoted Sub(A).

Definition 3.23 (Subuniverse of A generated by X) Let A be an algebra
and X C A. Let Sg(X) ={B | X C B and B is a subuniverse of A}. Sg(X)
is the subuniverse of A generated by X.

2A topological space is totally disconnected if, given distinct points z,y € X, there exist a
clopen subset V of X such that z € V and y € V.

3.1.2 General Notions of Universal Algebra 31

Sg(X) = (Sg(X),{os¢(x)}sex) is a subalgebra of A (the subalgebra of A
generated by X), where og,(x) is the restriction of o4 to Sg(X). For X C A
we say that X generates A (or A is generated by X, or X is a set of generators
of A) if Sg(X) = A.

Definition 3.24 (Homomorphism) Let A and B be two X-algebras. A map-
ping h : A — B is called a homomorphism (or shortly morphism) from A to
B ifh(oa(ai,...,an)) = op(h(a1),...,h(a,)) for every n-ary operation symbol
oc€X andall ay,...,a, € A. If, in addition, the mapping h is onto, then B is
said to be a homomorphic image of A.

The set of all equivalence relations of a given set A is denoted by Eq(A).

Definition 3.25 (Congruence) A congruence of a X-algebra A is an equiv-
alence relation 6 with the property that for every n-ary operation symbol o € ¥
and every elements a;,b; € A, if a;0b; holds for 1 < i <n then

UA(ala s aan)eoA(bla SRR bn)

The compatibility property is an obvious condition for introducing an alge-
braic structure on the set A/6 of equivalence classes of A with respect to 8; an
algebraic structure which is inherited from the algebra A: for every n-ary op-
eration symbol o € ¥ and every n-tuple of equivalence classes [a;]g, 1 < i < n,
oase(laile, -, lanls) = [oalas,. .., an)le.

The set of all congruences of an algebra A is denoted by Con(A). The con-
gruence lattice of A, denoted by ConA, is the lattice whose universe is Con(A)
and meets and joins are calculated the same as when working with equivalence
relations.

We will denote by A4 the identity congruence on A, Ay = {(a,a) | a € A}
and by V4 the trivial congruence on A, V4 = A x A. Tt is easy to see that Ay
is the smallest congruence on A and V4 is the largest congruence on A.

If 6 is a congruence on A, there is a canonical onto homomorphism p: A —
A/6 defined by p(a) = [al]g for every a € A.

Let h : A — B be a homomorphism. Then the kernel of h, denoted ker(h), is
defined by ker(h) = {(a1,a2) | h(a1) = h(as)}. The kernel of a homomorphism
h is a congruence on A.

Theorem 3.5 (First Isomorphism Theorem) Let h : A — B be a homo-
morphism onto B. Then there is a isomorphism g from A/ker(h) to B such
that h = g o p, where p is the natural homomorphism from A to A/ker(h).

The first isomorphism theorem is also called the homomorphism theorem.
Assume that A is an algebra and ¢,0 € Con(A) with 8 C ¢. Let ¢/0 =
{([alg, [b]s) € (A/6)? | (a,b) € ¢}. Then ¢/6 is a congruence on A/ and the

following theorem holds.

Theorem 3.6 (Second Isomorphism Theorem) If ¢,0 € Con(A) and § C
¢ then the map h : (A/0)/(¢/0) — A/¢ defined by h([[alg]s/9) = [a]s is an
isomorphism from (A/8)/(¢/0) to A/é.

32 3 Background

Let B be a subset of A and # a congruence on A. Let BY = {a € A| BN [a]g #
0}. Let BY be the subalgebra of A generated by BY. Also, define Op=6n B2,

the restriction of # to B. If B is a subalgebra of A, then the universe of B? is
BY and 0B is a congruence on B.

Theorem 3.7 (Third Isomorphism Theorem) If B is a subalgebra of A
and 6 € Con(A), then B/0|p is isomorphic with BY /050

Let L be a lattice, and let a,b € L, a < b. The interval [a,b] ={c€ L |a <ec<
b} is a subuniverse of L.

Theorem 3.8 (Correspondence Theorem) Let A be an algebra and let 6 €
Con(A). Then the mapping h : [0,V 4] — Con(A/0) defined by h(¢) = ¢/0 is a

lattice 1.somorphism.

Definition 3.26 (Simple Algebra) An algebra A is simple if Con(A) =
{A,V}.

Sometimes one requires simple algebras to be non-trivial; following [BS81]
we admit trivial simple algebras.

Definition 3.27 (Maximal Congruence) A congruence 6 on an algebra A
is maximal if the interval [0, V] in Con(A) has ezactly two elements.

From Theorem 3.8 the following result follows immediately.

Theorem 3.9 Let 6 € Con(A). Then A/0 is a simple algebra if and only if 6
s a mazximal congruence on A or 6 = V.

Let {A;}icr be an indexed family of ¥-algebras.

Definition 3.28 (Direct Product) The direct product A = [[;c; Ai of the
family {A;}icr is an algebra with universe [[;c; A; and such that for every
n-ary operation symbol o € ¥ and ay,...,an € [ljc; Ai, falar,...,an)(i) =
fa(ar(i),...,an(i)), i-e. fa is defined component-wise.

We have the projection maps m; : [[;c; A; — Aj for j € I defined by
mj(a) = a(j) which give surjective homomorphisms 7; : [[;c; 4i — A;.

Definition 3.29 (Subdirect Product) An algebra A is a subdirect product
of an indexed family {A;}icr of X-algebras if A < [l;c; Ai and m;(A) = A; for
every i € I.

An embedding h : A — [];c; A; is subdirect if h(A) is a subdirect product of
the family {A;}icr. If 6; € Con(A) for i € I, and ;<7 6; = A, then the natural
homomorphism p : A — [[;c; A/6; is a subdirect embedding.

Definition 3.30 (Subdirectly Irreducible Algebra) An algebra A is sub-
directly irreducible if for every subdirect embedding p : A — [[;cr As, there is
an i € I such that m;op: A — A; is a isomorphism.

3.1.2 General Notions of Universal Algebra 33

The following characterization of subdirectly irreducible algebras is very useful
in practice:

Theorem 3.10 An algebra A is subdirectly irreducible if and only if A is trivial
or there is a minimum congruence in Con(A)\{A}. In the latter case the min-
imum element is ((Con(A)\{A}, a principal congruence, and the congruence
lattice of A has the form in Figure 3.1.

\4

)
<I><7 U Con(A)\{A }

A

Figure 3.1: The lattice of congruences of a subdirectly irreducible lattice.

Theorem 3.11 (Birkhoff) Every algebra A is isomorphic to a subdirect prod-
uct of subdirectly irreducible algebras (which are homomorphic images of A).

We can define the following operators, which map classes of algebras to classes
of algebras (all of the same type):

Ae€eI(K) iff A isisomorphic to some member of K,

Ae S(K) iff A isa subalgebra of some member of K,

A€ H(K) iff A isahomomorphic image of some member of K,

Ae P(K) iff Aisa direct product of a nonempty family of
algebras in K,

A€ Py(K) iff A isa subdirect product of a nonempty family of
algebras in K.

Definition 3.31 (Variety) A nonempty class of algebras of the same similar-
ity type is called a variety if it is closed under subalgebras, homomorphic images
and direct products.

Since the intersection of a class of varieties of similarity type X is again a
variety, and as the class of all algebras of similarity type ¥ forms a variety, it
follows that for every class K of algebras there is a smallest variety containing
K. Let V(K) be the smallest variety containing K. A result due to Tarski
states that V- = HSP (hence, for every class of algebras of the same similarity
type, V(K) = HSP(K)). It can be also shown that V = HP;.

Given an algebra A there are usually many functions besides the funda-
mental operations which are compatible with the congruences on A and which
“preserve” subalgebras of A. The most obvious such functions of this type are
those obtained by composition of the fundamental operations. This leads to
the study of terms.

34 3 Background

Definition 3.32 (Terms) Given a set X of operation symbols and a set X of
(distinct) objects called variables, we denote by Tx(X) the set of terms of type
Y over X, i.e. the smallest set such that:

(i) X Uy C Tx(X),

(ii) If p1,...,pn € T(X) and o € %, then the “string” o(p1,...,pn) €
Ts(X).

where for every i € N, 3; is the set of operation symbols in 3 of arity i.

For p € T (X) we often write p(z1,...,z,) to indicate that all the variables
occurring in p are among 1, .. ., &,. A term p is n-ary if the number of variables
appearing explicitly in p is < n.

The term algebra of type ¥ over X will be denoted Tx(X).

The term algebra of type ¥ over X, Tyx(X), satisfies the following univer-
sality property: For every Y-algebra A and every map f : X — A there is a
unique homomorphism of ¥-algebras f : Tg(X) — A with the property that
f\X =f.

x—1 4

Tx(X)

Let A be an algebra of similarity type X. Let p(z1,...,2,) € Tx(X) be a
term. Then p defines a mapping p4 : A" — A.

An identity of type 3 over X is an expression of the form p; = ps, where
p1,p2 € T (X). Let Id(X) be a set of identities of type ¥ over X. An algebra
of type X satisfies an identity

pi(@1,...,on) = p2(@1,..., Tn)

(or the identity is true in A, or holds in A), abbreviated by

A \: p1($1,---,$n) :p2($1,---,$n) (OT A \: b1 :,’DQ),

if for every choice of ay,...,a, € A we have pfi(ay,...,a,) = pi(ay,... an).

A class K of algebras satisfies p; = pg (written K |= p; = pa) if each member
of K satisfies p;1 = po. If Id is a set of identities, we say that K satisfies Id
(written K |= Id) if K = p1 = po for every p; = po € Id.

Let K be a class of algebras, let g = g2 be an identity and Id a set of
identities. If from K = Id it follows that K |= q1 = g2, we write Id =x ¢1 = go.

Given K and X let

Idg(X) = {p1 =p2 € Id(X) | K = p1 = p2}.
Let Id be a set of identities of type X. Let M (Id) be the class of algebras that
satisfy Id.
A class K of algebras is an equational class if there is a set Id of identities

such that K = M(Id). In this case we say that K is defined or axiomatized by
Id.

3.1.3 Polynomial Functions, Algebraic Functions 35

Theorem 3.12 (Birkhoff) K is an equational class if and only if K is a
variety.

Definition 3.33 (Freely generated algebras) Let K be a class of X-algebras
and let X be a set of (distinct) objects called variables. Let F(X) be a X-algebra
generated by X. If for every A € K and for every map f : X — A there is
a homomorphism f : F(X) — A which extends f (i.e., f(z) = f(x) for every
x € X), then we say that F(X) has the universal mapping property for K over
X, X is called a set of free generators of F'(X), and F(X) is said to be freely
generated by X.

Let K be a family of 3-algebras and let X be a set of variables. Let 6 be de-
fined by Ok (X) = NPk (X), where @ (X) = {¢p € Con(Tx(X)) | Tx(X) /¢ €
IS(K)}.

Let 7 = X/QK(X) Then FK(Y) = TE(X)/QK(X)

Theorem 3.13 (Birkhoff) Suppose that Ts(X) exists>. Then Fi (X) has the
universal mapping property for K over X.

It can be shown (cf. e.g. [BS81] p.68) that Fx(X) € ISP(K). Hence, if K

is closed under I, S, and P, in particular if K is a variety, then Fg(X) € K.

Given a class K of Y-algebras and terms p,q € Tx(X) it can easily be seen
([BS81] p.73) that K |= p = ¢ if and only if (p,q) € 0k (X). Thus, Idx(K) =
{(p,q) e Ts(X)? | K Ep=q} ={(p,q) € Te(X)*| (p,q) € Ox(X)} = Ok (X).

In particular, let V be a variety. The free algebra in V freely generated by

X, Fy(X) =T%(X)/0k(X) is then isomorphic to Fx(X)/Idx (V).

3.1.3 Polynomial Functions, Algebraic Functions

Let A be a ¥-algebra and X a set. Then A4 can be made into an Y-algebra
in the canonical way, defining the operations pointwise.

Definition 3.34 Let = be an element of X. Then the function p, : AX — A
defined by pz((ay)yex) = ag ts called the z-th projection function.

Definition 3.35 Let PX (A) be the subalgebra of AA" generated by the projec-
tion functions (pg)zex. Then PX(A) is the algebra of polynomial functions in
the variables X on A.

Definition 3.36 Let FX(A) be the subalgebra of AA" generated by the pro-
jection functions and by the constant functions. Then FX(A) is the algebra of
algebraic functions in the variables X on A.

If card(X) = n € N, then A" = A4". Then P"(A), the subalgebra of
AA" generated by the projection functions {p; | i = 1,...,n},p; € A4", is
the algebra of n-ary polynomial functions on A and F"(A), the subalgebra of
AA" generated by the projection functions and by the constant functions, is the
algebra of n-ary algebraic functions on A.

8T (X) exists iff X # 0 or Ty # 0.

36 3 Background

Remark 3.14 For every p € Tx(X) there exists n € N and z1, ..., x,, € X such
that p € Te({z1,...,z,}). Let f : {x1,...,2n} — P™(A), f(z;) = p;- Then
by the universality property of Tx({z1,...,2,}) there is a unique morphism
f:Ts({z1,..,zn}) — P"(A) which extends f. The image by f of the term p
will be denoted f(p) = p4 € P*(A) and will be called the polynomial function
associated to p.

So, to each term corresponds a n-ary polynomial function. Reciprocally,
any polynomial function depends in fact only on a finite number of variables.

Let h : A" — A be a n-ary function on A, and p € Tx({z1,...,z,}). We
say that h is represented by the term p if h = py € P"(A).

h is a polynomial function if there exists a term p € Tx({x1,...,2,}) such
that h is represented by p (i.e. h = p4).

Let p € Ts({z1,...,z,}), and let ay,...,a, be arbitrary elements of A. Let
{z1,..,zn} — A be defined by f(z;) = a; for i = 1,...,n. Then there
is a unique morphism f:Ts({z1,...,2n}) — A which extends f. Note that

f(p) is in fact pa(ai, ..., a,), where py is the polynomial function associated to
p (easy proof by structural induction on the structure of p) .

For a given variety V, the free algebra in V freely generated by X will be
denoted Fy(X).

Remark 3.15 Let Tx(X) be the term algebra of type ¥ over X. Let f : X —
PX(A), f(z) = ps. By the universality property of Tx(X) there is a unique
morphism f : Tx(X) — PX(A) which extends f. For any p € Tx(X), f(p) is
the X -variate polynomial associated to p.

kerf = {(p1,p2) € Tu(X)? | f(p1) = f(p2)} =
= {(p1,p2) € Ts(X)? | B(p1) = 0(p2) for all v : X — A}=
= {(p1,p2) € Tu(X)? | A= p1 = pa} = Idx(A)

Imf = PX(A) (because f(X) generates PX(A)) and so PX(A) and Tx(X)/Idx(A)
are isomorphic. Note that Tx(X)/Idx(A) is isomorphic with Fy(4)(X). So
PX(A) = Fy(4)(X).

The next subsection gives the basic definitions for the so-called discriminator
varieties, which will be used later in the thesis.
3.1.4 Discriminator Varieties

Definition 3.37 (Discriminator) A discriminator function on a set A is a
function t : A> = A defined by

twn={ 0 1o7)

Definition 3.38 (Switching Function) A switching function on a set A is
a function s : A* — A defined by

s(a, b, c,d) —{ (ci Z;Z;Z

3.1.4 Discriminator Varieties 37

If A is an algebra then a ternary term t(x,y, z) representing the discrimi-
nator function on A is called a discriminator term on A. A term s(z,y,u,v)
representing the switching function on A is called a switching term for A.

It is easy to see that from a discriminator term we can construct a switching
term and vice-versa:

S(:C, Y, u, ’U) = t(t(.’L‘, Y, u)a t(ma Y, ’U), ’U)

t(z,y,2) = s(z,y,2,2)
Therefore an algebra has a discriminator term if and only if it has a switching
term. We also know (cf. [BS81], p.165) that an algebra with a discriminator
term is simple.

Examples of algebras with a discriminator term:

(1) Let (H,V,A,=,0,1) be a Heyting algebra with an additional unary oper-

. 1 ifzx=1
ation d : H — H, such that d(z) = 0 ifrtl
A ternary discriminator is t(z,y, z) = [zAd(zVy = zAy)|V]zA(d(zVy =

z Ay) = 0)].
(2) The 2-element Boolean algebra (d(z) = z).
(3) The n-element Lukasiewicz algebra (d(z) = S1(z)).
(4) The n-element Post algebra (d(xz) = Si(z)).

(5) A Heyting algebra with a join-irreducible 1 and with a dual pseudocom-
plementation + (d(z) = ™).

Definition 3.39 (Discriminator Variety) Let K be a class of algebras with
a common discriminator term. Then the variety generated by K s called a
discriminator variety.

In the thesis we will use two important properties of discriminator varieties
(cf. e.g. [BS81] p.165).

(1) The subdirectly indecomposable elements of a discriminator variety are
simple (discriminator varieties are semisimple).

(2) For every algebra in a discriminator variety, the intersection of all its
maximal congruences is A.

Examples of discriminator varieties:

(1) The equational class of all algebras H = (H,V, A, +,=,0, 1),
where (H,V,\,=,0,1) is a Heyting algebra and + is a dual pseudocom-
plementation.

(2) The equational class of all Boolean algebras.
(8) The equational class of all Lukasiewicz algebras of order n.

(4) The equational class of all Post algebras of order n.

38 3 Background

3.2 Logic — Basic Notions

In this section we present the basic notions of logic that will be needed in what
follows. Since in the thesis we will not restrict ourselves to classical logics, but
will consider more general logical systems, we will present the facts in a very
general framework. For details on classical first-order logic we refer to [Mon76];
for a proof-theoretic approach we refer to [Tak75]; for more information on
non-classical logics we refer to [Ras74]. For an introduction to algebraic logic
containing many motivational comments see [ANSK94|, [AN93], [ANS94] and
[Ném94]. Also, a presentation of general logics can be found in [Mes89]; for
details about institutions (that are not described here) we refer to [GB85].

We begin with a very general presentation of the notion of “logic”. We
continue with an overview of some of the main properties of classical first-order
logic. We then sketch the links between logic and algebra and make some
model-theoretical considerations.

3.2.1 Generalities

Roughly speaking, we can think of a logic £ as a five-tuple
L= (Fﬁa '_ﬁa Mﬁa mngc, ‘:ﬁ)

where

e Fr is a set, called the set of all formulae of L,

e |, is a binary relation between sets of formulae and individual formulae,
ie. FC P(Fr) x Fr (for every set X, P(X) denotes the powerset of X).
F. is called the provability relation of L,

M, is a class, called the class of all models of L,

e mng, is a function with domain Fy x M, called the meaning function of

L,

=, is a binary relation, =,C M, x Fr, called the validity relation of L.

In the existing logics, the set F, of formulae is defined by specifying a
language and rules for constructing “well-formed” formulae, and - is defined
for example by a set of axioms and inference rules, or by a sequent calculus.
The rules that define Fr and F, can be seen as “grammatical rules”.

The class of models can contain very different types of models (we also
allow the possibility that M, is empty, in which case the logic is not endowed
with a semantics), and the meaning function associates with every formula
¢ and model M the meaning mngs (¢, M) of ¢ in M. We did not explicitly
specify the codomain of mng,, in order not to impose restrictions on the notion
of “meaning”. For instance, in the particular case of the logics considered in
Chapter 5 two types of models are considered: algebraic models (of the form (A,
v), where A is an algebra over a suitable signature and v a function that assigns

3.2.1 Generalities 39

Formulae

Provability | |

relation ! ;

= imeaning @ Validity
: functions ! relation

Syntactic Semantical

part part

Figure 3.2: The general pattern of a logic.

values in A to the propositional variables) and relational (or Kripke) models
(of the form (K, m), where K is a set of “possible worlds” or “states” endowed
with certain operations and relations and m a function that assigns subsets of
states to the propositional variables). The meaning of a formula in an algebraic
model is an element of the corresponding algebra, whereas the meaning of a
formula in a relational model is a set of possible worlds (intuitively, the set of
those worlds where the formula is true).

(Fr,Fr) together with their defining “grammar” is called the syntactical
part of L, while (Mg, mngr, =) is the semantical part of L.

In Figure 3.2 we illustrate the general pattern of a logic [ANSK94].

There are two directions in the study of logics:

Proof theory, which seeks to axiomatize the entailment relation I' F ¢ be-
tween a set I' of sentences and a sentence ¢.

Model theory, which focuses on the satisfaction relation of the type M = ¢,
where M is a model and ¢ is a sentence.

The proof-theoretic approach has a long tradition, dating back to the work
of Tarski [Tar56] on “consequence relations” and of Gentzen on the entailment
relation. (Of course, semantic considerations are also included, especially in
Tarski’s work.) The model-theoretic approach is exemplified by Barwise’s ax-
ioms for abstract model theory [Bar74, BF85, Ebb85]. We would also like to
mention the framework of institutions, due to Goguen and Burstall [GB85],
which belongs to the model-theoretic approach, but it achieves much greater
generality by using category theory and avoiding a commitment to particular
notions such as “language” and “structure”.

40 3 Background

3.2.2 Basic Properties of Propositional Logics

Each formalized system of a propositional calculus is an ordered pair § =
(L,Cr), where L is a formalized language and C/ is a consequence operation
on L. The formalized language £ of § is — roughly speaking — a set of certain
finite sequences of elements formed starting from a “alphabet” of L, termed
formulae.

We begin with the notion of language of zero order.

Definition 3.40 (Language of zero order) An (alphabet of a) language of
zero order consists of an ordered system L = (V,L,U), where

(1) V is the set of propositional variables,

(2) L is the set of propositional connectives,

(3) U is a set of auxiliary signs.
We assume that also an arity function a : L — N. is given. Intuitively, the arity
function specifies the number of arguments of every propositional connective.

The set Fma(L) of formulae over the alphabet L is the least set of finite
sequences of signs in £ such that

e all propositional variables (considered as one-element sequences) are in
Fma(L),

e all connectives of arity 0 are in Fma(L),

e if f1,..., f, are in Fma(L) and o is a propositional connective with arity
n, then o(f1,..., fn) is in Fma(L).

Fma(L) can thus be regarded as a L-algebra. It is easy to see that the
algebra Fma(L) is a free L-algebra, the set V of all propositional variables in £
being a set of free generators for Fma(L).

A map h : V — A, where A is a L-algebra is called a valuation. From
the universality property of Fma(L£) it follows that for every L-algebra A and
every valuation A : V — A there is a unique homomorphism of L-algebras
h:Fma(L) — A that extends h.

Thus, every formula ¢ € Fma(£) induces a mapping ¢4 : AV — A by

da(h) = h(®) for any valuation h: V — A.

Definition 3.41 (Consequence operation) Let L be a language of zero or-
der. A consequence operation in L is a map C : P(Fma(L£)) — P(Fma(L))
satisfying the following conditions:

(Extensivity) I' C C(T),

(Monotonicity®) Ty C T'y implies C(T1) C C(T5),

“We briefly note that this condition is imposed in many logical systems; however in the so-
called non-monotonic logics the consequence operator is not required to have the monotonicity
property. We include it among the properties of a consequence operation since in the thesis
we do not take the non-monotonic approach into consideration.

3.2.1 Generalities 41

(Idempotence) C(C(T")) = C(T")

A consequence operation C' has a finite character if the following condition
is satisfied:

e If p € C(T) then there exists a finite subset I’y of I' such that ¢ € C(Ty).

A consequence operation in a formalized language of zero order can be in-
troduced by the following method. We choose a set A of logical formulae called
a set of logical azioms and a finite set {(r1), ..., (rn)} of rules of inference. Any
rule of inference is a mapping (r) : P — Fma(L), where P C Fma(£)" for some
n € N (n is then called the arity of (r)). Instead of (r)(ai,...,a,) = B we
usually write

Definition 3.42 (Formal Proof) By a formal proof of a formula ¢ from a
set I' of formulae with respect to a set A of logical axioms and rules of inference

{(r1),...,(rn)} we mean any finite sequence ¢1,...,¢r of formulae in L such
that

e p1el"UA,

o for every 1 < i < k, either ¢; € TUA, or ¢; = (r))(diy,--- ’¢inz)’ where
i1,...,0p, <t and (r;) is a rule of inference in {(r1),...,(r,)} with arity
ng,

* ¢ = 9.

If there exists a formal proof of a formula ¢ from a set I' with respect to
the logical axioms® A and inference rules {(r1),..., (rn)}, then we write I' - ¢.
In particular, if I' = () we write F ¢.

A deductive system S over L is defined by a set of axioms A and a set of
inference rules {(r1),...,(rn)}; it consists of a pair (£,tg), where g is the
relation between sets of formulae and individual formulae defined above. The
relation g is called the consequence relation of S.

Let S = (L,Fg) be a deductive system, and let C': P(Fma(L)) — P(Fma(L))
be defined by C(I') = {¢ | I' kg ¢}. The operator C is the consequence opera-
tion in L determined by the set A of logical axioms and the set {(r1),...,(rn)}
of inference rules. It is easy to prove that C is a consequence relation and has
a finite character.

Let S be a deductive system. If ¢ € Fma(L) then ¢ is called a theorem of S
if g ¢. A set T C Fma(L) is called a S-theory if T g ¢ implies ¢ € T, for all
¢ € Fma(L). Observe that the theorems of S belong to every S-theory.

®The axioms are usually given by so-called aziom schemes, where every variable that occurs
can be instantiated with an arbitrary formula.

42 3 Background

Example 3.3 We briefly discuss the axiomatizations of an important deduc-
tive system, namely Classical Propositional Calculus (CPC).

The set of propositional connectives of CPC is £ = (=,A,V,—,—, T).
The axiom schemes are:

(Al) a = (b= a),
(A2) (a= (b=¢)) = ((a=b) = (a=c)),
(A3) (b= —a) = (a=0D).

There is one rule of inference:

(r) %ﬁb (modus ponens).

—(a) stands for a =—. The operations V and A can be defined in terms of
the operations = and — by:

aVb=(-a)="b

aAb=—((=a)V (=b)).

One of the basic results in CPC is the deduction theorem. In what follows
Fma denotes the set of formulae.

Deduction Theorem Let I' U {¢,9} C Fma. Then

Fu{e¢} Fepc ¥ iff T Fopc ¢ = 9.

The class of Boolean algebras forms an algebraic semantics for CPC. For the
sake of simplicity we will regard a Boolean algebra B as an algebra (B,Vg, Ap,=5B
,—B, B, 1B), where (B,Vp,Ap,—B, B, | B) is a Boolean algebra in the sense
of Definition 3.9 and =p is a relative complementation, namely a =p b =
—ga Vpgb.

For every formula ¢ let ¢ : BY — B be the function associated to ¢. The
following completeness theorem holds.

Weak Completeness Theorem For every formula ¢,
Fepo @ iff B = ¢ =1 for every Boolean algebra B iff 2 |= ¢ = 1,

where 2 1s the 2-element Boolean algebra.

Completeness Theorem For every set of formulae I’ and every formula ¢,

Prepcd iff {v =1|¢Y €T} Fpoat @ =1iff { =1 |9 €T} =2 =1.

The second equivalence reflects the fact that the variety Bool of Boolean alge-
bras is generated by the 2-element Boolean algebra 2.

3.2.3 Basic Properties of First-Order Logic 43

3.2.3 Basic Properties of First-Order Logic
The first notion in first-order logic we consider is the notion of language.

Definition 3.43 (Language) A first order (formal) language £ = (X,V, L)
consists of:

(1) A signature 3, consisting of a set of function (or operation) symbols O and
a set of predicate (or relation) symbols P (with arity functions ap : O —
N,ap: P — N). For everyn € N we will denote the set of all operations
of arity n by O, and the the set of all relation symbols of arity n by P,

(2) A set of variables V = (V§,V;), where Vy is a set of free variables, and Vj
1s a set of bound variables,

(3) A set of logical connectors (L):
The set L may contain operators such as = (not), A (and), V (or), — (im-
plies), ¥ (for all), 3 (exists). (In non-classical logics also other operators
may occur.)

The algebra Term, of terms in a given language L is the free O-algebra
freely generated by the set of free variables. The set of atomic formulae in the
language L is the set

Aty = {R(tl, .. ,tn) ‘ t1,...,t, € Termg, R € P, with arity n}
Formulae are inductively defined as follows:

(1) Every atomic formula is a formula,
(2) If ¢ and 1 are formulae, then —¢, ¢ A, ¢V 1, ¢ — 1 are formulae.

(3) If ¢ is a formula, a a free variable in ¢, and = a bound variable not
occurring in ¢, then Vr¢' and 3z¢’ are formulae, where ¢' is the expression
obtained from ¢ by replacing every occurrence of a by z.

(4) Formulae are exactly those expressions obtained by the rules (1)—(3).

Definition 3.44 A wvariable © is free in ¢ if some occurrence of x in ¢ is not
in the domain of a quantifier. A wvariable x is bound in ¢ if all occurrences of
x are in the domain of some quantifier.

A sentence is a formula with no free variables.

In first-order logic a notion of provability or logical deduction can be defined.
The notion is based on a set of axioms, a set of inference rules, and a notion of
proof. For details on the form of the axioms and inference rules, and about the
notion of proof we refer to any standard text on logic, e.g. [Tak75] or [Mon76].

Definition 3.45 A theory in the first-order logic, T = (L,Th) consists of a
language L and a set Th of first-order sentences over L (the free variables
in the sentences are assumed to be universally quantified) which contains all
the axzioms of classical first-order logic and is closed under first-order logical
deduction.

44 3 Background

More generally, let £ be a language and C a consequence relation on the
set of formulae in the language £. A theory (L, C,Th) consists of the language
L, the consequence relation C' and a set T'h of first-order sentences over L (the
free variables in the sentences are assumed to be universally quantified) which
is closed under the consequence relation C.

In what follows if not otherwise stated we refer to classical first-order logic.
In classical first-order logic the so-called Craig interpolation property holds.

Theorem 3.16 (Craig Interpolation Property) Let ¢ and i be two for-
mulae such that = ¢ = . If ¢ and 1 have at least one predicate constant in
common, then there exists a formula p called an interpolant of ¢ = ¥ such that
p contains only those atomic formulae that occur in both ¢ and ¢, and such
that - ¢ = p and - p = 7.

If ¢ and ¥ have no predicate constant in common, then either - ¢ or - —
s provable.

The Craig Interpolation Property is basic for the proof of Theorem 3.17
below cf. [BHK90] p.359.

Definition 3.46 Let T = (L, Th) be a theory and L' a language. The restric-
tion of the theory T to the language L', L'OT is defined as (L N L', Th') where
Th' is the intersection of Th with the set of sentences in the language L'.

Definition 3.47 Let Ty = (L£1,Thy) and Ty = (L2, Ths) be two theories in the
first-order logic. The union of Ty with Ty is the theory Ty + T = (L1 U Ly, Th),
where Th s the closure under first-order logical deduction of Thi U Ths.

Theorem 3.17 Let Ty = (L1, Thy) and Ty = (L2, Thy) be two theories in the
first-order logic, and let L be a language. If L1 N Ly C L then LO(Ty + T) =
LOT) + LOTy.

This distributivity property does not hold in general if £; N Ly is not con-
tained in L.

More considerations concerning the equivalence between such distributivity
properties and different variants of the Craig Interpolation Property can be
found in [DGS91].

The relation = is based on a satisfiability relation with respect to X-structures.
We now give the main definitions.

Definition 3.48 If ¥ is a signature with set of function symbols O and set of
predicate symbols P, then a Y-structure is an ordered pair (A, L), where A is
a nonempty set and L consists of a family {Ra}rep of fundamental relations
(with the arity of R4 equal to the arity of R if R € P), and a family {fa}¢co
of fundamental operations on A (with the arity of fa equal to the arity of f,
for f €0).

A s called the universe of A. If P = () then A is an algebra; if O = 0 then
A is a relational structure.

3.2.3 Basic Properties of First-Order Logic 45

A notion of satisfiability A |= ¢ is defined first for sentences ¢ (taking
into account the structure of ¢), then on formulae by A = ¢ if and only if
A =Vzxy ... Ve,¢. For details see for example [BS81], p.195.

This notion of satisfiability can be extended to classes of structures and sets
of formulae: If K is a class of X-structures and ¢ is a formula we say

KE¢ iff A= ¢forevery A€ K.

If E is a set of formulae then
A=E iff Al ¢forevery ¢ € E,
KEFE iff KkE=o¢forevery ¢ €E.

(If A = E we also say that A is a model for E.) Then we say

E ¢ iff for every A, A = F implies A |= ¢,
EEE if ER¢foreverypcE'.
In classical first-order logic the following holds:

Theorem 3.18 (Soundness and Completeness) For every formula ¢ in the
language L, & ¢ if and only if |= ¢.

Therefore in what follows the symbol = can be used instead of .

Definition 3.49 (cf. [Mon76]) Let L be a language.

(1) A theory is a pair (L,T") such that T is a set of sentences in L and ¢ € T
whenever T' = ¢,

(2) If A is a L-structure, the L-theory of A is the pair (L,T) where I' = {¢ |
A= ¢}

(8) A theory (L,T) is an extension of a theory (L', T") provided that L C L'
and T C T,

(4) We say that (L,T) is a conservative extension of (L', T) provided that, in
addition, T =T N Fma(L).

(5) If (L,T) is a theory, a set A C Fma(L) is a set of axioms for T' provided
that T' = {¢ € Fma(L) | A [¢}.

Definition 3.50 (cf. [Mon76]) Let L C L' be a language extension and T', T
be theories over L, L' respectively.

(1) If R is a relation symbol of L' but not of L, then a possible defini-
tion of R over I' is any formula ¢ in the language L with free variables
{vo,...,vm-1}, where m is the arity of R.

46 3 Background

(2) If o is an operation symbol of L' but not of L, then a possible definition of
o over I is a formula ¢ in the language L with free variables {vg,...,vm},
where m is the arity of o, such that the following existence and uniqueness
conditions are in I':

Yvg, - ..y Um—13Vm®;

Yoo, .oy Umy U1 [0(V1, - oy Om) A D(V1, -, Umt1) = U = U]

(8) We say that (L',T') is a definitional extension of (L,T") provided that
for every non-logical constant C of L' but not in L there is a possible
definition ¢c of C over I' such that

I"={¢|¢ e Fma(L'), and TU{¢, | C a non-logical constant of £ but not in L} E ¢},

where ¢ is the sentence Vv, ...,vm(C(vo,...,vm) < ¢¢) if C is a
relation symbol of arity m, while ¢ is Yvg,...,vm(C(vy,...,0m—1) =
vm & ¢c) if C is an operation symbol of arity m.

3.2.4 Link Between Logic and Algebra

The idea of solving problems in logic by first translating them to algebra, solving
them by using the powerful methodology of algebra, and then translating the
solution back to logic is quite old. Papers on the history of logic point out that
this method was fruitfully applied in the 19th century not only to propositional
logics, but also to quantifier logics (cf. the works of De Morgan, Peirce). The
number of applications has grown ever since. The main reason for this is that,
when working with a problem, it is often useful to “transform” the problem
into a well-understood and streamlined area of mathematics, solve the problem
there, and translate the result back. In this case, the advantage of this approach
is that universal algebra is not only a unifying framework but also contains
powerful theoretical results. Another reason is that, with the rapidly growing
variety of applications of logic (in diverse areas like computer science, linguistics,
AT law, etc.) there is a growing number of new logics to be investigated. In this
situation translating these problems into algebraic terms proves often useful:
it offers a tool for economy and unification in various ways. Several logical
properties can be translated to properties of the class of their algebraic models,
and vice-versa.

Among the special classes of algebras in which powerful theoretical results
have been established are the discriminator varieties and, more generally, the
arithmetical varieties®. It turns out that in most cases, algebras originating from
logic fall into one of these two categories. The varieties of algebras investigated
in Chapter 5, for example those corresponding to the SHn-logics or to the
SH Kn logics, are discriminator varieties.

SA variety is called arithmetical if it is both congruence-distributive and congruence-
permutable (i.e. the lattices of congruences of all the algebras in the variety are distributive,
and, moreover, for every algebra in the variety its congruences commute). Alternatively, a
variety V is arithmetical if there is a term m(z,y, z) such that V = m(z,y,z) = m(z,y,y) =
m(y,y,z) = z, cf. [BS81]. It has been shown that every discriminator variety is an arithmetical
variety; there exist arithmetical varieties which are not discriminator varieties.

3.2.4 Link Between Logic and Algebra 47

(T1) a=a

(T2) (a=b)=((b=c)= (a=0¢))

(T3) a=(aVd)

(T4) b= (aV))

(T5) (a=c)=((b=c)= ((aVb)=c))
(T6) (aAb)=a

(T7) (aAb)=0b

(T8) (a=b)=((a=c)=(a= (bACc)))
(T9) (a=(b=c¢c))= ((aNb)=c)

(T10) ((aAb) = c) = (a= (b= c))

(T11) (aA—a)=1b

(T12) (a= (aN—a))= —a

(T13) aV -a

Figure 3.3: Axiom Schemes

Many properties of the logics can be translated to properties of classes of
algebraic models for such logics. To give only a few examples, the Beth defin-
ability property reduces (for certain classes of logics) to the property that all the
epimorphisms in a corresponding category of algebraic models are surjective;
and certain versions of the Craig interpolation property reduce to amalgamation
properties on the category of algebraic models. For details in these directions
we refer to [Cze82], [Sai88]; the main results are also presented without proofs
in [ANSK94]|, p.64.

We illustrate here — as a very simple example — the link between logic and
algebra for the case of propositional logic. We chose this example since it
explains the link between the axioms of the SHn-logics and the properties of
the algebraic models discussed in Section 5.1.

Let £ be a propositional language, and 7 = (£, C,T") a 0-order theory based
on L.

In what follows we will consider some classes of logics based on the connec-
tors A, V,=, -, that are axiomatized by subsets of set of axioms for classical
propositional logic.

Consider the axiom schemes presented in Figure 3.3.

The Lindenbaum-Tarski-algebra associated with the theory T is the quotient
of the algebra of formulae Fma(L£) to the equivalence relation ~ defined by ¢ ~ ¢
iff =9 eC)and ¢ = ¢ CI).

The links between the axiom schemes in Figure 3.3 and the properties of
the Lindenbaum-Tarski algebras are given in Figure 3.4

Similar theorems hold for systems of the modal logic, and for wider classes
of logics.

48 3 Background

The theory contains theorems | The Lindenbaum-Tarski algebra of the theory is
(T1) — (T2) Partially-ordered set

(T'1) — (T8) Lattice

(T2) — (T'10) Relatively pseudocomplemented lattice

(T2) — (T12) Heyting algebra

(T'1) — (T'13) Boolean algebra

Figure 3.4: Properties of the Lindenbaum-Tarski Algebras

3.3 Brief Overview on Many-Sorted Structures and
Many-Sorted Logic

Since in Chapters 6-8 we consider many-sorted structures and logics (the control
variables are allowed to have different sorts, the functions and relations can have
arguments of different sorts, etc.) in what follows we briefly present the relevant
basic notions.

Many-sorted algebras and structures often appear in theoretical computer
science, since — for example when modeling programs — “entities” of different
types have to be put together. Obviously up to a certain extent many-sorted
structures also appear in classical algebra: we would like to mention modules
over a ring. These can be seen as many-sorted structures, having two sorts:
the “module-element” sort and the “scalar” sort. The main results in universal
algebra extend to many-sorted algebras.

In what follows we give some basic notions of (many-sorted) logic that will be
used in Section 6. We define many-sorted signatures and structures, morphisms
of structures, terms, formulae and interpretations of many-sorted languages in
many-sorted structures. Morphisms of signatures are also considered, and the
way formulae can be translated along morphisms of signatures is discussed. For
more details we refer to [Dia96] and [Gog96].

Definition 3.51 (Signature) A signature X consists of a set of sorts Sort, a
set of function (or operation) symbols O, and a set of predicate (or relation)
symbols P, with arities ap : O — (Sort*x Sort), ap : P — Sort*. For every
81...8, € Sort* and every s € Sort, we will denote the set of all operations of
arity (s1...5n,5) by O, .5, and the the set of all relation symbols of arity
81...8n by Pg, . s, -

Definition 3.52 (X-Structure) Let ¥ = (Sort, O, P) be a signature consist-
ing of a set of sorts Sort, a set of operation symbols O, and a set of relation
symbols P, with arities ap : O — (Sort*x Sort), ap : P — Sort*. A X-
structure is a structure M = ((M;)scsort; {fm}fco, {Rm rep) where if f € O
and ao(f) = (s1...8n,8) then far : Mg, X ... X M, — M, and if R € P and
ap(R) =81...8, then Ry C Mg, x ... X M, .

If P is empty we obtain the notion of (many-sorted) algebra; if O is empty
we obtain the notion of relational structure.

3.3 Brief Overview on Many-Sorted Structures 49

Definition 3.53 (Morphism of Y-structures) Let M; and Ms be two %-
structures. A morphism of X-structures from My to My is a Sort-indezed family
{hs}scsort of maps hg : My, — My, with the following properties:

(1) For every f € Oy, s, s, and every (mi,...,my) € My, x...x M

sn?

hs(fM1 (mlv s 7mn)) = sz(hS1 (ml)a SRR hsn (mn))a

(2) For every R € Py, s, ,
(ma,...,my) € Ry, implies (hs,(ma), ..., hs,(my)) € R,
for all (ma,...,mp) € My, x...x M, .

The composition of two X-morphisms is their composition as functions. The
identity X-morphism on M, denoted 14, is the identity of M. A ¥-morphism
h: M — M'is a Y-isomorphism if there is a ¥-morphism h’' : M’ — M such
that h' oh = 13 and h o A’ = 1. Such a morphism A’ is called an inverse of
h.

For a given signature ¥ = (Sort, O, P) we will denote by Stry, the category
of Y-structures, with X-morphisms as arrows.

Definition 3.54 (Terms, Formulae) Let ¥ = (Sort, O, P) be a signature and
X = (Xs)sesort be a many-sorted set.

o The algebra of terms in the signature 2 and variables X is the many-sorted
algebra To(X) of terms over the signature (Sort,O) (the free (Sort, O)-
algebra freely generated by X).

e The set Aty (X) of atomic formulae over the signature ¥ is the set of all
expressions of the form R(ti,...,t,) where t1,...,t, are terms of sort
81,...,8n and R is a predicate symbol of arity s1 ... sn.

e The set of formulae over the signature X freely generated by X is the free
{V,A\,=,0,1,{Va}rex, {3x}rex }-algebra generated by Aty (X), where for
every x € X, Vr and Jz are regarded as unary operators.

Definition 3.55 (Interpretation) An interpretation of a language L (con-
sisting of a signature ¥ and a set of variables X) is a X-structure M together
with a (sort-preserving) mapping v : X — M. The mapping v is called an
assignment of values from M to the variables in X.

Definition 3.56 (Satisfiability in a given interpretation) Let v : X —
M be an interpretation and let U be the unique extension of v to a morphism
from the set To(X) of terms over ¥ in variables X to M. The interpretation v
satisfies a formula ¢ (denoted v |= @) if this follows from the following inductive
definition:

50 3 Background

(0) The unique extension v of v to a morphism from To(X) to M can be induc-
tiwely defined for every term t in the language L. We define v(x) = v(x)
for every variable x € X ; if f is an operation symbol of arity (s1...5n,$
and tq, ..., t, terms of sorts respectively s1,. .., 8n, thenv(f(t1,...,tn)) =

fu(@(ty), ..., 0(tn)).

(1) If R is a predicate symbol of arity s1...8n, and ty,...,t, are terms of
sorts respectively si,...,Sy, then v satisfies R(t1,...,t,) if and only if

(2) The assignment v satisfies ¢ if and only if it does not satisfy ¢; v satisfies
o AN if and only if it satisfies both ¢ and ©¥; v satisfies ¢V ¢ if and only
if it satisfies ¢ or P,

(8) The assignment v satisfies Yz if and only if for every v' : X — M such
that v and v' agree, except possibly on x, v' satisfies ¢; v satisfies Iz if
and only if for some v' : X — M such that v and v' agree, except possibly
on z, v' satisfies ¢.

Let v : X — M be an interpretation and let ¥ be the unique extension of v
to a morphism from the set Tp(X) of terms over X in variables X to M. We
can define a function vgm, : Fmag(X) — {0,1} as follows:

)

1 if (3(t1),...,9(ts)) €R
L. vEma(R(t1,...,tn)) = { 0 t 1)otherw(ise)) N

2. Vrma(P1 A @2) = VFma(®1) AVFEma(P2), VFma(@1V @2) = Vima(®1) V VFma(d2),
UFma(_‘(lﬁ) =1 iff vEma ((/5) =0,

3. Vima(Vzo(z)) = mzn{v,fé?(qﬁ(m)) | m € M}, where v*/™(y) = v(y) for
every y # « and v*/™(z) = m,

4. vEma(Tzg(x)) = max{v,fr/g(q&(a:)) | m € M}, where v*/™(y) = v(y) for
every y # ¢ and v*/™(z) = m.

Thus, v satisfies ¢ if and only if vpma(¢) = 1.

Definition 3.57 (Subsignature) Let ¥; and Xy be two signatures, ¥ =
(Sort1, 01, Py) and ¥y = (Sorty, Oq, Py). 31 is a subsignature of ¥ (denoted
by ¥ C 22) if Sorty C Sorty, O1 € Oy, Py C Ps.

Definition 3.58 (Restriction) Let ¥ = (Sort,O, P) and ¥’ = (Sort’,0’', P')
be two signatures such that ' C 5. Let M = ({ My}, _gort> {fm}reo, {BM Y ReP)
be a X-structure. The restriction of M to the signature X' is the structure

M' = ({M's}, goe's 1fmr}reor, { R Y repr), where

(1) For every s € Sort', M's = Mj,

3.3 Brief Overview on Many-Sorted Structures 51

(2) For every f € O' with arity ao(f) = (s1-.-8n,8) (with s1,...,8,,8 €
Sort'), farr : M's, X ... x M's — M's coincides with far : Mg, X ... X
M, — M,

(3) For every R € P' with arity ap(R) = s1...8n (with s1,...,s, € Sort’),
Ry CTM'y, x ... x M coincides with Ry € Mg, X ... X M, .

The restriction of M to ¥' will be denoted US M. We also say that M' is the
Y'-reduct of M, or that M is the Y-expansion of M'. The application U3
that associates with every Y-structure its restriction to X' is a functor from the
category Stry, of Y-structures to the category Strsy of X'-structures called the
forgetful functor.

The following lemma will be useful in Section 7.1.2.

Lemma 3.19 Let £; = (X1,X1) and Ly = (X9, X2) be two languages such
that L1 is a sublanguage of Lo (i.e. 31 C Yo and X1 C X3). Let My be a
Y1 -structure and Ms a Yo-structure such that M, is the restriction of Ms to
the signature Y.

Let ¢ be a formula in the language L1 (i.e. containing only sorts, opera-
tion symbols, predicate symbols and variables from Lq). Then for every (sort-
preserving) assignment s : Xo — My, s satisfies ¢ if and only if its restriction
to X1, s|x, : X1 = My, satisfies ¢.

Proof: Note first that it is easy to see that if s : X9 — My then its
restriction to Xy has indeed values in My, i.e. 81X, X1 — M. Therefore it
follows immediately by structural induction that for every term ¢ in the language

Ly, 3(t) =3x,(t) € M.

Moreover, if R is a predicate of arity s1...s, in P, and ¢1,...,t, terms in
the language L1, then (5(¢1),...,5(tn)) € Ru, if and only if (5(¢1),...,5(tn)) €
Ro,.

We prove by structural induction that for every assignment s : X9 — My
and every formula ¢ in the language L1, s satisfies ¢ if and only if its restriction
to X satisfies ¢.

Induction basis: Assume that ¢ is an atomic formula, i.e. ¢ = R(t1,...,t,)
for some terms ¢y, ...,t,, and let s : Xo — M> be an arbitrary assignment. Then
s satisfies ¢ if and only if (5(¢1),...,3(¢tn)) € Rum,. But since M; is the restric-
tion of My to X1, (3(t1),...,3(tn)) € Rup, if and only if (5(¢1),...,3(tn)) € R, -
Since for every term ¢ in the language £1 3(t) = 5| x, (t) it follows that s satisfies
¢ if and only if (5x, (t1),...,3x,(tn)) € Ran, ie. if and only if s/ x, satisfies ¢.

Induction step: We distinguish several cases:

Case 1: Let ¢ = = and s : X9 — M5 be an arbitrary assignment. Assume
known that for every assignment s’ : Xo — My, s’ satisfies 1 if and only if its
restriction to X satisfies ¢. In particular it follows that s does not satisfy ¢ if
and only if its restriction to X; does not satisfy v, i.e. that s satisfies ¢ if and
only if its restriction to X satisfies ¢.

52 3 Background

Case 2: Let ¢ = ¢1 A ¢2 and s : X9 — My be an arbitrary assignment.
Assume that for ¢ = 1,2 and every assignment s’ : Xo — My, s’ satisfies ¢;
if and only if STXI satisfies ¢;. In particular s satisfies ¢; if and only if sy,
satisfies ¢;.

We know that s (resp. s|x,) satisfies ¢ if and only if it satisfies both ¢,
and ¢o. Therefore it follows immediately that s satisfies ¢ if and only if s|x,
satisfies ¢.

The case ¢ = ¢1 V ¢ can be proved similarly.

Case 3: Let ¢ = Vayp and s : Xo — Ms be an arbitrary assignment.
Assume that for every assignment s’ : Xo — My, s’ satisfies v if and only if
STXI satisfies 1.

We know that s satisfies Vae) if and only if for every s’ : X9 — My such
that s and s’ agree, except possibly on z, s’ satisfies ¢, and that 8| x, satisfies
V1 if and only if for every s” : X1 — M such that sx, and s” agree, except
possibly on z, s” satisfies ¢.

We have to prove that the following statements are equivalent:

(1) For every s': Xy — Mj such that s and s’ agree, except possibly on
z, s' satisfies 1.

(2) For every s" : X1 — M; such that sx, and s" agree, except possibly
on z, s" satisfies 9.

(1) = (2): Assume that (1) holds. Let s” : X; — M;j be such that s” agrees
with s|x, except possibly on z. We can define an assignment s': X9 — Ms by
n :
oy) os(=) ifz e Xy
s'(@) = { s(z) ifz e X9\ X,

It is easy to see that s’ agrees with s except possibly on z, and STXI = 5",
By (1) it follows that s’ satisfies 1), and by the induction hypothesis we conclude
that STXI = 5" satisfies 1.

(2) = (1): Assume that (2) holds. Let s’ : Xy — My be such that s and
s' agree, except possibly on z. Then STXI and sy, agree except possibly on z,
therefore STXI satisfies ¥ and by the induction hypothesis s’ satisfies 1).

It follows therefore that s satisfies Vz1) if and only if s x, satisfies Vai).

The case ¢ = Jxy can be proved similarly. O

More general relationships between different signatures can be expressed by
morphisms.

Definition 3.59 (Signature Morphism) Let X,%' be two signatures, ¥ =
(Sort, O, P) and X' = (Sort’,0', P'). A signature morphism ¢ : ¥ — ¥’ consists
Of a trzple (¢Sa ¢Oa ¢P) where

(1) ¢s : Sort — Sort’ is a map on sorts,

3.3 Brief Overview on Many-Sorted Structures 53

(2) ¢o is a Sort* x Sort-indexed family of maps on operation symbols,

81-.-8n,8 | !
o) . Osl...Sn,S — O¢s(51)...¢s(5n)1¢5(5)’

(3) ¢p is a Sort*-indexed family of maps on predicate symbols,
81...8n !
P Porsn = Py(s1). s (sn)-

Example 3.4 An example of a morphism of signatures is the inclusion. Let

¥ = (SOI’tl, Ol,Pl) and Yo = (Sortg, OQ,PQ) be such that Sort; C Sorty, O1 C

O3 and P; C P,. The morphism i = (ig,ip,ip) : X1 < Yo, where ig,ip and

ip are the corresponding inclusions is a morphism of signatures.

Proposition 3.20 Any morphism of signatures ¢ : X1 — Xa induces a functor
Str(¢) : Stry, — Stry,.

Proof: Let ¢ : ¥1 — X9 be a signature morphism, and let M be a ¥s-
ﬂucture._AssumeM = ((Ms)sesorty, {1 fr} fec0sy {RM Y ReP,)- Then Str(qﬁﬂM) =
M = ((Ms)sESortla{fﬁ}f€O1a{RM}R€P1)a where f(levery s E_Sort) % =
Mgs); for every f € O with arity (s1...sp,8), fa7: Mg, X ... X My, — M, is
the operation fj; : My(s,) X ... X My(sy = My of M, where f' = ¢ °*(f);
and for every R € P with arity s1...s,, Ry; C Msl X...X Msn is the predicate
RI]M - M¢(51) X ... X M¢(sn) of M, where R = ES"(R) |

For every morphism of signatures ¢ : ¥; — X5 and every X'-structure M

we will also denote Str(¢)(M) by M.

Let M, M' be two Yo-structures and let h : M — M' be a morphism of
Yo-structures. Then Str(h) : Str(M) — Str(M') is defined as follows: For every
s € Sorty, let Str(h)s = hg, : Str(M)s = My(,) — Str(M')s = M(;(s).

It is easy to see that Str(h) is a morphism of X;-structures: Let o € O7 be an
operation of arity (s1...sn,s). Let (mq,...,my) € Str(M)s, x ... x Str(M)s,.
Then Str(h)s(osee(ary (M1, -+, Mn)) = hge)(do(o)) (ma, ..., my)) =

= ¢0(0)mr)(hg(s)(M1), - - - hy(s)(mn)) =
= Oser(m)(Str(h)s, (ma), ..., Str(h)s, (mn)).

Let R € P; be a predicate symbol of arity s1...s,. Let (mq,...,my) €
Str(M)s, X ... x Str(M)s, be such that Rsy(ar)(ma, ..., my).

Then ¢(R)ar(mi, ..., my) and hence, ¢(R)nr (hg(s;)(m1), -5 Pg(s,)(mn)).

Therefore, it follows that Rsy(ar)(Str(h)s, (m1), ..., Str(h)s, (my)). a

Example 3.5 Let 31 = (Sorty, 01, P1) and 35 = (Sorty, Oz, P2) be such that
Sort; C Sorty, O1 € Oy and P, C Py. Leti = (is,io,ip) 1Y < X9 be the
inclusion morphism between the signatures 31 and ¥o. The functor Str(i) :
Stry, — Stry, induced by the inclusion i is the forgetful functor.

We now analyze the way terms and formulae can be translated along mor-
phisms between signatures.

Let ¢ = (¢s, ¢, ¢p) be a morphism of signatures, where ¢g : Sort — Sort’
be a map between sorts, and ¢p : O — O’ a map between operation symbols,
and ¢p : P — P’ a map between predicate symbols.

54 3 Background

(1) The map between sorts, ¢s : Sort — Sort’ translates a Sort-sorted set
X = (X4)sesort to a Sort’-sorted set X with X, = g (s)—s Xs for every

s € Sort. (In [Dia96] it is noted that X is the pointwise left Kan extension
of ¢° along X.) Let h be the identity map, h: X — X defined for every
s € Sort and every z € X, by hs(z) =z € Xgq(y)-

(2) (¢s,d0) define a Sort-sorted map ¢g1(x) :To(X) — Toz(f()¢ as follows:

For every z € X,z € X¢5(s) - TO:()~()¢S(S). We know that TOI(X)¢S(S) =
(Tor(X))s- Hence, = € (Tor(X)p)s- Therefore, for every s € Sort,
Xs C (Tor(X)jg)s- Let j :+ X — Toi(X))y be the inclusion. Then
¢g1(x) = b To(X) = Tof(f()w, is the unique extension of j to a ho-

momorphism of O-algebras.

(3) The translation from Fmay(X) to Fmay/(X) can be defined in a similar
way. Let ¢, 1 Atz(X) = Atz (X), be defined by ¢, (R(t1, ..., tn)) =

¢P(R)(¢g~(x)(t1)a s a¢hT(X)(tn))-

Then qﬁuFma : Fmas(X) — Fmay/(X) is the unique morphism w.r.t. the
operations {V, A, =,0,1,{Vz}rex, {Jz}zcx} that extends (/5,ho¢(x)'

Remark 3.21 Assume now that the variables have a réle of generators rather
than of variables. We allow quantified formulae, with the mention that (Vz)¢(z)
holds in a given model iff ¢(d) holds for any value d attributed to x.

Similarly, any signature morphism ¢ = (¢s, ¢o, dp) : ¥ — X' together with
an arbitrary map ¢x : X — X' such that if v € X, then ¢x(z) € thbs(S)
(renaming of the generators), uniquely extends to morphisms:

qsl'ql'erm : To(X) — Tol (XI)W,
oL, + Atg(X) = Atgi(X'),
oL+ Fmag(X) — Fmag(X').

Proof: The existence of ¢g|'erm follows from the fact that if z € X then
ox(z) € X;S(s), from the definition of To/(X'))4, and from the universality
property of To(X).

¢, : Ats(X) = Aty (X)), is defined by

he(R(t1,- 1 tn)) = 80 (R)(herm (1), -, Bregm (tn))-
The map ¢x : X — X' induces a morphism of signatures
¢r AV A =, 0,1 {Vebeex, {Frtoex} = {V, A, 2,0, L {Va}aex, {Frtoex}
as follows:

e ¢, preserves the sorts,

3.4 ATP: The Resolution Principle 55

® ¢L(v) =V, ¢L(A) =N, qﬁ(_') =™ ¢(0) =0, ¢(1) =1,
o ¢r(Vz) = Vé(z), ¢r(3z) = Ié().
f

Fma

sality property of Fmax(X) and from the definition of Fmaz:(X’)WL a

The existence of ¢¢ . : Fmag(X) — Fmazz(X’)wL follows from the univer-

3.4 Automated Theorem Proving: The Resolution
Principle

We give a short introduction to resolution in classical first order logic, based
mainly on [CL73] and Chapter 12 of [Rob79]. A short introduction to reso-
lution in many-valued logic based on [BF92] will be given in Section 4.2. An
extensive overview of resolution-based theorem proving in many-valued logics
can be found in [BF95], [H&h94], [Hah96b].

3.4.1 The Resolution Principle

The basic idea behind the resolution procedure is to prove statements by refu-
tation, i.e. the strategy of resolution is to take the negation of the statement
that one wants to prove, and then to show that this negation produces a con-
tradiction with the known statements. One also says that the negation of the
given statement is unsatisfiable.

We begin by giving the main definitions.

Definition 3.60 (Literal, Clause, Clausal Form) A literal is an atomic for-
mula or a negation thereof. A clause is a set of literals. A clause C =
{L1,...,L,} is understood to represent the disjunction of its members, L1 V
...V L. The symbol O will be used to denote the empty clause. A ground
clause (term, literal) is a clause (term, literal) without variables. For any clause
C, the set of variables occurring in C is denoted by V(C). The clausal form
F(C) of a clause C is the universally quantified formula Yz, ...V, C, where

V(C)={z1,...,xm}.

The standard notions of substitution and unifier play an important role in
the resolution method.

Definition 3.61 (Substitution, Variant, Instance, Unifier, M.g.u.)

Let V' be the set of all variables, T the set of terms. A mapping o : V — T is
called a substitution if o(v) # v for only finitely many v € V. The domain of
a substitution o is defined as dom(o) = {v | v € V,0(v) # v}.

Substitutions can operate on terms, literals, and clauses by the usual exten-
sions. A substitution o such that (V) C V and injective on its domain is
called a renaming.

If o is a renaming with dom(o) = V(C) then o(C) is called a variant of C.

For any substitution o, we call 0(C) an instance of C.

Let M be a set of literals. A substitution o is called a unifier of M if o(M)
contains only one element. A substitution o is called a most general unifier

56 3 Background

(short m.g.u.) of M if o is a unifier such that for every other unifier 7 of M
there is a p such that po = 7.

Definition 3.62 (Factor) If two or more positive literals of a clause C' have
a m.g.u. o, then o(C) is called a factor of C. Likewise, if two or more negative
literals of a clause C' have a m.g.u. o, then o(C) is called a factor of C.

Definition 3.63 (Binary Resolvent) Let C; and Cs be clauses with no vari-

able in common. Let Ly and Lo be literals occurring in Cv and Cs, respectively.
If Ly and —~Ly have a m.g.u. o, then the clause Cs := (0(Cy)—o(L1))U(c(Ca)—
0(Ly)) is called a binary resolvent of Cy and Cs.

Definition 3.64 (Resolvent) A resolvent of two clauses Cy and Cy is one of
the following binary resolvents:

1. a binary resolvent of Cv and Cj,

2. a binary resolvent of C1 and a factor of Ca,

co

a binary resolvent of a factor of C; and Cs,

L

a binary resolvent of a factor of C1 and a factor of Cs.

Robinson’s Resolution Algorithm

Input: a set of clauses F in first-order predicate logic.

Output: O if F' is unsatisfiable.

Algorithm :
while F' has not been proven unsatisfiable and new clauses can be added
do
(c1,¢2) := a pair in F;
R := Resolvents((c1,c2));
if OeR

then F is unsatisfiable
else FF:= FUR
od

Computing the resolvents of two clauses

Input: Two clauses, Cy,Co,

Output: R the set of all resolvents of clauses Cq, Cs.

3.4.2 Semantic Resolution 57

Algorithm :

R := Binary-resolvents(Cy,Ca) U
U Binary-resolvents(Cy, Factor(Cs)) U
U Binary-resolvents(Factor(C1),Cs) U
U Binary-resolvents(Factor(Ci), Factor(Cy)).

The proof of the completeness of the resolution procedure, as well as those
of its refinements (see e.g. section 3.4.2), requires the proof of a lifting lemma
stating that a resolvent for two instances of a given clause can be “lifted” to a
resolvent for those clauses themselves, and such that the original resolvent (for
the two instances) is an instance of the resolvent for the clauses. For this, we
refer to the literature, e.g. Chapter 5 of [CL73].

3.4.2 Semantic Resolution

The resolution principle can be seen as a inference rule that can be used to
generate new clauses from old ones. However, unlimited application of resolu-
tion may generate many irrelevant and redundant clauses besides useful ones.
Although a deletion strategy [CL73] can be used in order to delete some of these
irrelevant and redundant clauses after they are generated, time has already been
wasted by generating them.

Therefore, in order to have efficient theorem proving procedures, we must
prevent large numbers of useless clauses from being generated. This leads to
refinements of resolution. Below we will discuss semantic resolution.

The main idea of semantic resolution is to use an interpretation to divide
clauses into two groups, and an ordering to reduce the number of possible
resolutions.

Definition 3.65 Let I be an interpretation and P an ordering of predicate
symbols. A finite set of clauses {Ei,...,E4,N},q > 1 is called a semantic
clash with respect to P and I (PI-clash, for short) if and only if Eq,..., E
(called electrons) and N (called nucleus) satisfy the following conditions:

)

q

1. E,...,E, are false in I,

2. Let Ry = N. For eachi =1,...,q, there is a resolvent R;11 of R; and
E;

3. The literal in E;, which is resolved upon, contains the largest predicate
symbol in E;;i=1,...,q,

4. Rqqq is false in I.
Ry41 is called a PI-resolvent of the PI-clash {Ex,..., Eq, N}

Definition 3.66 Let I be an interpretation for a set of clauses S, and P be
an ordering of predicate symbols appearing in S. A deduction from S is called
a PI-deduction if and only if each clause in the deduction is either a clause in
S, or a PI-resolvent.

58 3 Background

Theorem 3.22 If P is an ordering of predicate symbols in a finite and un-
satisfiable set S of clauses, and if I is an interpretation of S, then there is a
PI-deduction of O from S.

The proof of the completeness theorem is based, as in the case of the reso-
lution principle, on a lifting lemma.

In what follows we will present a special kind of interpretation to be used
in semantical resolution, that leads to hyperresolution.

3.4.3 Hyperresolution

Let us consider an interpretation I in which every literal is the negation of an
atom. If this interpretation is used, every electron and every PI-resolvent must
contain only atoms. Similarly, if every literal in [is an atom, then every electron
and every PI-resolvent must contain only negations of atoms. Hyperresolution
is based on these considerations.

Definition 3.67 A clause is called positive if it does not contain any negation
sign. A clause is called negative if every literal of it contains the negation sign.
A clause is called mixed if it is neither positive nor negative.

Definition 3.68 A positive hyperresolution is a special case of PI-resolution
in which every literal in the interpretation I contains the negation sign. It is
called positive hyperresolution because all the electrons and PI-resolvents in
this case are positive.

A negative hyperresolution is a special case of PI-resolution in which every
literal in the interpretation I does not contain any negation sign. It is called
negative hyperresolution because all the electrons and PI-resolvents in this case
are negative.

From Theorem 3.22 it follows that both positive and negative hyperresolu-
tion are complete. For details we refer for instance to [CL73].

3.5 Category Theory — Basic Notions

Definition 3.69 (Category) A category C consists of:
(1) a class of objects, Obj(C) (denoted also |C|),
(2) for each pair of objects A, B a class of morphisms, Hom¢(A, B), and
(8) a composition relation on morphisms,

such that

(i) For any two morphisms f € Hom¢(A, B) and g € Home(B, C) the compo-
sition of f and g, go f € Hom¢ (A4, C),

(i) The composition of morphisms is associative, that is ho(gof) = (hog)of,

3.5.1 Limits and Colimits 59

(iii) For every object A there is the identity morphism ids € Home(A, A) with
the property foids = f and idg o f = f for all f € Hom¢(A, B).

Remark: Instead of Hom¢(A, B) one also writes C(A, B). The notations
f:A— Band A 1, B both denote a morphism f in Hom¢ (A4, B).

In the following, C and D will always denote arbitrary categories.

Typical examples of categories in mathematics are the category of groups
(objects are groups, morphisms are the group homomorphisms), the category
of monoids (objects are monoids, morphisms are the monoid homomorphisms),
the category of topological spaces (objects are topological spaces, morphisms
are the continuous functions between them), and, of course, the category of
sets (objects are sets, morphisms are set mappings). Note also that to every
preorder (P, <) we can associate a category having as objects the elements of P
and a (unique) morphism between p; and ps if and only if p; < ps. Summariz-
ing, we can say that category theory extracts the basic features of “every-day’s
work” when dealing with spaces in a certain discipline and studying structure
preserving mappings (the morphisms) between those spaces.

The objects of a category do not necessarily form a set. A category C is
called locally small if for any two objects C and D of C the set of morphisms
C(C,D) is a set, while C is called small if both its collection of objects and its
collection of morphisms are sets.

Definition 3.70 (Dual Category) Let C be a category. The dual of C, is the
category C°P having the same objects as C and an arrow f°P € C°P(B,A) for
every f € C(A, B).

A morphism f € C(C, D) is called isomorphism if there exists a morphism
g € C(D,C) such that fog=1p and go f = 1¢.

A morphism f € C(C, D) is called epimorphism if for any object E and any
two parallel morphisms g,h: D=——F inC, go f = ho f implies g = h.

Dually, f € C(C, D) is called monomorphism (or monic) if for any object
B and any two parallel morphisms g,h: B——C inC, fog = f o h implies
g =h.

3.5.1 Limits and Colimits

We now recall the notion of (co-)limit which is one of the basic notions in
category theory and in our modeling approach.

Definition 3.71 (Diagram) A diagram D = ({X;}icr, {Fij}ijer) in a cat-
egory C is defined as an indexed family of objects {X;}icr and a family of
morphism sets F;; C C(X;, X;), fori,j € 1.

Definition 3.72 (Co-Cone) A co-cone of the diagram D = ({X;}icr, {Fij }ijer)
consists of an object X € Obj(C) and, for everyi € I, a morphism f; : X; — X,

60 3 Background

such that f; = fj o fij for all j € I, i.e. such that for every i,j € I and for
every fi; € Fj; the following triangle commutes

X

.
fij

X; - X;

Definition 3.73 (Colimit) A colimit of the diagram D = ({X;}icr,{Fij; }ije1)
s a co-cone with the property that for every other co-cone given by morphisms
fl:Xi = X', i € I, there exists exactly one morphism f: X — X', such that
fi=folfi, foralli € I (universality property).

The colimit of a diagram D = ({X;}icr, {Fij}ijer) will be denoted by h_m)(D)
(In the literature, several other notations may be found, such as h_mh o1 Xi or
li_n1>DXi or h_n1>Xz)

Reversing the arrows in the definition of a colimit of a diagram D results in
the dual notion called Limit of D, denoted by im (D).
Remark: Starting with a diagram D = ({X;}icr, {Fij }i jer) that consists only
of the objects X;, i € I, as “nodes” but without morphisms, i.e. all Fj; = 0, we
obtain the notion of the categorical co-product, [;c; X; (as a special colimit)
and product, [1;c; X; (as a special limit), respectively. The morphisms f; in the
corresponding definition of h_m>(D) and ll%m(D) are called “canonical injections”
of the co-product and “canonical projections” of the product, respectively. This
in particular means that we can derive special notions of limits and colimits ,
corresponding to the shape of the base diagram D.

Other important colimits are:

Initial Object Colimit of the diagram consisting of the empty set.
f

Coequalizers Colimits of diagrams consisting of two parallel arrows 4 ? B-
A—L-B
Pushouts Colimits of diagrams of the form: |4
é
The dual notions are:
Terminal Object Limit of the diagram consisting of the empty set.
Equalizers Limits of diagrams consisting of two parallel arrows 4 _Z\ B-
B
Pullbacks Limits of diagrams of the form: /f .
C——A

3.5.2 Functors and Natural Transformations 61

3.5.2 Functors and Natural Transformations

Definition 3.74 (Functor) Let C and D be two categories. A functor from
C to D is an operation which assigns to each object C' of C an object F(C)
of D, and to each morphism f of C a morphism F(f) of D in such a way
that F respects the domain and the codomain as well as the identities and the
composition:

o If f € C(A,B) then F(f) € D(F(A), F(B)),
e F(ida) = idp(a),
o F(fog)=F(f)oF(g).

A functor as defined above is also called covariant functor. A contravariant
functor from C to D is a functor F : C°? — D.

Definition 3.75 (Natural Transformation) Let F, G be functors from a cat-
egory C to a category D. A natural transformation 7 from F to G is a mapping
assigning to each object A in C a morphism 74 from F(A) to G(A) in D such
that for every arrow f : A — B in C the following diagram in D

commutes. That is, for every arrow f : A — B in C we have: G(f)o T4 =
g o F(f).

The arrows T4 are called the components of the natural transformation 7.

If F' and G are functors we will denote the family of all natural transforma-
tions from F to G by [F, G].

Definition 3.76 (Natural Isomorphism) A natural transformation v : F —
G is called a natural isomorphism if every component 74 is invertible (i.e., there
is a natural transformation 771 : G — F with 7' = (14)7%).

It is also important to note that one can compose functors and natural
transformations in a straightforward way.

Let a natural transformation 7 : F' — G between two functors F,G : C — D
be given. Let additionally functors H : B — C and K : D — £ be given.
Then 7o H (or 7H) denotes the natural transformation from F'H to GH given
by the components (TH)a := Tg(4) (A an object in B) and K o7 (or K7)
denotes the natural transformation from KF to K G defined componentwise as
(K7)a := K(74) (A an object in C).

It is straightforward to check that the fact that 7 is a natural transformation
guarantees that 7H and Kt are natural transformations.

62 3 Background

Moreover, given three functors F, G and H, all from C to D, and two natural
transformations 7 : FF — G and 6 : G — H, one easily defines the composition
of Tand 6: (AoT)s = 604 07, where A is an object in C and 74 and 04, by
definition, arrows in D. Checking that 6 o 7 defines a natural transformation is
trivial.

3.5.3 On the Yoneda Lemma

We now introduce one more concept, that of hom-functors, in order to state
one of the fundamental theorems in category theory, the Yoneda lemma.

Definition 3.77 (Hom-functors) Let C be a locally small category. For an
arbitrary object A in C we define a functor F = C(A,_) : C — Sets by F(B) =
C(A,B) and for any arrow f: B — C in C we let F(f) =C(A, f) : C(4,B) —
C(A,C) maph: A— Btofoh:A—C.

We obtain a covariant functor F' : C — Sets.

Analogously, we define G = C(_, A), a contravariant functor from C to
Sets, on objects B of C and arrows f : B — C in C by G(B) = C(B,A)
and G(f) = C(f,A) : C(C,A) — C(B,A) which maps any h : C — A to
hof:B — A.

Each object C of C gives rise to a functor y(C) : C°? — Sets, defined on
objects by y(C)(D) = C(D,C) and on morphisms a : D' — D by y(C)(a) :
C(D,C) — C(D',C), y(C)(a)(u) =uoa« for every u: D — C.

If f: C;y = Cy is a morphism in C, there is a natural transformation
y(C1) — y(C5) obtained by composition with f. This makes y into a functor

y:C — Sets®” y(C) =C(_,0).
The functor y is called the Yoneda embedding.

Theorem 3.23 (Yoneda Lemma) Let C be a locally small category, and A
an object of C. If F : C — Sets is a covariant functor and if « : C(A,_) —» F
denotes a natural transformation then there is a 1-1-correspondence between
the set of natural transformations [C(A,_), F] and the set F(A), given by: o —
aa(ida).

If we choose F' = C(A’,_) we obtain a 1-1-correspondence between the set of
morphisms C(A’, A) and the set of natural transformations [C(4,_),C(4’,_)].

3.5.4 Adjoint Functors

We continue with another basic and widely applicable concept, that of adjoint
functors.

Definition 3.78 (Adjoint Functors) Let F : C — D and G : D — C be
functors. We say that F 1is left adjoint to G if there is a natural isomorphism
0:D(F_,_) = C(_,G_) between these hom-functors from C°P x D — Sets, given
by the components 045 : D(FA, B) = C(A,GB).

3.5.4 Adjoint Functors 63

Pictorially:

where the left part is in D and the right in C.
The adjointness expresses that there is a 1-1 correspondence between the
arrows F(A) - B in D and A — G(B) in C.

The above definition says that there are two natural transformations, 6
from the hom-functor D(F_,) to C(_,G_) and 7 = #~ ! back from C(_,G_) to
D(F_,_).

Definition 3.79 (Unit of an Adjunction) Let 6 be the natural isomorphism
describing an adjunction between functors F: C — D and G : D — C,with F
left adjoint to G.

The unit 7 of this adjunction is the natural transformation between ide and
GF given by the components na := 0 4p(a)(idp(a)) : A — GF(A).

Proposition 3.24 The unit n of a transjunction satisfies the following uni-
versal property: for every morphism g : A — G(B) in C there is exactly one
morphism f : F(A) — B in D such that g = G(f)ona.

The co-unit of an adjunction can be defined by simply proceeding dually.

Definition 3.80 (Co-unit of an Adjunction) Let 6 be the natural isomor-
phism describing an adjunction between functors F' : C — D and G : D — C,with
F left adjoint to G. Let T be the inverse of 6. The co-unit € of this adjunction
s the natural transformation between F o G and idp given by the components
EB = TG(B)B(idG(B)) : FG(B) — B.

The co-unit of course also has a universal property, namely: for all f :
F(A) — B (arrows in D) there is exactly one g : A — G(B) in C such that

f=epoF(g)

F
Theorem 3.25 Let F and G be functors C ——D . An adjunction (F,G,0)
G

such that F' s left adjoint to G is completely given by one of the following three
equivalent properties.

1. Functors F and G and a natural transformation n : ide — GF with
the universal property of the unit . (Then, 0 is defined by O45(f) =

G(f)ona.)

2. Functors F' and G and a natural transformation € : FG — idp with the
universal property of the co-unit €. (Then, 0 is defined as the inverse of
7 defined as Tap = ecp o F(g).)

64 3 Background

3. Functors F and G and natural transformations n and € such that eF o
Fn =1idpr and Ge o nG = idg. These two triangular identities are repre-
sented in Diagram 3.1. (Then, 0 is again defined in terms of n as above.)

e

3.5.5 Other Categorical Notions

nG
G——GFG

Definition 3.81 (Exponentiation) A category C has exponentiation if it has
all binary products and if for every pair of objects A, B there is an object B4 and
a morphism ev: BAx A — B (the evaluation map) with the following universal
property: for every f : C x A — B there exists exactly one f C — B4 such that
evo (f X idg) = f; this can be expressed by the commutativity of the following
diagram:

CxA

X

A
BAxAg—B

indA

The assignment f — f defines a canonical bijection from C(C x A, B) to
C(C,B*). Recalling the definition of an adjunction, which involves a natural
isomorphism between D(F_, _) and C(_, G_), this suggests that we may be able
to find an adjunction based on this bijection. Indeed, the morphisms f and f
are called exponential adjoints, motivated by the following result.

Proposition 3.26 Let C be a category with ezponentiation. Define the endo-
functors F := _ x A (with F(f) = f x ids) and G = (). Then G is right
adjoint to F'.

For further basic categorical notions we refer to the literature on category
theory. We refer here only to a few selected titles, namely [AHS90], [ML71],
[HS79], [Pie91], [Gol84], and [MLM92].

3.6 Sheaf and Topos Theory — Basic Notions

In this section we present basic notions of sheaf and topos theory. For details
we recommend [MLM92] and [Gol84]. For some remarks on sheaf theory and
especially remarks on sheaves of algebras we refer to [Joh82|, Chapter V.1.

3.6.1 Sheaves over Topological Spaces

In what follows we present well known results, that can be found for example
in [Joh82] or [MLM92]. We closely follow the presentation of sheaves given in
[Joh82].

3.6.1 Sheaves over Topological Spaces 65

An indexed system of sets (F;);c; can alternatively be regarded as a map
[+ F = [;c; Fi — I, with the property that for every € F, f(z) =4 if and
only if z € F;. If the index set I has a topology, then the set F' can be endowed
with a topology such that f is continuous (this then expresses the fact that the
sets in the family (F});c; are continuously indexed).

Definition 3.82 (Bundle) A bundle over I is a triple (F, f,I) where F and
I are topological spaces and f : F — I is a continuous map with codomain 1.

For every i € I, f~1(i) will be denoted by F;, and F =][, Fi.

Definition 3.83 (Morphism of Bundles) Let (F, f,I) and (G,g,I) be two
bundles over I. A morphism between (F, f,I) and (G,g,I) is a continuous map
h: F — G such that go h = f, i.e. the following diagram is commutative

Nz

The category of bundles over I is denoted Sp/I.

F

Definition 3.84 (Sections) Let (F, f,I) be a bundle over I. A partial section
defined on a open subset U C I is a continuous map s : U — F with the property
that f os is the inclusion U C I. A section defined on I is called global section.
The set of all partial sections over the open subset U of I will be denoted by

L(F, £)(U).

In what follows Q(I) will denote the topology on I. Q(I) is a poset and can
be regarded as a category, with inclusions as morphisms.

Definition 3.85 (Presheaf) A presheaf on a topological space I is a functor
P : Q(I)°P — Sets.

Let U C V be open sets in I, and let zg : U — V be the corresponding
morphism in Q(I). We will denote the restriction P(i};) : P(V) — P(U) by py,.

Definition 3.86 (Sheaf) A sheaf on a topological space I is a presheaf F' :
Q(I)°P — Sets that additionally satisfies the following condition:

e Given an open cover (U;)icr of U and a family of elements s; € F(U;)
such that for every pair (i,j) we have pg:mU]_(si) = pgijj(sj), there is a
unique s € F(U) with pgi(s) =s; for alli € I.

The morphisms of (pre)sheaves are natural transformations of functors. The
category of presheaves over I will be denoted PreSh(I), and the category of
sheaves over I will be denoted Sh(I).

For every bundle (F, f,I) let I'(F) = {s: I — F' | s continuous and fos =
idr} be the set of all the global sections of F. T' defines a functor I' : Sp/I —
PreSh(I).

66 3 Background

Definition 3.87 (Stalk) Let F be a presheaf on I. The stalk of F' at a point
t € I is the colimit F; = li_H1>i€UF(U), where U ranges over all open neighbor-
hoods of i.

The collection of stalks (Fj);cs is an I-indexed family of sets. Let D(F)
denote the disjoint union of the stalks, and let 7 : D(F') — I be the canonical
projection on I. For s € F(U) and i € U, let s; be the image of s in F; (the
germ of s at 7). The map 5: U — D(F), 5(i) = s; defines a partial section of
the projection D(F') — I; we impose on D(F') the coarsest topology for which
all such sections are continuous.

Let F' be a presheaf. The construction above defines a bundle D(F) =
(D(F),n,I). A functor D : PreSh(I) — Sp/I can be defined this way.

Theorem 3.27 The functor D : PreSh(I) — Sp/I preserves finite limits and
is left adjoint to T : Sp/I — PreSh(I).

Let LH/I be the full subcategory of Sp/I whose objects are of the form
(F, f,I) with f : F — I a local homeomorphism (i.e. for every a € F' there are
open neighborhoods U and U’ of a respectively f(a) such that f: U — U’ is
a homeomorphism). It can be shown that any bundle map between two local
homeomorphisms f : F — I, f': F' — I is itself a local homeomorphism.

Theorem 3.28 The functors D and I restrict to an equivalence of categories
between Sh(I) and LH/I.

Note that for every presheaf P, I'(D(P)) is a sheaf. We obtain therefore a
functor I o D : PreSh(X) — Sh(X).

Theorem 3.29 The inclusion Sh(X) — PreSh(X) has a left adjoint, namely
the composition ' o D : PreSh(X) — Sh(X). This functor is known as the
associated sheaf functor or the sheafification functor.

The associated sheaf functor is left exact, in the sense that it preserves all
finite limits.

The category Sh(X) of sheaves over a topological space X has many good
properties: it has limits, colimits and exponentiation; and additionally it has a
notion of subobject and a subobject classifier.

Limits: For any space X, Sh(X) has all small limits (and they are computed
pointwise). The inclusion of Sh(X) in PreSh(X) preserves all these limits.

Colimits: All small colimits exist in Sh(I). They can be computed by first
computing the colimit in the category of presheaves and then taking the as-
sociated sheaf of the resulting presheaf, using the principle that left adjoints
preserve colimits.

Exponentiation: For every topological space X, the category Sh(X) has ex-
ponentiation. Namely, let P and F € Sets®(*X)” be presheaves. If F is a sheaf,

3.6.1 Sheaves over Topological Spaces 67

then so is the (presheaf) exponential F'¥. Since this will be needed later, we
briefly indicate the way F¥ is defined:

On objects: FP(U) = Hom(Py, Fyy) in the category
of presheaves over U
(Py, Fly are the restrictions of P, F' to O(U)%),

On morphisms: for V C U,
FP(i) : FP(U) = Hom(Py, Fiy) — F¥(V) = Hom(Py, Fly)
is defined by FF(i)(a) = p,-

Definition 3.88 (Subfunctor) Let F : C°? — Sets. A subfunctor of F' is a
functor G : C°P — Sets such that

(1) G(C) C F(C) for every C € |C|.
(2) for every f:C — D, G(f): G(D) — G(C) is a restriction of F(f).

Definition 3.89 (Subsheaf) A subsheaf of a sheaf F is a subfunctor of F
which is itself a sheaf.

Definition 3.90 (Equivalence of Morphisms) Two monomorphisms f : A —
D and g : B — D are equivalent if there is an isomorphism h : A — B with

f=goh
Definition 3.91 (Subobject) A subobject of D is an equivalence class of

monomorphisms into D.

It follows that a subobject of a sheaf F' in the category Sh(X) is isomorphic
to a subsheaf of F.

Definition 3.92 (Subobject Classifier) A subobject classifier is a monic
true : 1 — Q (in a category with finite limits) such that for every monic S — X
there is a unique ¢ : X — Q which forms the pullback square

§s—1

true
x—2-9

Let X be a topological space and O(X) be the family of open sets of X.
Let the presheaf Q : O(X)% — Sets be defined:

On objects: QU)={W |W CU,W open in X},

On morphisms: If i : V C U is the inclusion, then Q(i) = p¥ : Q(U) — Q(V)
is defined by pY(W) =W NV.

Theorem 3.30 For any topological space X, the presheaf) is a sheaf and is
a subobject classifier for Sh(X)

68 3 Background

3.6.2 Grothendieck Topologies

A Grothendieck topology is a generalization of the concept of a topology on a
set. It is based on a notion of “cover” which is a generalization of open covers
in a topology. Here, we briefly give the basic definitions — for more details cf.
[MLM92].

Definition 3.93 (Sieve) A sieve S on an object C in a category C is a collec-
tion of morphisms in C with codomain C which is closed under right composition
(i.e. if f: B — C € S, then for any g : A — B, the composition go f: A — C
isin S).

Alternatively, a sieve can be seen as a subobject S of y(C), where y : C —
Sets®”” is the Yoneda embedding (cf. Section 3.5.3), y(C) = C(_, C).

Definition 3.94 (Grothendieck topology) A Grothendieck topology J on
a category C is a function J which assigns to each object C € C a collection
J(C) of sieves on C, in such a way that the following conditions are satisfied:

(1) [Identity cover] For every object C' the mazimal sieve {f | cod(f) = C} is
in J(C),

(2) [Stability] If R € J(C) and f : B — C then the sieve f*(R) = {g: A —
B | fog€ R} isin J(B),

(8) [Transitivity] If Ry € J(C) and Ry is any sieve on C such that f*(Ra) €
J(B) for all f : B— C € Ry, then Ry € J(CO).

If S € J(C), one says that S is a covering sieve, or that S covers C.

Intuitively, condition (1) states that the sieve generated by the identity
arrow is a cover, condition (2) states that given a cover of an object and a
substructure of that object, the restriction of the cover to the substructure is
a cover of the substructure, and condition (3) states that covers of covers are
again covers.

Definition 3.95 (Site) A site is a pair (C,J), consisting of a (small) category
C and a Grothendieck topology J on C.

In the case of ordinary topological spaces, one usually describes an open
cover of U as just a family {U; | i € I} of open subsets of U with union
UU; = U; such a family is not necessarily a sieve, but it generates a sieve —
namely, the collections of all open sets V C U with V C U; for some U;. In
the more general context of a category with pullbacks, this way of generating a
covering sieve can be carried out in terms of a so-called basis for a Grothendieck
topology.

Definition 3.96 (Basis) A basis for a Grothendieck topology on a category C
with pullbacks is a function K which assigns to each object C a collection K(C)
consisting of families of morphisms with codomain C, such that:

3.6.3 Sheaves on a Site 69

(1) If f : C" — C is an isomorphism, then {f : C' — C} € K(C);

(2) If {fi : C; = C |iel} e K(C), then for any morphism g : D — C the
family of pullbacks {ms : C; x¢ D — D |€ I} is in K(D);

(8) If {fi : C; — C | i € I} € K(C), and if for each i € I one has a
family {gi; : Dij — C;i | j € I;} € K(C;), then the family of composites
{(fiogij: Dij — C i€l jel} isin K(C).

The elements R of K(C) are called covering families or covers of C.

Note that a Grothendieck topology J is not always a basis because condition
(1) above may not be satisfied. A basis K generates a Grothendieck topology
Jby (SeJ(C)<JRe K(C)RCS).

Let C be a category and J a Grothendieck topology on C. A sieve S on C
is called closed (for J) if and only if for every arrow f: D — C in C,

f*(S) € J(D) if and only if f € S.

3.6.3 Sheaves on a Site

The main difference between the definition that will be given in this section
and the definitions 3.85 and 3.86 given in section 3.6.1 is the fact that here the
topology on the index set Q(7) is replaced with a more general category C.

Definition 3.97 (Presheaf) A presheaf on a category C is a contravariant
functor from C to the category of sets Sets.

A sheaf is a presheaf that satisfies an additional “gluing” condition.

Definition 3.98 (Sheaf) A sheaf on a site (C,J) is a presheaf F : C? —
Sets such that for every object C of C and every covering sieve R € J(C),

each morphism R — F in Sets’” has a unique extension to a morphism
Hom¢(—,C) — F.

Remark 3.31 If F is a presheaf F € Sets*”, and R € J(C) is a cover for
C, a matching family of elements of F is a function that assigns to every
element f : D — C of R an element x5 € F(D) such that F(g)(xf) = x¢4.
An amalgamation of such a matching family is an element x € F(C) with
F(f)(x) = x5 for every f: D — C € R.

Then the previous definition states that F' is a sheaf if and only if every matching
family for any cover of any object of C has a unique amalgamation.

This can be also expressed by requiring that for every object C' of C and each
cover R € J(C) the following diagram is an equalizer:

F(C) S T[Fdom(f) == Il = F(dom(s).
feR f9;:fER,
dom(f)=cod(g)

70 3 Background

Let K be a basis for a topology on a category C with pullbacks, and J the
Grothendieck topology generated by K. In this case, the sheaves for J can be
described in terms of the basis K as follows: Given a K-cover R = {f; : C; —
C | i€ I} of C, a family of elements z; € F(C;) is said to be matching for R iff
F(ﬂ'}])(:vz) = F(ij)(m]) for every i,j € I, where 7! and 7? are the projections
from the pullback:

2
Mij

Ci X Cj Cj
| E (3.2
Ci—F—C

An amalgamation for {z;},cs is then an z € F(C) with F(f;)(z) = x; for every
vel.

Proposition 3.32 (cf. [MLM92]) Let F be a presheaf on C. Then F is a
sheaf for J if and only if for any cover {f; : C; — C | i € I} in the basis K,
any matching family {z;}; has a unique amalgamation.

Let C be a small category and J a Grothendieck topology on C. Let Sh(C, J)
be the full subcategory of Sets®” consisting of the sheaves with respect to J.

Theorem 3.33 (cf. [MLM92]) The inclusion functor . : Sh(C,J) — Sets®”
has a left adjoint a : SetsC™ — Sh(C,J) called the associated sheaf functor.
Moreover, the functor a commutes with finite limits.

The composition a o i : Sh(C,J) — Sh(C,J) is naturally isomorphic to the
tdentity functor.

3.6.4 Topoi

In what follows we present elementary conditions (or axioms) that turn a cat-
egory & into a topos.

Definition 3.99 (Subobject Classifier) If C is a category with a terminal
object 1, then a subobject classifier for C is a C-object Q) together with a C-
morphism true : 1 — € that satisfies the following aziom:

Q-axiom For every monic f : A — FE there exists a unique C-morphism
chary : E — Q (denoted also charg) such that the following diagram

18 a pullback:

A1 g

!‘ char 4 (33)
1

The morphism char 4 is called the characteristic morphism of the subobject A
of F.

Note that when a subobject classifier exists in a category, it is unique up to
isomorphism.

|/
- 5 Q
true

3.6.4 Topoi 71

Theorem 3.34 (cf. [MLM92]) Let f : A— E and g : B — E be two subob-
jects of E. Then f ~ g if and only if char4 = charp.

Consequence 3.35 (cf. [MLMO92]) The assignment of chara to f : A — E
establishes a one-one correspondence between the collection Sub(E) of subobjects
of an object E, and the collection Hom¢(E, Q) of arrows from E to Q.

Definition 3.100 (Topos) An elementary topos is a category £ such that
(1) € is finitely complete,
(2) € is finitely co-complete,
(3) € has exponentiation,
(4) € has a subobject classifier.

Remark The properties (1) and (3) constitute the definition of cartesian closed
categories. The condition (2) is implied by the combination (1), (3) and (4)
(cf. [MLM92]). Thus, a topos is a cartesian closed category with a subobject
classifier.

In what follows we give the main properties of topoi that will be used in the

thesis.

Definition 3.101 (Image) Let f : A — B be a morphism in C. The image of
fs Im(s) is @ monomorphism m : M — B such that there is a uniquee: A — M
with f = m o e such that the following universality property is satisfied:

b

VN

For every N, for every monomorphism h : N — B and every g : A — N such
that f = hog there is a unique o : M — N such that m = hoy and g = poe.

Proposition 3.36 In a topos, every monomorphism is an equalizer.

Proof: From the definition of a subobject classifier, every monomorphism
is the equalizer of the following diagram:

! true
m .

M—~N—2——Q

1
charm

Proposition 3.37 In a topos, every arrow f has an image m and factors as
f =moe (with e epimorphism).

The proof can be found in [MLM92], p.185. Since we will need it later, we
point out the categorical constructions necessary for determining m and e:

72 3 Background

Let f: A— B. Let x,y : B — C be such that
f

A—1-B
f[y
B—~C

is a pushout. Let m : M — B be the equalizer of z,y : B — C. By the
universality property of the equalizer, there is a unique e : A — M such that
f = moe. Hence, the image of f is obtained by pushouts and equalizers in the
topos £.

Proposition 3.38 For each object A in a topos the partially ordered set Sub(A)
of subobjects of A is a lattice. Moreover, for each arrow k : A — B, taking
pullback along k defines a morphism k= : Sub(B) — Sub(A) of partially ordered
sets (i.e. a functor). This functor has as right adjoint the functor 3 which sends
each subobject S of A to its image under k in B, and a left adjoint Vy,.

Since this will be used in what follows, we sketch here how the intersection
and union are obtained in Sub(A). The intersection of two subobjects S, T — A
is the pullback in the Diagram3.4:

SNT——=T
1 ‘ (3.4)

S = A
The union of two subobjects S,T < A is obtained as follows: We first form
the coproduct S + T of S and T in the topos. The arrow S + T — A obtained
by the universality property of the coproduct has an image M as shown in

Diagram 3.5. M is a subobject of A, which contains both S and T. It is not
difficult to see that M satisfies the properties of a g.1.b. hence M = SUT.

S+T T

N

M (3.5)

N

S = A

3.6.5 Geometric Morphisms

The definition of a “map” between two topoi is based on the examples of sheaves
on topological spaces. Let X and Y be topological spaces and Sh(X), Sh(Y) the
topoi of sheaves on X, resp. Y.

A continuous function f : X — Y gives rise to a pair of adjoint functors:
an tnverse tmage functor f* and a direct tmage functor f,, with f* left adjoint
to f., as follows:

Sh(X) Z=Sh(Y) £, " (3.6)

3.6.6 Morphisms of Sites 73

The direct image functor is defined by composition with f~!, namely if
F : Q(X)? — Sets is a sheaf on X and U is any open subset of Y, then
f«(F)(U) = F(f '(U)). The inverse image functor is usually defined in terms
of the étale spaces corresponding to the sheaves: if p : £ — Y is étale, then
f(E RN Y) is the étale space over X defined by pullback along f, as in the
following diagram:

(3.7)

From this definition it follows that f* preserves finite limits, i.e. it is left
exact. Additionally, since f, F f* it follows that f* preserves all colimits and
f+ preserves all limits.

Definition 3.102 (Geometric Morphism) A geometric morphism f : & —
F between the topoi € and F is a pair of functors f*: & - F and f. : F - &
such that f* is left adjoint to f, and f* is left exact. Then f, is called the direct
image part of f and f* the inverse image part of the geometric morphism.

3.6.6 Morphisms of Sites

Definition 3.103 Let (C,J) and (D, K) be sites. A functor ¢ : C — D pre-
serves covers if and only if for every covering sieve S € J(C) the sieve ¢(S)
generated by {¢(u) | u: C' — C € 8} is a covering sieve of $(C) in D.

Definition 3.104 (Morphism of Sites) Let (C,J) and (D, K) be sites. Sup-
pose that C and D are closed under finite limits. A functor ¢ : C — D is a
morphism of sites if ¢ preserves finite limits and covers.

Theorem 3.39 ([MLM92], Th.2, p.409) For categories C and D with finite
limits, any morphism of sites ¢ : (C, J) — (D, K) induces a geometric morphism
f : Sh(D,K) — Sh(C,J); the direct image functor f. : Sh(D,K) — Sh(C,J)
sends a sheaf F on (D, K) to the composition f.(F) = F o ¢, and the inverse
image functor f* : Sh(C,J) — Sh(D,K) sends a sheaf G on (C,J) to the tensor
product G ®c Ay where

A¢:aoyo¢:Ci>Di> Sets®”” ~%5 Sh(D, K).

If the sites (C, J) and (D, K') do not have finite limits a similar theorem can
be formulated.

Definition 3.105 (Covering Lifting Property) A functor # : D — C is
said to have the covering lifting property (clp) if for any object D of D and any
J-cover § of m(D), there exists a K-cover R of D such that 7(R) = {m(u) |
ueR}CS.

In other words, 7 has clp if for every object D of D, every cover of the image
of D is refined by the image of a cover of D itself.

74 3 Background

Theorem 3.40 ([MLM92], Th.4, p.412) Let (C,J) and (D, K) be sites, and
let 1 : D — C and ¢ : C — D be functors such that 7 is left adjoint to ¢. If
m has the covering lifting property, or equivalently, if ¢ preserves covers, then
there is an induced geometric morphism f : Sh(D,K) — Sh(C,J), with inverse
and direct image functors described, for sheaves F on (C,J) and G on (D, K)
by f*(F) =a(F om) and f.(G) = G o ¢.

In fact just the functor = : D — C alone suffices to give a geometric mor-
phism of sheaves, provided 7 has the covering lifting property.

Theorem 3.41 ([MLM92], Th.5, p.412) Let 7 : D — C be a functor having
the covering lifting property. Then w induces a flat and continuous functor
Az : C— Sh(D,K), defined by A(C) = ao C(n—,C), and hence a geometric
morphism fSh(D,K) — Sh(C,J), with inverse image functor f*(F) ~ a(F o)
for any sheaf F' on C.

3.6.7 Geometric Logic

Let £ be a many-sorted first-order language given by a collection of “sorts” or
“types”, collections of relation symbols and of function symbols together with
their arities. Starting from the language £ one can inductively define terms
and atomic formulae; from atomic formulae one can build up more complicated
formulae using the connectives V, A, =, - and quantifiers for any sort X.

For such a first order language £ one can define an interpretation of £ in a
topos € by associating an object XM of £ to every sort X in the language, a
subobject RM C XlM X ... X X,]lV[to every relation symbol R C X7 x ... x X,
of £ and an arrow fM : XM x ... x XM — YM in £ to each function symbol
fXix...xX, =Y.

Given such an interpretation M of L in a topos &, one can define for each
term t(xq,...,z,) of sort Y an arrow tM : XM x ... x XM 5 YM and for
every formula ¢(z1,...,z,) with free variables FV(¢) C {x1,...,z,} (where
z; is of sort X;), a subobject {(21,...,2n) | ¢(z1,...,2,)} C XM x ... x XM,

For example, if ¢(z1,...2,) = R(t1,. .., tx) for some relation symbol R, then
the subobject {(z1,...,%,) | R(t1,-..,tx)} is the pullback of the subobject RM
of Xj x ... x X, along <t{”,...,t£/1>.

We interpret the conjunction of two formulae by forming the pullback of
the corresponding subobjects; similarly disjunctions are interpreted as unions
in £ (see Theorem 3.38 and the subsequent comments). To interpret V and
3 recall that for each arrow k : A — B, taking pullback along k defines a
morphism k! : Sub(B) — Sub(A) of partially ordered sets (i.e. a functor).
This functor has a right adjoint 33 : Sub(A) — Sub(B) and a left adjoint
Vi : Sub(A) — Sub(B). Thus, quantifiers of the language £ can be interpreted
by these adjoints:

{(z1,...,2,) | (Vz: X)qﬁ(ml,...,mn,m)}M =V.({{(z1,...,zn,2) | (b(ml,...,mn,m)}M),

{(z1,...,2,) | Bz : X)qﬁ(:l:l,...,:cn,a:)}M =3, {{(z1,-..,zn,2) | ¢($1,...,$n,$)}M),

where 7: XM x ... x XM x XM — XM x ... x XM is the projection.

3.6.7 Geometric Logic 75

Definition 3.106 (Coherent (Geometric) Formulae) We call coherent for-
mulae (called also geometric formulae) those formulae built up from atomic
formulae using only the connectives V and N\ and the quantifier 3.

Definition 3.107 (Coherent (Geometric) Axioms) We call coherent ax-
ioms (called also geometric axioms) are formulae of the form (Vz1,...,zn)(¢ =
) where ¢ and Y are coherent formulae.

We say that a coherent axiom (Vzi,...,z,)(¢ = 1) is satisfied in a given
interpretation M of L in a topos £ if {(x1,...,2,) | #}M is a subobject of

{(z1,..,zn) | Y}M in €.

Let now f : F — £ be a geometric morphism. Then the inverse image
functor f* yields for every interpretation M of £ in £ an interpretation f*M
in F.

The functor f* preserves arbitrary colimits and finite limits. Therefore, it
preserves equalizers, intersections (obtained by pullback), unions (obtained as
images of coproducts, where images are obtained by pushouts and equalizers)
and image factorization (obtained by by pushouts and equalizers); hence it
preserves the interpretation of any coherent formula. Thus, for every formula
built up from atomic formulae using only the connectives V and A and the
connective 3:

P, zn) [63) = {(21,.. za) [0}

In general f* will not preserve the interpretation of universally quantified for-
mulae. Nevertheless, one can see that for every coherent axiom

S = (Vry,...,z,) (¢ =)

with ¢ and 1 coherent formulae, if @ is satisfied in a given interpretation M of
L in the topos £ then @ is satisfied in the induced interpretation f*M in F.

To see this, let M be an interpretation of L in £ and f a geometric morphism.
Then @ is satisfied in the interpretation M of L in € if and only if {(z1,...,z,) |
#}M is a subobject of {(x1,...,2,) | ¥}™. Since f* preserves all finite limits
it also preserves pullbacks, so

Az, ..., z0) | M) < F*{(z1,. .., 20) | ¥}Y) is a subobject.

Using the fact that f*({(z1,...,z,) | 6}™) = {(z1,...,2n) | ¢}/ M and
Az, .. zn) | IM) = {(21,...,2,) | 3™ it follows that

{(@1,...,20) | oMM <{(21,...,2n) | ¥}™™ is a subobject.

The direct image functor f, being right adjoint preserves limits, but it does
not normally preserve unions or images, so we cannot expect it to preserve the
validity of coherent axioms.

We will briefly explain which are the formulae whose interpretations are
preserved by direct image functors. It is easy to see that the interpretation of

76 3 Background

a conjunction of atomic formulas is preserved by direct image functors. Exis-
tential quantification is not always preserved. We analyze once more the way
existential quantifiers are interpreted. Let ¢(z1,...,z,, z) be a formula over L.
Then

{1, z0) | Go)(@r, . 20, 2) I = Fn({(21,. - 20, 2) | Do,y 20,))Y

where 7 is the corresponding projection function.
By the definition of 3., 3, ({(z1,. .., 2zn,) | d(z1,...,2n, z)}M is the image
of mou

{(z1,...,&n,2) | ¢(x1,. .. 2n,2) M B XM x. xXMx XM 5 XMy, x XM,

The image of m o ¢ can be obtained as the equalizer of two arrows obtained
by the the pushout of 7w o ¢ with itself. In the particular case when 7o is a
monomorphism, the image of wo ¢ is {(z1,...,2n,z) | ¢(z1,...,2n,2)}M. The
fact that 7 o ¢ is a monomorphism reflects the situation described intuitively
(and informal) in what follows: “the value of 2 in X with the property that
¢(x1,...,xn, x) is uniquely determined by the values of z1,...,22,...,2,”.

In such cases, the image factorization of wo: is preserved by any functor that
preserves monomorphisms. This shows that a certain amount of quantification
is preserved by direct image functors.

A formula ¢ is called cartesian relative to a given theory T if it is constructed
from atomic formulae using only conjunction and existential quantification over
“T-provably unique” variables (i.e. variables whose values, in any model of T’
are uniquely determined by the values of the remaining free variables). Carte-
sian axioms (relative to a given theory T') are similarly defined: they are axioms
of the form (Vz)(¢(z) = ¥ (x)) where the formulae ¢ and v are cartesian rela-
tively to T'. We say that a theory is cartesian if its axioms can be ordered such
that each is cartesian relative to those which precede it. Then it follows that
models of cartesian theories are preserved by direct image functors.

Chapter 4

A Brief Overview of Related
Results

In this chapter we review concepts and results that are directly linked to our own
results, that will be presented in the thesis, as well as other related work. We
begin by presenting some basic results on sheaves of algebras and the Priestley
duality for distributive lattices. These will be used in Chapter 5, and a result
due to Davey [Dav73] concerning a method of constructing a sheaf whose stalks
are quotients of a given (universal) algebra will be used in Chapter 8, in the
study of the behavior of interacting systems.

We briefly point out how both the sheaf representation of algebras and the
Priestley representation for distributive lattices lead to fibered structures. We
then present the basic results in many-valued resolution. We end by present-
ing various models for the study of concurrency: first classical approaches are
considered, then the method of logical fiberings due to J. Pfalzgraf, and then
other models based on sheaves and presheaves.

The results contained in this chapter are in general well-known and can be
found in the literature. My contribution consists in organizing the information,
pointing out the fact that in both Priestley and sheaf representation fibered
structures appear, and in extending a result concerning unification in discrimi-
nator varieties due to [Bur92] from a single equation, as appears in [Bur92], to
systems of equations (Theorem 4.2).

4.1 Representations of Algebras

4.1.1 Sheaves of Algebras

The stalks and the sets of global sections of a given sheaf may have an algebraic
structure (for example in algebraic geometry they may carry a ring or group
structure; in model theory sheaves with algebraic structure and their model-
theoretic properties are studied [Wer75]).

We present here basic definitions and results concerning sheaves with alge-
braic structure. More information about the subject can be found for example
in [Dav73], [Wer75], [KCT79], [Joh82], [MLM92].

7

78 4 A Brief Overview of Related Results

Let A be an algebraic variety (i.e. a class of algebras closed under homo-
morphic images, subalgebras and products). The variety A can be described
by its signature ¥ and by a set Id of identities.

Given an arbitrary category C with finite products, we can interpret the
notion of an object with an A-structure in C by associating to every operation
symbol o € ¥ with arity n a morphism o4 : A" — A (where A is the object
carrying the A-structure), and interpreting every equation as the statement on
the commutativity of an appropriate diagram.

A homomorphism between two A-algebras A and B in the category C is a
morphism A € Hom¢(A, B) such that for every operation symbol ¢ € ¥ with
arity n, the following diagram commutes

oA

ATL

h"

- A

h

The category obtained this way will be denoted AC.

Let C,D be categories with finite products and F : C — D a functor pre-
serving finite products. Then for any algebraic variety A, F' lifts to a functor
AF : AC — AD.

Let A be an algebraic variety. We know that for every topological space I,
the category Sh(I) has finite limits (in particular finite products). Therefore
we can construct the category ASh(I), as described above.

Proposition 4.1 (cf. [Joh82]) Let F' € Sh(I) be a sheaf. Assume that F
carries an A-structure. Then for every U € Q(I), F(U) has an A-structure, and
for every V. C U, pY : F(U) — F(V) is a A-morphism. Conversely, if for every
U e QI), F(U) has an A-structure, and for every V. C U, p¥ : F(U) — F(V)
are A-morphisms, then one can give an A-structure to F'.

Proof: A sheaf F' € ASh(I) carries an A-structure if and only if for every o €
¥ with arity n, there is a morphism in Sh(I) (i.e. a natural transformation) op :
F™ — F, and the diagrams corresponding to the identities that characterize A
comimute.

Therefore, if F € ASh(I) carries an A-structure, it follows that for every
open set U € Q(I), op(U) : F*(U) — F(U) for every o € 3; and all diagrams
corresponding to the identities that characterize A commute at U.

As F"(U) = F(U)" it follows that for every U € Q(I), F(U) carries an A-
structure, and by the fact that for every o € ¥, op is a natural transformation
it follows that for every V C U, p¥ : F(U) — F(V) is a A-morphism. O

Therefore we may regard an A-algebra in Sh(I) as a sheaf on I with values
in the variety A.

Proposition 4.2 (cf. [Joh82]) Let F' € Sh(I) be a sheaf. Assume that F
carries an A-structure. Then its stalks form an indexed family of A-algebras.

4.1.1 A Construction by Davey 79

Proof: For every i € I, the functor Stalk; : Sh(I) — Sets which sends F' to
F; preserves finite limits, and hence induces a functor ASh(I) — A. O

The converse is not true in general: we need to know in addition that the
algebra operations defined on the stalks “fit together continuously”.

For example, let a be a binary operation on A. Let the corresponding oper-
ations in the fibers be a4, : A; X A; — A;. These operations can be combined to
give a map ap() : D(A)x;D(A) — D(A), where D(A) = [[;c; Ai, m: D(A) —
I the canonical projection and D(A) x; D(A) = {(y,y') € D(A) | n(y) = 7(y')}
is the fibered product. The morphism ap(4) is defined component-wise.

These remarks lead to the following definition:

Definition 4.1 A sheaf of algebras over a topological space I is a triple (F, f,I)
where:

(1) F and I are topological spaces (F is called sheaf space and I base space).
(2) The map f: F — I is a local homeomorphism!.

(3) For everyi € I, F; = f~ (i) forms an algebra, and all the stalks are of
the same type, 3.

(4) For every operation symbol o € X, with a(o) = n, the induced mapping

G : F<"> — F is continuous, where F<"> = {(ay,...,a,) € F"| f(a1) =
... = f(an)} (with the topology induced by the product topology of F™),
and 5(a1,...,an) = op,(a1,...,a,) if f(a;) =@ forallj=1,...,n.

A Construction by Davey

Let A be an algebra of similarity type X, let (6;);c; be a family of congruences
on A, and let 7 be a topology on I. The following problem was addressed and
solved in [Dav73]: In which situation does a sheaf exist with fibers 4; = A/6;
such that for every a € A the map [a] : I — [[;c; A; is a global sectionI' We
briefly present the main results from [Dav73].

Two constructions are possible:

Construction 1 ([Dav73]): Let (F4, f,I) be defined by Fa = [[;c; A/6;,
and f : F4 — I be the natural projection. Assume that a subbasis for the
topology on Fu is {[a](U) | U € 7,a € A}, where [a|(U) = {[a](?) | i € U} =
{lale, [1 € U}

Construction 2 ([Dav73]): Let G4 : 7 — ¥ Alg be defined on objects by
Ga(U) = A/6y, where 6y = A,;cyy 0; and on morphisms, for every V' C U by
the canonical morphism G4(U) = A/0y — A/0y = Ga(V), ag, — ag, .

Let G; = li—mneUGA(U) be the fibers, and for every i € I let g; : G; — A; be
the unique morphism that arises from the universality property of the colimit.
gi(pY (a)) = ap, for every U € 7 and every i € I.

A map f : F = I is a local homeomorphism if for every point # € F there exists a
neighborhood U of z in F such that f(U) is open and f : U — f(U) is a homeomorphism.

80 4 A Brief Overview of Related Results

It is easy to see that G 4 is a presheaf, but it is not necessarily a sheaf. Let
(SG 4,g,I) be the associated sheaf.

Note that in the first construction, the stalk at ¢ is isomorphic to A;, but
(Fa, f,I) might be not a sheaf space. In the second construction, (SG4,g,1)
is a sheaf space, but g; : G; — A; may not be an isomorphism.

Theorem 4.3 ([Dav73]) The following conditions are equivalent:

(1) If [als, = [ble, then there is an open neighborhood U of i such that for
every § € U, lala, = [bls,.

(2) (Fa, f,I) is a sheaf of algebras.

(8) For everyi € I, g; : G; — A; is an isomorphism.

Definition 4.2 (S-topology, [Dav73]) If (6;)icr is a family of congruences
on an algebra A, then any topology on I that satisfies (1) is called an S-topology.

Corollary 4.4 ([Dav73]) Assume that the topology on I is an S-topology with
respect to the family of congruences (0;)ic;. Then (Fa, f,I) and (SGa,g,1I) are
tsomorphic sheaves of algebras for which

(1) The stalk at i is isomorphic to A; = A/6;,

(2) The map a : A — I'(I,F4) defined by a(a) = ([alg,)icr s a homomor-
phism,

(3) In AST(I,Fa) <Tlic; A/6; B A)8;:

(i) p; o @ is an epimorphism, and
(ii) A is a subdirect product of the family (A/60;)icr if and only
if Nicr0i = Aa (i.e. if and only if a is a monomorphism).

The coarsest S-topology can be constructed as follows:

Lemma 4.5 (cf. [Dav73, KC79]) Let A — [[;c;Ai 2 A; be a subdirect
product. The coarsest S-topology on I is the topology generated by the sets
E(a,b) ={i € I | pi(a) = pi(b)} as a subbasis.

We briefly present a number of results, to round up the previous consider-
ations.

Lemma 4.6 ([KC79]) Suppose that A — [[;c; A; 2% A; is a subdirect product
and let 71,7 be two topologies on I. If 1 C 19 and 71 contains the equalizer
topology induced by A, then I'(Fy, (I, 7)) CT'(F4,(I,712)).

Note that, even if the topology on I is an S-topology, it is not always the case
that A is isomorphic to the algebra of global sections I'(F4,). The following
results due to Davey (cf. [Dav73]) show in which case A is isomorphic to an
algebra of global sections of a sheaf with fibers A; = A/6;, for i € I.

4.1.2 Sheaf Representation Theorems in U.A. 81

Definition 4.3 (Global Family, cf. [Dav73]) A family (c;)ic1 of elements
of A is said to be global with respect to (0;)icr if for every i € I there exist
ai,...,al bt ... b € A such that:

y'n

(1) (aé,bé) € 60; for every j=1,...,n,

(1) If (aé,bé) € Oy for every j =1,...,n then (cg,c;) € .

Theorem 4.7 ([Dav73]) Let (6;)icr be a family of congruences on an algebra
A and assume that A is subdirect product of (A/0;)icr. Endow I with its coarsest
S-topology. Then o : A — T'(I, Fy4) is an isomorphism if and only if for every
family of elements (c;)icr global with respect to (0;)icy, there is a ¢ € A with
(c,ci) € 6; for every i€ 1.

4.1.2 Sheaf Representation Theorems in Universal Algebra

Let A be an algebra and {f; : A — A, | i € I} a subdirect representation of
A (i.e. such that f; is onto for every ¢ € I and the canonical homomorphism
f A — [lcr Ai is injective).

The following construction (for further details see [Wer75]) leads to a rep-
resentation of A by an algebra of sections over a sheaf of algebras.

(a) Define a topology 7 on I such that all sets of the form {7 € I |
fi(a) = fi(b)} for a,b € A are open in I.

(b) Let S =]l;,c;4i and f : S — I the canonical map. Endow S
with a topology such that all sets {f;(a) | i € I} with a € A,
are open in S.

(c) For every a € Alet [a] : I — S be defined by [a](z) = fi(a).

Then:

(1) S = (S, f,I) is a sheaf of algebras over I (the standard sheaf of A),

(2) For every a € A the map [a] : I — S is a section,

(3) The mapping [] : A — I'S is an injective homomorphism (the standard sheaf
representation of A).

A Topological Representation

In this section we present results due to Werner [Wer75], see also [Dav73] or
[BS81].

Let A be the member of a discriminator variety. Let Con(A) be the con-
gruence lattice of A, with greatest element V = A x A and smallest element
A ={(a,a) | a € A}.

We define a topological space called the spectrum of A, which has the set
Spec(A) = {6 € Con(A) | # maximal } = {6 € Con(A4) | forall p,§ Cp=0=
por p =V} as underlying set and is endowed with the equalizer topology, i.e.
the topology generated by the sets E(a,b) = {6 € Spec(A) | (a,b) € 6} and
their complements D(a,b) = {6 € Spec(4) | (a,b) & 0}.

82 4 A Brief Overview of Related Results

Lemma 4.8 ([Wer75]) The sets E(a,b) and D(a,b) form a basis of clopen
sets for the equalizer topology on Spec(A) (they form a Boolean algebra).

Lemma 4.9 ([Wer75]) Let X C Spec(A) be a set of mazimal congruences.
Then the following conditions are equivalent:

(1) The family {mg: A — A/0| 6 € X} of canonical projections is a (faithful)
subdirect representation of A,

(2) {016 X}=A,

(8) X U{V} is a dense subset of Spec(A).

Theorem 4.10 ([Wer75]) For every algebra A in a discriminator variety, the
topological space Spec(A) is a Boolean space and its dual Spec(A)*, the Boolean
algebra of all clopen subsets of Spec(A), is the set {E(a,b) | a,b € A}U{D(a,b) |
a,be A}

Definition 4.4 (Standard Sheaf Associated with an Algebra) Let V be
a discriminator variety, A € V. The standard sheaf construction yields a sheaf

S(4) = (HGGSpec(A) A/8, f, Spec(A)) over Spec(A).

Theorem 4.11 ([Wer75]) Let V be a discriminator variety, A € V and let
S(A) be the standard sheaf associated to A. The standard sheaf representation
[]: A—T'S(A) which associates with every a € A the section [a] : Spec(A) —
Hocspec(a) A/0, defined for every 6 € Spec(A) by [al(8) = [a]p is an isomor-
phism.

A similar sheaf representation theorem by considering for every A € V the
proper spectrum Specy(A) = Spec(A)\{V}. Specy(A) is not a Boolean space in
general (it is a Boolean space iff V is an isolated point of Spec(A) i.e. when V is
a compact congruence). For details concerning the standard sheaf construction
in this case cf. [Wer75] (it is shown that in this case A has a representation as
the algebra of all sections with compact support).

4.1.3 Applications: Unification in Discriminator Varieties

Let V be a variety of algebras (of signature X) and let p(x1, ..., 2,), ¢(z1,. .., 2y,)
be two terms in Tx({z1,...,zn}).

Definition 4.5 (V-unifier)

(1) A V-unifier of p and q is a substitution o : {z1,...,2,} = Tx(U) defined
for every i,1 < i < n, by o(x;) = ti(u1,...,un), such that V satisfies
p(t1, .. tn) = q(t1,...,tn). A V-unifier of p and q will be denoted in
what follows by x; + ti(u1,...,um),1 <i < n.

4.1.3 Applications: Unification in Discriminator Varieties 83

(2) A giwen V-unifier o : {x1,...,xn} = Tx(U), z; < ti(ur,... up),1 <

i < n, is more general than another V-unifier o' : {z1,...,z,} = Tx(U'),
x; ti(ul,...,uy),1 <i<n,if there is a substitution 6 : {uq,...,um} —
Ts(U"), uj « t§(uh,...,up),1 < j < m, such that o' = 6 oo, i.e such

that V satisfies

ti(ug, s) = (8] (u, o up), ot (u, - up).

The notion ‘more general than’ determines a preorder on the V-unifiers of
p and q. If every pair of V-unifiable terms has a most general V-unifier, which
is more general than all V-unifiers of the pair, then we say that the variety has
unitary unification. We know that discriminator varieties have unitary unifica-
tion (cf. [Bur92]).

In the following, X = {z; | i € N}, X = {&; | i € N}, and X = {i; |
i € N}, will be disjoint sets of variables contained in a countably infinite set
U={u; | i€ N}. If pisa term in variables from X, p (resp. p) will denote
the term in variables from X (resp. X) obtained by replacing each z; in p by
Z; (resp. ;).

We can alternatively regard a unifier of p(z1,...,z,) and g(z1,...,2,) as a
morphism

o Fy({.’L‘l,... ,.’L‘n}) — Fv(U)

such that o([p]) = o([q]) ([p],[g] denote the equivalence classes of the terms p
resp. ¢ in Fy({z1,...,2,}))-

We can reformulate the relation “is more general than” on the set of unifiers
of p(x1,...,2,) and q(z1,...,2,) as follows: Let 01,09 : Fy({z1,...,2,}) —
Fy(U) be unifiers of p(z1, ..., z,) and g(x1, . .., x,). We say that oy is more gen-
eral than o9 (denoted by o1 < o9) iff there is a substitution 7 : Fy,(U) — Fy(U)
such that o9 = 70 07.

Note that the existence of a most general unifier does not depend on the
names of the variables (the problem of the names can be solved by composing
with an appropriate substitution that “renames” the variables).

For the sake of simplicity, in what follows we will denote the equivalence
class of the term p (resp. p, p) in Fy(X) (resp. Fy(X), Fy(X)) again by p
(resp. p, p) instead of [p] (resp. [p], [p]). From the context it will be clear when

we consider the terms and when their equivalence classes.

Theorem 4.12 ([Bur92]) Let V be a discriminator variety with switching
term s(x,y,u,v) on the simple algebras in V. Let p(z1,...,2zy),q(z1,...,Ty,) be
two terms that are unifiable in V and let rq,...,r, be terms in variables from
X such that V satisfies p(r1,...,mm) = q(r1,...,7n). Then the substitution
x; — 8(p,q4,z;,7),t = 1,...,n, is a V-unifier of p and q that is more general
that any other V-unifier of p and q.

84 4 A Brief Overview of Related Results

The theorem above (proved in [Bur92]) can be viewed as an extension of
Lowenheim’s reproductive solutions of Boolean equations. Although in [Bur92]
it is pointed out that every system of equations in a discriminator variety re-
duces to one equation, we think that it is also of interest to obtain a generaliza-
tion of Theorem 4.12 to systems of equations, exactly as in the case of Boolean
equations (for Lowenheim’s theorem that gives the form of reproductive solu-
tions of systems of Boolean equations see e.g. [Rud74] p.978, Th.2.12).

Theorem 4.13 Let V be a discriminator variety with switching term s(z,y, u,v)
on the simple algebras of V. Let pi(x1,...,2n),p2(21,. .., 2n),q1(21,...,2p)

and qo(x1,...,x,) be terms such that there are terms r1,...,r, in variables

from X such that r = (r1,...,7m,) is a solution in V of the system of equations
pl(x) = QI(I) (4‘2)
p2(z) = qa2(x)

i.e. V = pi(r) = qi(r) fori=1,2.

Let 01 : Fy({z1,...,2n}) — Fy(U), defined by o1(z;) = s(p1,qr, i, i),
be a most general unifier for pi(x1,...,2,) and q1(z1,...,2,); and let o :
Fy({&1,...,2,}) = Fy(U), defined by o2(z;) = s(p2, G2, Ti, 7;), be a most gen-
eral unifier for py and §s. Then the substitution

O =0920071: Fy(.’L‘l,...,CCn) — Fv(U)
1s a most general solution of the system of equations, i.e. has the property that
(1) 0(pz) = U(qi); fO’F 1= 1)2a and

(2) For every p: Fy(x1,...,xn) — Fy(U) such that p(p;) = n(q;) fori=1,2,
there exists a substitution 7 : Fy(U) — Fy(U) such that 700 = p.

Proof: We first show that o is a solution of the system (4.2). It is easy
to see that o(p1) = o2(o1(p1)) = 02(01(q1)) = 0(q1). In order to show that
o(p2) = o(g2), note first that for every maximal congruence p on Fy(U), the
quotient Fy,(U)/p is a simple algebra, hence, by the hypothesis, s(z,y, u,v) is
a switching term on Fy,(U)/p. Therefore, for every maximal congruence p on

Fy(U) we have:

[o1(zi)], = s(a1l [Zilps [Tl p)

. p lf pl(xla---ajjn)]p:[q1(§j1a---a£n)]p

o otherwise
Hence,)) ‘))))
o1 (a(zr, . 2]y = { A (AW RO
and R R " R R B R R
r(aaen ozl = { e e G Sl

Therefore, taking into account that os is an unifier of py and §o, and r is a
solution of pa = g2, it follows that for every maximal congruence p we have:

[o(p2(@1,- - 2))]p = [o2(01(p2(21, -+ 20)))]p =

4.1.3 Applications: Unification in Discriminator Varieties 85

_ [02(p2(A1a"'7§7n))]p if [pl(jlv"'ain)]p:[Q1(£1a"'7§jn)]l) —
[o2(p2(F1,.. ., 7n))], otherwise

_) {o2la2(@r, -y 20))lp i [pa(21,. .0 @0)lp = [@1(Z1,. 0, 20)]
[o2(g2(F1, ..., 75))], otherwise

= [U(QQ(CDl, amn))}p

From the fact that in a discriminator variety the intersection of all maxi-
mal congruences is A (cf. Section 3.1.4) it follows that o(pa(z1,...,2,)) =

o(g2(z1,...,2n)).

We now show that o is the most general such substitution:
Let p : Fy({z1,...,2n}) — Fy(U) be a substitution such that p(p1) = p(q1)
and p(p2) = p(g2). We want to show that there exist a substitution 7 : Fy(U) —
Fy(U) such that p = 7o 0.

Let n : Fy(X) — Fy(X) be the renaming substitution given by n(&;) = z;.
Then for every i = 1,...,n we have

p(n(o(z;))) n(oz(01(xi)))) =

n(o2(s(p1, 41, 2i,74)))) =

n(s(p1, g1, T, 74)[Tj < 8(P2, G2, T5,75),5 = 1,...,n])) =
(P1, 41, T4, 73) [< s(p2,q2,25,75), 5 =1,...,])

1 qlaxlari)[x] — S(:u(pQ)hu’(QQ)nu(]),/L(T])),j =
1, Q1,ﬂ7z,7°z)[37] «— ,u(:v]) Jj= 1,...,77,] =

(p1), m(qr), p(i), u(rs)) = p(w;)-

[l I
®“ T ®E T T
v

S

(
(
(
(
(P
(P
(n

S

As (pon)oo and u coincide on the generators z; of Fy({z1,...,z,}), it follows
that (pon)oo = p. O

The application of Theorem 4.13 can be iterated, so our generalization en-
ables us to solve systems with any number of equations.

The following theorem is a consequence of the fact that in a discriminator
variety, for every primitive positive sentence ¢, we have Fy(n) = ¢ iff S,, = ¢
(where S, is the class of (< n)-generated simple algebras in V). This follows
from the sheaf representation theorem for discriminator varieties, and from the
fact that the stalks of a n-generated Boolean product are (< n)-generated.

Theorem 4.14 ([Bur92]) Let V be a discriminator variety, and let Sy, be the
class of (< n)-generated simple algebras in V. Assume that the language of V
contains constants. Then x; < r;,1 < i < n, (where r; are ground terms) is a

V-unifier of p and q iff So E p(r1,...,rn) =q(r1,...,mn).

If the language of V does not contain constants, then a similar result holds,
with Sy replaced by S;. Additionally, in this case it is not required that the
terms r; are ground terms.

Remark: In practical situations the application of this method may generate
very long terms.

86 4 A Brief Overview of Related Results

4.1.4 Priestley Duality for Distributive Lattices

In this section we briefly present the duality theorem for distributive lattices
due to Priestley [Pri70, Pri72].

Definition 4.6 (Priestley Space) A Priestley Space is an ordered topological
space (X, <,7) with the property that

1) (X, 1) is compact,

2) For every x,y € X, if v # y then there is a clopen order ideal U C X
such that x € U and y ¢ U (i.e. X is totally order disconnected).

Let Dg; be the category of distributive lattices, having as objects the dis-
tributive lattices with 0, 1, and as morphisms the lattice morphisms, and let P
be the category of Priestley spaces, having as objects compact totally order dis-
connected spaces and as morphisms continuous order preserving maps between
these spaces.

The Priestley duality theorem for distributive lattices with 0 and 1 can be
stated as follows (for details see also [DP90]).

Theorem 4.15 (Priestley) The functors

Dy —2———p P—2% Dy

defined on objects by:
D(A) = Homp,, (4,{0,1}) BE(X) = Homp(X,{0,1})

and on morphisms by:

fiAr— A h: X — Xo
D(f) : D(As) = D(A;) E(R) : B(Xs) = B(X;)
D(f)(¢) =¢of E(h)(¢) =¥ o h.

define a dual equivalence between the category Dy1 of distributive lattices and
the category P of Priestley spaces.

More precisely we have:

(1) For every lattice L € Dy, the space Homp,, (4, {0,1}) (with the order
defined pointwise and the topology generated by the sets X, = {f | f(a) = 1}
and X\ X, = {f | f(a) = 0} as a subbasis) is a Priestley space,

(2) For every Priestley space X = (X, <,7), Homp(X,{0,1}) is a distribu-
tive lattice,

(3) For every lattice L € Dgy, the map ng : A — E(D(A)) defined by
na(a) = {f : A — {0,1} | f is a 0,1-lattice morphism with f(a) = 1}, is an
isomorphism of 0,1-1attices,

(4) For every Priestley space X € P, the map ex : X — D(E(X)), defined
by ex(z) = {h: X — {0,1} | h is continuous, order-preserving, and h(z) = 1}
is an isomorphism of Priestley spaces,

4.1.5 Sheaf Representation and Priestley Representation . .. 87

(5) For every morphism of lattices f : Ay — A, D(f) is continuous and
order-preserving,

(6) For every h : X; — X, continuous and order-preserving, E(h) is a
morphism of lattices,

(7) The maps D : Dgl(Al,Ag) — P(D(AQ),D(Al)) and E : P(Xl,X2) —
Dy (E(X3), E(X7)) are bijections and the following diagrams commute:

m 2 €1)
v E(D(f / / D(E(h /
BED(A) —2D gp4y)) DEX) —Z . pE(xy)

Note that for every distributive lattice L, Homp,, (L,{0,1}) is in bijective
correspondence with the family of all prime filters of L; similarly, for every
Priestley space X, Homp(X, {0, 1}) is in bijective correspondence with the set
of clopen order-ideals of X. Intuitively it is sometimes better to refer to the
elements of D(L) as prime filters; technically, proofs are often shorter if consid-
ering the elements of D(L) as 0, 1-morphisms of lattices from L to {0,1}.

We also note that if L is a Boolean algebra then every prime filter is maximal,
hence the order on D(L) is discrete. In this case the Priestley representation
theorem reduces to the Stone representation theorem (cf. Theorem 3.4). If L
is a finite distributive lattice then the topology on D(L) turns out to be the
discrete topology. In this case the Priestley representation theorem reduces to
the representation theorem for finite distributive lattices due to Birkhoff (cf.
Theorem 3.2).

In Section 5.3.1 we will discuss the possibility of extending the Priestley
duality theorem for distributive lattices with additional operators.

4.1.5 Sheaf Representation and Priestley Representation seen
as Fiberings

We now point out the basic ideas of the two representation theorems described
above, namely the sheaf representation theorem and the Priestley represen-
tation theorem. Both these representation theorems can be seen as “decom-
positions” of the algebra as an indexed family of simpler algebras, such that
the index space has a “good” structure. We present the main ideas in what
follows. Details will be given in Section 5.1.3, where the ideas above will be
particularized for the case of SHn-algebras.

Sheaf Representation Theorem

The sheaf representation theorem for discriminator varieties states that every
algebra A in a discriminator variety V is isomorphic to the algebra of continuous
functions f : I — [,c; Ai, where I a “base space” (the set of all maximal
congruences of A, including V) and for every p € I, A, = A/p.

88 4 A Brief Overview of Related Results

Hence, one can put in evidence a fibered structure defined by A, namely
the “base space” I (a topological space, with no relation) and “fibers” (simple
algebras in the variety V).

Figure 4.1: The Standard Sheaf Associated to the algebra A

Priestley Representation Theorem

The Priestley representation theorem for the variety of distributive lattices with
0 and 1 states that every distributive lattice A is isomorphic to the lattice of
continuous and order-preserving functions f : I — {0,1}, where I a “base
space” (the set of all prime filters of A).

Hence, one can put in evidence a fibered structure defined by A, namely
the “base space” I (an ordered topological space) and “fibers” (all equal to the
2-element lattice).

Figure 4.2: The Priestley space associated to the distributive lattice A

Note the similarity between this idea and the idea on which the notion of
“Logical Fiberings” (due to Jochen Pfalzgraf) is based (cf. [Pfa91]): in both
cases we can put in evidence a “base space” I and “fibers” (namely, simple
algebras in V or, respectively, the lattices {0,1}).

4.2 Resolution in Many-Valued Logics 89

A comparison between the two representation theorems

Let A = (A,{04}sex be a X-algebra in a discriminator variety V of algebras
with a distributive lattice underlying structure (i.e. such that {V,A,0,1} C 3,
and (A,V4,AN4,04,14) is a distributive lattice).

Sheaf Representation Theorem Priestley Duality Theorem

Index set: maximal congruences maximal congruences
w.r.t. the signature ¥ w.r.t. the signature
(including also V) {0,1,Vv, A}
Subbasis
for topology E(a,b), X, = E(z,1),
D(a,b) X\X, = E(z,0) = D(z,1)
Order: discrete defined pointwise
Fibers: all simple algebras in V {0,1} (all simple distributive
and the one-point algebra lattices with 0,1)

Additional operators on A may define additional relations on the Priestley
dual of A, D(A). In Section 5.1.5 we will present this for the particular case of
S Hn-algebras, and in Section 5.3.1 we will make some more general remarks.

Note that if A is a Boolean algebra then the sheaf representation and the
Priestley representation for A coincide.

4.2 Resolution in Many-Valued Logics

We begin by pointing out the main idea the of the method for automated
theorem proving in many-valued logics based on resolution due to Baaz and
Fermiiller [Baa92, BF92, BF95], as presented in [BF95].

Analyzing the method of resolution it turns out that it is a “two-level” ap-
proach: the first level consists in translation of arbitrary formulae to clause
form, whereas the actual proving by resolution is a “logic-free” process. In the
representation of clauses for classical logic no “logical symbols” appear, with
the exception of negation. But even the réle of negation is not that of a logi-
cal operator: literals containing the negation signs can be thought of as being
endowed with the truth value “false”, whereas literals that do not contain the
negation sign can be considered endowed with the truth value “true”. This
suggested an extension of the procedure to arbitrary finitely-valued logics (de-
scribed by the tables of the operators and of the quantifiers): literals are in this
case atomic formulas endowed with truth values; and it turns out that a similar
resolution procedure can be defined.

Also in this case (and in even more general cases, as for example in the
case of logic systems described by their Gentzen-type calculus cf. e.g. [Min90])
automated theorem proving procedures by resolution can be given. They are

90 4 A Brief Overview of Related Results

essentially two-level approaches. The first level consists in the translation of
arbitrary formulae of any chosen logic into clause form syntax. The clause
syntax itself has to be considered as “logic-free”. The translations to clause
form can be described as derivations in a calculus consisting of logic-specific
transformation rules.

The second level consists of the application of a logic-independent resolution
principle (e.g. for many-valued clauses) that is a straightforward generalization
of the classical 2-valued resolution principle.

This also allows to transfer many refinements of resolution that are essential
for efficient theorem proving to the many-valued case.

We start with a slightly different notion of literal, taken, as the rest of this
short introduction, from [BF95].

Definition 4.7 (Literal) Let W denote the set of truth values (in the classical
case, true or false). A literal is an atomic formula equipped with a truth value,
denoted by L™.

Clauses, substitutions, and (most general) unifiers are defined just as in the
classical case.

Definition 4.8 (Resolvent) A clause C5 is the resolvent of C7 and Cy if
C1 = D1 U{P"}, Cy = Dy U{Q"}, for two different truth values u # v € W,
and C3 = o(Dy U D3), where o is the m.g.u. of P and Q.

The proof that the empty clause O is derivable from C if and only if C is
unsatisfiable in its Herbrand universe (i.e., there is no interpretation satisfying
C) can be found in [BF92].

We remark here that the completeness of the calculus is preserved when
applying the following reduction rules on the set of already derived clauses:

e CU{D} = Cif o(C) C D for a clause C € C (the subsumption rule);
e CU{D}=Cif {LY | w € W} C D (the tautology rule).

In [H&h90, H&h91, H&h93] Hahnle introduced semantic tableaux systems
that can be used to implement a generic theorem prover which performs ef-
ficiently in a variety of finitely valued logics. The key idea was to enhance
the formula language in such a way that it is possible to keep track of the
valuations still to be considered at a certain step of the proof. The technical
device was the use of truth value sets as signs or prefixes in front of the formulae.
In [Hah94], Héhnle presents a general satisfiability-preserving transformation of
formulae from arbitrary finitely-valued logics into a clause form based on signed
atomic formulae (these clause form translations are structure-preserving), to-
gether with a suitable definition of a clause language and a signed resolution
rule. The main idea is that the literals in the clauses are labeled with sets of
truth values; in formulating a resolution principle for this case it turns out to
be necessary to formulate a merging rule for the truth values (in addition to

4.2 Resolution in Many-Valued Logics 91

the standard binary resolution rule). Hiahnle shows (using semantic trees) that
the procedure thus defined is complete.

Then [Hah94] considers so-called regular logics (logics in which all sentences
can be expressed in a signed clause form, where all clauses are regular, i.e. have
all signs of the form ={j,..., T} or = {—,...,7}) and gives a
complete resolution rule for these logics.

Regular logics have the property that the truth tables of their connectives
can be characterized geometrically (for details see [Hah91]).

In [H&4h96b] a many-valued version of Anderson and Bledsoe’s excess literal
technique is proposed, which works particularly well with regular clauses. It is
shown that this method can easily be used to prove completeness of a version
of semantic clash resolution for regular clauses, namely:

Many-valued negative hyperresolution

(Ealn}von {[Elp}0ou{ [Eit)pr i)} UE

Dyu...uD,UE

provided n > 1,4y < j; for all 1 <1 <mn, and D,...,D,, E are negative.

The proof of the completeness of the procedure closely follows the proof
given in the original paper in [AB70], and can be found in [H&h96b].

We would also like to mention [Hdh96a] where a concise axiomatization of a
broad class of generalized quantifiers in many-valued logics — so-called distribu-
tion quantifiers — is presented. It is shown that for certain lattice-based quan-
tifiers relatively small axiomatizations can be obtained in a schematic way, by
providing an explicit link between skolemized signed formulae and filters/ideals
in Boolean set lattices. Hahnle shows that for many “naturally” defined quan-
tifiers the inverse images of sets of truth values for these quantifiers have rep-
resentations as disjunctive normal form combinations of filters and ideals.

In Section 5 we will present a method for automated theorem proving in
some classes of many-valued logics based on distributive algebras with operators
that behave “well” with respect to join and/or meet. For the first-order logics
we only take the existential and universal quantifiers into account.

Our method is an extension of the method for many-valued signed hyperres-
olution for regular logics given in [Hdh96b], in the sense that in the definition of
regular logics [Hah96b] one of the assumptions is the existence of a total order-
ing on the set of truth values. We use the canonical lattice order in the lattice
of truth values (which in general is not a total order). The difference between
our approach and the above mentioned approaches consists in the fact that we
use signed clauses of the form pt or pf, where the signs are “possible
worlds” (which, in the cases considered are of the form 1 z where z € A is a
join-irreducible truth value).

92 4 A Brief Overview of Related Results

It turns out that under our assumptions and with our definition of literal
and clause these types of labels are sufficient for formulating an automated
theorem proving procedure based on negative hyperresolution.

Our method also has the advantage of clarifying possible links between the
use of “sets as signs” and interpretations in Kripke models (in fact the idea of
the algorithm occurred to us when studying Kripke models for S Hn-logics).

4.3 Models for Cooperating Agents and Concurrency

We continue by presenting some existing approaches to modeling cooperating
agents scenarios and concurrency. We begin with a succinct presentation of
some classical approaches to concurrency, and then continue with approaches
based on notions as fiberings, fiber bundles, presheaves and sheaves.

4.3.1 Classical Approaches to Concurrency

We will present first some selected classical approaches to concurrency, namely
transition systems, Petri nets, and trace languages. In the end we will briefly
present a new approach due to Pratt [Pra94].

Transition Systems

Transition systems are a commonly used model of computation. They provide
the basic operational semantics for Milner’s Calculus of Communicating Sys-
tems [Mil80, Mil89]. In this theory, processes are defined by algebraic equations
and evolve into other processes by performing some actions. The theory is de-
scribed in detail in the above references. We give here only the basic definitions
and show in which way the constructions of complex transition systems from
simpler ones can be seen as universal in a category of transition systems. For
details we refer to [Mil80, Mil89, WN93].

Transition systems are models in which the notion of a state of the system is
taken as primitive. The behavior of the system is described by a set of actions;
the notions of causality and consequence are captured in a transition relation.

Definition 4.9 (Transition Systems) A transition system is a tuple T =
(S,i, L, Tran), where

(1) S is a set of states,

(2) i € S is the initial state,

(3) L is a set of labels,

(4) Tran C S x L x S (the transition relation).

Notation Let T = (S,4, L, Tran) be a transition system. We write s —= s’ to
indicate that (s, a,s’) € Tran.

In what follows, given a transition system T}, if not specified otherwise we
will denote by S;, i;, L;, Tran; its set of states, initial state, set of labels and
transitions respectlvely.

4.3.1 Asynchronous Transition Systems 93

A transition system models a process whose transitions represent the pro-
cess’s atomic actions while the labels are action names.

For technical reasons it is convenient to introduce idle transitions, associated
to any state.

Definition 4.10 (Idle Transitions) Let T = (S,i, L, Tran) be a transition
system. Let x be a distinguished symbol that does mnot belong to L. An idle
transition of T' consists of (s,*,s), where s € S. We define Tran, := Tran U
{(s,*,8)|s € S} and Ty, = (S,i, LU {+}, Tran,).

Remark The distinguished symbol * corresponds to the empty action. The
idle transitions model the fact that after an empty action the state remains
unchanged.

Idle transitions help to give a simpler definition for the morphisms between
transition systems. Basically, morphisms between transition systems can be
understood as expressing the partial simulation (or refinement) of one process
by another one.

Definition 4.11 (Morphisms) Let T} and Ty be two transition systems. A
morphism from Ty to Ty, f : Ty — Tb, is a pair f = (o,), where o : S —
So, A i L1 —> Lo, o(i1) = iz and (s,a,s’) € Trany implies (o(s), A(a),o(s")) €
Trany.

Proposition 4.16 (The Category of Transition Systems) Transition sys-
tems and their morphisms form a category TS in which the composition of two
morphisms fi = (o1, 1) : To — Ty and fo = (02, A2) : Ty — T is defined by
faof1 = (02001, 20XA1) : Ty — T, and the identity morphism for a tran-
sition system T = (S, i, L, Tran) has the form (1g,11), where 1g is the identity
function on states S and 1 s the identity function on the labeling set L of T'.

Constructions of more complex transition systems starting from simpler
ones can be seem as universal constructions in a category of transition systems
(in this case, the universal properties will characterize the constructions up to
isomorphism).

It is easy to show that all finite products exist in the category of transition
systems. In fact the category T'S has all products).

The notion of product models the behavior of a family of agents that are
acting independently, in parallel. In order to model situations in which a process
can behave like one of several alternative processes, we can use co-products
(sums) or fibered sums in the category of transition systems.

Asynchronous Transition Systems

The idea on which asynchronous transition systems are based is simple enough:
the transition systems are extended by specifying which transitions are mutually
independent.

94 4 A Brief Overview of Related Results

Definition 4.12 An asynchronous transition system consists of (S,i, E, I, Tran)
where (S,i, E, Tran) is a transition system, I C E X E, the independence rela-
tion s a irreflexive, symmetric relation on the set E of events such that:

(1) If e € E then 3s,s' € S with (s,e,s') € Tran,
(2) If (s,e,s') € Tran and (s,e,s") € Tran then s' = 5",

(3) If e1 I es and (s,e1,81),(s,e2,82) € Tran then for some u,
(s1,e2,u),(s2,e1,u) € Tran,

(4) If exr I ez and ((s,e1,51),(51,e2,u) € Tran then for some so,
(s,e2,52), (s2,€1,u) € Tran.

Definition 4.13 (Morphisms) Let Ty, T be two asynchronous transition sys-
tems, Ty = (S1,41, E1,I1, Trany) and Ty = (Ss,i9, Ea, I, Trans). A morphism
from Ty to Ty is a morphism of transition systems (o,n) : (S1,i1, E1, Trany) —
(So,19, E9, Trans) such that if e I €' and n(e),n(e') are both defined then n(e) Iz n(e').

The category A of asynchronous transition systems has as objects the asyn-
chronous transition systems and as morphisms, morphisms of asynchronous
transition systems.

The category A of asynchronous transition systems has categorical construc-
tions as products and coproducts that essentially generalize those of transition
systems.

Petri Nets

Petri nets are one of the oldest models for concurrent processes [Pet62a, Pet62b].
They are a powerful tool for modeling asynchronous parallel processes and are
frequently used in modeling cooperating agents scenarios. We present here one
of the numerous variants in which Petri nets appear in the literature. We only
give the definitions and the basic properties, and show that constructions of
Petri nets can be seen as universal in a category of Petri nets. For further
details we refer to e.g. [Rei85, MOMO1].

Petri nets are models in which the behavior of a system is described by a set
of events; the notions of causality and consequence are described by precondition
and postcondition maps.

Definition 4.14 (Petri Net) A Petrinet is a tuple N = (B, M, E, pre, post),
where

(1) B is a set of conditions,
(2) M is a nonempty subset of B (the initial marking),
(3) E is a set of events,

(4) pre: E — P(B) is the precondition map such that for all e € E, pre(e)
1s nonempty,

4.3.1 Petri Nets 95

(5) post : E — P(B) is the postcondition map such that for all e € E,
post(e) is nonempty.

The initial marking consists of a subset of conditions that are imagined to
hold initially. A marking, i.e. a subset of conditions, formalizes a notion of
global state, by specifying the conditions that hold. Markings can change when
events occur.

As in the case of transition systems, it is, for technical reasons, often useful
to extend events by an idling event. As in the case of transition systems, an
idling event has no pre- and post-conditions and does not change the current
state.

Definition 4.15 (Idling Event) Let N = (B, M, E, pre, post) be a Petri net.
Let x be a distinguished symbol that does not belong to E2, which will be called the
idling event. Define E, = EU{x}. We extend the pre- and post-condition maps
to * by taking pre(x) = post(x) = 0. We define N, = (B, M, E,, pre, post).

Definition 4.16 (Transition) Let N = (B, M, E, pre,post) be a Petri net.
For My, Ms C B and e € E,, define
My % My if and only if pre(e) C My,
post(e) C My and
M \ pre(e) = Ms \ post(e).

Definition 4.17 (Independence of Events) Let N = (B, M, E, pre, post)
be a Petri net. Two events e1,es € E, are independent if

[pre(e1) U post(e1)] N [pre(ez) U post(ez)] = 0.

In what follows, given a Petri net IV;, we will denote by B;, M;, E;, pre;
and post; its set of conditions, initial marking, pre- and post-condition maps
respectively.

Definition 4.18 (Morphisms of Petri Nets) Let N; and No be two Petri
nets. A morphism from Ny to No, g = (8,n) : N1 — Na, consists of a relation
B C By X By and a partial function n : E1 — Es, such that the inverse relation
B~ is a partial function from Bo to By, and

ﬁMl = M27

B(pre(e)) = pre(n(e)), and
B(post(e)) = post(n(e)).

Proposition 4.17 (The Category of Petri Nets) Petri nets and their mor-
phisms form a category PN in which the composition of two morphisms (51,m1) :
No — Ni, and (B2,m2) : N1 — N is defined by (B1,m1) o (B2,m2) = (B2 ©
Bi,m2 0 m) @ Ng — Na and the identity morphism for a Petri net N =
(B, M, E,pre,post) is (1g,1g), where 1g is the identity relation on conditions
and 1g is the identity function on events.

As for transition systems, one can define (in categorical terms) several con-
structions on Petri nets, such as product (which corresponds to a “synchroniza-
tion operation” on independent nets) and coproduct.

96 4 A Brief Overview of Related Results

Event Structures

Event structures were developed as an attempt to link Petri net theory and
domain theory. In a Petri net a state is given by a marking, but the same
marking can be reached after several different sets of transitions. Thus, the
information theoretic content of a marking is rather obscure. Event structures
remedy this by making the state of a system be exactly the set of actions that
have occurred so far.

In a Petri net multiple occurrences of the same action can occur, so if a state
just recorded which actions had occurred and some actions occurred several
times, this information will be forgotten. Therefore, the concept of event or
occurrence of an action was introduced. An event is an action that occurs at
most once in an execution.

Definition 4.19 ([WN93]) An event structure is a structure (E,<,{) con-
sisting of a set E of events which are partially ordered by <, the causal de-
pendency relation, and a binary symmetric irreflezive relation § C E X E, the
conflict relation, which satisfy:

{e' | ' < e} is finite ,
If efie’ and ' < €" then efle”,

for all e,e',e" € E.

Two events e, e’ € E are concurrent (e co €') iff =(e < e’ Ve <eVefe).
As explained before, we can define a notion of state of an event structure
(B, <, 1)

Definition 4.20 ([WN93]) Let (E,<,f) be an event structure. Define its
configuration D(E,<,{) to consist of those subsets x C E which are:
(1)[Conflict free] Ve, e' € x, —(effe’),
(2)[Downwards-closed] Ve, e' € E, ife < e' and €' € x then e € x.

Definition 4.21 (Morphisms of Event Structures) Let ES; = (E1, <1,f1)
and ESy = (E3,<3,H2) be event structures. A morphism from ES; to ESs is a
partial function n: E1 — FEo that satisfies

If x € D(ES1) then (1) nx € D(ES2)
(2) Ve,e' € x, if n(e),n(e') are both defined
and n(e) = n(e') then e = €.

A morphism 5 : ES; — ESs of event structures expresses how behavior
in ES; determines behavior in ESs. It can be shown (see e.g. [WN93]) that
morphisms of event structures preserve the concurrency relation.

The category ES of event structures has as objects event structures and
as morphisms morphisms of event structures. This category has products and
coproducts, useful in modeling parallel composition and nondeterministic sums.

4.3.1 Trace Languages 97

Trace Languages

In this section we introduce the basic notions of trace theory and we state some
elementary results that will be useful in the next sections. We will mainly follow
[Die90].

Traces or languages have been a popular way of representing behavior of
processes. The behavior of a process is characterized entirely by the set of
its observations or traces. This approach has been very succesful in study-
ing sequential behavior, where the behavior of an automaton is identified with
the set of strings it accepts. It has been extended to concurrent processes by
regarding the parallel execution of two processes as the “shuffle” of their lan-
guages. Traces can be combined with one another using the various operations
on strings, giving a nice algebraic theory of processes.

On a certain level of abstraction we may say that the setting of a concurrent
system is given by a set of atomic actions X, together with a specification of
which actions can be performed independently or concurrently. Such a specifi-
cation is given by an independence relation I C X x X. For technical reasons
we will assume that I is irreflexive and symmetric (i.e. no action can act con-
currently to itself and independence is mutual).

Actions which are not independent are called dependent. A concurrent
process in this abstraction is a labelled graph where the labels of nodes are
actions and edges represent an ordering (in time) between dependent actions.
No edges are drawn between independent actions.

After giving this general intuitive presentation of traces, we start with the
basic definitions.

Definition 4.22 (Dependence Alphabet) A dependence alphabet is a pair
(X,D), where X is an alphabet and D C X x X is a reflexive and symmetric
relation, the dependence relation. The complement I of D is irreflexive and
symmetric; it is called the independence relation.

Let =, be the equivalence relation on X* generated by all the pairs of the
form (uabv,ubav), with u,v € X* (a,b) € I. Tt is easy to see that =, is a
congruence on X*.

The quotient monoid X*/ =, is denoted by M (X, D). This monoid has the
property that for every a,b € X, if (a,b) € I then [a]—, - [b]-, = [b]-, - [a]=,.

These types of monoids were first studied by P. Cartier and D. Foata [CF69].
They were introduced in computer science in connection with the analysis of
safe net systems by A. Mazurkiewicz [Maz77].

Definition 4.23 The monoid M (X, D) is the free partially commutative monoid
generated by the dependence alphabet (X, D).

The previous definition is motivated by the following universality property
satisfied by M (X, D).

Theorem 4.18 (Freeness, cf. [Die90]) For any monoid M and any map-
ping f: X — M such that for every (a,b) € I, f(a)f(b) = f(b)f(a) there exists
a unique morphism of monoids f : M(X, D) — M which extends f.

98 4 A Brief Overview of Related Results

Definition 4.24 The category FPCM of free partially commutative monoids is
the full subcategory of the category Mon of monoids, which has the free partially
commutative monoids as its objects.

Traces are equivalence classes of words; in order to avoid ambiguity it is
useful to have normal forms. The next theorem, due to Foata (cf. [Die90],
[CF69]) defines a normal form for traces.

Let F be the set of finite non-empty subsets of pairwise independent letters,
F ={F C X | F finite, non-empty and Va,b € F, if a # b then (a,b) € I}.

Each element F' of F is called an elementary step. Every elementary step
F yields a trace [F] € M(X,D), where [F] = [[,cr a (since all letters in F
are pairwise independent, the product is well defined: the order in which the
product is computed is not important).

Theorem 4.19 (Foata Normal Form, [CF69]) Lett € M(X, D) be a trace.
There exists a unique sequence of elementary steps Fy,...,F., r >0, F; € F
for alli=1,...,7r such that t = [Fy]...[F,] and for all b € F;,2 < i < r there
is some a € F;_1 with (a,b) € D.

Note that every dependence alphabet can be seen as an undirected graph,
having the set X as set of vertices and an edge between any pair of different
dependent vertices (so the set of edges is E = D\{(z,z) | x € X}). Conversely,
given any undirected graph G = (X, FE), G corresponds to the dependence
alphabet (X, D) where D = EU{(z,z) | z € X}. The monoid M (X, D) will be
then the freely partially commutative monoid associated to the graph G, and
will be denoted M(G).

Definition 4.25 (Graph Morphism) A graph morphism h : (X1,E;) —
(X3, E3) is an application h : X1 — X5 such that:

(1) For every x € Xa, h™'(x) is finite,
(2) For cvery (2,y) € By, (h(x),h(y)) € By,

Definition 4.26 (The Category of Graphs) The category Grph of undirected
graphs has as objects undirected graphs and as morphisms graph morphisms.

Proposition 4.20 (cf. [Die90]) Let M be the mapping that associates
(1) with every graph G = (X, E) the free partially commutative monoid M (G),

(2) with every morphism of graphs h : G — Ga, the unique monoid mor-
phisms M (h) : M(G2) — M(G1), with the property that for every y € X,
M(h)(y) = HwEh*I(y) Z.

Then M defines a contravariant functor from Grph to FPCM.

Theorem 4.21 ([Fis86]) Let h : G1 — G2 be a morphism of undirected graphs
and M(h) : M(G3) — M(G1) be the associated homomorphism of free partially
commutative monoids. Then it holds:

4.3.1 Trace Languages 99

(1) The homomorphism M (h) is surjective if and only if h is injective,

(2) The homomorphism M(h) is injective if and only is h is surjective on
vertices and edges.

Corollary 4.22 (General Embedding Theorem, cf. [Die90]) Let G be an
undirected graph and let {G; | j € J} be a finite family of subgraphs. For
j € Jletmy: M(G) - M(G;) denote the canonical projection and let m :
M(G) — Iljes M(Gj) be the homomorphism into the direct product given by
m(t) = (m(t))jes. Then the mapping 7 is injective if and only if G = U;c; G-

Note that if {M; | j € J} is any family of non-trivial free partially com-
mutative monoids then [[;c; Mj is free partially commutative if and only if J
is finite. The direct product [];c; M(Gj) is, in general, not a free partially
commutative monoid .

If the family {G; | j € J} is not finite, then — under the assumption that for
every vertex x of G there are at most finitely many j € J such that x is a vertex
of G; — it follows that there is an injective morphism M(G) — @;c; M(Gj),
where @, ; M(G;) = {(mj)jes | mj € M(Gj) forall j € Jym; = ¢ a.e.?} is
the so-called weak product of the family {M(G;)};jcs (see e.g. [Die90]).

Definition 4.27 ([Die90]) Let (X1,D1),...,(Xg, Dg) be dependence alpha-
bets and let M; = M(X;, D;) be the corresponding free partially commutative
monoids, it = 1,...,k. Then the synchronization of My, ..., M} is defined by

k k
Myl|.. .|| My :M(U Xi, | D).

Let L; C M;,i =1,...,k. Then the synchronization of Lq,..., Ly is defined by
Ly|| ... || Ly = {t € Ma]||...||My | pi(t) € L; fori=1,...,k},
where p; : My|| ... ||My — M; denotes the canonical projection, i =1,... k.

Theorem 4.23 ([Die90], [MP86], [CM85]) Let {G; | j € J} be a finite
family of dependence graphs and G = U;c; G;. For every j € J let M; =
M(Gj), M = M(G), and let pj : M — Mj, p;; + M; — M(G; N Gj) be the
canonical projections.

The following assertions are equivalent:

(1) The canonical embedding © : M — {(m;) ;e | pﬁj(mi) = pgj foralli,j e
J} is an isomorphism.

(2) Every chordless cycle in the graph G is a cycle in a subgraph G; for some
jeJ.

2a.e. means almost everywhere

100 4 A Brief Overview of Related Results

Higher Dimensional Automata

Higher dimensional automata are a generalization of automata proposed by
Pratt [Pra91] to model non-interleaving concurrency. Standard finite automata
are drawn as points representing states and directed arcs representing transi-
tions, hence all the elements are 0 and 1-dimensional objects. Pratt generalizes
this to allow elements of any finite dimension, where an n-dimensional object
stands for a transition representing the concurrent occurrence of n actions.

Computation can be viewed as a path through such an automaton. Con-
current execution of a and b, al|b, is represented as a square whose surface is
“filled in”, and mutual exclusion ab Ll ba as a square whose interior is “empty”
(so one has to follow the edges, doing one of a, b at one time).

Communication can be modeled abstractly as “eroding” some of the interior
surface. When two processes synchronize, they must both be at some fixed
stage in their execution simultaneously, i.e. their execution trajectory must
pass through a point. Monotonicity of computation is modeled by the fact that
certain parts of the square are illegal. Asynchronous communication is modeled
as eroding the area where the message was received before transmission. More
communication erodes more area, in the extreme case leading to a single path
of execution.

Concurrent Execution Mutual Exclusion Synchronization

It is possible to generalize the concept of a computation from a path to a
set of paths (as a first approximation for a path one can take take a homotopy
class, i.e. a set of paths where each path can be deformed into another without
jumping over holes). For a geometric approach that uses tools from algebraic
geometry and homotopy theory we refer to [Gou95].

Higher dimensional automata are rather difficult to specify because the spec-
ifications are quite long. However they are able to control information in a
better way than other models, allowing forgetting of useless information.

Partially Ordered Multisets

Partially ordered multisets are the simplest non-interleaving model of processes:
instead of ordering events linearly as in a trace, they are ordered partially.
Partially ordered multisets are posets with a labeling function which labels
every event with an action. Thus partially ordered multisets generalize strings,
which are labeled traces.

4.3.1 Geometric Automata 101

Partially ordered multisets as a model for concurrency have been studied
in [Pra82, Pra86, Gis88]. A process is modeled as a set of partially ordered
multisets, and a run executes one of the partially ordered multisets of this set.

Formulae from first order or temporal logic can be used to specify partially
ordered multisets, and the algebraic and logical specifications may be mixed.

Partially ordered multisets have been generalized to metric process models
[Cre91] and measured sets [Cas91].

Geometric Automata

We give here a very brief presentation of geometric automata, taken from
[Gup94]. Geometric automata were introduced by Gunawardena in 1991 as
a generalization of event structures. They are based on a syntactic approach
to causality. A geometric automaton consists of a set of events each of which
is associated with a condition, a boolean formula on the events. Executing an
event means changing its value from 0 to 1, and events are executed one at a
time when their conditions are satisfied.

This approach is very declarative in its essence: for every event we have to
state under which conditions it can happen.

Geometric automata are an interleaving model of concurrency, since one
event is executed at a time.

Chu Spaces

A new model of concurrency are the Chu spaces [Pra94, Gup94]. The idea
behind the definition of Chu spaces is very simple, namely that the central
notions for all (computer) systems are the notion of state (a snapshot of a
system at any time) and the fact that systems can move from one state to
another doing certain actions. So a system is a pair of sets: the set X of
states it can be in and the set A of events (occurrences of transitions) that
can happen during its execution. The state of a system carries the history of a
system, namely the set of events that have occurred so far.

Definition 4.28 A Chu space is a binary relation between two sets A and X.
We write it as a triple (A, X, R) where R : A x X — {0,1} gives the binary
relation as a characteristic function of a subset of A x X.

We can think of A as the set of events and X as the set of states of the
process represented by the Chu space. Then R(a,z) tells us whether event a
has occurred in state z.

Chu spaces first arose as an instance of a general construction, called Chu’s
construction that originated from the study of so-called “(*)-autonomous cate-
gories” by Barr and Chu in 1979.

Definition 4.29 (Chu Maps) Let (A, X, R) and (B,Y,S) be two Chu spaces.
A Chu map between them consists of a pair of functions f : A — B and
g:Y — X such that for any a € A and any y € Y, S(f(a),y) = R(a,g(y)).
This condition is called the adjointness condition for Chu maps, and f,g will
be called the left and right adjoint respectively.

102 4 A Brief Overview of Related Results

Chu spaces and Chu maps form a category denoted Chu. Some of the
mathematical structure of this category is further explored in [Pra93], where
Pratt shows how to embed various categories fully and faithfully in Chu.

4.3.2 Links Between These Models

In [WN93] the links between event structures, trace languages, Petri nets and
asynchronous transition systems are studied. In [Gup94] the links between Chu
spaces and other models for concurrency are considered. In what follows we only
state the main ideas. For details we refer to [WN93] and [Gup94] respectively.

® corefl.
ES——TL
docorefl.
Pcorefl.
adjunction

To every trace language one can associate an event structure in a canonical
way . This representation theorem extends to a coreflection between the cate-
gories of event structures and trace languages. (A coreflection is an adjunction
in which the unit is a natural isomorphism.) The coreflection expresses the
sense in which the model of event structures is “embedded” in the model of
trace languages.

The existence of this coreflection also makes it possible to construct explic-
itly the product on event structures, which is not easy to define directly. For
more details see [WN93].

An asynchronous transition system determines a trace language in a canon-
ical way. This mapping extends to a coreflection between the category A of
asynchronous transition systems and the category TL of trace languages.

This coreflection does not extend to an adjunction from TL to A. For more
details see [WN93].

A coreflection between event structures and asynchronous transition sys-
tems follows by composing the coreflections between event structures and trace
languages and that between trace languages and asynchronous transition sys-
tems.

There is an adjunction between the categories A of asynchronous transition
systems and the category PN of Petri nets. For details see for example [WN93].

In [Gup94] Chu spaces and other models of concurrency are compared. It
is shown that Chu spaces can mimic the behavior of event structures, i.e. that
to every event structure (E, <,) we can associate a Chu space. Further results
on the link between event structures and Chu spaces can be found in [P1093].

Since Chu spaces embed event structures, they can represent any behavior
that safe Petri nets can model.

4.3.4 Logical Fiberings 103

Geometric automata cannot be encoded by Chu spaces. The reason is that
in a geometric automata, the enabling formula only needs to be true at the
instant an event is taking place, and it can become false later.

4.3.3 Approaches Based on Multi-Modal Logic

The main idea of these approaches is to associate with each action Ac executed
by an agent Ag a modal connective [Ag, Ac|] with the formula

[Ag, Acla
being read as:

“If the agent Ag executes the action Ac and the action ends, then
« is true in the resulting state.”

In this way one obtains a multi-modal language, with a set of modal oper-
ators indexed by the set of actions and the set of agents. The logic can be also
extended with the (deontic) predicates Per, for permission, Obl for obligation
and Res, to restrict the execution of actions. For an extensive study of this
logic we refer to [Cos90]. A semantics based on the Kripke’s possible world
semantics was provided in [Cos90].

Intuitively, a Kripke model (W, (R|ag,4c)) Age Agents, Ace Actions, V) consists of
a set W of possible worlds (one can think of them as being states), a fam-
ily (Rjag,Ac)) Age Agents, Ace Actions Of Telations on W, and a valuation V' defined
on the cartesian product between the set of propositional formulas (consid-
ered pre-defined) and the set of possible worlds, such that for every formula ¢,
V(¢,x) € {T, F} is the truth value of formula ¢ at state z. For details we refer
to [Cos90].

We would also like to mention dynamic logic (also known as the logic of
programs) The language of regular first-order dynamic logic was introduced by
Pratt in 1976. The name “dynamic logic” was given to the language by Harel
in 1977. For an introduction to dynamic logic we refer to [Har84].

4.3.4 Fibered Models
Logical Fiberings

The approach to modeling robotics scenarios presented in this section originates
from [Pfa91], and was worked out on a small example in [PS92]. For a brief
discussion, see also [Pfa93]. We will introduce some notations in order to be
able to describe the main idea of the logical fiberings approach. The definitions
given here are taken with minor differences from [PS95]. All notations used are
in correspondence with [Pfa91, PS92].

Let (A;)ics be an indexed system of sets (with a given indexing set I).
An abstract fibering is a triple £ = (A, m, I), where A is the disjoint union of
the A;, denoted by [[;.; 4;, and m : A — I is the canonical projection from A

104 4 A Brief Overview of Related Results

to I defined as w(a) =i for all a € A;. The index set I is called the base space,
A the total space, m the display map, and for every i, we call 4; = 7 1(i) the
fiber over i.

The sets A and I can be endowed for example with a topology, with relations,
or with an algebraic structure. The map 7 should respect the corresponding
structure of the spaces, for example it has to be a continuous map if we work
in the category of topological spaces. The above definition is the most general
notion of a fiber bundle (or abstract fibering).

Let £ = (A,w,I) be an abstract fibering. A global section s : I — A =
[1;c; Ai is a map such that m o s = id;. (This entails s(i) € = '(i) for all i in
I). Let £ = (A, w,I) be an abstract fibering and let U C I be a subset of I. A
map sy : U — A is called a local section (with respect to U) if m o sy = idy.

A morphism between two fiberings (A, m,I) and (B, 7m9,I) is a map f :
A — B such that the following diagram is commutative:

/I\
A L

i.e. for every a € A: if a € A; then f(a) € B;.

Definition 4.30 (Logical Fiberings) A logical fiberingis a tuple{ = (E,x, I, L),
where E (the total space) and I (the indexing set, also called the base space)
are arbitrary sets, and L (denoting the typical fiber modeling every fiber 7 1(3),

for all i € I), is taken to be a classical first order logical space.

The simplest form of a fibering is the so-called trivial fibering, ¢ = (E,m, I, F),
where £ = I x F, 7w is the first projection, and the fiber over ¢ € I is
7 1(i) = {i} x F.

For logical fiberings, this corresponds to a parallel system of logics L; over
an index set I (serving as base space) for which the typical fiber F is a classical
first order logic L. Within each fiber L; = m—!(i), the reasoning processes can
run independently and in parallel. Also communication between the fibers can
be modeled.

A characteristic feature of a classical fiber bundle is the so-called local triv-
iality property. A locally trivial fiber bundle is composed of parts that locally
have a simple structure, in the sense that they are of the type of a product
bundle U; x F' — U;. Here, the U;, subsets of the base space I, form a covering
of I. The “constraints” arising from forming the entire bundle are modeled by
so-called transition functions. They formally describe how the local parts are
patched together in all those cases where the covering sets have a non-empty
intersection. Each particular fiber 7 1(7) obtains its structure from the “typical
fiber” F. We now give the formal definition of the concept of local triviality.

Definition 4.31 (Locally Trivial Fiberings) A fibering £ = (E,x, I, F) is
called locally trivial with respect to a covering {U;};cs of the base space I, if
the following diagram is commutative

4.3.4 Logical Fiberings 105

= 1(U;) 2, Uj x F

Uj
®; is an isomorphism in the corresponding category, where

®; = (m,¢5), ¢ Wﬁl(Uj) — F (a morphism).

For i € Uj , ¢;; : © (i) 5 F is the fiber isomorphism induced by ®; (this
gives ! its fiber structure).

A product bundle (trivial logical fibering) is given by E = I x L and 7 :
E — I, the projection to the first component. Thus, the fiber over i is 7 1(i) =
{i} x L =: L;, for ¢ € I. We will also call this a free parallel system, sometimes
denoted by £'.

The 2-valued subsystems L;, ¢ € I are equipped with local truth values
Q; = {T;, F;}. The set of (global) truth values Q! for the whole fibering is the
disjoint union [];c; €.

In such logical systems there are many ways to form logical operations by
combining classical logical connectives locally in each L; and then putting them
together in the form of “logical vectors” like (¢;);cr. Furthermore, we can model
“system changes” in the sense that we shift logical information (formulas) from
one subsystem L; to another L;. This corresponds to model communication
between fibers (seen as logical state spaces of corresponding agents). For a
more formal treatment of such univariate operations and the formation of logical
expressions in a logical fibering we refer to [Pfa9l].

A basic operation for parallel systems £! is the mapping of a local pair
(xi,yi) in L; x L; (i € I) into different subsystems L;, Ly, etc.

In [Pfa91], a classification of all such bivariate operations, called transjunc-
tions, is given. A transjunction can be represented by its truth value matriz,
a mapping from a bivariate truth table within a fixed local system L; into a
bivariate truth table where the T and F values (occurring in the truth table
within L;) are distributed over four value sets Qq, Qg, ,, and Q;, correspond-
ing to the subsystems L,, Lg, L,, and Ls respectively. The classification of
[Pfa91] is based on the type of the truth table under consideration — to which
classical connective it corresponds when omitting the indices.

Logical Fiberings and Applications to Modeling Control in Systems
of Cooperating Agents

The idea of logical fiberings has been applied to model control for small concrete
examples [PSS95, PSS96a]. It turned out that the logical fiberings approach
is particularly suitable for modeling communication and interaction between

106 4 A Brief Overview of Related Results

cooperating agents, due to the possibility to switch between a local and a global
point of view which is typical for this framework.

We now illustrate the ideas presented above on a simple example, adapted
from [Pfa93] (see also [DPSS91]). More complex examples (including also error-
handling), as well as the relation between planning and modeling with logical
fiberings can be found in [PSS95] and [PSS96a).

Let Ry, R1, Rs be three robots performing the following task:

Ry receives a work piece a and a work piece b. He checks whether a and b are well-
positioned on the table. If a and b are well-positioned then R, performs an assembly task,
and the work piece r obtained from assembling a and b is placed on the table. The pieces
of type a are furnished by R;: if there are pieces of type a in stock, and if no r is placed on
the table, Ry brings a piece of type a and puts it on the assembly bench of Ry. The pieces
of type b are furnished by R,: if there are pieces of type b in stock, and if no r is on the
table, R brings a piece of type b to the assembly bench of Ry. After Ry has assembled a
and b and the result r has been placed on the table, r is transported to the stock by R;
together with Rs.

The states of the system consisting of the cooperating agents Ry, R1, R2 can be
described by specifying whether pieces of type a (resp. b) are left in stock, and
whether a piece of type a (b, r) is placed on the table.

We will use the following truth values to correspond to the actions (TV
stands for “Truth Value” and LS for “Logical Subsystem”):

| TV | LS | Action
To | Lo | Ry remains inactive
Fy | Ly | Ry performs the assembly task

T L, | Ry remains inactive
F11 | Ly | Ry brings pieces of type a
Fis | Ly | R; transports the result

T Ly | Ry remains inactive
Fy1 | Ls | Ry brings pieces of type b
F5 | Ly | Ry transports the result

Note that L; and Lo are 3-valued logical systems, and Lg is 2-valued.

As in [PSS95] we now define the m-transjunction © by its truth table, be-
low. In order to render the situation pictorially, we put the values of the first
four logical propositions horizontally and the last three vertically. Impossible
combinations of the truth values of the variables have been deleted. We see that
there are several cases in which the resulting truth value is not uniquely deter-
mined; this corresponds to a choice of actions for the agents in the scenario. In
what follows, F\, stands for Fi1 V Fa1, Tx for Ty ATo and F, for Fig A Fas.

4.3.4 Logical Fiberings 107

Treefe | ieda Erpefer B G LCICATE Apmk e 0 LT, T LT T TR RRT T MRRa T T,

1n-|u [XIEFEY TN '|. .
dvadd el act

FTY R r~. -\...-..5.-\.
LTS SRR A { |-.- — e

- -I....-..
. S
: TE"-&T-‘S ¥ 20
e u---.k
Tt Rl
u
-'-f\-_
-
“
e =r o+ =misrsueal=
Frairrt: CINEHER - fed P IREHEHDT ¢ Toamlems c ¢ o f s s s s e e e e e

Figure 4.3: Animation of a Scenario with ICARS

(C) ontableqg 0 1 0 1
ontabley, 0 0 1 1

instockgq instocky, ontable,

m(m>0) n(n>0) 0 Fy F21 Fiu1 Fy
m(m>0) 0 0 Fi; T» Fun Fo
0 n(n>0) 0 Fay Fo1 Ty Fo
0 0 0 Tn T2 T Fo
m(m>0) n(n>0) 1 Fp Fp LN LN

Moreover, every individual action R;; can be seen as a morphism on the
corresponding local section, thereby regulating the new values of the control
propositions.

Note that in this example if we take the overall, “global” view, the model
obtained is similar to the classical model (used for example in planning). Tran-
sjunctions are applied on the initial global section, until the goal situation
(corresponding section) is reached.

Taking a “local view” however changes things, as robots may be forced to
carry out conflicting actions necessitating communication. This communication
is modeled by taking global sections in such cases. In the example discussed,
conflicts can only arise between R, and R3, suggesting to group the two together
as an autonomous unit. What we obtain then is just an optimized version of
the “global” approach. For more complicated examples, this concept of local-
izing the processing of data and parallelizing the decision on which actions to
perform next may greatly improve the efficiency of planning and control.

A demonstrator was implemented in the frame of the MEDLAR projects
[PSSS95]. It is based on the theoretical results concerning logical fiberings,

108 4 A Brief Overview of Related Results

and uses for animation the ICARS system (developed by W. Jacak and P.
Rogalinski).

This system uses wireframe representations for the robots (3-D color graph-
ics) and carries out path planning and collision detection modules before per-
forming any movement the robots have been ordered to make. The animation
is driven by the combination of the corresponding interacting logic and plan-
ning modules, based on the logical fiberings approach; the logical controller is
verified by a Prolog program. A copy of the screen is given in Figure 4.3.

Sheaf Theoretical Models

From the approaches to concurrency based on presheaf and sheaf theory we
will briefly present the approaches of Monteiro and Pereira [MP86], Goguen
[Gog92], and Winskel and Cattani [Win96, CW96].

The starting point of the approach of Monteiro and Pereira [MP86] is the
observation that the structure of a set of concurrent systems (unlike the struc-
ture of a single system) is determined by the way the systems are connected
and by the way the connections carry interactions among systems. This form
of interaction can be described by imposing that individual systems have “indi-
vidual locations” and that interacting systems occupy “overlapping locations”.
Furthermore, such overlaps are considered “sites of interaction”. This leads to
the notion that locations are closed under finite “intersections”.

Any activity is seen as taking place at some specific location. Since one can
distinguish a “global” location (where the activity of all system components
occurs), a “null” location (where no activity occurs) and a location for every
set of component systems, this suggests that the set of locations should be
closed under finite intersections and arbitrary unions — so the set of locations
can be modeled as a topological space or, more abstractly, as a complete Heyting
algebra.

Behaviors can be described as elements of the free monoid ¥* over some
event vocabulary X. In this way however the information concerning the con-
tribution of the component parts to the behavior is lost. Monteiro and Pereira
had the idea of extending the notion of behavior monoids to a structure of
localized events, namely the notion of a sheaf of monoids over a complete Heyt-
ing algebra of event locations. In [MP86] they study this type of sheaves of
monoids associated to concurrent systems. They show that it has the same
kind of universal and functorial properties as the free monoids. This definition
of sheaves of behavior monoids provides the setting for the definition of sheaves
of processes interacting at the intersection of their locations. The sheaves of
processes over a complete Heyting algebra have a complete lattice structure
that allows the solution of process equations by fixpoint methods.

In [Gog92] Goguen uses concepts from sheaf theory to explain phenomena in
concurrent systems, as object, inheritance, deadlock, and non-interference. The
approach is very general: it applies not only to concurrent object oriented sys-
tems, but also to systems of differential equations, electrical circuits, hardware

4.3.4 Sheaf Theoretical Models 109

description languages and much more.

The objects are modeled by sheaves F' : B — Sets over a “base for ob-
servation” that contains certain space-time domains. F' associates with every
domain of observation U (of space-time) a set F(U) of attributes of the given
object observed at U. The possible domains U are partially ordered by inclu-
sion, and typically are closed under finite intersections and arbitrary unions,
i.e. they form a topological space.

The sheaf condition says that any set of pairwise consistent local observa-
tions can be “glued together” into a unique observation over the union of their
domains. This sheaf condition appears to be satisfied by all behaviors in all
naturally arising systems from Computer Science; however it is not satisfied
by certain properties of systems such as for instance the fairness property (cf.
[Gog92] p.169).

The main points made in [Gog92] about the relationship between sheaves
and objects are the following:

e Objects give rise to sheaves,

e Inheritance relations correspond to sheaf morphisms,

Systems are diagrams of sheaves,

Colimits in the category of diagrams of sheaves correspond to intercon-
necting systems,

e The behavior of a system is given by the limit of its diagram.

These ideas have been applied to Petri Nets by Lilius [Lil93]. The ideas
from [Gog92] have been further developed by Malcolm in [Mal94], where a for-
malization of object classes and systems of objects is given, in order to study
basic properties of ways in which systems of objects may be interconnected. He
defines an adjunction between PO-systems (functors S : C°? — Obj, where C
is a partially ordered set) and sheaves of objects (PO-systems S : C? — Obj
where C is a complete Heyting algebra) and expresses the hope that, by using
a more general notion of sheaf as a functor on a category with a Grothendieck
topology, an adjunction between system specifications and sheaves of objects
can be obtained. In [Cir95] Cirstea shows that transition systems and sheaves
can be related by means of an adjunction between the corresponding categories.
This is used in order to give a sheaf-theoretic formalization of the distributed
semantics for FOOPS developed in [Cir95].

[Win96] and [CW96] investigate presheaf models for processes.

[Win96] is concerned with the study of presheaf models for process cal-
culi with value passing, and [CW96] with modeling process constructions on
presheaves, showing that these preserve open maps, and with transferring such
results to traditional models for processes.

Intuitively, process calculi are modeled as presheaves over a small category
P considered a “path-category”: a model like a transition system or a labelled
event structure gives rise to a presheaf F' : P°? — Sets associating with every

110 4 A Brief Overview of Related Results

path object P in P the set F/(P) of paths (in the chosen model) with “shape”
P.

Presheaf models for concurrency turn out to include interleaving models like
synchronization trees and independence models like labelled event structures,
as well as contributing to a general definition of bisimulation based on so-called
open maps.

Roughly speaking, open maps in a category M of models (that can be
TS,PN,ES etc. or a fiber in any of these categories) are morphisms with the
property that any extension of a computation path in the codomain can be
matched by an extension of its domain.

Formally, whenever for m : P — @) a morphism in P a diagram

- X
K
4

in M commutes (meaning that the path f op in Y can be extended via m to a
path ¢ in Y'), then there is a morphism p’ such that in the diagram

p

P
q
Q

q

p—2-

- X
| e
-Y

Q—

m

N

p'om =p and f op' = q (meaning that the path p can be extended via m to
a path p’ in X which matches ¢q). When the morphism p satisfies this property
we say that it is P-open.

[Win96] studies denotational semantics in presheaf models. This is shown
to correspond to operational semantics in the sense that bisimulation obtained
from the so-called “open maps” is proved to coincide with bisimulation as de-
fined traditionally from the operational semantics. A presheaf model and de-
notational semantics are proposed for a language allowing process-passing.

[CW96] models process constructions on presheaves showing that these pre-
serve open maps, and transfers such results to traditional models of processes.
They show that a wide range of left Kan extensions between categories of
presheaves preserve open maps; a particular Kan extension is shown to coincide
with a refinement operation on event structures. [CW96] explains (by general
arguments) why the operations of a presheaf model preserve open maps and
why for specific presheaf models the operations coincide with those traditional
models.

Chapter 5

Fibered Representation and
Universal Algebra

In this chapter we present some common features of known representation the-
orems for certain classes of algebras with a lattice reduct, and a method for
automated theorem proving in certain many-valued logics, based on the Priest-
ley dual of the algebra of truth values.

We begin with a detailed presentation of the ideas for the case of S Hn-logics,
since the idea occured to us when working on this topic. Since in Section 4.1.2 we
already discussed the sheaf representation theorems for discriminator varieties
and its application, we will only mention this type of representation theorems
in the case of SHn-algebras and will focus on representation theorems induced
by the Priestley representation theorem.

We first present a duality theorem induced by the Priestley duality theorem
(an extension of the results in [Itu83]). The Priestley representation theo-
rems suggested a method for automated theorem proving in SHn-logics. This
method is presented in Section 5.2. A more general case is discussed in Sec-
tion 5.3.1, where we analyze the conditions under which a theorem proving
procedure similar to that described in Section 5.2 holds. In Section 5.3.3 the
automated theorem proving procedure is extended to more general classes of
logics; we also take into account first-order logics.

After presenting the ideas in this general framework, we illustrate this gen-
eral procedure for the case of:

e P,,-logics (sound and complete with respect to the subvariety P, of the
variety of Ockham algebras),

e SH Kn-logics (sound and complete with respect to the variety of SH Kn-
algebras (Lukasiewicz-Moisil algebras of order n)).

We end this chapter with the description of an implementation of the pro-
cedure.

111

112 5 Fibered Representation and Universal Algebra

5.1 A Motivating Example: SHn-logics

The language of SHn-logics is a propositional language, whose formulae are
built from propositional variables taken from a set Var, with operations V (dis-
junction), A (conjunction), = (intuitionistic implication), ~, = (a De Morgan
resp. an intuitionistic negation), and a family {S; | i = 1,...,n — 1} of unary
operations.

The following Hilbert style axiomatization of SHn-logics is taken from
[Itu82], see also [I096].

Axioms:

(
(a=b)=((a=c)=(a= (bAc)))
a= (aVb)

b= (aVb)

Inference rules:

a, a=0»

(R1) 5

a=>b

(R2) ~b=~a

a=>b
Sl(a) = Sl(b)

(R3)

5.1.1 An Algebraic Semantics for SHn-logics

Definition 5.1 An abstract algebra A = (A,0,1,\,V,=,—,~,S1,...,S,-1) 8
said to be a symmetric Heyting algebra of order n (SHn-algebra for short) if:

(1) (A,0,1,A,V,=,-) is a Heyting algebra,

(2) ~ is a De Morgan negation on A,

5 An Algebraic Semantics for SHn-logics 113

(8) For every x,y € A and for alli,j € {1,...,n—1}, the following equations

hold:

(S]) Sl(a A b) = Sl(a) A Si(b),

(52) Si(a = b) = (Ax=; Sk(a) = Sk(b)),

(83) S;i(Sj(a)) = Sj(a), for every i, j=1,...,n—1,

(54) Sl(a Va=a,
(S5) Si(~a) =~ Sy _sa, fori=1,...,n—1,
(S6) Sz V —=S1z =1, with -z = x = 0.

From the above definition, from the fact that the class of Heyting algebras
are equationally definable as well as from the fact that the De Morgan property
can be expressed equationally, it follows that the class of symmetric Heyting
algebras of order n is a variety, which will be denoted SH,,.

We quote without proof the following properties which are true in every
S Hn-algebra (cf. [Itu83]):

(87) Si1 =1, 5,0 = 0,

(88) Si(z V y) = Sz V Sy,

(S9) If S;x = Siy for alli=1,...,n—1, then z =y,
(§10) x <y if and only if S;x < S;y,

(S]]) Slx S Sz.’L‘ S ...Snflm,

(512) T S Snfl.'L‘,

(513) S;x N =S;z =0,

(S14) Sixz vV =S;xz =1,

(S15) Si(—z) = =Sy 1,

(S16) = A Siy1y <y V Si(z).

Definition 5.2 Let n > 2 and let S,,» be the cartesian product Ly, x L, where
L, = {0, ﬁ, cee Z—:}} Consider the following operations on S,2:

(1) V, A defined pointwise,

(2) ~(z,y) = (1—y,1— x) for every (z,y) € Sy,2,

(3) Si(z,y) = (Si(z), Si(y)), where

5i(j - 1 ifi+j>n,
“n—1"" 10 ifi+j<n,

(4) (z1,22) = (y1,92) = (1 = y1,22 = y2), where = is the Heyting
relative pseudocomplementation on Ly'.

!The Heyting relative pseudocomplementation on L,, is defined by: = = y is the largest
1 ifze<y
y ifz>y
1 ifz=0

0 ifz>0"

element z of L, such that z A z < y. Hence, x = y = { . The pseudocomple-

mentation induced by = is defined by -z = z = 0. Hence, -2 = {

114 5 Fibered Representation and Universal Algebra
It is easy to see that S,2 = (L, X Ly, (0,0),(1,1),V,A,=,~,51,...,S, 1) isa
symmetric Heyting algebra of order n [Itu83].

Proposition 5.1 ([Itu83]) Every symmetric Heyting algebra of order n is iso-
morphic to a subdirect product of a family of subalgebras of S,2.

It follows that the variety SHn of symmetric Heyting algebras of order n is
generated by S,,2.

Lemma 5.2 The variety SHn is a discriminator variety.

Proof: We know that the variety of SH-algebras of order n is generated
by the algebra S,2. We show that S,» has a discriminator term. Let d(z) =
S1(z) A= ~ S1() be a term in the language of SHn-algebras with one variable

z. We know that for every a = (15, ~L3) € S,

(1,1) ifl4¢i>n and1l+j>mn,

Si(i J) = (1,0) ifl4+i>n andl+j<mn,
B~ 1n_1"")(0,1) ifl+4i<n andl+j>n,
(0,0) ifl4+i<n andl+j<nmn,

(0,0) ifl4+i>n and1l+4+j>mn,

Si(i J)= (1,0) ifl14¢i>n andl+j<n,

W —1n-1")01 ifl+i<n andl+j>n,

(1,1) ifl4+i<n andl+j<n,

(1,1) ifl+i>n and1l+j>n,

Si(i J)= (0,1) ifl14+i>n and1l+4+j <n,
“"n-1n-1") (1,00 ifl4+i<n andl+j>n,

(0,0) ifl+i<n andl+j<n.

Therefore Si(a) A = ~ Si(a) is (1,1)(= 15 ,) if a = (1,1) = 15 , and is

15n2 if a = 15n2

Os , otherwise. Hence, d(a) = . Therefore we are in the

Os , otherwise

situation described by Example (1) of Section 3.1.4. Hence, a discriminator
term for S,2 is t(z,y,2) = [z Ad(zVy =z Ay)]V]zA(d(zVy=zAy)=0)].
O

5.1.2 A Kripke Semantics for SHn-logics

In [I096] a Kripke-style semantics for SHn-logic is given. We recall here the
basic definitions and results given in [I096].

Definition 5.3 (SHn-frame, cf. [I096]) A SHn-frame is a system K =
(W,R,{s; |i=1,...,n—1},g) where:

(K0) W is a nonempty set (of states), R is a binary relation on W and all s;
and g are functions on W, such that:

(K1) R reflezive,

5.1.2 A Kripke Semantics for SHn-logics 115

(K2) R transitive,

(K3) R(z,y) implies R(g(y),9(z)),

(K4) g(si(z)) = sp—i(g9(z)), foralli=1,...,n—1,
(K5) g(9()) = =,

(K6) sj(si(z)) = sj(x), foralli,j=1,...,n—1,
(K7) R(s1(x),z),

(K8) R(z,sn-1(2)),

(K9) R(si(x),s;(x)), for all i <j,
(K10) R(z,y) implies R(si(x), si(y)) and R(si(y),si(z)),

(K11) R(si(y),y) and R(y, si(y)) imply s;(y) =y, foralli=1,...,n—1,
(K12) R(z,si(x)) or R(sjy1(x),z), for alli=1,...,n— 1, (forn > 3).

Definition 5.4 (SHn-model, cf. [I096]) An SHn-model based on a frame
K is a system M = (K,m) such that m : Var — P(W) is a meaning function
that assigns subsets of states to propositional variables and satisfies the following
condition:
(HER) R(z,y) and x € m(p) imply y € m(p).
Definition 5.5 ([I096]) We say that an SHn-model M satisfies a formula
¢ at the state x (denoted by M|;w¢) if the following conditions are satisfied:

M\;zp if and only if x € m(p), for p € Var,

M\;mqﬁ Vi if and only if M\;mqﬁ or M|;m1,b,

M\;w¢ AN if and only if M\;w¢ and M‘;x'(/),

M\;w¢ = if and only if for all y, if R(z,y) and M\szqﬁ then M|;y1/),

M\;mﬂqﬁ if and only if for all y, if R(z,y) then M j;y¢,

ME,Si(¢) i and only if M=)

M\;w ~ ¢ if and only if M /{;g(w)qﬁ

A formula ¢ is true in an SHn-model M (denoted M |; @) if and only if

for every x € W, M\;w¢ If M = (K, m), we will sometimes use the notation
K

The formula ¢ is true in a SHn-frame K (denoted by K \; @) if and only
if it 1s true in every SHn-model based on K. The formula ¢ ts SHn-valid if
and only if it is true in every SHn-frame.

A formula ¢ is a semantical consequence of a set of formulae T' (denoted by

T
I' |= ¢) if and only if for every model M, if all the formulae from I" are true in
M, then ¢ is true in M.

116 5 Fibered Representation and Universal Algebra

The following theorems are proved in [I096]:

Proposition 5.3 ([I096]) In every SHn-frame, if R(s;(z),y) then there exists
j > and there exists z € W such that R(z,z) and y = s;(2).

Proposition 5.4 ([I096]) Given a model M = (K, m), the meaning function

r
m can be extended to all formulae by m(¢) = {x € W | M=_¢}. For every
model M and for every formula ¢, this extension has the property
(HER) If R(z,y) and x € m(¢p) then y € m(¢).

Proposition 5.5 ([I096]) X Fsmy, ¢ if and only if X = ¢.

5.1.3 Decomposition

We now point out the basic ideas of the main known representation theorems
for S Hn-algebras, namely the sheaf representation and the Priestley represen-
tation. They will be discussed in detail in Section 5.1.4 and Section 5.1.5. These
representations can be seen as “decompositions” of the algebra as an indexed
family of simpler algebras, such that the index space has a good structure.

For a given SHn-algebra A, we fix a base set and give a representation
of A in terms of continuous functions with domain I. We distinguish several
possibilities:

Case 1: I is the set of all maximal congruences of SHn-algebras (in-
cluding V). In this case we obtain a sheaf representation theorem
which is the particularization of the sheaf representation theorem given
by Werner (which holds for every discriminator variety) to the variety of
S Hn-algebras.

Figure 5.1: The Standard Sheaf Associated to the SHn-algebra A

We point out that in this case the “fibers” are subalgebras of S,2, and
the “base space” is a topological space, with no relation.

Case 2: I is the set of all maximal congruences of A as a distributive
lattice. In this case I is the Priestley space of A. We know that A is
isomorphic (as a distributive 0,1-lattice) with the lattice of clopen order-
filters of I (i.e. with the lattice of all continuous order-preserving functions

5.1.3 Decomposition 117

from I to {0,1}). In Section 5.1.5 we will show how the Priestley dual-
ity theorem can be extended to a duality theorem for SHn-algebras (a
topological representation theorem appears for SHn-algebras is given in
[Itu83]): The SHn-algebra operations (=,—,~,S1,...,S,) on A define
a family of relations on I. From this family of relations, new operations
=/ = ~1ST, ..., S), can be defined on the lattice of clopen order-filters
of I.

Figure 5.2: The Priestley space associated to the SHn-algebra A

We point out that in this case all the “fibers” are isomorphic to the 2-
element lattice {0, 1} and the “base space” is a topological space endowed
with a partial order and relations corresponding to the “non-lattice”-
operations on A.

The situations described above seem to be two extreme possibilities. This
suggests that one might consider several other possibilities. We may for instance
take I to be the set of all maximal congruences of A seen as a De Morgan algebra,
or the set of all maximal congruences of A seen as a symmetric Heyting algebra.

Figure 5.3: Space associated to the SHn-algebra A

In certain situations, the operations not included in the subsignature with
respect to which the elements of I are congruences may induce additional re-
lations on I. In this paper we will only focus on the first two (classical) cases.
The “intermediate” possibilities will be subject for future work. Note the simi-
larity between this idea and the idea on which the notion of “Logical Fiberings”
(due to Jochen Pfalzgraf) is based (cf. [Pfa91] and Section 4.1.5): we can put
in evidence a “base space” I and “fibers” (namely, in cases 1 and 2, simple
S Hn-algebras or, respectively, the lattices {0,1}).

118 5 Fibered Representation and Universal Algebra

5.1.4 Sheaf Representations for SHn-algebras and Applications

In Section 5.1.1 we noted that the variety of SH-algebras of order n is a dis-
criminator variety. We can therefore apply the theoretical results described in
Section 4.1.2 to this variety.
We first want to determine for every SHn-algebra A the topological space
Spec(A) of all maximal congruences of A. The answers are taken from [Itu83].
It is easy to see that the kernel D of a homomorphism f: A — B of SHn
algebras has the following properties:

(D1) 1€ D,

(D2) If a,a = b€ D then b € D,

(D3) Ifa=be D then ~b=~a € D,
(D4) If a € D then Si(a) € D.

Definition 5.6 (Deductive System) A subset D of a SHn algebra A is a
deductive system if it satisfies the conditions (D1), (D2), (D3), (D4).

Definition 5.7 (Maximal Deductive System) A deductive system D is max-
imal if it is proper and it is not a proper subset of any other proper deductive
system.

Remark 5.6 ([Itu83]) The ordered set of all congruences of A is isomorphic
to the set of all deductive systems of A, ordered by inclusion.

It follows that there is a bijective correspondence between the set Spec(A) of
maximal congruences on A and the set of all maximal deductive systems of A.

Theorem 5.7 ([Itu83]) The following statements are true in every SHn-algebra
A:

(1) 1 is the meet of all mazimal deductive systems in A,

(2) For a deductive system D in A the following conditions are equivalent:

(i) A/D is simple,

(ii) D is mazimal.

In conclusion, every non-degenerate S Hn-algebra A is isomorphic to a sub-
direct product of a family of simple S Hn-algebras.

Proposition 5.8 ([Itu83]) The following statements are true in the variety
of SHn-algebras:

(1) If D is a mazimal deductive system in an SHn-algebra A, then A/D is
an SHn-algebra isomorphic to a subalgebra of S,2.

5.1.4 Applications: Theorem Proving and Solving Equations (Unification) 119

(2) The simple SHn-algebras are exactly the subalgebras of S,2.

(8) The subdirectly irreducible SHn-algebras are the same as the subalgebras
of Sy2.

Definition 5.8 (Standard Sheaf) Let A be an SHn-algebra. The standard
sheaf associated to A is the sheaf S(A) = (Ilgcspec(a)A/0; f, Spec(A)) over
Spec(A).

Since the variety of S Hn-algebras is a discriminator variety, by Theorem 4.11
it follows that the standard representation [| : A — I'S(A) defined for every
6 € Spec(A) by a(f) = [a]g is an isomorphism. This shows that A is isomorphic
to the algebra of global sections of a sheaf having as base space the boolean
space of all maximal congruences on A (or equivalently all maximal deductive
systems — including A), and having as fibers subalgebras of S,» (and also the
one-point algebra, corresponding to V).

Applications: Theorem Proving and Solving Equations (Unification)

1. Theorem Proving

By Theorem 5.8, the variety of SHn-algebras is generated by the algebra
S,2. Since propositional SHn-logic is sound and complete with respect to the
variety of SHn-algebras, it follows that a formula ¢ in the language of the
SHn-logic is a theorem if and only if SHn = ¢ = 1. Using the fact that the
variety of SHn-algebras is generated by the algebra S,,2 it follows that

SHn F ¢ if and only if S,,2 = ¢.

Thus, a method for checking that a given formula is a SHn-theorem is to
show that for every assignment f : Var — S,2, f(¢) = 1.

The complexity of this procedure is O(n?)™, where m is the number of
variables that occur in ¢.

Another method would be to show that the equation ¢ = 1 has as solutions
all the combinations of truth values in S,2. In what follows we will consider
the application of the sheaf representation theorem for S Hn-algebras in solving

equations (unification).
2. Solving Equations; Unification

We apply the theorems presented in Section 4.1.3 to the variety SHn of
S Hn-algebras.

Lemma 5.9 The free SHn-algebra with 0 generators is the 2-element SHn-
algebra. There is only one simple algebra with O generators, namely the 2-
element SHn-algebra.

120 5 Fibered Representation and Universal Algebra

Proof: The free SHn-algebra with 0 generators contains 0 and 1, and is
closed under all the operations. But it is known that in every SHmn-algebra
~0=1~1=0,-0=1-1=0,5(0) =0,S(l) =1,0=1=1 and
1 =0 =0. Hence, {0,1} is closed under all the operations.

We know (see e.g. [Itu83]) that the simple SHn-algebras are exactly the
subalgebras of S,2. Let S be a simple algebra with 0 generators. Then S C S,,»
is closed under all the operations and (0,0), (1,1) € S. By the definition of the
operations in S,2 it is easy to see that the set {(0,0), (1,1)} is closed under all
the operations of SHn-algebra. Hence, S = {(0,0),(1,1)}. O

In what follows we will denote the SHn-algebra with 0 generators by Ls.
Note that if p and ¢ are unifiable then they have at least one ground unifier.

Theorem 4.14 specializes to the variety of SHn-algebras as follows.

Corollary 5.10 Let SHn be the variety of SHn-algebras. Then:

(1) z; < r;,1 <i < n, (where r; are ground terms), is a unifier of p and q in
SHn if and only if Ly = p(r1,...,m) = q(r1,...,7m5).

(2) In this case, the substitution o : Ty(X) — Ts(X) defined by x;
s(p,q, i, %), (i =1,...,n) is a most general unifier for p and q in SHn.

Theorems 4.12 and 4.14 show how a most general unifier for two terms in
the language of the variety of SHn-algebras can be found:

1) Find a solution in Ly (the simple S Hn-algebra with 0 generators),

2) If no solution is found then by Theorem 4.14 we know that the
terms are not unifiable,

3) If there is a (ground) solution in Ly, use Theorem 4.12 to con-
struct a most general unifier.

5.1.5 Priestley Duality for the Variety of SHn-algebras

In [Ttu83] Iturrioz gives a topological representation theorem for SHn-algebras.
However, in [Itu83], the nature of morphisms in the category of corresponding
Priestley spaces with operators, and the functorial aspect of the duality are not
discussed. Here we present the construction in detail. This detailed presentation
alms at capturing the main features of this type of representations, and at
making clear which links exist between the algebraic models and their duals.

We start from the Priestley duality for distributive lattices. Heyting alge-
bras have additional operations as = and —. An extension of the Priestley
duality to Heyting algebras can be found in [Gol89]. We present it below, and
then extend it to a duality theorem for SHn-algebras.

5.1.5 Priestley Duality for Heyting Algebras 121

Priestley Duality for Heyting Algebras

Let HAlg be the category of Heyting algebras and HSp the category of Heyting
spaces, having as objects those Priestley spaces (X, <,7) with the additional
property

(H1) For every U C X clopen, | U is also clopen,

and as morphisms maps ¢ : (X1,<1,71) — (X2, <2,72) which are continuous,
order-preserving and additionally satisfy the following condition:

(H2) fy[9(=) <y} = {6(x) | = < o},

in other words, the order-filter generated in X5 by ¢(z) is the image by ¢ of
the order-filter generated by z in Xj.

Remarks:

(1) The condition (H1) assures that every element U in E(X) has a pseu-
docomplement, namely X\ | U. It is easy to see that the dual of every Heyting
algebra satisfies (H1).

(2) A relative pseudocomplement in E(X) is defined (see e.g. [Gol89]) for
every U,V clopen order-filters by

U=V={zeX| ife<yandyeUthenyecV}

In terms of continuous, order-preserving functions this can be reformulated as:
For hy, hy € E(X),

(h1 = h2)(x) =1 if and only if for every y > z, if hi(y) = 1 then ho(y) = 1.

(3) Condition (H?2) ensures that the image E(¢) of a morphism in HSp pre-
serves the pseudocomplement. It is easy to see that condition (H?2) is satisfied
by every image D(f) of a morphism in HAlg. It is easy to see that, assum-
ing that ¢ is order-preserving, condition (H2) is equivalent to the following
condition?:

(H2") If ¢(z) < y then there exists with (z < z and ¢(z) = y).

It can be proved (see e.g. the remark in [DP90], pp.205) that the Priestley
duality induces a dual equivalence between the category of Heyting algebras
and the category of Heyting spaces. We give the outline of the proof:

Proof: We have the following functors:

D E

HAlg = HSp HSp ~ HAlg
defined on objects by:

D(A) = Homp,, (4, Ls) E(X) = Homp(X, {0,1})
and on morphisms by:

f:A1—>A2 h:X1—>X2

2condition (H2') states that ¢ is a bounded morphism with respect to the relation < on
X, and resp. X2. Details on bounded morphisms will be given in Section 5.3.2.

122 5 Fibered Representation and Universal Algebra

D(f) : D(As) = D(A;) E(R) : BE(X,) = E(X)
D(f)(¢) =dof E(h) () = o h.

Facts:

(1) For every Heyting algebra A, D(A) is a Priestley space and for every
clopen set U C D(A), | U is also clopen (because E(D(A)) and A are isomor-
phic as 0,1-lattices, hence E(D(A)) is pseudocomplemented).

(2) For every Heyting space (X, <,7), E(X) is a Heyting algebra.

(3) For every Heyting algebra A, E(D(A)) ~ A as Heyting algebras. For
every Heyting space X, D(E(X)) ~ X as Heyting spaces.

(4) For every f : Ay — As morphism of Heyting algebras, D(f) : D(As) —
D(A,) satisfies (H2).

(5) For every h : X; — Xj, continuous, order-preserving and satisfying
(H2), E(h) is a morphism of Heyting algebras (in particular E(h)(a = b) =
E(h)(a) = B(h)(b)).

(6) D : HA'g(Al,A2) — HSp(D(AQ),D(Al)) and F : HSp(Xl,XQ) —
HAlg(E(X3), E(X1)) are bijections and the following diagrams commute:

A1 A2 X1 > X2
m n2 €1 €2
v E(D(f / D(E(h ¥
E(D(A) — P g(D(4y)) DEX) —E) - p(E(X,))

Priestley Duality for SHn-algebras

Every SHn-algebra has in particular a Heyting algebra structure. Therefore it
seems reasonable to look for a suitable subcategory of the category of Heyting
spaces which is dually equivalent to the category of SHn-algebras.

A natural idea is to associate for every SHn-algebra A a relation (or func-
tion) on the Heyting space corresponding to A to every non-Heyting operation
of A.

Let A= (A,V,A,0,1,=,-,~,51,...,S, 1) bea SHn algebra. Let D(A) =
Homp,, (4,{0,1}) and consider the following functions on D(A):

(1) g : D(A) — D(A) defined for every f : A — {0,1} by g(f) : A — {0,1}
where g(f)(a) = 1 if and only if f(~ a) =0,

(2) For every i =1,...,n— 1, amap s; : D(A) — D(A) defined for every f :
A — {0,1} by s;(f) = foS; (i-e. si(f)(a) =1 if and only if f(S;(a)) = 1).

Remark: The definitions can also be given in terms of prime filters. In this
case we have:

(1") g : D(A) — D(A) is defined for every prime filter F' € D(A) by g(F) =
{r € A |~z ¢ F} (the Bialynicki-Birula and Rasiowa involution associ-
ated to ~),

5.1.5 Priestley Duality for S Hn-algebras 123

(2') For everyi=1,...,n—1, the map s; : D(A) — D(A) is defined for every
prime filter F' € D(A) by s;(F) = S; '(F).

)

In what follows we will usually prefer the morphism notation since it makes
the proofs shorter. Intuitively however, the filter notion turns out to be more
appropriate.

Lemma 5.11 The maps g and s; are well-defined and continuous.

Proposition 5.12 Let K = (D(A),<,7,9,81,.-.,8n-1) be the dual of the
SHn-algebra A endowed with the operations defined above. The following prop-
erties are fulfilled:

(1) If f1 < fa then g(f2) < g(f1),

(2) g(si(f)) = sn—i(g(f)),

(3) 9(g(f)) = f,

(4) sj(si(f)) = s;(f),

(5) Sl(f) S .f7

(6) f <spa(f),

(7) si(f) < s;(f) for every i < j,

(8) If f1 < fo then s;(f1) < s;(f2) and s;(f2) < si;(f1) (i.e. they are equal),

(9) If si(f1) < fa2 then si(f2) < fa,

(10) For alli=1,...,n—1, f < s;(f) or six1(f) < f.

Proof: In what follows a is an arbitrary element of A and f, f1, fo are ele-
ments in D(A).

(1) We have g(f2)(a) = 1 if and only if fo(~ a) = 0. Assume that g(f2) = 1,
ie. fa(~ a) = 0. Since fi(~ a) < fa(~ a) it follows fi(~ a) = 0, hence
g9(f1)(a) = 1.

(2) We have g(s;(f))(a) = 1 if and only if s;(f)(~ a) = 0, if and only if
f(Si(~ a)) = 0; and s,-i(g9(f))(a) = 1 if and only if g(f)(Sp—i(a)) = 1 if
and only if f(~ S, i(a)) = 0. But in A, Sij(~ a) =~ (Sp_i(a)). Hence,
9(si(f))(a) =1 if and only if s,_;(g(f))(a) = 1.

(3) 9(g(f))(a) = 1 if and only if g(f)(~ a) = 0 if and only if f(~~ a) =1 if
and only if f(a) =1 (because for every a € A, ~~ a = a).

(4) si(si(f))(a) = 5i(f)(Sj(a)) = F(Si(Sj(a))) = f(Sj(a)) = s;(f)(a).

(5) If s1(f)(a) = 1 then f(S1(a)) = 1 and, since for every a € A, Si(a) < a (by
(S4)) and f is increasing, we have f(a) = 1.

(6) Follows from the fact that in A, a < S,_1(a) (by (S12)).

(7) Follows from the fact that if i < j then S;(a) < Sj(a) for every a € A (by
(S11)).

124 5 Fibered Representation and Universal Algebra

(8) Assume first that s;(f1)(a) = 1. Then f1(S;(a)) = 1, and since f;(S;(a)) <
f2(Si(a)) it follows that s;(f2)(a) = fa2(Si(a)) = 1.
Assume now that s;(f2)(a) =1, i.e. f2(Si(a)) = 1. We know that for every

a € A, =S;aV S;a =1 (by (814)) Therefore f1(=S;a V S;a) = f1(=S;a) V
fi(Sia) = 1. Therefore either fi(—=S;a) = 1 or fi(S;a) = 1. Assume that
f1(S;a) = 0. Then fi(—S;a) = 1 hence fy(—S;a) = 1, and since fy(S;(a)) =1 it
follows that f2(0) = 1 which is false. Therefore, f1(S;a) = 1.

(9) If s;(f1) < fo then using (8) we have s;(f2) < si(si(f1)) = si(f1) < fa.

(10) Assume that for some i = 1,...,n — 1 neither f < s;(f) nor s;11(f) < f.

This means that f(a) = 1 and Z(f)() = f(Si(a)) = 0 for some a € A,
and f(b) = 0 and s;41(f)(b) = f(Si+1(b)) = 1 for some b € A. Therefore
fla A Siy1(b)) = 1 and f(bV Si(a)) = 0. But this is impossible because for
every a,b € A, a A S;11(b) < bV Si(a) (by (516)). a

Lemma 5.13 Let X be an arbitrary set and let K = (X,<,9,81,---,8._1)
be such that < is a partial order on X and g,s1,...,8,_1 are functions on X
that satisfy the properties (1)-(10). Then K is a SHn-frame, i.e. satisfies the
properties (K1)-(K12) from Definition 5.3.

Proof: Since < is a partial order, (K1), (K2) and (K11) are true. (K3) —
(K10) and (K12) follow from the properties (1)-(10). 0

It follows in particular that the dual space associated to every S Hn-algebra
by this procedure are in particular special SHn-frames in the sense of the
definition given in [I096], where the reflexive and transitive relation is a partial
order?.

Lemma 5.14 Let f : Ay — Az be a morphism of SHn-algebras. Then D(f) :
D(Ay) — D(A;) is continuous, order-preserving and commutes with the oper-
ations g, 81, -..,8n_1. Moreover, D(f) satisfies condition (H2).

Proof: The fact that D(f) is continuous and order-preserving follows from
the Priestley duality. It is easy to see that D(f)(g(h)) = g(D(f)(h)) and
D(f)(S;(h)) = Si(D(f)(h)). The fact that D(f) satisfies condition (H2) fol-
lows from the extension of Priestley duality to Heyting algebras presented in
Section 5.1.5. O

Conversely, let (X,<,7,¢,51,...,8,-1) be a space such that:
(1) (X, <, 7) is a Heyting space,
(2) g,51,...,8,—1 are continuous,

®However, the choice of more general Kripke-style structures in [I096], where the relation
R is only required to be reflexive and transitive, probably offers more advantages. We have in
mind the Kripke models for intuitionistic logic. It is known that intuitionistic propositional
logic is complete for (finite) Kripke models over trees. Some models are however needlessly
complicated. By filtration (respectively by selective filtration) simpler models can be obtained,
but this procedure does not preserve all the properties of models, in particular that of being
a tree.

5.1.5 Priestley Duality for S Hn-algebras 125

(3) (X,<,7,9,81,--.,8,_1) satisfies the conditions (1)-(10) listed above.
By Lemma 5.13 it follows that such a space is a SHn-frame, with R =<.

Let E(X) ={f: X — {0,1} | f continuous and order-preserving} (equiva-
lently, E(X) can be seen as the set of clopen order-filters of X). We know that
E(X) is a pseudocomplemented lattice.

Proposition 5.15 On the lattice E(X) the following operations can be defined:

(1) V:E(X)x E(X) — E(X) is defined by hy V ha(z) = maz{hi(x), hao(x)}.
(In terms of clopen order-filters, \V is the union),

(2) N: E(X)x E(X)— E(X) is defined by hy A ha(z) = min{hi(x), hao(x)}.
(In terms of clopen order-filters, A is the intersection),

(8) =: E(X)x E(X) — E(X) is defined by hy = ha(z) =1 if and only if for
everyy > x, if h1(y) = 1 then ha(y) = 1. (In terms of clopen order-filters,
Ur=Us={f€e X | f<gandgec U implies g € Us}),

(4) ~ E(X) — E(X) is defined for every continuous order-preserving h :
X — {0,1} by ~ h: X — {0,1}, ~ h(xz) = 1 if and only if g(h(z)) = 0.
(In terms of clopen order-filters: ~ U = X\g Y (U)).

(5) For every i = 1,...,n—1, S; : E(X) — E(X) is defined for every
continuous order-preserving h : X — {0,1} by S;(h) = hos;. (In terms
of clopen order-filters: S;(U) = s; '(U)).

The algebra (E(X),0,X,N,U,=,—,~,S51,...,S,-1) is a SHn-algebra.

Proof: From the extension of the Priestley duality to Heyting algebras pre-
sennted in Section 5.1.5, it follows that (E(X),0,X,N,U,=,-) is a Heyting
algebra. We will show that the axioms of a SHn-algebra are satisfied.

De Morgan Laws:

~~ h = h Proof: For every h € E(X), ~~ h(xz) = 1if and only if ~ h(g(z)) =
0 if and only if h(g(g(z))) = 1. Since g(g(z)) = = it follows that for every
x € X, ~~ h(xz) = h(x).

~ (hl V hg) =~ hiA ~ hy Proof: For hy,hsy € E(X), ~ (hl \/hg)(.'L‘) =1 if and
only if (h1 V h2)(g(z)) = 0 if and only if maz{hi(g(z)), ha(g(z))} = 0 if
and only if hi(g(z)) = h2(g(z)) = 0 if and only if ~ hy(z) =~ ha(z) =1
if and only if min{~ hq(x),~ ha(z)} = 1.

SHn Laws:

Sz(hl AN h2) = Sz(hl) A Sz(hg) PT‘OOf: Sz(hl A hg)(l‘) = (hl AN h2)(81($)) =
= min{h1(si(z)), ha2(si(x))} = Si(h1) A Si(h2)().

126 5 Fibered Representation and Universal Algebra

Si(h1 = hg) = /\Z;i1 Sk(h1) = Sk(h2) Proof: By the definition of the relative
pseudocomplement it follows that for every k > i, S;(a = b) < [Sk(a) =
Sk(b)]. Indeed, Si(a = b) < (Sk(a) = Sk(b)) because Si(a = b)ASk(a) <
Sk(b). We therefore have S;j(a = b) < Si(a = b) < [Sk(a) = Sk(b)] for
every k.

Conversely: Let be such that (A} Sk(h1) = Sk(h2))(z) = 1. We
know that (A7_} Sk(h1) = Sk(h2))(z) = 1 if and only if for every k > i,
[Sk(h1) = Sk(h2)](z) = 1 (i.e. if and only if for every k > i and every
y > x, if hi(sg(y)) = 1 then ha(sg(y)) = 1). Assume that S;(h; =
ho)(z) = (h1 = ha)(si(x)) = 0. Then for some z > s;(z) we have
hi(z) = 1 and hy(z) = 0. The space X is in particular a SHn-frame,
hence from Lemma 5.3, if 2 > s;(z) then there exist £ > i and 2’ > =
such that z = si(2'). Hence, for some k > i and some z' > = we have
h1(sk(2')) = 1 and ha(sg(2')) = 0. Contradiction.

Si(Sj(h)) = Sj(h) Proof: Si(Sj(h))(z) = Sj(h)(si(z)) = h(s;j(si(x))) = h(s;(z))
(we used property (4) of SHn-spaces).

Si(h) Vh=h Proof: (Si(h)V h)(z) = maz{Si(h)(z),h(z)} =
maz{h(s1(z)), h(z)} = h(z) (since by property (5) of SHn-spaces s1(z) <
x and h is order-preserving).

Si(~ h) =~ S, _i(h) Proof: S;(~ h)(z) =1 if and only if ~ h(s;(z)) = 1, i.e.
if and only if h(g(s;(z))) = 0. By property (2) of SHn-spaces, g(s;)(z) =
sn_i(g(z)). Hence, S;(~ h)(z) = 1 if and only if h(s, i(g(z))) =0, i.e. if
and only if ~ S,,_;h(z) = 1.

S1(h) V =S1(h) =1 Proof: Assume that this is not true, i.e. that (Sy(h) V
=S1(h))(xz) = 0 for some z. It follows that 0 = (Sy(h) V =S1(h))(z) =
max{Si(h(x)),~S1(h)(x)}, hence Si(h(z)) = —=Si(h)(z) = 0. We know
that =S;(h)(x) = 0 if and only if there is some y > z such that S;(h)(y) =
1. But, from property (8) of SHn-spaces, if y > =z, then Si(h)(y) <
S1(h)(x). Contradiction.

O

Definition 5.9 The category SHnSp of SHn-spaces has as

Objects: spaces (X,<,7,9,81,---,8n_1) such that:
(1) (X,<,7) is a Heyting space,
(2) g,81,---,8,_1 are continuous,
(8) (X,<,7,9,81,...,8n—1) Satisfies
the conditions (1)-(10) listed above.

Morphisms: continuous order-preserving mappings that
(1) satisfy the condition (H2') and
(2) preserve the operations g,$1,...,8n—1.

Lemma 5.16 Let f : X1 — Xo be a morphism of SHn-spaces. Then E(f) :
E(X3) — E(X1) defined by E(f)(h) = ho f is a morphism of SHn-algebras.

5.1.6 Link Between Algebraic Semantics and Kripke-style Semantics 127

Proof: The fact that E(f) is a morphism of Heyting algebras follows
from the extension of the Priestley duality to Heyting algebras presented in
Section 5.1.5. It only remains to show that it commutes with the operators
{Na Sla BRI Snfl}-

We know that E(f)(~ h)(z) = 1if and only if ~ h(f(z)) = 0, i.e. if and only
if h(g(f(x))) = 0. Since h(g(f(z))) = h(f(g9(z))) = E(f)(h)(g(x)), it follows
that B(f)(~ h) =~ B(f)(h).

Foreveryi=1,...,n—1, E(f)(Sih) = (Sijoh)of = S;o(hof) = S;E(f)(h).

O

Corollary 5.17 The Priestley duality induces a dual equivalence between the
category of SHn-algebras and the category of SHn-spaces.

5.1.6 Link Between Algebraic Semantics and Kripke-style Se-
mantics

We begin by making some remarks concerning morphisms of Kripke frames.
Then we compare the algebraic models of S Hn-logic and the Kripke-style mod-
els.

In Section 5.1.5 we defined a category SHnSp, having as objects S Hn-spaces
and as morphisms continuous order-preserving mappings that satisfy condition

(H2) and preserve the operations g, s1,...,8,_1. In Section 5.1.5 we noted that
condition (H2) is equivalent with the “boundness” condition (H2'):
(H2") If ¢(z) < y then there exists with (z < z and ¢(z) = y).

This indicates a way of defining morphisms between SHn-frames. Given two
Kripke frames K1 = (W1, Ry, {s} |i=1,...,n—1},¢') and Ky = (Wa, Ry, {s? |
i =1,...,n —1},¢%), a morphism from K; to Ky, f : K — K5 is a map
f : W7 — W5 such that:

o If (z1,y1) € R1 then (f(z1), f(y1)) € Ra,
e If (f(z1),y2) € Ry then there exists a y; with (z1,y1) € Ry and f(y1) = y2.

Note the similarity between this notion of morphism and that of “p-morphism”
or “bounded morphism” from modal logic. More considerations in this direc-
tion will be made in Section 5.3.2.

We now say some words on the link between the satisfiability notion in the
algebraic models (SHn-algebras) and the relational models (Kripke frames)
of SHn-logic. The duality theorem stated in Section 5.1.5 together with the
soundness and completeness of SHn-logic with respect to the algebraic seman-
tics given in [Itu83], as well as with respect to the Kripke-style semantics given
in [I096], suggests that there might be a link between satisfiability in the two
different types of models. In what follows we establish some results in this
direction.

Let ¢ be a formula in the language of the SHn-propositional logic with
variables Var.

For a given Kripke frame K = (X,R,g,81,...,5,_1), we will denote the
family of all hereditary subsets of X (with respect to the relation R) by H(X).

128 5 Fibered Representation and Universal Algebra

Below, we present in parallel the notions of satisfiability in algebraic models
and in Kripke models.

Algebraic Models Kripke Models
A: SHn-algebra K=(X,R,9,51,---,5n_1)
S Hn-frame
for f: Var — A4; for v : Var — H(X)
A=¢ iff K=¢ iff
for every f : Var — A, A|:f¢ for every v : Var = H(X), Ki=,¢

Lemma 5.18 (cf. [I096]) Let K = (X,R,g,81,...,5n-1) be a Kripke frame,
and let H(X) be the family of all hereditary subsets of X (with respect to the
relation R). Let m : Var — H(X) be a meaning function such that for every
p € Var, m(p) is a hereditary set. Then the extension of m to formulae has also
as values hereditary sets.

We now consider topological Kripke-style models corresponding to the S Hn-
spaces:

Lemma 5.19 Let X = (X,<,7,9,81,...,5,-1) be a SHn-space and let m :
Var — P(X) be a meaning function such that for every p € Var, m(p) is a
clopen order-filter of X. Then the extension of m to formulae has also as
values clopen order-filters of X.

Proof: The extension of m to formulae is m(¢) = {z € X | X |;mw o}
Obviously, m(0) = § and m(1) = X. We show by structural induction that for
every ¢, m(¢) is a clopen order-filter.

The property is obvious for every ¢ € Var and for 0 and 1. Let ¢ be a
formula. We assume that the property is true for all subformulae of ¢ and show
that it is also true for ¢. We distinguish the following cases:

Case 1: ¢ = ¢1 A ¢a.

By the definition of the satisfiability relation we have x € m(¢1 A ¢2) if and
only if x € m(¢1) and = € M(p2). Hence, m(p1 A ¢2) = m(p1) A M(¢p2). Since
by the induction hypothesis m(¢;) and m(¢2) are both clopen order-filters it
follows that m(¢1 A ¢2) is a clopen order-filter.

Case 2: ¢ = ¢1 V ¢a.
Analogously to Case 1 we can prove that m(¢1 V¢2) = m(¢1) Vm(ds2). Since
by the induction hypothesis m(¢;) and m(¢2) are both clopen order-filters it

5.1.6 Link Between Algebraic Semantics and Kripke-style Semantics 129

follows that m(¢1 V ¢2) is a clopen order-filter.

Case 3: ¢ = ¢1 = ¢o.

By the definition of the satisfiability relation we know that = € m(¢1 = ¢2)
if and only if for all y, if y > z and y € m(¢41) then y € TM(¢2). Hence,
m(¢r = ¢2) ={x € X | forally, ify >z and y € m(¢$1) then y € Mm(p2)} =
m(¢1) = M(p2). Since by the induction hypothesis m(¢1), M (¢2) are clopen
order-filters, it follows that m(¢;) = m(p2) is a clopen order-filter (see also
[Golg9]).

Case 4: ¢ = —¢y. Follows from Case 3.

Case b: ¢ = S;¢1.

We know that z € m(S;¢1) if and only if s;(z) € m(¢1), i.e. if and only if
x € s; (M(¢1)). Hence, m(S;¢1) = s; '(7(¢1)). Since Ti(¢y) is a clopen order-
filter, and s; is continuous and order-preserving, it follows that also m(S;¢1) is
a clopen order-filter.

Case 6: ¢ =~ ¢1.

We have = € m(~ ¢1) if and only if g(x) & m(¢1), i.e. if and only if
z € X\g ! (mi(¢1)) =~ M(¢1)

By the induction hypothesis (1) is a clopen order-filter, hence g~ (72(¢1))
is a clopen order-ideal and therefore X\g ! (m(¢1)) is a clopen order-filter. O

Lemma 5.19 is a simple consequence of the fact that the algebra of clopen
order-filters of X, ClopenOF(X), is a SHn-algebra and that Fma(Var) is the
free Y-algebra freely generated by Var, where ¥ = {V, A, =, =, ~,S1,...,S,-1},
hence every m : Var — ClopenOF(X) extends in a unique way to a homomor-
phism of ¥-algebras m : Fma(Var) — ClopenOF(X).

Lemma 5.20 Let A be a SHn-algebra and D(A) its dual. Let ng : A —
ClopenOF(D(A)) be the canonical isomorphism given by the Priestley represen-
tation.

r

(1) Let f : Var — A. Then A=;¢ if and only if D(A) quﬁ, where my :
Var — P(D(A)) 1s defined by mg(p) = na(f(p)) = {h € D(A) | h(f(p)) =
1}.

(2) Let m : Var — P(D(A)) be such that for every p € Var, m(p) is a clopen
order-filter, and let f, : Var — A be defined by fm(p) = n;l(m(p)). Then

for every p € Var, D(A)l=, ¢ if and only if A\:fmqﬁ.

Proof: (1) Note first that for every f : Var — A, the associated meaning
function my = nqof extends to a morphism 7 ¢ of S Hn-algebras from Fma(Var)
to the set of clopen order-filters of D(A), ClopenOF(D(A)), defined by 7f(¢) =

T —
{h € D(A) | D(A) ‘:mf,h ¢}. From the fact that f : Fma(Var) — A is
the unique morphism that extends f and that A and ClopenOF(D(A)) are

130 5 Fibered Representation and Universal Algebra

isomorphic, it follows that ms(¢) = nao f(¢) = nao f(¢) = {h € D(A) |
h(f(#)) = 1} (or, in terms of prime filters: ms(¢) = {F | f(¢) € F}). We know

a r
that Al=,¢ if and only if f(¢) = 1 and D(A)\:quﬁ if and only if s (¢) = D(A),
and from the form of m¢(¢) the equivalence follows easily.
(2) It is easy to see that the unique morphism f,, : Fma(Var) — A which
extends f,, is 77;1 om. Therefore, f,,(¢) = 1 if and only if 77;1 om(¢) =1 if
and only if m(¢) = D(A). a

Corollary 5.21 Let A be a SHn-algebra and D(A) its dual, and let ¢ €
Fma(Var) be a formula of the SHn-logic. Then:

(1) If D(A) = ¢ then A |~ g,

(2) If A is finite and A |i @, then D(A) |; ?.

Proof: (1) Assume that D(A) |; ¢. We show that A |i 0.

Let f : Var — A be an assignment of truth values. Let ng : A —
ClopenOF(D(A)) be the canonical isomorphism between A and the set of clopen
order-filters of D(A). Let m : Var — ClopenOF(D(A)) be defined for every
p € Var by m(p) = na(f(p)). m has as values order-filters of D(A), hence is a
meaning function. From Lemma 5.19, the extension 7 of m to formulae has also

as values clopen order-filters of D(A). For every formula ¢, m(¢) = na(f(¢)).

r
Since D(A) = ¢ it follows that m(¢) = D(A). Therefore, by the definition of
na it follows that f(¢) = 1.

(2) Assume that A is finite, and A \i ¢. We show that D(A) |; .

Let m : Var — P(D(A)) be a meaning function that has as values order-
filters of D(A). Since A is finite, the topology on D(A) is discrete, hence the
set of clopen order-filters coincides in this case with the set of order-filters. The
extension m of m to formulae has also as values (clopen) order-filters of D(A).
Let n4 : A — ClopenOF(D(A)) be the canonical isomorphism between A and
the set of order-filters of D(A). Let f : Var — A be defined by f = nzlom. Since

a _ [
A = ¢, it follows that f(¢) = 1. It is easy to see that f = (,' om) = n,' o7m.
Therefore, it follows that m(¢) = D(A). O

a
Note that, if A is infinite, the fact that A = ¢ does not imply in general
T
that D(A) = ¢.

Proposition 5.22 Let ¢ be a formula in the language of the SHmn-propositional
logic with variables Var. The following are equivalent:

(1) FsHn ¢;

r
(2) For every relational model K, K |= ¢,

5.1.6 Link Between Algebraic Semantics and Kripke-style Semantics 131

(3) D(Sp2) = ¢,
(4) Sur=4,
(5) For every SHn-algebra A, A\i¢

Proof: (1) = (2) follows from [I096], Proposition 5.1; (2) = (3) is immedi-
ate because D(S,,2) is a relational model; (3) = (4) follows from Corollary 5.21;
(4) = (5) follows from the fact that the variety of SHn-algebras is generated
by S,z2; (5) = (1) follows from the completeness of SHn-logic with respect to
S Hn-algebras. O

Corollary 5.23 Let ¢ be a formula in the language of the SHn-propositional
r
logic with variables Var. Then Fguy ¢ if and only if D(S,2) = ¢

1, Un-1) '(wn-1,0)

10, 2/n-1) / \ (2/n-1, 0)

o, im1 - — Nim-1,0

1o, njin-1) 'g\g' — Mniin-1, 0)
o, n2m1) & Q“ Hn2n1,0
] i

10, 1) / \ 11,0

Figure 5.4: The Priestley Dual of 5,2

Remark 5.24 The Priestley dual of S,2, D(S,2) is isomorphic to the or-
dered set of the join-irreducible elements of S,2, namely with the ordered
set D(S,2) = {(0,-%) | i=1,....n =1} U{(:5,0) | i = 1,...,n — 1}
with the order defined pointwise (these elements correspond to the prime filters
T (0,#;1),2' =1,...,n—1resp. 1 (#;1,0),2' =1,...,n —1). The additional
operations g, $1, ..., 8,_1 are defined by:

(1a) (0,)):{wy)Gsz\N(wy)QT(Onil)}:{(m,y)GSnZ\

o e, niy = (25,0,
(1b) g(t (747,0)) = {(z,y) € S, |~ (z,9) €1 (47,0)} = {(z,9) € S,z |
nil}:{(xay)esnz‘y>n L} = (Oagi)
(2) 55(1 (0, 75) = {(GE5 759) € Sz | S5 (G, 75) = (0, 749)}-
(L,L1) ifj+k>n, fj+l>n
SlnceS(i - (L,0) fj+k>n, ifj+l<n
1’n-1 (0,1) ifj+k<n, fj+l>n
(0,0) ifj+hk<n, ifj+l<n

132 5 Fibered Representation and Universal Algebra

it is easy to see that Sj(%, ﬁ) > (0, nil) if and only if j +1 > n, ie.
if and only if I > n — j. Thus, s;(t (0,755)) = 1 (0,2). Similarly,

si(1 (711,0)) = 1 (574,0).

n—1

5.2 Automated Theorem Proving in SHn-logics

In what follows we present an approach to automated theorem proving that
uses the Priestley dual of the algebra of truth values, in cases such a duality
holds.

The general procedure — that can be applied in cases in which the logic is
sound and complete with respect to a variety V of algebras that have an under-
lying distributive lattice structure, with the property that V is generated by a
finite number of finite algebras, and such that the Priestley duality extends to a
dual equivalence between V (seen as a category) and a corresponding category
of relational models — will be presented in section 5.3.1.

We will first illustrate the ideas for the case of SHn-logics.

Our approach is in some sense inspired by the approach presented in [Hah94,
H&ah96b], but is different in that we exploit the fact that the algebraic model
has a dual with less elements, and use it in order to improve efficiency (e.g. the
number of clauses that are generated).

The main idea of our approach is to use signed literals, where the signs
are “possible worlds”, i.e. elements of D(S,,2) (corresponding to prime filters of
truth values) instead of truth values (as done in [BF92, BF95]) or arbitrary sets
of truth values (as done in [Hah94, Hah96b]). The idea of using “valuations in
{0,1}” instead of values is not new. It appears already for instance in [Sco73]
for the case of Lukasiewicz logics.

In what follows, for a given meaning function m : Var — OD(S,,2) we use
the following notation:

r
@' means “¢ is true at =” in the interpretation m (i.e. D(S,,2) Fme @)

r

@' means “¢ is false at z” in the interpretation m (i.e. D(S,2) e @)

where z is a “possible world”, i.e. an element of D(S,,2).

We point out that expressions of the type ¢! respectively ¢! are
very similar to the “positive and negative regular formulae” of the form ¢
respectively ¢ introduced in [Hah96b] for many-valued logics where the
set of values is {0, ﬁ, e Z—j, 1}.

The only difference is that in [Hah96b] totally ordered sets are considered,
whereas we consider labelling over duals of finite distributive lattices. In the
particular case of totally ordered lattices of truth values, Hahnle’s notions of

positive and negative literal are recovered: ¢ corresponds to ¢t and
¢ to @', where & = 1 i, which justifies the terminology “literal

with positive polarity” for literals with sign , resp. “literal with negative

5.2.1 An Efficient Translation into Clause Form 133

polarity” for literals with sign [< i, as used in [H&h96b].
In order to define an automated theorem proving procedure, we need:
1) An efficient procedure for translation into clause form,
2) A resolution procedure (which has to be proved sound and complete).

In [Hah96b], Hahnle defines a procedure for transforming a signed formula
in a set of signed clauses, and then shows how the signed clauses can be trans-
formed into regular clauses — to which resolution is applied in order to show
that they are unsatisfiable.

In what follows we sketch a procedure similar to the one described [Hah96b],
by which, given a SHn-formula ¢, a set ® of clauses can be obtained such that
® is unsatisfiable if and only if the given formula ¢ is a theorem.

The advantage of the method presented here is that, instead of using the
whole set of values in S,2, as the general approach would require, it uses the
space dual to S,2 which has only 2(n—1) elements. In Section 5.3.1 we will show
that this method can be extended to more general many-valued logics, sound
and complete for classes of algebras for which a Priestley-type duality is known,
and whose variety of models is generated by finitely many finite algebras.

5.2.1 An Efficient Translation into Clause Form

As noticed in [Hah94], there are several main obstacles when clausal normal
forms are to be used in a generalized context:
(1) Normal forms can become exponentially long with respect to the
length of the input formula when “naive” algorithms are used,
(2) The normalized input has no resemblance with the original formula,

Another obstacle can be the fact that many non-classical logics do not have
“internal” normal forms.

These problems can be solved by using a structure-preserving clause form
translation.

The procedure that we present in what follows has been inspired by [Hah94],
which deals with short conjunctive normal forms for finitely valued logics; it
presents and discusses structure-preserving translations to clause form. The
central idea behind structure-preserving clause form translations is to intro-
duce additional atoms (resp. predicate letters in the case of first-order logic),
which serve as abbreviations for subformulae of the input. It remains to trans-
late the formulae that represent the definitions of the new literals. In classical
logic this is a classical translation procedure, called “translation to definitional
form” or “structure-preserving translation” in the literature (see e.g. [Ede92]
for a detailed description of this translation strategy).

We begin with some definitions. For the sake of simplicity, we only present
the propositional case here.

134 5 Fibered Representation and Universal Algebra

Let Var be a countably infinite set of variables; in what follows, all the
variables belong to Var.

Definition 5.10 Let z € D(S,2) be a "possible world” and p be an atom (in
the propositional case, a propositional variable). Then p? is a positive literal
(with sign [z]) and [z] p’ is a negative literal (with sign [z]). A set of (positive
or negative) signed literals is called a (signed) clause. A formula in signed
conjunctive normal form (CNF) is a finite set of (signed) clauses. (In the first-
order case we require that the clauses in a formula have disjoint variables.).

Definition 5.11

(1) A propositional positive literal pt is satisfiable if for some meaning
function m : Var — O(D(S,,2)), p is true in m at x.

(2) A propositional negative literal p! is satisfiable if for some meaning
function m : Var — O(D(S,,2)), p is false in m at x.

(8) A propositional signed clause is satisfiable if and only if at least one of its
literals is satisfiable.

(4) A signed formula ® is satisfiable if and only if all clauses in ® are simul-
taneously satisfiable by the same interpretation.

Note that if pt at m and y < z then [z]p' at m.

Let ¢ be a propositional SHn-formula, ¢ € Fma(Var).

Lemma 5.25

(1) ¢ is a SHn-theorem if and only if there is no valuation m such that ¢ is
false at 1 (0,1) in m or ¢ is false at 1 (1,0) in m.

(2) ¢ is not a SHn-theorem if and only if for at least one valuation m ¢ is
false at 1 (0,1) in m or ¢ is false at 1 (1,0) in m.

Proof: (1) We know that ¢ is a theorem if and only if for every valuation
m : Var - O(D(S,2)) and every x € D(S,,2), ¢ is true at = in m.

Assume that ¢ is a SHn-theorem. Then there is no valuation m such that
¢ is false at 1 (0,1) in m or ¢ is false at 1 (1,0) in m. Assume now that there
is no valuation m' such that ¢ is false at 1 (0,1) in m/ or ¢ is false at 1 (1,0) in
m'. Let m be an arbitrary valuation m : Var — O(D(S,,2)), and let z € D(S,,2).
Because of the form of D(S,2) it follows that # >1 (0,1) or z >1 (1,0). Since
¢ is true at both 1 (0,1) and 1 (1,0), it follows that ¢ is true at x.

(2) follows immediately from (1). O

For every formula ¢ we can introduce a new propositional variable pg.

Lemma 5.26 The formula ¢ is a theorem if and only if there is no valuation

m such that m(¢p) = m(py) and |1 (0,1) pq{ or p(]; at m.

5.2.1 An Efficient Translation into Clause Form 135

Definition 5.12 Let ¢1, ¢2 be two formulae, and let m : Var — O(D(S,,2)) be
a valuation. We say that ¢1 and ¢y are equivalent in m (denoted ¢1 =y, ¢2) if
they are true at the same states, i.e. if m(¢p1) = M(p2).

We say that ¢1 = ¢9 is satisfiable if there is a valuation m such that ¢1 =,

P2
Lemma 5.27 The relation = has the following properties:

(1) Let m be a valuation, and ¢1, P be formulae such that ¢p1 =, ¢2. Then

for every x € D(S,2), (qﬁ{ Viz] %) A (oy Viz] qﬁg) at m.

(2) &1 = ¢9 is satisfiable if and only if there exists a valuation m such that

for all w € D(S,2), ([&] &) V[z] db) A ([2] ¢t V[z] ¢]) at m.

Proof: (1) Let m be a valuation, and ¢1, ¢ be formulae such that ¢, =, ¢o.
Then for every z € D(S,,2), @} at m if and only if [z] ¢% at m, and ¢{
at m if and only if qﬁg at m.

This is equivalent to saying that for every z € D(S,,2) ¢; is true at = or ¢9
is false at =, and ¢, is false at x or ¢ is true at = at m, i.e. (¢{ V[z] ¢h) A
([2] ¢} v[z] 1) at m.

(2) Follows immediately from (1). O

We can therefore reduce the task of proving that a formula ¢ is a SHn-
theorem to the task of proving that for no valuation m : Var — O(D(S,,2)) we

have p(]; or p(]; at m and py =m ¢.

By Lemma 5.27, py =n ¢ if and only if for every x € D(S,2), (' v
[z]p5) A ([z] ¢t v [z] p}) at m.

Corollary 5.28 A formula ¢ is a SHn-theorem if and only if there is no val-
uation m such that

(1) 10,)]p] V[T (1,0)]p], at m,

(2:) ([¢! vzl A([2] ¢ V[z]p)) atm.
for every x € D(S,,2)

We did not yet obtain a set of signed clauses that is unsatisfiable if and only
if ¢ is a theorem. It can be seen that in (2;), expressions of the form @,
and ¢! still occur. We will show how we can recursively eliminate these
expressions.

Lemma 5.29 Let m be a valuation, and let ¢ be a binary and V a unary
operator. Then:

(1) Every formula v = 11 © 1y is equivalent in m to a formula of the form
Dapy © Doy, Where py, =, Y5 for i =1,2;

136 5 Fibered Representation and Universal Algebra

(2) Every formula v = Viy is equivalent in m to a formula of the form Vpy,,
where py, =m P1.

Moreover, for every x € D(S,2),

(3) (Y1092)" at m if and only if[x] (Dy, OPy,)' at m, where py, =, 1
and py, =m P2;

(4) (Vi) at m if and only if [x] (Vp¢1)t at m, where py, =pm 1.

In conclusion, ¢ is a SHn-theorem if and only if the following set of formulae
(in classical logic) is unsatisfiable:

10, 1)]p] V[T (1,0)]p],
Py =1 for every subformula 1 of ¢.

Corollary 5.30 ¢ is a SHn-theorem if and only if the following conjunction
of formulae is unsatisfiable:

(h(o,n\pgvh(l,m\pg A

A A\ ([2] P} V2] (ys 0 pys)") A ([2] Py V[Z] (g © Pyu)’ A

z€D(S,,2) ¢ subformula of ¢
Pp=rp1092

A A ([=] Pl v[z] (Vpy,)') A ([2] 0k V] (VP)

z€D(S,2) 4 subformula of ¢
Pp=V1i

Lemma 5.31 For any given valuation m the followmg holds:
(Disj t) (p1 Vpa)t iff -p1 ([z]ph).
(Disj f) [] (p1 V) iff ([2]p]) A ([=]9)).
(Conjt) [x](m Ap2)t iff (pl) ([z]ph).
(Conjf) [&](m Ap) iff ([&]p])V ([z]pd).
(Si t) [2] (Sj(p1)) iff |si(@)| Pl
(S; 1) (S iff [si@)]p].
(~ t) (~ (@) iff [a()]pl.
(~, f) [] (~ () iff |a@)| Dl
(=, 1) [@] (p1 = p2)' iff Yy >, [y]p] V[y]ph
(= 1) (p1 = p2)! iff [m]p}, where m = max{y | y >z}, [2] p} and
Vi, 9 > T, 01 # 3:2, Pl \/pg.
1) [z iff Vy>a, 5]
(- f) (-p)’ iff 3y > with [y]p'
Proof

(Disj t) : We know that [z] (p1 V p2)! if and only if z € m(p1 V p2) if and only
if (z € m(p1) or © € m(py)) if and only if ([z]p}) V ([z] ph).

5.2.1 An Efficient Translation into Clause Form 137

(Disj f) : Similarly, (p1 V p2)? if and only if = & 7i(p1 V p2) if and only if
(@ & m(p1) and @ ¢ m(ps)) if and only if ([z]p{) A ([z] pd).

(Conj t,Conj f): We know that (p1 A po)t if and only if 2 € m(p; A ps) =
m(p1) Nm(p2) if and only if ([z] p}) A ([z]ph). The second part follows

similarly.

(S; t,S;f) : (Sj(p1))" if and only if z € m(S;j(p1)) if and only if s;(z) €
m(p1).-

(~t,~f): (~ (p1))! if and only if z € m(~ (p1)) if and only if g(z) &
m(p1).

(=1t) : By Lemma 5.19, (p1 = po)t if and only if x € m(p; = po) if and
only if Vy > = ifpt1 then pg at m, if and only if Vy > z p{\/ pb
at m.

(= f) : We know that (p1 = p2)? if and only if for some y > «, pl

and pg. By distributivity, the formula V-, (pi A pg) can
alternatively be written as

51,52,51NSy=0 y1E€51 y2€S2
S1USz={yly>z}

A (\/ [p]piv V pg)

It is easy to see that, since in our case for every state x the set {y | y > z}
is finite and totally ordered, it follows that for every non-empty set S C
{y | y >z}, S1 contains a maximal element max(S1) and V/,, s, p'i if

and only if m pY. Similarly, for every non-empty So C {y | y > =},
Sy contains a minimal element min(S;) and V,,cg, pg if and only if
min(Ss) pg. Additionally, since S; N Sy = 0, max(S1) # min(Sy).
Hence,
(p1 = p2)’
iff

sl A (el) AE

51,597#0,51NSy=0
S1US2={yly>=z}

te. iff [max(y [y > 3] P A vy s, ([91] 91V [12]) A 219
Y17Y2

(= t, = f): Follows from the fact that -p =p = 0. O

We can use Consequence 5.30 and Lemma 5.31 in order to obtain a conjunctive
normal form for ¢. The rules necessary for eliminating the operators are the
following (where L is a signed literal):

138

Disj () :

Disj (f) :

Conj (t) :

Conj (f) :

5 Fibered Representation and Universal Algebra

L vm (p1 V p2)?t

{L,‘ 1(0,0) | p,[1 (0,4) \pé}

L vm (p1 V p2)f

L\/m (1 V p2)?

{L,‘T(i,ﬂ) |4, 1 (,0) \pé}

L\/m (p1V p2)f

{r[toa)ot} » {n[r00]et}

L vm (p1 A p2)?t

(e [em]ot} {z[Ta0]s}

Lvm (p1 A p2)?t

{efroalst} {ef00]m}
LvM(pl Ap2)f

{L,‘T(O,i) |#][1 (0,9) \Pﬁ}

Lv[1(0,)] ;)
Lv[1(0,9)] 8,

{efGo]ot} o160}
L\/m (p1 Ap2)f

{L,‘T(i,ﬂ) |»1.[1 G,0) \pﬁ}

Lv[13,0)] s
Lv[1G,0)] 8w/

L\/m ~ (p)*

L\/m ~ (p)f

5.2.1 An Efficient Translation into Clause Form

L Vm (p1 = p2)?

139

L\/m (p1 = p2)?

iy {L,‘T(U,j) »1|1(0,4) p;}’ A, {L,‘T(j,o) »1 1 (5,0) p;}’
Lv(p1 = pa)? L\/(plipZ)f
= (f): {m[020]pt]2 (]G50 st}

AV {L’mpf} ’

t
PIs

(v [T).

iAg <

/\jSi{L’pf}’

{e[toq]ei<i} {t[1G0]si<i}

After performing this translation, from any formula ¢ we obtain a formula
® in clause form, containing “literals” of the form p? and p! where p is
a variable and z a possible world.

From Corollary 5.30 and Lemma 5.31 it follows that ¢ is a theorem if and
only if ® is unsatisfiable.

Proposition 5.32

(1) The number of clauses generated from a given formula ¢ is O(n3l), where
l is the number of subformulae of ¢.

(2) If the formula ¢ does nmot contain the connective =, then the number of
clauses generated from ¢ is O(n2l), where | is the number of subformulae

of ¢.

(3) If the formula ¢ does not contain the connectives = and —, then the
number of clauses generated from ¢ is O(nl), where | is the number of
subformulae of ¢.

140 5 Fibered Representation and Universal Algebra

Proof: The number of clauses generated from a given formula ¢ is

1+ > > clauses(pf;\/ P!)|+ clauses([z] pl V[z])]

% subformula of ¢ z€D(S 2)

(1) The maximal number of clauses is generated by the subformulae of the
form 1) = ¥ = 1. In this case, for every & € D(S,2) the number of clauses

generated by (p{b V[z] 4t) is less than or equal to card({y | y > =}, and
the number of clauses generated by (pfp V[z] S) is less than or equal to
2+ card({(x1,®2) | £1 # x2, 21,22 > x}). Thus, the number of clauses gener-
ated from a given formula ¢ has as upper bound 1+ 21%0 ' (i +i(i — 1) +2) =
1+4l+ 25712 =1+ 4l + 21("71)("762)(2"73). Hence, the number of clauses
generated from a given formula ¢ is O(n®l).

(2) If the formula ¢ does not contain the operator =, then the maximal
number of clauses is generated by the subformulae of the form ¢ = —1;. In this
case, for every = € D(S,,2) the number of clauses generated by (pf; V[z]y')
is equal to the number of elements in D(S,2) smaller than z; (pfp v[z]yf)
gives rise to only one clause. If the subformula does not have the form —, then
the sum of the number of clauses generated by (pq];} V[z]¢") and the number
of clauses generated by (pib v[z] ¥) is at most 3. Thus, the number of
clauses generated from ¢ has as upper bound 1+ 2l2?;11(i +1) =1+217 5i =
1 +1(n? +n —2). Thus, in this case the number of clauses generated from ¢ is

O(n2l).

(3) Assume that ¢ does not contain the connectives = and —. In this
case, for every z € D(S,2) the sum of the number of clauses generated by

(qup V[z] 4!) and the number of clauses generated by (pfp viz|yf) is

at most 3. Thus, the number of clauses generated from ¢ has as upper bound
1+ 6l(n—1), so it is O(nl). O

Example 5.1 Find a clause form for ¢ = (S1zV —Si1x).
Proof: We introduce the following renamings: p = Syz, ¢ = —p, r =pVq.

Therefore ¢ is a tautology if and only if the conjunction of the following
formulae is unsatisfiable:

‘T (0,1)‘rf\/‘T (1,0)‘rf, and for all o € D(S,,2)

[a]r!va](p V), [a]r* Vel (pV g,
[a] ¢/ V[a] —p', [a] ¢' V[a] —p!,
[a]p! V[a] Si(2), [a] p' V[a] Si(x)f.

We have therefore the following set of clauses:

5.2.2 A Resolution Procedure 141

{{r o] [ta,0]}, and, for all i and j < i (where applicable):
{rea]rrealr[to]d}. {ro [0},
{EICX <0ﬂ)\pf}a {\T 0. \qf}
{teo][reo]»} {teo][rao]d},

{[t 0] [t 0]}, {105 \q o,j)\pt,wg}

i J’0>\p"}’ {[160]a[tG0]s <}

{\T ©.9]# [t @1]=} {\T @] [T0D]e},
{160y [t 0]}, {160y [t o]}

5.2.2 A Resolution Procedure

We now continue by showing that we can formulate a version of negative hy-
perresolution in this more general context, inspired by the method described in
[Hah94, Hah96b).

Negative Hyperresolution

{p{}UDl,...,{pn}UDn,{p"i,..., p’;'z}UE

DyuU...UuD,UE
provided that n > 1, y; < z; foralli =1,...,n and D1,...,D,, F are negative.

It is easy to see that if O can be derived from ® by a finite number of
applications of many-valued negative hyperresolution then & is unsatisfiable
(this follows easily from the fact that if m is a model for the negative clauses
C1,...Cp and for the positive clause C' then m is a model of any of their
resolvents).

In order to prove the completeness of many-valued negative hyperresolu-
tion we show that the proof presented in [H&h96b], which was taken virtually
unaltered from [AB70], works as well in this case.

Theorem 5.33 Let ® be an unsatisfiable set of clauses. Then O can be derived
from ® by a finite number of applications of many-valued negative hyperresolu-
tion.

142 5 Fibered Representation and Universal Algebra

Proof: Let nl(®) be the total number of literals in ® and nc(®) the total
number of clauses in ®. It is obvious that nl(®) > nc(®). We will proceed by
induction on the difference k(®) = nl(®) —nc(®). If O € & then the conclusion
is obvious. Therefore in what follows we will assume that O ¢ &. We distinguish
the following cases

Case 1. k(®) = 0: In this case nl(®) = nc(®). Since O ¢ &, must consist
only of unit clauses. Since @ is unsatisfiable, there must exist two clauses
{[a] '} and{@pf} in ® such that a < S.

(In order to prove that the last statement is true, assume that for every two
clauses C1,Cs in @, if C; = [a] p' and C; = @ pf then a £ 3. In this case
we can construct a valuation m : Var — O(D(S,,2)) that satisfies ®. Indeed,
for every p € Var let m(p) = D(A) if p does not occur in the clauses in @,
and m(p) =1 {am | @m is minimal element of {a | [a]p’ € ®}}. It is easy to
see that m is a meaning function, and that m satisfies ®: if [a]p’ € ® then
a € m(p), whereas if @ pf € ® then B € m(p), since otherwise we would have

8> am, with pled)
Then O can be derived from the clauses { [a]p'} and { @ pf} where o < 3
by negative hyperresolution.

Case 2. k(®) > 0 (i.e. nl(®) > ne(®)).

Subcase 2a: Assume that all non-positive clauses consist of one literal. Then
it follows that all negative literals in ® appear in unit clauses. Since @ is
unsatisfiable, there is a positive clause in ® which immediately produces the
empty clause with suitable negative unit clauses.

(In order to prove the last statement, assume that for every positive clause
C and every negative clauses C1,...,C,, C does not produce immediately the
empty clause with Cy,...,C,. We can construct a model that satisfies ® as
follows: Let m : Var — O(D(A)) be defined by m(p) = D(A) for every p that
does not occur in a negative clause; m(p) =1 {« | @ pf € ® implies 8 # a}.

It is easy to see that m is a valuation that makes true all negative clauses
as well as all clauses that contain variables which do not occur in any negative
clause. Let C = { P, ... pt} be a clause that only contains variables
that appear in negative clauses. From the assumption, the empty clause cannot
be generated by hyperresolution from C and other negative clauses. Assume
that m does not make C true. Then for every i = 1,...,n, y; € m(p;), i.e.
there exists C; = pzf € ® with z; > y;. In this case it would follow that
C,C,...,C, would yield the empty clause by hyperresolution. Contradiction.
This shows that m makes C true.)

Subcase 2b: There is a non-positive non-unit clause C' = { @ pfluDecd®
with D # 0. Let ® = ®\{C}, ®; = ®'UD, and &3 = &' U{{ @pf}}. Since &
is unsatisfiable it follows that both &, ®5 are unsatisfiable. Moreover, ®; and
®, contain the same number of clauses as ®, but they have less literals. Hence,
k(®1) < k(®) and k(P3) < k(®). Since ®; and P, are both unsatisfiable, by
the induction hypothesis, O can be deduced from ®; and O can be deduced
from ®5 by hyperresolution. Consider a hyperresolution deduction of O from

5.3 A General Approach 143

®;. If we replace each occurrence of D by C in this proof then we obtain a valid
hyperresolution deduction with last clause O or { @ pf). If the last clause is
O, we have already a hyperresolution deduction of O from . If the last clause
is { @ pf}, then its deduction from @ can be extended to a deduction of O
from ® using the fact that there is a deduction of O from ®,. O

Example 5.2 Consider the example presented before. The set of clauses can
be shown to be unsatisfiable by negative hyperresolution:

{{t@][t 0]} {{ton][ta,0]} {{t@n]r [t @]}
[tao]} {Tou]» [ta]} {[to0]s[10D]}

\

{ton]s/[tao]’} {[1©)]s[t0OD]s}vi

\

{‘T(o e[t 0,0 ‘rf} {‘T(Oz |7, T(l,O)‘rf}Vi {‘T(O,l)‘qt,‘T(O,i)‘pt,Vig1}
{rawo][r o]} (1,0} {rawo][r o]}

| /

{1ao]s} (1,00} {{r@o]s [t a0}

\

)

i T(l,O)‘mt}Vz’

o)

\

{tao]d} {{t@o]p}vi o] 1] viz}

L
\

5.3 A General Approach

Results on sheaf representation for discriminator varieties and the applications
to unifications have been given in Section 4.1.2 and Section 4.1.3. Therefore, in
what follows we will only focus on applications of the Priestley representation
theorem to automated theorem proving.

In this section we will show that the ideas on which the procedure for auto-
mated theorem proving presented before is based can be applied without major

144 5 Fibered Representation and Universal Algebra

modifications to a wide class of logics, namely the class of those logics that are
sound and complete with respect to a variety V of algebras with a distributive
lattice reduct and operators, with the additional property that V is generated
by one finite algebra A, and such that the Priestley Duality for distributive
lattices extends to a dual equivalence between V (seen as a category) and an
appropriate category of ordered Priestley spaces endowed with additional rela-
tions.

We begin with some theoretical considerations that show the correctness of
our approach, and then we will give a similar general resolution procedure.

We will end by illustrating the method by means of two examples.

5.3.1 Theoretical Considerations

We will begin by analyzing the propositional case. In Section 5.3.6 we will also
consider many-valued first-order logics.

Let £ be a propositional logic which satisfies the following properties:

(P1) L is sound and complete with respect to a variety of algebras
V, generated by finitely many finite algebras, i.e. such that
Ve =HSP(Ay,...,A,). In other words,

e ¢ ifand only if V,E¢=1
if and only if fori=1,...,n, A4 =¢=1.

(P2) The algebras in V have an underlying distributive lattice struc-
ture, and

(P3) The Priestley duality induces a full duality between the vari-
ety V. and a subcategory of the category of Priestley spaces
(possibly with additional operators), that we will denote by
V. Sp.

For every algebra A € V, we will denote its dual by D(A), and the isomor-
phism between A and the set ClopenOF(D(A)) of clopen order-filters of D(A)
by na : A — ClopenOF(D(A4)).

Topological Relational Models

a
The satisfiability relation = for the algebras of V. induces a satisfiability rela-
rc

tion = for the elements in VSp as follows:
rc
In order to define = we will require that all the meaning functions have

as values clopen order-filters in K. Let K be an object of V Sp. Let m :
Var — ClopenOF(K) be a meaning function. Since we assumed that there is a
dual equivalence between the categories VSp and V (induced by the Priestley
duality), it follows that K = D(A) for some A € V..

5.3.1 Theoretical Considerations 145

N4 \
Var T CIopenOF(D(A))m—f A
_/’\ / (5.1)
nilom

Fma(Var)

Definition 5.13 Let m : Fma(Var) — ClopenOF(K) = ClopenOF(D(A)) be
defined by i = ny o 7]21 om. We define:

(1) D(A) Fp, . ¢ if and only if x € m(¢),

(2) D(A) |=,, ¢ if and only if m(¢) = D(A),

rc

(8) D(A) = ¢ if and only if D(A) |;m ¢ for every m : Var — ClopenOF(D(A)).

Lemma 5.34 Let A be an algebra in V. Then A |= ¢ if and only if D(A) = ¢.

a
Proof: Assume that A |= ¢. Let m : Var — ClopenOF(D(A)) be a meaning
function such that for every p € Var, m(p) is a clopen order-filter. Let f,, :

a —_—
Var — A be defined by f,, = 7721 om. Since A = ¢ it follows that f,(¢) = 1,
- rc
hence m(¢) = na onyt om(¢) = na(l) = D(A), i.e. D(A) =, ¢.
rc
Conversely, assume that D(A) = ¢. Let f : Var — A be an arbitrary
assignment. Let my : Var — ClopenOF(D(A)) be defined by m¢ = nao f. Since

D(A) = ¢ it follows that 7 (¢) = D(A), where s = naon, onao f =naof.
Hence, f(¢) = 1. a

Proposition 5.35 Under the conditions (P1)-(P3) we have

rc

Fr @ if and only if for alli=1,... n,D(4;) = ¢.

a
Proof: By (P1),F, ¢ if and only if for alli =1,...,n, A; = ¢. By Lemma 5.34,
a rc
for every i = 1,...,n, A; = ¢ if and only if D(4;) E ¢. O

Remark: The result in Lemma 5.34 may seem surprising, since a corre-
sponding theorem does not hold in general for modal logics if one considers
satisfiability in modal algebras respectively in Kripke frames. The reason is
that we defined a restricted notion of meaning function on the topological rela-
tional models K € V,Sp, by imposing that the values of such meaning functions
are clopen order-filters.

rc
Note that the satisfiability relation |= defined this way does not coincide
with the notions of satisfiability defined for Kripke models in [I096] (where the
values of the meaning functions are only required to be hereditary sets).

146 5 Fibered Representation and Universal Algebra

However, for finite spaces K € V.Sp the notion of satisfiability defined
before coincides with the more general notion of satisfiability defined in [I096].
This happens because in the finite case the topology on the Priestley spaces
is discrete (hence, all the order-filters are clopen). By Assumption (P1), the
algebras Ay,..., A, are finite, thus every meaning function with as values order-
filters has as values actually clopen order-filters (in the discrete topology). Thus,
in Proposition 5.35 the topological properties of the meaning functions play
no role. Hence, the satisfiability relation defined on D(4;), for i € {1,...,n}
coincides with a more general satisfiability relation analogous to the one defined

in [I096].

5.3.2 Towards a Link Between Algebraic and Relational Models

The consideration in Section 5.1.5 concerning the extension of the Priestley
duality theorem to SHmn-algebras, as well as similar existing approaches (like
for example duality theorems for varieties of Ockham algebras and for #-valued
Lukasiewicz-Moisil algebras), together with duality theorems between certain
varieties of modal logics and appropriate categories of topological Kripke models
suggest that a general approach to extending Priestley duality theorems to
varieties of distributive algebras with operators may be possible. Some steps in
this direction have been done by [Gol89], where Priestley duality is used in order
to develop a representation theorem for distributive lattices with operators (join
hemimorphisms and meet hemimorphisms are considered).

In what follows we extend the results of [Gol89] in that we consider sep-
arately operators that are homomorphisms or antimorphisms, and use these
results in order to define a general notion of relational (not necessarily topolog-
ical) models for such logics, and a notion of satisfiability in such models. Thus,
in Lemma 5.36, we explicitely consider lattice homomorphisms and lattice anti-
morphisms besides the join- and meet-hemimorphisms studied in [Gol89]. This
will offer a general framework for expressing the automated theorem proof pro-
cedure, for proving its correctness and for analyzing its complexity.

We will consider some cases that appear more frequently in practice. Namely,
we will consider the situations when the operators of the logic £ can belong
to the following classes: {A,V}, Lh, La, Jh, Mh, and Heyting implication and
negation (Hey).

We assume that the logic £ satisfies the conditions (P1) — (P3), with the
remarks that:

(1) The signature of the algebras in V. is {A,V,0,1} UX, where ¥ = Lh U
LaU JhUMh (or ¥ = {=,-}ULhU LaU JhU Mh if the logic also
contains the operation symbols for Heyting implication and negation),

(2) The additional operations on the algebras in V. belong to the following
classes: lattice homomorphisms (Lh), lattice antimorphisms (La), join
hemimorphisms (Jh) and meet hemimorphisms (Mh) (resp. Heyting al-
gebra operations (Hey)). The definitions are given below.

Definition 5.14 Let A be an algebra with a lattice reduct.

5.3.2 Towards a Link Between Algebraic and Relational Models 147

A lattice antimorphism on A is a function k : A — A with k(0) = 1,k(1) =
0,k(a1 Vaz) = k(a1) A k(az) and k(a1 A a2) = k(aq) V k(az).
A join hemimorphism on A is a function f : A" — A such that for every
i1<i<n,
(Jhl) f(al, e ,ai,l,O,aH_l, e ,an) = 0,
(Jh2) f(ar,...,a; 1,b1 Vby,air1,...,an) =
= f(at,...,ai—1,b1,0i41,...,an) V fa1,...,ai-1,b2,ai11,...,an).
A meet hemimorphism on A is a function g : A" — A such that for every
i1<i<n,
(Mh1) g(a1,...,a;-1,1,ai41,-..,an) =1,
(Mh2) g(al, cees@i—1,b1 Abo,aig, ... ,an) =
=g(ar,...,a; 1,b1,0i41,...,an) ANglar,...,a;_1,b2,a;41,...,an)-

The algebras will be denoted by

(A, VN, {ha}herns {katrera, {fa}rean, {94} gerLn)-

Based on previous papers in which the link between the algebraic and the
relational semantics for modal logics is analyzed (as [Lem66a, Lem66b], as well
as the general study in [Gol89]), we will indicate a canonical way in which
one can associate functions or relations in the dual space and vice-versa. This
will provide hints about the definition of a satisfiability relation on these dual
spaces, as well as about the translation to clause form.

y i) V[;Sp

Lh he€eLhyiehs:A—=A — D(ha): D(A) — D(A) order-preserving
lattice homomorphism D(ha)(f)=foh,Vf: A—{0,1}

(prime filters: D(ha)(F) ={a € A | h(a) € F})

La ke La,ie. ka:A—A — D(ka) : D(A) — D(A) order-reversing
lattice antimorphism D(ka)(f) =swo fok,Vf:A—{0,1},
where sw(0) = 1,sw(1) =0

(prime filters: D(ka)(F)={a € A | k(a) € F})

Jh feJhie fa: A" A D(fa) C D(A)™*!| increasing relation
join hemimorphism D(fa)(f1s---s frs frgr) iff
(fi(z;) =1Vie{l,...,n}) implies
for1(f(z1,...,20)) =1
(prime filters: D(fa)(F1,..., Fp, Fpy1) iff
a; € F;,Vi € {1,...,n} implies
flai,...,an) € Frial)

Mh g€ Mh,ie ga: A" - A — D(ga) C D(A)"*"!, decreasing relation
meet hemimorphism D(ga)(fiy---s fry fne1) iff
fny1(g(z1,...,2n)) = 1 implies
(Fie{l,...,n}: fi(z;) =1).
(prime filters: D(ga)(F1,-.., Fy, Frq1) iff
(g(ar,...,a,) € F,y1 implies
e {l,...,n} with a; € F;.)

148 5 Fibered Representation and Universal Algebra

We note that in a Priestley space the clopen order-filters and their comple-
ments form a subbasis for the topology. It is easy to see that this topology is
the join of two topologies:

(1) The upper topology, generated by the set of clopen order-filters as a basis,

(2) The lower topology, generated by the set of complements of clopen order-
filters as a basis.

Definition 5.15 Let (X, <) be a partially ordered set and let R C X"t be a
n-ary relation on X.

(1) R is an increasing relation if it has the property that for all x € X™ and
every y,z € X, R(x,y) and y < z implies R(z, z).

(2) R is a decreasing relation if it has the property that for all x € X" and
every y,z € X, R(x,y) and z <y implies R(z, z).

Lemma 5.36 Let A be a distributive lattice with operators in the classes Lh,
La, Jh, Mh. Let (D(A),<,T) be the Priestley dual of A. The following holds:

(1) If h € Lh (i.e. ha : A — A is a lattice homomorphism), then D(hy) :
D(A) — D(A) is order-preserving and continuous with respect to the
topology .

(2) If k € La (i.e. kg : A — A is a lattice antimorphism), then D(ky) :
D(A) — D(A) is order-reversing and continuous with respect to the topol-
0gy T.

(3) If f € Jh (i.e. fa: A™ — A is a join hemimorphism), then D(f4) C
D(A)™*! is an increasing relation such that for every F € D(A), D(fa) ' (F)
is closed in the product topology on D(A)" of the upper topology, and
moreover, for every Uq,...,U, € ClopenOF(D(A)), the set {F | 3F; €
Ui,...,E, €Uy, : D(fa)(F1,...,F,, F)} is clopen.

(4) If g € Mh (i.e. g4 : A™ — A is a meet hemimorphism), then D(ga) C
D(A)"*! is a decreasing relation such that for every F € D(A), D(g4) ' (F)
is closed in the product topology on D(A)™ of the lower topology, and more-
over, for every Uy,...,U, € ClopenOF(D(A)), the set {F | VFy,..., Fy,,
D(ga)(F,...,F,) = Ji: F; € U;} is clopen.

Proof: (1) Let hg : A — A be a lattice homomorphism. Let Fy, F, € D(A)
be such that F; C Fy. Then for every a € D(ha)(F1) = h'(F1), we have
ha(a) € Fi C Fy, hence a € D(ha)(Fz) = h'(Fy). Thus, D(ha)(F1) C
D(ha)(F).

Since the topology on D(A) is generated by the sets X, = {F € D(A) |
a € F} and D(A)\X, = {F € D(A) | a € F} as a subbasis, it is sufficient to
show that D(h4) 1(X,) and D(h4) (D(A)\X,) are open. This holds, because
D(ha) '(Xa) = {F | D(ha)(F) € Xo} = {F | a € h,'(F)} = {F | ha(a) €

5.3.2 Towards a Link Between Algebraic and Relational Models 149

F} = Xp,(a) and D(ha) H(D(A\Xe) = {F | D(ha)(F) & Xa} = {F | a ¢
hy' (F)} = {F | ha(a) & F} = D(A)\Xp,(a)-

(2) Let k4 : A — A be a lattice antimorphism. Let Fj, F» € D(A) be such
that Fy C Fy. Then for every a € D(ka)(F2) = D(A)\k,' (F»), we have ka(a) &
Fy, hence, since F; C Fy, ka(a) ¢ Fy. Hence, a € D(ka)(F1) = D(A)\k,'(F1).
Thus, D(ka)(F) C D(ka)(F1).

In order to show that D(k4) is continuous it is sufficient to show that
D(k4) Y(X,) and D(k4) '(X\X,) are open. This holds, because D(k4) 1 (X,)
{F | D(ka)(F) € Xa} = {F | a & ky' (F)} = {F | ka(a) & F} = D(A)\Xp,(a)
and D(ka) " (D(A)\Xa) = {F | D(ka)(F) ¢ Xa} = {F | a € k' (F)} = {F |
ka(a) € F} = Xp,(a)-

The properties (3) and (4) are analyzed in [Gol89]. Here, we only point
out the main ideas of the proofs; for details concerning these proofs we refer to
[Gol89], pp.187-190.

(3) Let fq: A" — A be a join hemimorphism. Let Fy,..., F,, € D(A) and
F C F'. Assume that D(fa)(Fi,...,F,, F). By the definition of D(f4) this
holds if and only if a; € F; for alli € {1,...,n} implies f(a1,...,a,) € F. Let
(a1,...,an) be such that a; € F; Vi € {1,...,n}. Since D(fa)(F1,...,F,, F),
it follows that fa(ay,...,a,) € F C F', hence that fa(ay,...,a,) € F'. There-
fore, D(fa)(F1,...,Fn, F').

In order to show that inverse images of points by D(f4) are closed, let F €
D(A). To show that D(f4) (F) is closed, let (G1,...,Gy) € D(A)"™ be such
that (G1,...,Gy) € D(fa) Y(F), i.e. (not D(fa)(G1,...,Gp, F)). Then there
exist z1,...,2, € A such that z; € G; for every i < n, and fa(z1,...,2,) € F.
In this case G; € X, for every i < n. Let N = X, X ... x X, . Nisan
open neighborhood of (Gy,...,Gy) in the product of the upper topology. Let
(F1,...,F,) € N. Then z; € F; for every i < n, and since fa(z1,...,z,) € F,
it follows that not D(f4)(Fi,...,Fy,), hence (Fi,...,F,) € D(fa) '(F). This
shows that N C D(A)"\D(fa) '(F).

In order to show that for all clopen order-filters Uy, ..., Uy, the set {y | Jz; €
Ui, ...,xn € Uy : D(fa)(x1,...,2n,y)} is also a clopen order-filter note first
that it is an order-filter, since D(f4) is order-increasing. It is easy to see that
if f is a join hemimorphism, X, ..y =1{F € D(A) | 3G1 € X4,,...,3Gp €
Xz, : D(fa)(Gy,...,Gpn, F)}.

(4) Let g4 : A™ — A be a meet hemimorphism. Let Fy,..., F, € D(A) and
F' C F. Assume that D(ga)(F1,...,Fn, F). By the definition of D(g4) this
holds if and only if g4(ay,...,a,) € F implies a; € F; for some i € {1,...,n}.

Assume that D(ga)(Fi,...,Fy, F). Let ga(ay,...,a,) € F'. Since F' C
F, ga(ai,...,a,) € F, hence a; € F; for some i € {1,...,n}. Therefore,
D(ga)(F,..., Fy, F).

The fact that inverse images of points by D(g4) are closed follows as in (3),
taking into account the definition of D(g4). In order to show that for every

clopen order-filters Uy, ..., Uy, the set {y | Va1,..., 2y, D(g9a)(z1,...,2,) =
Ji : z; € U;} is clopen, note first that it is an order-filter and also that if g is a

150 5 Fibered Representation and Universal Algebra

meet hemimorphism, then
Xf(or,mn) = 1F € D(A) |VG1,...,Gy, (D(9a)(G1,...,Gp, F) implies 3i <n:G; € X,,)}

a

The properties (3) and (4) in Lemma 5.36 are analyzed in [Gol89]. Here
we also consider operations as lattice morphisms and antimorphisms, since in
this case the operations induced on the dual space are much simpler (order-
preserving, respectively order-inverting continuous maps).

Let DLOgy; be the category of distributive lattices with operators in X having:

Objects: Distributive lattices with 0, 1 and
with additional operators in 3.

Morphisms: Lattice morphisms that preserve 0,1 and the operators in X.

In [Gol89] a category RPSy of relational Priestley spaces is defined, having:

Objects: Relational Priestley Spaces, i.e. spaces of the form
X = (X, <, 7, {Hx}wern {Kx }rkera, {Rx } Rean, {Qx Ygemn)
where
(1) (X, < 7) is a Priestley space,
(2) for every H € Lh, Hx : X — X
is a continuous order-preserving map,
(3) for every K € La, Kx : X — X,
is a continuous order-reversing map
(4) for every R € Jh Rx C X"rt!
is an increasing relation such that:
(4a) for every y € X, Ry (y) is closed in the
product topology on X™E of the upper topology,
(4b) for every Y7,...,Y;, € ClopenOF(X)
{y |3z eV,...,xn, € Yo, : Rx(x1,...,2n,,y)} is clopen.
(5) for every Q € Mh, Qx C Xnet!
is a decreasing relation such that:
(5a) for every y € X, Q;(l(y) is closed in the
product topology on X" of the lower topology,
(5b) for every Y1,...,Y,, € ClopenOF(X)
y|Ver,. . ang, Qx (21, .. Tny) = Ji: @ € Yy} is clopen.

Morphisms continuous bounded morphisms,
see the following definition.

Definition 5.16 (Bounded Morphism, [Gol89]) Let Xy and X3 be two re-
lational Priestley spaces,

Xy = (X1, <, 1, {Hx, Yrern, {Kx, Y kera; {Rx: }rean, {Qx, foemn),

5.3.2 Towards a Link Between Algebraic and Relational Models 151

Xo = (Xo, <, 7, {Hx, }werh, {Kx, }kecra, {Rx, } Rean, {@ X2 foemn)-

(1) A map ¢ : X1 — X is a morphism if it preserves the order <, the
operations Lh, La and the relations Jh, M h in passing from Xq to Xa:

(M1) z <y implies ¢(z) < ¢(y),
(M2) x = Hx,(y) implies ¢(z) = Hx,(¢(y)) for every H € Lh U La,

(M‘?) RXI ("I“la <oy Tn, CC) zmplzes RX2 (¢('rl)a ey ¢("L‘n)a ¢(.17)) fO’I’ every R e
Jh U Mh.

(2) A morphism is bounded if for all z € X, it satisfies

(BM1) Rx,(y1,...,Yn,d(2)) implies Ixq, ..., 2, € X1(Rx,(21,...,2n,2) and
yi < ¢(x;), for every 1 < i < n), for every y1,...,yn € Xa, and every
R € Jh,

(BM2) Qx,(y1,---,Yn, #(2)) implies Iz1,..., 2, € X1(Qx,(T1,...,2n,2)
and ¢(x;) < y;, for every 1 < i < n), for every yi,...,yn € X,

and every @ € Mh,

Note that the operations in Lh and La induce relations as follows:
(Lh) For every H € Lh, pg = {(F1, Fy) | F1 = H(F»)},
(La) For every K € La, px = {(F1, F») | F1 = K(Fy)}.
Conditions similar to (BM1) and (BM?2) can be stated also for these relations,
namely:
(BMLh) pry, (G, ¢(F>)) implies 3F1: pmy (F1, F2) and G = ¢(F1),
(BMLa) pky,(G,#(F2)) implies 3F1: pgy (F1, F2) and G = ¢(F1).
However, it is not necessary to explicitly specify conditions similar to (BM1)
and (BM2) for the operations in Lh and La because they are already satisfied,
as shown by Lemma 5.37.

Lemma 5.37 Let ¢ : X1 — Xg be a morphism of relational Priestley spaces.
Let H € LhU La. For every G € X, if Hx,(¢(F2)) = G, then there exists a
Fy € X; such that ¢(F1) = G and Hyx, (F5) = Fy.

Proof: Tt suffices to take Fy = Hx, (F»). The fact that ¢(Fy) = G follows
from the fact that ¢ is morphism. O

In [Gol89] it is proved that there is a dual equivalence between the category
DLO of distributive lattices with operators and the category RPS of relational
Priestley spaces. It is very easy to see that this correspondence can be extended
a dual equivalence between the category DLOy of distributive lattices with
operators in X (i.e. including lattice morphisms and lattice antimorphisms) and
the corresponding category RPSy of relational Priestley spaces.

The correspondence between the operations and relations in a relational
Priestley space X and the corresponding operations on the lattice of its clopen
order-filters ClopenOF(X) is schematically represented in the next table:

152 5 Fibered Representation and Universal Algebra

1=

V:Sp Ve
(Lh) Hx:X — X, = E(Hx): E(X) > E(X), E(Hx)(f) = fo Hx,
order-preserving Vf e X — {0,1} continuous, order-preserving
(order-filters: E(Hx)(U) ={z € X | Hx(z) € U}).

(La) Kx:X—=X — E(Kx):E(X)— E(X), E(Kx)(f) =swo foKx,
order-reversing Vf:X — {0,1}, continuous, order-preserving
(order-filters: E(Kx)(U) ={z € X | K(z) ¢ U}).

(Jh) Rx C x"*! — FE(Rx): E(X)" = E(X)
increasing E(Rx)(f1,-.-, fn)(z) =1iff (3z1,..., 2, s.t.
Rx(z1,...,2n,z) and fi(z;) =1Vi € {1,...,n}).
(order-filters: E(Rx)(Un,...,U,) =

={ze X |3z, €U,...,2, €U, : Rx(21,...,2y,2)}).

(Mh) Qx C Xn*! ~ EQx):EX)"— E(X),
decreasing E@Qx)(fi,-- fu)(z) =1iff Vz1,...,2, € X if

Qx(z1,...,zn,) then f;(z;) =1 for some i € {1,...,n}).

(order-filters: E(Qx)(Ui,...,U,) =

={z e X |VYzy,...,z, with Qx(z1,...,2,,2),3i,z; € U;}).

Assume that a given logic £ satisfies conditions (P1) — (P3) given in Sec-
tion 5.3.1.

Condition (P3) states that the logic £ has the property that the duality
between the category DLOy, of distributive lattices with operators in ¥ and the
category RPSyx of corresponding relational Priestley spaces restricts to a dual
equivalence between V, and an appropriate subcategory V,/Sp of RPSy.

The duals of the algebras in V are therefore Priestley spaces endowed with
additional operation and relation symbols, corresponding to the operators in X.
We will represent the corresponding operations, indexed by the same families:
(X, <, 7, {Hx }rern {Kx}kcrLa, {Bx }Resn: {Q@x }oecrLn)-

We will assume that the elements in V, Sp can be described as relational
Priestley spaces that satisfy additional properties (induced by the identities
that characterize V).

Relational Models

The previous considerations suggest a possible definition for relational models
for a logic £ with connectives ¥ = {V, A} U Lh U La U Jh U Mh which is sound
and complete with respect to a variety V. of algebras that satisfies (P3).

Our goal in what follows is to explain (in an intuitive way) how the satis-

r
fiability relation = on Kripke frames and models can be defined if we know a

a
similar relation |= for algebraic models.

Definition 5.17 (L-Frame) A L-frame is a relational structure X = (X, <
AHx Yrern {Kx}kera, {Rx tresn, {@x }gerLn) where for every H € Lh, Hx :

5.3.2 Towards a Link Between Algebraic and Relational Models 153

X — X is an order-preserving map, for every K € La, Kx : X — X s an
order-reversing map, for every R € Jh, Rx C X"®+L is an increasing relation,
and for every Q € Mh, Qx C X"e*t! is a decreasing relation.

Remark: Let X = (X, <,7,{Hx }mern, {Kx }kcLa, {Bx }resn, {Qx }QeLn)
be a L-frame. Consider the discrete topology 7 on X. The ordered topological
space (X, <,7) is totally order-disconnected, and it is compact if and only if X
is finite.

Definition 5.18 (£-Model) A £-model based on a L-frame

X = (X, <,{Hx}ucin {Kx}kera, {Bx }fein {Qx }gern

is a system M = (X, m), where m : Var — P(X) is a meaning function that
assigns to every variable p € Var an order-filter of X.

The extension of the meaning function to formulae (that generalizes the
way meaning functions are extended to formulae in modal logic, for example)
is explained by the following lemma.

Lemma 5.38 Let X be an ordered relational structure with operations and
relations in the classes Lh, La, Jh, Mh. The following hold:

(1) Every order preserving operation on X, H € Lh induces a lattice mor-
phism hy : O(X) — O(X), defined for every order-filter U of X by
hy(U) = H Y(U).

(2) Every order reversing operation on X, K € Lh induces a lattice morphism
kk : O(X) — O(X) defined for every order-filter U of X by kx(U) =
O(X)\k~1(U).

(3) Ewery increasing relation R C X"*! induces a join hemimorphism fg :
O(X)" — O(X), defined for every Uy,..., U, € O(X) by

fr(Ur,....Up) ={z € X |Jx; € Uy,...,xy € Uy : R(x1,...,2n,2)}.

(4) Ewery decreasing relation Q@ C X"t induces a meet hemimorphism 99 :
O(X)" — O(X), defined for every Uy,..., U, € O(X) by

9o(Ur,...,Uy) ={z € X |Va1,..., 2y with Q(z1,...,2n,),3i,z; € U;}.

Proof: (1) Let H : X — X be order-preserving, and let hy be defined for
every U € O(X) by hg(U) = H '(U). We show that for every U € O(X),
hag(U) € O(X). Let x < y. Assume that z € hyg(U) = H '(U). Then
H(z) € U. Since H is order-preserving and U an order-filter it follows that
H(y) € U, i.e. that y € hg(U). This proves that hg(U) € O(X). The fact that
hyg is a lattice homomorphism follows immediately.

(2) Let K : X — X be order-reversing, and let kx be defined for every
U € O(X) by kx(U) = O(X)\K '(U). We show that for every U € O(X),

154 5 Fibered Representation and Universal Algebra

kx(U) € O(X). Let z < y. Assume that z € kx(U). Then 2z ¢ K 1(U),
hence K(z) ¢ U. Since K is order-reversing and U an order-filter it follows
that K(y) € U, i.e. that y € ki (U). This proves that kg (U) € O(X). The fact
that hp is a lattice antimorphism follows immediately.

(3) Let R C X" be an increasing relation. For every Uy,...,U, € O(X) let
fr(Ur,....U,) ={xz € X |Jz1 € Uh,...,xy € Uy : R(21,...,2n,2z)}. We show
that for every Uy, ..., U, € O(X), fr(U1,...,U,) € O(X). Let x <y. Assume
that x € fr(Uy,...,Uy,). Then for some z1 € Uy,...,x, € Uy, R(x1,...,2n,).
Since R is an increasing relation it follows that R(xi,...,z,,y). Hence we
proved that there exist ©; € Uy,...,z, € U, such that R(z1,...,z,,y), ie.
that y € fr(U1,...,U,). It is easy to see that for every ¢ € {1,...,n},
fr(Uy,...,U;i1,0,Uiy1,...,Up) = 0. Also,

fR(Ul,...,Uifl,Ui U VZ',UZ'+1,...,U,-L) =

={zeX |3z €l,...,z; €cU;UVj,...;xp €Up: R(x1,...,2p,2)} =

={reX |3z, €ly,...,2; €U;,...,2y €Uy : R(z1,...,2n,2)}U
WeeX |3z eln,...,x; €Viy...;xn €Uy R(z1,...,2pn,2)} =

:fR(Ul,...,Uifl,Ui,Ui+1,...,Un)UfR(Ul,...,Uifl,Vvi,Ui_H,...,Un).

(4) Let @ C X" be an decreasing relation. For every Uy,...,U, € O(X) let
9o(Ur,...,Uy) ={z € X |Va1,..., 2y if Q(z1,...,2p,x) then Fi € {1,... n},
z; € U;}. We show that for every Uy,...,U, € O(X), go(Ui,...,Up) € O(X).
Let « < y. Assume that z € gg(Ui,...,Uy), ie. for every zi,...,z,, if
Q(z1,...,x,,x), then there is an ¢ € {1,...,n} with z; € U;.

Let x1,...,z, be such that Q(z1,...,2,,y). Then, by the fact that @ is
decreasing, Q(z1,...,Zn,). This shows that y € go(Ui,...,Uy,). It is easy to
see that for every 1 <i <mn, fr(Ui,...,U;_1,X,Uis1,...,Up) = X. Also,

fR(Ula"'anflan N %7Ui+la"'aUn) -

={r e X |Vey,...,x, if Q(z1,...,2p,2)
then either z; € U; for some j # i, or z; € U; N V;} =
={re X |Vey,...,2y if Q(x1,...,2p,2) then z; € U; for some j}N
Nz € X |Vay,...,z, if Q(z1,...,2,,2) then either
x; € Uj for some j # i, or z; € V;} =
= fr(U1, ..., Ui-1, Ui, Uity ... Up) U fR(Un, .. Uin1, Vi, Ui - Up).

O
This shows that the set O(X) of order-filters of X is closed under the oper-
ations in X, hence it is in particular a distributive lattice with operators.

The extension of the meaning function m : Var — O(X) is the unique mor-
phism of {V, A} U X-algebras m : Fma(Var) — O(X) that extends m.

Definition 5.19 We say that a L-model M = (K, m) satisfies a formula ¢ at
r
the state x (denoted by M =, ¢) if and only if x € m().

5.3.3 Automated Theorem Proving 155

A formula ¢ is true in a L-model M = (K, m) (denoted by M = ¢) if and
only if m(¢) = X.

T
The formula ¢ is true in a L-frame K (denoted by K |= ¢) if and only if it
18 true in every L-model based on K.

Lemma 5.39 Let A be an algebra in V. Assume that D(A) = ¢. Then A =
b=1.

,
Proof: Assume that D(A) = ¢. Let f : Var — A be an arbitrary assignment

of values to the variables. Let mjy : Var — ClopenOF(D(A)) be defined by
mys(p) = na o f. The unique extension of my to the formulae also has clopen
order-filters as values, and by the universality property it is easy to see that

p— T —

mz =nao f. Since D(A) = ¢, it follows that m(¢) = D(A), hence f(¢) = 1.
O

The converse does not hold in general. However, it holds if A is finite, as
shown in the next lemma.

Lemma 5.40 Let A be a finite algebra in V. Then A = ¢ = 1 if and only if
r
D(A) |- ¢.

Proof: Assume that A = ¢ = 1. We show that D(A) |; ¢. Let m :
Var — O(D(A)) be a meaning function. Since A is finite, the topology of
D(A) is discrete, hence the set of clopen order-filters of D(A) coincides with
the set O(D(A)) of order-filters of D(A), hence m : Var — ClopenOF(D(A)).
Let f : Var — A be defined by f = 77;1 om. Since A = ¢ = 1, it follows that
f(¢) = 1. It is easy to see that f = 7721 om. Thus, nzl(m(qﬁ)) = 1, hence
m(¢) = D(A). The converse follows from Lemma 5.39. O

Corollary 5.41 Assume that the logic L satisfies conditions (P1), (P2), (P3).
Then

r

Fr ¢ if and only if for all i =1,... ,n,D(4;) = ¢.

5.3.3 Automated Theorem Proving

In this section we will show that the resolution procedure described in Sec-
tion 5.2 can be extended to other finitely valued logics.
Let £ be a propositional logic with the following properties:

(P1’) L is sound and complete with respect to a variety of algebras
V, such that: V = HSP(A), where A is a finite algebra.

(P2) The algebras in V are distributive lattices with operators.

156 5 Fibered Representation and Universal Algebra

(P3) The Priestley duality between the category Dy; of distributive
lattices and the category P of Priestley spaces induces a dual
equivalence between the variety V seen as a category and a
corresponding category V,Sp of Priestley spaces endowed with
additional functions and relations.

For every algebra A € V we will denote its dual by D(A), and the isomor-
phism between A and ClopenOF(D(A)) by n4 : A — ClopenOF(D(A)).

For every operation symbol f ¢ {V,A,=,—} in the language of L, the
corresponding operation or relation in the category V,Sp will be denoted D(f).

r
We showed that a satisfiability relation = can be defined on the relational
2]
models. As noticed in Section 5.3.2, the satisfiability relation = for the algebras

rc
of V induces a satisfiability relation = for the elements in VSp. These coincide
on finite models. From Corollary 5.41 and assertion (P1') it follows that for
every propositional formula ¢ in the logic L,

L F ¢ if and only if D(A) = ¢.

As in the case of SHn-logics, for a given meaning function (interpretation)
m : Var - O(D(A)), we will introduce the abbreviations:

r

@' means “¢ is true at £” in the interpretation m (i.e. D(A) Fme)
r
@' means “¢ is false at z” in the interpretation m (i.e. D(A) e)

where z is a “possible world”, i.e. an element of D(A).

Note that if pt at m and y < x then [z] p' at m, and if pf at m and
mgythenpf at m.

5.3.4 Translation to Clause Form

First we introduce a notion of signed literals and signed clauses.

Definition 5.20 Let x € D(A) be a “possible world” and p be an atom. Then
pt is a positive literal (with sign [z]) and [z] p/ is a negative literal (with
sign [z]). A set of (positive or negative) signed literals is called a (signed)
clause. A formula in signed conjunctive normal form (CNF) is a finite set of
(signed) clauses. In the first-order case we require that the clauses in a formula
have disjoint variables.

Definition 5.21 A propositional positive literal [x| pt is satisfiable if for some
meaning function m : Var — O(D(A)), p is true in m at z.

A propositional negative litemlpf 1s satisfiable iof for some meaning func-
tion m : Var — O(D(A)), p is false in m at z.

5.3.4 Translation to Clause Form 157

A propositional signed clause is satisfiable if and only if at least one of its
literals is satisfiable.

A signed formula ® is satisfiable if and only if all clauses in ® are simulta-
neously satisfiable by the same interpretation.

We present a structure-preserving translation to clause form, similar to the
one presented in [Hah94].

Let Var be a countably infinite set of variables which will contain all the
variables that will be considered in what follows. Let ¢ be a formula in the
language of £, ¢ € Fma(Var).

Lemma 5.42 The formula ¢ is a theorem in L if and only if there is no valu-

ation m with the property that ¢ is false at x in m for some minimal element
z in D(A).

Proof: Assume first that ¢ is a theorem in £. Then for every meaning
function m : Var — O(D(A)) and every x € D(A), ¢ is true at = in m. This
holds in particular for the minimal elements of D(A).

In order to prove the inverse implication, we assume there is no valuation
m with the property that ¢ is false at = in m for some minimal element z in
D(A). Let m : Var — O(D(A)) and y € D(A) be arbitrary but fixed. Since
D(A) is finite, there exists an element & which is minimal in D(A) such that
x < y. By the hypothesis ¢ is true at = in m. Therefore, ¢ is also true at y in
m. |

The central idea behind structure-preserving clause form translations is to
introduce additional atoms (resp. predicate letters in the case of first-order
logic), which serve as abbreviations for subformulae of the input. It remains to
translate the formulae that represent the definitions of the new literals.

Let py be a new propositional variable introduced for the formula ¢.

Lemma 5.43 The formula ¢ is a theorem if and only if there is no valuation m
such that m(¢) = m(py) and p(]; at m for some minimal element x € D(A).

Definition 5.22 Let ¢1,¢2 be two formulae, and let m : Var — O(D(A)) be
a valuation. We say that ¢1 and ¢y are equivalent in m (denoted ¢p1 =, ¢o if
they are true at the same states, i.e. if m(¢1) = M(¢p2)). We say that ¢1 = @9
1s satisfiable if there is a valuation m such that ¢1 =, ¢2.

Lemma 5.44 The relations = and =, have the following properties:

(1) Let m be a valuation, and ¢1,ds be formulae such that ¢p1 =y, ¢2. Then
for every x € D(A), ¢t at m if and only if [x] ¢5 at m, and qﬁ{ at
m if and only if [x] QSg at m.

(2) ¢1 = ¢9 is satisfiable if and only if there exists a valuation m such that

for all z € D(A), ([&] ¢ v[E] i) A ([&] ¢t V[z]¢d) at m.

158 5 Fibered Representation and Universal Algebra

The proof is similar to the proof of Lemma 5.27.
Therefore, we can reduce the task of proving that a formula ¢ is a theorem
in £ to the task of proving that for no valuation m : Var — O(D(A)) we have

p(]; at m for some minimal element € D(A) and pg =, ¢.

Corollary 5.45 A formula ¢ is a theorem if and only if there is no valuation
m such that

(]‘) Vw minimal in D(A) qub at m

(2.) ([2] ¢! v[z]ph) A ([2] ' Vz]p)) atm
for every x € D(A)

Note that in (2;), expressions as [z | ¢! resp. [z] ¢f occur. In order to obtain
a clause form we have to (recursively) eliminate these expressions.

Lemma 5.46 Let m be a valuation, and let o be an operation symbol in L of
arity n. Then every formula ¢ = o(Yn,...,1y) is equivalent in m to a formula

of the form o(py,,...,Py,) where py, =m ¥; fori=1,...,n.
Moreover, for every x € D(A), a(P1,...,0n)t at m if and only if

0(p¢1’ ce ’p¢n)t at m, where Py =m ";bl and DPys =m ¢2-

Corollary 5.47 ¢ is a theorem in L if and only if the following conjunction of
formulae is unsatisfiable:

(V pé)A A A (R VEROA P, VERT)

z minimal in D(A) z€D(A) % subformula of ¢

In order to obtain a conjunctive normal form, we have to analyze the way
in which expressions of the form [z ! and ¢f can be decomposed further,
depending on the structure of 3, taking into accounnt Lemma 5.46.

Lemma 5.48 The following holds, for any given valuation m:
(Disj t) (prVvp2)' iff ([z]ph) Vv ([2]Ph).
(Disj f) (p1 V) iff
(Conj t) (p1 Ap2)t iff ([z]p
(Conj f) (1 Ap2)t iff (

5]
3

For expressing the transformation rules for the other operations we first
point out the form of the extension of the meaning function to formulae.

Lemma 5.49 Let o be an operation symbol in X with arity n. Then

m(o(p1;---,Pn)) = o)) (m(p1), .., m(pn)).

5.3.4 Translation to Clause Form 159

Proof: We use the fact that A as well as O(D(A)) are algebras of the same
similarity type, and that 54 and 7]21 are mutually inverse homomorphisms.
HEDCG, m(d(pl, . ,pn)) =TMAO© 7]21 @) m(o’(pl, e ,pn)) =
=na(ny" om(o o(p1;---,pn))) =
= nA(UA(nA ((p1)),- -4 (m(pn)))) =
= 1a(n4" (90(p(ay) (M(p1),- .. ,m(pn)))) =
= 0o(p(a))(m ()55 (pn))- O
The way the translation to clause form proceeds further depends on the way
the operations are defined on O(D(A)).
For example, assume that the algebras in)} additionally have a Heyting

algebra structure, we can use the fact that the elements of V Sp are Heyting
spaces.

Lemma 5.50 Assume that the members of V have a Heyting algebra structure
and that the duality between V and VSp is induced by the Priestley duality for
Heyting algebras. In this case, for any given valuation m

(=, t) (p1 = p2)t iff for everyy > x, y \/. p2
(:>7 f) (pl = p2)f Zﬁ (Vm>x mam’mal- pl) . p2 and

/\s1 So#0,51NSg=0 (VyMGShmammal m pl)
51082 ={yly>=}

(Vymes’g,minimal p2)
(~ t) (=p)! iff for everyy >z, [y]p
(-, f) (—p)f iff there is a y,y > x with [y] pt.

Proof: 1t is easy to see that:
m(p1 = p2) = na(n,' © m(p1 = p2)) =
=na(ny’ om(p1) = ny' om(p2)) =
=na(ny' (m(p1)) = ny (m(p2))) =
= (m(p1) = m(p2)) =
={x € D(A)| forall y,y >z and y € m(p;) implies y € m(p2)}.
(=, t), (—, t) and (-, f) follow immediately from this.
In order to prove (=, t) note that (p1 = po)f if and only if = & m(p; =
p2), which holds if and only if there exists at least one y > x such that y € m(p;)

and y € m(p2).

Thus, [z] (p1 = p»)” if and only if Vysal pi A pg) if and only if (by
distributivity)

A (\/ [n]riv pg)

51,52,51NSy=0 y1€51 y2€S2
S1US2={yly>z}

Taking into account that for every S1 C {y |y > z} V,,cs, ptl if and only if
VyMES1,mawimal ptlv and VyzESZ p£ if and only if Vymesz,minimal pg’

we obtain
(p1 = Pz)f

160 5 Fibered Representation and Universal Algebra
iff

(v)

Yym > T, marimal

A (Vo mev V)

51.59#0,51NS3=0 \ym E€S1,mazimal Ym €S2, minimal
S1USe={yly>z}

Lemma 5.51 The following hold for any valuation m:

(Lh) Let h be an operator on the logic L such that hy : A — A is a lattice ho-
momorphism. Let Hy = D(hy) be the corresponding operation on D(A).
Then x € m(h(p)) iff Ha(z) € m(p).

(La) Let k be an operator on the logic L such that kg : A — A is a lattice
antimorphism. Let K4 = D(ka) be the corresponding operation on D(A).
Then x € m(h(p)) if and only if Ka(x) & m(p).

(Jh) Let f be an operator on the logic L such that fq : A" — A is a join
hemimorphism. Let R4 = D(f4) be the corresponding relation on D(A).

Then x € m(f(p1,...,Pn)) if and only if Ix; € m(p1),...,xn € m(py)
such that (x1,...,zn,7) € Ry.

(Mh) Let g be an operator on the logic L such that g4 : A™ — A is a meet hemi-
morphism. Let Q4 = D(ga) be the corresponding relation on D(A). Then
x €m(g(p1,...,pn)) if and only if Voq, ..., x, such that (zq,...,2,,z) €
Q4 there exists an i € {1,...,n} such that z; € m(p;).

(Lh) T(h(p)) = na(ms" o mlh(p)) = na(halz (m(p)))) =
— hogpay(m(p)) = o € X | Ha(z) € m(p)}.

He(n;e, z € m(h(p)) if and only if z € hp(p(a)) (m(p)), if and only if Ha(z) €

m(p).

(La) m(k(p)) = na(ny' o m(k(p)) = nalka(ng' (m(p)))) = ko(n(a))(m(p)).

Hence, z € m(k(p)) if and only if K4(z) € m(p).

(Jh) T f(p1,-- - 2n)) = nalng’ om(f(py,-...pn)) =

= na(falng (m(p1)),- -y (m(pn)))) =

= fO(D(A))(m(pl)a tee am(pn)) =

= fry(m(p1),...,m(pn)) =

= {x € D(A) | Jz1,...2p, withzy € m(p1),...,2n €
m(pn) and (z1,...,2n,x) € Ry}

The conclusion follows immediately.

(Mh) m(g(p1,---,pn)) = na(ng' o m(g(pr, .-, pn)) =
=na(9a(ny (m(p1)), .-, ng" (m(pn)))) =
= go(p(ay)(m(p1), .-, m(pn)) =
= gq;(m(p1),...,m(pn)) =

5.3.4 Translation to Clause Form 161

={zr € D(A) |VYa1,...x,, with (21,...,2,,2) € Ry,
3i € {1,...,n}, such that z; € m(p;)}. O

We therefore obtain a procedure for translation to clause form. The rules for
translating disjunction, conjunction, and Heyting negation are those presented
in Section 5.2. For translating the Heyting implication we take into account
the rules (=,¢) and (=, f).

For the other operations we have the following transformation rules:

Lv[z]h(p)* Lv[z]h(p)f
(Lh) : (h,t) (h, f)
(- [mm]) (])
LV[z]k(p) Lv[z]k(p)!
(La) : (k1) (k, f)

(1[5} (17}

Consider for example a unary join-hemimorphism ¢ : A — A (similar to the
modal operator for “possibility”). The rule (Jh) described above specializes in
this case to:

Lv[z]o(p) Lv[z]o(p)f

(<>’t) (<>a f) : f
{L’pi’(ml’m) ED(O)} /\(ml,m)ED(O){L’pl}

Consider now a unary meet-homomorphism O : A — A (similar to the modal
operator for “necessity”). The rule (Mh) specializes in this case to:

Lv[z]0o(p)* Lv[z]o(p)f

(0,) (0, f) :
/\(z1,z)€QD {L,pi} {L,p{,(wl,w)eQD}

In general the number of clauses generated by arbitrary meet- and join-
hemimorphisms can be quite high. The next proposition gives an estimate of
the number of clauses generated from a given formula ¢ (we assume that only
unary meet- and join-hemimorphisms occur in ¢).

Proposition 5.52 Let n be the number of elements of D(A). The following
holds:

(1) If the formula ¢ only contains the connectives N,V and g such that g is
interpreted as a lattice morphism or antimorphism on A, then the number
of clauses generated from ¢ is O(In) where | is the number of subformulae

of ¢.

(2) If the formula ¢ only contains the connectives A,V,— and g such that
— 148 interpreted as a Heyting negation on A and g is interpreted as a
lattice morphism or antimorphism, (and possibly unary join- or meet-
hemimorphisms) then the number of clauses generated from ¢ is O(In?).

162 5 Fibered Representation and Universal Algebra

(3) If the formula ¢ only contains the connectives \,V,—,= and g such that
= is interpreted as a Heyting negation, = as a Heyting implication on A,
and g as a lattice morphism or antimorphism, then the number of clauses
generated from ¢ is O(In2").

Proof: The number of clauses generated from a given formula ¢ is

1+ > > clauses(pf;\/ P!)|+ clauses([z] pl V[z])]

% subformula of ¢ z€D(S, 2)

(1) Assume that ¢ only contains the connectives V, A and some morphisms
and/or antimorphisms. In this case, for every x € D(S,2) the sum of the

number of clauses generated by (pf; v ¥!) and the number of clauses

generated by (pib v ¥f) is at most 3. Thus, the number of clauses
generated from ¢ has as upper bound 1 + 3nl, so it is O(nl).

(2) Assume that ¢ only contains the connectives V, A, -, some morphisms
and/or antimorphisms and possibly unary meet- and/or join-hemimorphisms.
In this case, for every x € D(S,,2) the sum of the number of clauses generated
by (pf; V[z] 4") and the number of clauses generated by (pfp V] »h)
is not larger than n 4+ 1. Note that rules (—,t), (h, f), (g,t) — where h is a meet-
hemimorphism and ¢ a join-hemimorphism — introduce maximally n clauses,
whereas rules (-, f), (h,t), (g, f) introduce only one clause. Thus, the number
of clauses generated from ¢ has as upper bound 1+nl(n+1), hence it is O(n?l).

(3) If also the operator = appears in ¢, then for every x € D(S,2) the
number of clauses generated by (qup V Yt) is less than or equal to
the number of elements in D(S,2) smaller than z, and the number of clauses
generated by (pib V[z]f) is less than or equal to the number of subsets
of {y | y > x}. Thus, the number of clauses generated from a given formula
¢ has as upper bound 1+ nl(n + 2™ 4+ 1), hence it is O(n2"1) (if the order in
D(A) has some good properties, as in the case of SHn-logics, less clauses are
generated). O

5.3.5 A Resolution Procedure

In this section we show that also in this more general context a hyperresolution
procedure can be formulated.

Negative Hyperresolution

{p{}UDl,...,{pfl}UDn,{p’i,..., pfz}UE

Dyu...UD,UE

provided that n > 1, y; < x; foralli =1,...,n and Dy,...,D,, E
are negative.

5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 163

The following theorem shows that the negative hyperresolution principle
can be applied.

Theorem 5.53 Let ® be a set of clauses. Then @ is unsatisfiable if and only
if O can be derived from ® by a finite number of applications of many-valued
negative hyperresolution.

The proof given in Section 5.2.2 holds also in this more general case.

Theorem 5.54 Let L be a (finitely valued) propositional logic that has the
following properties:

(1) L is sound and complete with respect to a variety V of algebras with a
distributive lattice reduct,

(2) The variety V is generated by a finite algebra A,

(8) The Priestley duality extends to a dual equivalence between the variety V
and a suitably chosen subcategory of the category of Priestley spaces (with
additional operators and relations corresponding to the operations in the

logic L),

(4) For every formula ¢ in the language of L there is an equivalent set ® of
clauses signed by elements in D(A).

In this case, a formula ¢ is a theorem if and only if O can be derived from
the set of clauses ® by a finite number of applications of many-valued negative
hyperresolution.

5.3.6 An Approach to Automated Theorem Proving in First-
Order Logic

We briefly present here an extension to first-order logic.

Let ¥ = {A,V,01,...,0.} be a signature, where A,V are binary operations
and for every ¢ € {1,...,r}, o; has arity n;. Let A be a finite algebra in a variety
V of ¥-algebras with an underlying distributive algebra structure. Assume that
V is generated by A, and that the Priestley duality for distributive lattices
extends to a dual equivalence between V and a category of suitable Priestley
spaces V,Sp. The dual of A will be denoted D(A).

In what follows we present a possibility of defining first-order many-valued
logics based on A (i.e. having A as a set of truth values).

Syntax
Consider the language of a first-order logic £, consisting of:

(1) An infinite (countable) set X of variables.

(2) A set O of function symbols;

164 5 Fibered Representation and Universal Algebra

(3) A set P of predicate symbols;

(4) A set ¥ = {A,V,01,...,0.} of logical operators, including the binary
operators A, V;

(5) A finite set of (one-place) quantifiers Q1, ..., Q;

Let Termo(X) be the set of terms of the language L 4, i.e. the free O-algebra
freely generated by X, and let TermOO be the set of ground terms* of the language
L4. Let Atz (X) be the set of atomic formulae of the language of £, i.e. the set
of all the expressions of the form R(t1,...,t,) where R is a predicate symbol of
arity n and ty,...,t, are terms, and let Fma(L) be the free algebra of similarity
type (A, V,01,...,00, (Q12)zex, -, (Qrx)cx) freely generated by the set of
atomic formulae of the language of L.

Semantics

The (finite) algebra A can be regarded as a set of “truth values” for the logic
L. The operations o4 for o € ¥ can be regarded as “truth tables” in A. The
quantifiers can also be defined by “truth tables”. Thus:

e For every o € ¥ with arity n we associate a truth function o4 : A" — A.

e For every quantifier Q we associate a truth function Q : P(A4)\0 — A.

Referring to a formula Q(z)¢(z) truth functions can be understood as fol-
lows, in a given domain D of interpretation: Let M C A be the set

{w | 3d € D such that w is assigned to ¢(d)}.

The quantifier Q associates a truth value Q(M) € A to each such set.

Definition 5.23 (Frame, Interpretation) A frame® for a language (consist-
ing of a set of variables X, a set of operation symbols O, a set of predicate
symbols P, a set of logical connectors ¥, and a set of quantifiers {Q1,...,Qx})
and a set of truth values A is a pair (D,I) where:

(1) D is a non-empty set, the domain, and

s a signature interpretation, i.e. a function assigning a function :
2) 11 Lgnat int tat) te LGNt tion 1
D™ — D to every n-ary function symbol f € O, and a function I(R) :
D™ — A to every n-ary predicate symbol R € P.

An interpretation Z for a language (P,0,%,{Q1,...,Qk}, X) and a set of truth
values A is a triple (D, 1,d) where (D,I) is a frame and d is a variable assign-
ment d: X — D.

4A ground term is a term that does not contain any variable.
®This definition and the name frame is taken from [BF95]. Note the difference between
this notion of frames and the notion defined in Sections 5.1.2 and 5.3.2.

5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 165

The idea of a generalization of the algebraic treatment of formulae of propo-
sitional calculi to formulae of predicate calculi is due to Mostowski [Mos48]
pp-204-207 who introduced an algebraic interpretation of formulae of intuition-
istic calculi (the quantifiers V and 3 are interpreted as greatest lower bound resp.
least upper bound). The approach in [BF95] is an extension of Mostowski’s ap-
proach in that arbitrary quantifiers (not only V and 3) are considered, and they
are interpreted as maps from the family of nonempty subsets of A to A.

Examples of frames for a language are the Herbrand frames (called Herbrand
structures in [Hah96b]). The domain of a Herbrand frame is the set H = Term®
of all ground terms (if the language contains no constant one constant is added);
the signature interpretation Iz assigns

e to every m-ary function symbol f the map Iy (f) : H® — H defined by
Ig(f)(hi,...,hy) = f(t1,...,tn) (seen as a ground term),

e to every m-ary predicate symbol R a map Ig(R) : H" — A.

Every interpretation Z = (D, I, d) induces a valuation function vz : Fma(£) —
A as follows:

(1) vz(z) = d(x) for all variables z € X,

(2) vz(f(t1,...,tn)) = I(f)(vz(t1),...,vz(t,)) for all n-ary function symbols
feoO, n>0,

(3) vz(R(t1,...,tn)) = I(R)(vz(t1),...,vz(t,)) for all n-ary predicate sym-
bols R € P, n > 0,

(4) vz(o(o1,...,0n)) = ca(vz(d1),...,vz(dy,)) for all logical operators o €
%,

(5) vz((Qz)¢) = Q{w | 3d € D s.t. vz, ,(¢) = w}) for all quantifiers Q,

where 7, 4 is identical with Z except for assigning d to the variable z.
A Herbrand interpretation is an interpretation in a Herbrand structure.

Example 5.3 For any Herbrand interpretation I we have

vz(Ved(z)) = vz, ,(¢) |t ground term},

vr(Jzd(z)) = \/{vzm,t(qﬁ) | t ground term}.

Definition 5.24 (Validity, Satisfiability) A formula ¢ is valid in a logic £
iff for all interpretations T for the language of L and A, vz(¢) = 1.

A formula ¢ is satisfiable in a logic L iff there is an interpretation T for the
language of L and A with vz(¢) = 1.

166 5 Fibered Representation and Universal Algebra

The definition can be formulated in a more general way, allowing a set of
“designated elements” A; C A: a formula ¢ is valid in £ if and only if for all
interpretations Z for L4 and A, vz(¢) € Ay, and it is satisfiable in £ if and
only if there is an interpretation Z for £4 and A with vz(¢) € A;. However, in
what follows we will focus on the notion of validity resp. satisfiability given in
Definition 5.24.

Note that for every f : Fma(L) — A, there exists a map my = ngq o f :
Fma(L) — O(D(A)). Then f(¢) = 1 if and only if m¢(¢) = D(A). Recipro-
cally, for every m : Fma(L) — O(D(A)), we can define f,, : Fma(L£) — A by
fm =1ny," om. We have f,,(¢) = 1 if and only if m(¢) = D(A).

This suggests that one can introduce an alternative notion of interpretation,
namely as a triple M = (D, M,d), whered : X — D, M(f): D™ — D for every
function symbol of arity n and M(R) : D™ — O(D(A)) for every predicate
symbol of arity n. Because of the isomorphism between A and O(D(A)) (since
A is finite), these two notions of interpretation are equivalent.

Interpretations in O(D(A)) extend to formulae in a similar way as interpre-
tations in A.

Proposition 5.55 A formula ¢ is valid in L if and only if for every interpre-
tation M = (D, M,d) in O(D(A)), vam(¢) = D(A).

Like in the propositional case, given an interpretation M = (D, M, d), where
d: X — D, M(f): D" — D for every function symbol of arity n and M(P) :
D™ — O(D(A)) for every predicate symbol of arity n, we will now consider
signed formulae (in classical logic) of the type:

[a] ¢' for “¢ is true at a” in M (i.e. a € vaq(9))
[a] ¢/ for “¢ is false at a” in M (i.e. & & v(¢))

where « is a “possible world”, i.e. an element of D(A).
Note that if a < 3 € D(A) and [a] ¢! in M then @ ¢! in M.

Lemma 5.56 The formula ¢ is valid in L if and only if there is no interpre-
tation M = (D, M,d) of L in O(D(A))

\Y [a] ¢ in M.

a€D(A), minimal

Proof: It follows from the fact that ¢ is not valid if and only if there exists
an interpretation M = (D, M, d) such that va((¢) # D(A), i.e. if and only if
there exists an interpretation M = (D, M,d) and an o € D(A) minimal such
that o & va((o). O

5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 167

Translation to clause form

We first present a procedure for translation to clause form using structure-
preserving rules. We present, as in the propositional case, a structure-preserving
transformation method (the method presented here is inspired by the structure-
preserving transformation method to clause form in first-order logic given in
[Ede92], see also [BF95] and [Hah94]).

Let ¢ be a formula. The main idea is to introduce for every non-atomic
subformula v of ¢ a new atomic formula of the form Py (%), where Py is a new
predicate symbol and T are the free variables in .

Lemma 5.57 Let T = (D, I,d) be an interpretation of the language (X, O, P)
of the logic L. Let ¢ be a fomula in L and let (X, 0, P*) the language obtained
by introducing a new predicate symbol Py for every non-atomic subformula

of ¢.
Let T* = (D*,I*,d*) be the interpretation for the language (X, 0, P*) de-
fined inductively as follows:

(1) D* =D,
(2) I*(f) = I(f) for every function symbol f € O,
(8) I*(R) = I(R) for every predicate symbol R € P,

For every non-atomic subformula ¥ = o(Y1,...,¥m) of ¢ with free vari-
ables {x1,...,xn}, I*"(Py) : D™ — A is defined for every ds,...,d, € D by
I*(Py)(dy,...,dn) = UA(UI;,-/J,- (Pyy (215003 20))y .o e s vTs (Py,, (z1,...,2n))),
For every non-atomic subformula ¥ = (Qz)yYr(x, z1,...,z,) of ¢ with free
variables {x1,...,xn}, I*(Py) : D™ — A is defined for every di,...,d, €
D by I*(Pq/z)(dla e adn) = UI*zi/di((Qm)Plb(mla e ,mn))

(4) d*=d: X = D.

Then for every subformula i of ¢ with free variables x1,...,x,, and for
every di,...,d, € D, vTE (Pyp(x1,...,25)) = VL, 4 ().

Proof: We proceed by structural induction on the structure of 2.

If ¢ is an atomic subformula of ¢ of the form ¢ = R(t1,...,t;) then obvi-
OU_Sly VT* (R(tl, . ,tk)) = Uz(¢).

Moreover, if z1, ..., , are the free variables in v, then for every dy,...,d, €
D, UI;i (R(tl,...,tk)) :’UIzi/di(¢).

/d;
Let now ¥ be a subformula of ¢. Assume that for every subformula ¢’ of
1 with free variables z1,...,z,, VI (Pyr(x1,...,20)) = VT, 4 (¢') for every

di,...,dn, € D. We distinguish the following cases:

Case 1: ¢ = o(¢1,...,%m).

In this case vz« (Py(x1,...,2,)) = I*(Py)(d(z1), ..., d(zy)) =
= oA(vrs (Py, (%1, ,2n)), -, vz (Py,, (21, ..., T0))) =
= oa(vz(¢1), ..., vz(Pm)) = vz(¥).

168 5 Fibered Representation and Universal Algebra

Similarly, for every dy,...,d, € D,
L (Py(z1,...,2p)) = (TA(UI;i/di (Py, (@15, Zn)),--- T (Py,, (z1,...,2))) =
=0a(vz,,). (Y1) sz, . (Ym)) = vz,), (¥).
Case 2: ¢ = (Qz)Y1(z,21,...,2p). B
In this case vz« (Py(x1,...,2n)) = v+ ((Q) Py, (z,21,...,2,)) = Q{w | 3d €
D s.it. vre, o (Py,(z,21,...,25)) = w} = Q{w | 3d € D s.t. vz, ,(¢1) = w} =
vz().
Similarly, for every dq,...,d, € D,
VI, (Py(z1,...,@n)) = I*(Py)(dr,-..,dy) =
= UI*mi/di((Qx)Pqpl(a:,xl, cey) =
=Q({w|3de D st vz, . (Py (w21, 2,)) = w} =
=Q{w|3de D s.t. VL, g0 (Y1) = W)=
= vzﬂi/di(¢)' O

Lemma 5.58 The following hold:

(1) The formula ¢ is valid if and only if for every interpretation T = (D, I,d),
if the following conditions hold:

(1a) for every subformula ¥ (zq,...,x,) = o(Y1,...,%m) of ¢ with free
variables x1, ..., xy, vIz,/d,(Pd,(xl, cey X)) =

oAVT, o (Pon (21, s a s 0L, 1o (P (21, 20))), for every
di,...,d, € D, and
(1b) for every subformula ¥(x1,...,2,) = (Qx)Y1(z, 21, ..., 2y),

vzzi/di(P¢(x1,...,xn)) = vzzi/di((Qa:)P%(m,ml,...,mn)), for every
... d, € D.

then Py is true at Z.

(2) The formula ¢ is satisfiable if and only if there exists an interpretation
Z = (D,1,d) such that

(2a) for every subformula ¥(z1,...,xn) = o(Y1,...,%m) of ¢ with free

variables x1,..., Ty, va,/d,(Pd,(:vl, ceey) =
UA(szi/di(P¢1($1’ R) JVI, . (Py,, (x1,...,2,))), for every
di,...,dn € D, and

(2b) for every subformula ¥(x1,...,x,) = (Qx)1(z,21,...,2y0),

vz, 0 (Py(@1,.. . 2n)) = vz, , ((Qx)Py, (z,21,...,2,)), for every
di,...,d, € D.

and Py 1is true at T.

Proof: Let ¢ be a fomula in £. By Lemma 5.57 we know that for every inter-
pretation Z = (D, I,d) and its extension Z* = (D, I*,d) to the new introduced
predicate symbols, v+ = (Py(z1,...,2,)) = VT, 4 (¢) for every dy,...,d, € D.

/d;
7(¢).

In particular, vz« (Pg(z1,...,Tn))

5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 169

(1) Assume that ¢ is valid. Let Z = (D, I, d) be an arbitrary interpretation
of the extended language such that the conditions (1a) and (1b) hold. Then
Z = (D,1,d) is the extension (in the sense of Lemma 5.57) of its restriction
to (X, 0, P), hence vz(Py(z1,...,%n)) = vr(¢). Since ¢ is valid it follows that
vz(¢) = 1. Therefore, vz(Py(x1,...,2n)) =1, i.e. Py is true at Z.

Conversely, let ¢ be a formula in £ and assume that for every interpretation
T that satisfies conditions (1a) and (1b), Py is valid in Z. Let T = (D, I,d) be
an interpretation for the language (X, O, P). It is easy to see that the extension
T* of T to the language obtained by introducing a new predicate symbol for
every subformula 1 of ¢ satisfies (1a) and (1b). It follows then that Py is true
at Z*. But vzs(Py(z1,...,2n)) = vz(¢). Thus, ¢ is true in Z.

(2) Assume that ¢ is satisfiable. Then there exists an interpretation Z =
(D, I,d) such that ¢ is true in Z. It is easy to see that the extension Z* of Z to the
language obtained by introducing a new predicate symbol for every subformula
¥ of ¢ satisfies (2a) and (2b). Moreover, since vz+(Py(x1,...,25)) = v7(9), Py
is true at Z*.

Conversely, assume that there exists an interpretation Z = (D, I,d) of the
extended language such that the conditions (2a) and (2b) are fulfilled and P,
is true at Z*. Then Z = (D, I, d) is the extension (in the sense of Lemma 5.57)
of its restriction to (X, O, P), hence vz(Py(z1,...,%n)) = vz(¢). Therefore, ¢
is true in 7. O

Example 5.4 Let ¢ be the formula (Vx) ~ S1(p(z)) in a first-order SHn-logic
(based on the algebra S,> as an algebra of truth values) with a unary predicate
symbol p (as explained at the beginning of Section 5.3.6).

Let Py be a new predicate symbol with arity 0 corresponding to the formula
¢ (without free variables), P.g (p(z)) @ new predicate symbol with arity 1 (cor-
responding to the subformula ~ S1(p(x))), and Pg, (p(z)) @ new predicate symbol
with arity 1 (corresponding to the subformula Si(p(x))).

Then

e ¢ is valid if and only if for every interpretation I,

(i) I(Py) = vz((V)P.s, (p(a)) (7)),
(i1) for any instantiation d € D, va/d(Pwsl(p(w))(x)) =~ va/d(Psl(f(w)))7
and

(i1i) for any instantiation d € D, vz, ,(Ps, (p(z))(2)) = S1(vz, ,,(p()))

imply that Py is true in Z, and
e ¢ is satisfiable if and only if there is an interpretation T = (D, I,d) such
that

(i) I(Py) = vz((Va)Pos,(p(e)) (7)),
(i1) for any instantiation d € D, va/d(Pwsl(p(x))(x)) =~ va/d(Psl(f(x)))7
and

(i1i) for any instantiation d € D, vz, ,(Ps, (p(z))(2)) = S1(vz, ,(p()))

and Py 1s true in T.

170 5 Fibered Representation and Universal Algebra

Taking into account the bijective correspondence between models Z = (D, I, d)
based on A and models M = (D, M, d) based on O(D(A)) and the fact that
Py is not true at M if and only if

P/ in M,
V [a] P}

aeD(A), minimal
from Lemma 5.56 we obtain the following immediate corollary.

Corollary 5.59 The formula ¢ is valid if and only if there exists no interpre-
tation M = (D, M,d) of L in O(D(A)) such that
J; ‘
VaeD(A), minimal (2 Py in M,
Py(z1,...,xy,) true at o in M iff for all subformulae
(Py,s---,Py,,) true at a in M v=0(1,...,Um) of ¥
for every a € D(A) and every instantiation of the
free variables x1,...,xy of ¥,

Py(z1,...,2yn) true at o in M iff for all subformulae
(Qx) Py, (x,1,...,24) true at a in M = (Qz)1(z, 1, ..., 2,) of &,
for every a € D(A) and every instantiation of the
free variables x1,...,x, of 1.

Proposition 5.60 The formula ¢ is valid if and only if there exists no inter-
pretation M = (D, M,d) of L in O(D(A)) such that

f .
(VaeD(A)7 minimal [2] Py in M,
(] Py(z1,...,zn) V[a] 0(Pyy,- ... Py,)N for all subformulae
AN] Py(z1,...,7n)F V] o(Pyys- ey Py,)b) Y=0c(1,...,%0m) of ¢
mn M and every instantiation of the
for every a € D(A) free variables 1, . ..,z, of ¥,

(@ Py(z1,...,z,)tV @ (Qz)Py, (z,21,- .., z,))A for all subformulae
/\(@ Pll)(mlv e 7$n)f \/@ (QI)Pd,l (mamla s amn)t) ,(/) = (Qm)lpl(mamla s amn) Of ¢
in M and every instantiation of the
for every a € D(A) free variables 1, .., T, of V.

The situation when ¢» = o (11, ..., %y,) can be handled as in the propositional
case, taking into account the properties of . For the situation when ¥ =
(Qz)1(z), Q € {V, 3}, we have the following results (some of them appear —
in a different context — also in [H&h96a]).

Lemma 5.61 Let Z = (D, I,d) be an interpretation of L in A, and let a € A
be a join-irreducible element. The following properties hold:

(V1) vz(Vad(z,21,...,20)) > a iff v, ,(¢(z,21,...,20)) > a for every instan-
tiation d € D of x.

5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 171

(V2) vz(Vep(z,x1,...,2,)) F a iﬁvzz/d(qﬁ(x T1,...,%y)) F a for some instan-
tiation d € D of z, depending on d(z1),...,d(xy,).

(A1) vz(3zxp(z,x1,...,2,)) > a iﬁvzz/d(qﬁ(x x1,...,%y)) > a for some instan-
tiation d € D of x, depending on d(z1),...,d(zy,).

(32) vz(Fzd(z,21,...,20)) 2 a iff v, ,(P(z,21,...,20)) Z a for every instan-
tiation d € D of x.

Proof: (V1) and (V2) follow immediately, taking into account that

fVap(z, 21, ..., 2,)) = /\{w | 3d € D s.tovg, ,(¢(z,21,...,2n)) = w}.

(31) For the direct implication, assume that vz(Jzd(z)) = V{w | 3d € D s.t.

vz,,,(¢(z,21,...,2p)) = w} > a. From the fact that A is distributive and for
every ¢ the set {w | 3d € D s.t.vg, ,(¢(z,21,...,7,)) = w} is finite, it fol-
lows that a = V{w | 3d € D s.t.vz, ,(¢(2,21,...,2n)) = w} Na = V{wAa|
3d € D s.t.vg, ,(¢(z,21,...,2,)) = w}. By the fact that a is join-irreducible

it then follows that @ = w A a for some w such that there exists d € D
with vz, (¢(z,z1,...,2,)) = w, hence, vz, ,(¢(z,21,...,2,)) > a for some
d € D (depending on d(z1),...,d(z,). The converse follows immediately since

if vz, ,(¢(z,21,...,74)) > a for some d € D, then also vz(3zd(z)) = V{w |
dd € D s.t.vg, ,(d(z,21,...,20)) = w} > a.

(32) follows immediately from (31). O

Lemma 5.62 Let M = (D, M,d) be an interpretation of L in O(D(A)). The
following properties hold:

(1) [a] (Veg(z,z1,...,25))" in M iff [a] (¢(z,21,...,2,))" in M for every

instantiation of w.

(2) [a] (Vzo(z,x1,...,20)) in M iff[a] (¢(z,21,...,2,))F in M for some
some instantiation fy(d(x1),...,d(zy)) for x, where fg is a new function
symbol.

(3) [a] Gzg(z,z1,...,2,))" in M iff [a] (¢(z,21,...,24))" in M for some
instantiation fy(d(x1),...,d(xn)) for x, where fg is a new function sym-

bol.
(4) [a] (Fzp(x, 1, ... 2n))f in M iff [a] (o, x4, ... ,2n))! in M for every

instantiation of w.

Proof: We know that all the elements o € D(A) are of the form 1 a with
a a join-irreducible element in A.

For every M = (D, M,d), let vpq : Fma(L) — O(D(A)) be its extension to
the formulae. Let Z = (D, I, d) be the associated interpretation in A (obtained
by composition with 7)21 when necessary). For every ¢ € Fma(L) we have

172 5 Fibered Representation and Universal Algebra

om(®) = na(ur(®)) = {1 a | vr(¥) €t a} = { o | vr($) > a}. Thus,
a =Ta € vap(¢) if and only if vz () > a.

Thus, [a] 4" in M if and only if vz(¢)) > a. Therefore, using Lemma 5.61
we have:

(1) [a] (Vzd(z, z1,...,T,))" in M if and only if vz(Vzé(z, z1,...,20)) > a,
which, by Lemma 5.61 happens if and only if vz, ,(¢(z,21,...,2,)) > a for
every instantiation d of z. Thus, [a] (Vzd(z,z1,...,2,))" in M if and only if
for every instantiation of z, [a] (¢(z, 21,...,2,))" in M.

(2) [o] (Ved(z, 21, ... ,2,))T in M if and only if a & va(Vazd(z, 21, ..., 2,)).
By Lemma 5.61 this happens if and only if vz, ,(é(z,21,...,2n)) # a for some
instantiation d of a, depending on the values of the other free variables in ¢.

The assertions (3) and (4) follow analogously. |

Let L' be the first-order language obtained from the language of £ by adding
a new r-ary predicate symbol Py for every formula ¢ in £ with r free variables
and a k-ary function symbol f, for every formula ¢ of £ that starts with a
quantifier and has k free variables. The f, will serve as Skolem functions.

As a consequence of the previous results, the following hold:

e [a] (Vad(z,21,...,2,))" in M iff [a] (¢(z,21,...,2,))" in M for every

instantiation of z.

* @ (VQ?(]S(.’II,.’IJl,,Q?n))f in M IH@ (¢(f¢('rla"'amn)amla"'amn))f in

M (where f4 is a new function symbol).

e [a](Fzg(z, z1,...,2,))" in M iff[a] (¢(fs(z1,...,20),21,...,2,))" in M

(where f4 is a new function symbol).

o [a] Bzd(z,21,...,2,))) in M iff [a] (¢(z,21,...,7,))7 in M for every

instantiation of z.

If with all operations in A one can associate corresponding relations on
the dual set, according to the remarks already done in Section 5.3.1 and Sec-
tion 5.3.3, these rules allow us starting from a given formula ¢ to construct a
set of signed clauses @ such that ¢ is valid if and only if ® is unsatisfiable.

Definition 5.25 Let a € D(A) be a “possible world” and L be an atomic
formula. Then [a] L! is a positive literal (with sign [a]) and [a] LY is a
negative literal (with sign[a]). A set of (positive or negative) signed literals is
called a (signed) clause. A formula in signed conjunctive normal form (CNF)
is a finite set of (signed) clauses. We require that the clauses in a formula have
disjoint variables.

Definition 5.26 A positive literal [a] L* is satisfiable if for some interpretation
in O(D(A)), M = (D,M,d), a € vm(L). A negative literal [a] L' is satisfiable
if for some interpretation in O(D(A)), M = (D,M,d), o € vpm(L).

A signed clause is satisfiable if and only if at least one of its literals is
satisfiable. A signed formula ® is satisfiable if and only if all clauses in ® are
simultaneously satisfiable by the same interpretation.

5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 173

Let ® be a set of clauses. The Herbrand universe H(®) of ® is the set
of variable-free terms that consist of constants and function symbols occurring
in ®. If there is no constant in ® we introduce a special constant symbol to
prevent H(®) from being empty.

A ground instance C' of a clause (or atom) C in ® is a substitution instance
of C such that terms in H(®) replace the variables of C.

The Herbrand base A(®) of ® is the set of all ground instances of atoms
that occur in clauses in ®.

An assignment in A associates truth values in A with atoms. Alterna-
tively, an assignment in D(A) associates upwards-closed sets of elements in
D(A) (“possible worlds”) with atoms. Since O(D(A)) and A are isomorphic,
the two notions express the same thing. A complete assignment in A to a set
of atoms K is defined as a set of literals {P*(¥) | P € K}, where v : K — A.

A complete assignment in D(A) to a set of atoms K is defined as a set of
the form { [a] P! | P € K,a € m(P)}U{[a] P | P € K,a & m(P)} where
m: K — O(D(A))).

An H -interpretationS of a set of clauses ® is a complete assignment to A(®).
A H-interpretation M satisfies a clause set ® if and only if for every C € ®,
all ground instances C’ of C are such that C' N M # 0. ® is H-unsatisfiable if
there is no H-interpretation that satisfies ®.

Proposition 5.63 A set of clauses ® is unsatisfiable if and only if it is H-
unsatisfiable.

Sketch of the proof: Every H-interpretation corresponds to a frame, as de-
fined in Definition 5.23. Assume that ® is H-satisfiable, i.e. that there exists a
H-interpretation M that satisfies ®. We can therefore construct a Herbrand in-
terpretation in A H = (Term, I, d) that satisfies ® (or alternatively a Herbrand
interpretation in O(D(A)), Hy = (Termd, M, d)).

Conversely, let Z = (D,I,d) be an arbitrary interpretation. Z induces
an H-interpretation in A, Iz = {P" | vz(P) = w,P € A(®)} (resp. an H-
interpretation in D(A), Mz = { [a] P! | a € na(vz(P)),P € A(®)}U{[a] P/ |
o # na(vz(P)), P € A(D)}). 0

A Resolution Procedure

We describe also in this case a resolution procedure based on negative hyper-
resolution.

In what follows we consider clauses signed by elements of D(A). Since [a] L
implies @ L? for every 3 > a, we can delete in a clause occurrences [o] Lt of
signed literals with the property that there exists a 8 with 8 > « such that
@ L' € C. Similarly, [a] LY implies @ LY for every 8 < a. Hence we can

®Note the difference we make here between Herbrand interpretations (cf. the examples
after Definition 5.23) and H-interpretations: Herbrand interpretations apply to formulae and
are interpretations over the algebra of all variable-free terms, whereas H-interpretations are
defined for clauses, and refer only to the Herbrand universe of a set of clauses. The two notions
are very similar, but because of these differences we use here different names for them.

174 5 Fibered Representation and Universal Algebra

delete in a clause occurrences @ LI of signed literals with the property that
there exists an a with 3 > a such that [a] L € C.

Definition 5.27 (Factor) Let C be a clause. If two or more positive literals
of C have a m.g.u. o, then o(C) is called a factor of C. Likewise, if two or
more negative literals of a clause C have a m.g.u. o, then o(C) is called a factor

of C.

Definition 5.28 (Binary Resolvent) Let C and Cy be clauses with no vari-
able in common. Let [a] Lt and @ Lg be signed literals occurring in C1 and
Cs, respectively. If a < B and L1 and Ls have a m.g.u. o, then the clause
Cs := (0(C1) —[a] o(L)) U (a(Cs) — @ O'(Lg)) is called a binary resolvent of
Cl and Cg.

Definition 5.29 (Resolvent) A resolvent of two clauses Cy and Cy is one of
the following binary resolvents:

1. a binary resolvent of C1 and Co,

2. a binary resolvent of C1 and a factor of Ca,

3. a binary resolvent of a factor of Cv and Cs,

4. a binary resolvent of a factor of C1 and a factor of Cs.

Let P be an ordering of predicate symbols. A finite set of clauses
{Er,...,E4,N},g>1

is called a semantic clash with respect to P if and only if E,..., E, (called
electrons) and N (called nucleus) satisfy the following conditions:

1. Ey,..., E, are negative clauses,
2. Let Ry = N. Foreachi =1,...,q, there is a resolvent R; 1 of R; and E;,

3. The literal in E;, which is resolved upon, contains the largest predicate
symbol in E;,i =1,...,q,

4. Rg41 is a positive clause.

R, 1 is called a resolvent by hyperresolution of the semantic clash {Ey, ..., E;, N}.

This can be schematically represented as follows:

{L{}UDI,...,{L,{}an,{Lg,..., L;}UE

DiU...UD,UE

provided that n > 1, a; < g; forall¢ =1,...,nand Dy,...,D,, E
are negative.

5.3.6 An Approach to Automated Theorem Proving in First-Order Logic 175

The following theorem states the correctness of the automated theorem
proving procedure by hyperresolution:

Theorem 5.64 For any set of clauses ®, if the empty clause O can be derived
from ® by resolution, then ® is H-unsatisfiable.

Proof: Follows from the fact that an H-interpretation that satisfies a
set of clauses also satisfies all their factors and their resolvents. But no H-
interpretation satisfies the empty clause. O

The next results prove the completeness of the procedure.

Lemma 5.65 (Lifting Lemma) If C| and C} are instances of C; and Cs
respectively, and if C' is a resolvent of C{ and C%, then there is a resolvent C
of C1 and Cy such that C' is an instance of C.

Proof: We rename if necessary the variables in C7 and Cy such that the
variables in Cy and Cs are disjoint. Let @L’f and @L;f be the literals resolved
upon (a < (), and let the resolvent of C] and C) be

C' = (o(C}) —[a] o (L)) U (o(C3) —[B] o(LY)),

where o is the m.g.u. of L) and Lj.

Since C] and C} are instances of C; and Cj respectively, there is a substi-
tution @ such that C] = 6(C1) and C) = 6(C3) (we used the disjointness of
the variables in C; and Cs). Let [a] L%t,] qut resp. @ L%f, - ,@ L;zf
be the literals in Cy, resp. Cy corresponding to L} resp. L§ (i.e. such that
O(L})=...=0(L) =L, i=12).

If r; > 1, let \; be a m.g.u. for {L},... LI*}, and let L; = \;(L}), i = 1,2.
Then L; is a literal in the factor A\;(C;) of C;. If r; = 1, then let \; be the
identity and L; = X\;(L}). Let A = A\; U A2 (the variables in Cy, Cs are disjoint).
Since L} and L) are unifiable, L; and Ly are unifiable. Let v be the m.g.u. of
L1 and Lg.

c:wmwm—@ﬂmwwmwmw[hwm

= ((YA@) | L e O} — @ AATD), ... [@] 7L DU
UM%MMHLe@%ﬁ[h@@%ﬁm[j%M%WU)

C is a resolvent of C; and Cs. Clearly, C’ is an instance of C since
02@@%[%%”WW$—EM%W:

= (o(6(Cy)) *{@0’9 [a(6(LT) }))U
) —{[B] o(6(L3)),....| B] o (6 ﬂzﬁ

and - o A is more general than o o 6. O

176 5 Fibered Representation and Universal Algebra

Lemma 5.66 Let P be an ordering on predicate symbols, and let ® be a finite
unsatisfiable set of signed ground clauses. Then O can be derived from ® by a
finite number of applications of many-valued negative hyperresolution.

Proof: Similar to the proof of Theorem 5.33. O

Theorem 5.67 Let P be an ordering on predicate symbols, and ® be a finite
unsatisfiable set of signed clauses. Then O can be derived from ® by a finite
number of applications of many-valued negative hyperresolution.

Proof: Since ® is unsatisfiable, there is a finite unsatisfiable set ® of ground
instances of clauses in ®. By Lemma 5.66, O can be derived from @’ by a finite
number of applications of many-valued negative hyperresolution. Let D’ be the
deduction of O from ®'. From the deduction D’ we can produce a deduction D
by hyperresolution of O from & as follows.

For any node N of D', let C)y be the ground clause at node N in D’
Now, attach to each initial node I a clause C from ® such that C} is a ground
instance of C;. Then, for each non-initial node NV, if clauses have been attached
in this way to each of its immediate predecessor nodes and they constitute a
semantic clash, attach to NV the hyperresolvent of which C' is an instance (this
is possible because of the lifting lemma, Lemma 5.65). In this way we attach a
clause Cy to each node N such that CY, is a ground instantiation of Cy. The
clause attached to the terminal node must be O, since the clause already there
is O. It is easy to see that the deduction tree, together with the attached clauses
is a deduction by hyperresolution of O from ®. This completes the proof. O

5.4 Examples

5.4.1 P,,-logics

Definition 5.30 (Ockham Algebras) A Ockham algebra A = (L, V, A, f,0,1)
s a distributive lattice with 0 and 1 with an unary operation f satisfying:

(01) £(0) =1,
(02) f(1) =0,
(03) f(zAy) = f(z)V f(y),
(04) f(xzVy)=f(z)A f(y).

Before entering into detail, we indicate some algebraic and logical moti-
vation for the study of Ockham algebras. For details see also [Urq79]. The
class of De Morgan lattices”
paradoxes of material implication. The study of De Morgan lattices and their
representations has very much helped in investigating the algebras of propo-
sitions that arise from these logics. The Ockham algebras offer a setting for
describing a larger class of logics. In logical terms, the goal is to describe the

arises naturally in the study of logics omitting the

"A De Morgan lattice is a structure M = (L,V,A,~ 0,1), where (L,V,A,0,1) is a dis-
tributive lattice with 0 and 1, and ~ is a unary operation such that ~1 =0, ~~ z = z and
~ (z Ny) =~V ~ y for every z,y € L.

5.4.1 Py,,-logics 177

structure of algebras of propositions which lack not only the paradoxes of ma-
terial implication but also the law of double negation. The resulting theory is
quite elegant mathematically and subsumes not only the theory of De Morgan
lattices but also that of Stone lattices® which have been extensively investigated
by lattice theorists.

The class of Ockham algebras is equationally definable, hence it is a variety.
We will denote by K the variety of Ockham algebras.

Definition 5.31 (P,,,) Form >n >0, let Py, be the subclass of KC defined by
f™(x) = f™(z) for every x € L if m —n is even, respectively

fMx)V fM(z) =1 foreveryx €L | .
{fm(a:)/\f"(x):() for every x € L if m —n is odd.

We recall the following results (for details see e.g. [Urq79]).

Let K be the category of Ockham algebras, having as objects Ockham alge-
bras and as morphisms, morphisms of Ockham algebras.

Let O be the category of Ockham spaces, having as

Objects: structures (X, <,7,g) where (X, <,7) is a Priestley space
and g : X — X is a continuous, order reversing map;

Morphisms: continuous, order preserving maps that preserve the
unary operator.

Proposition 5.68 ([Urq79]) The Priestley duality induces a dual equivalence
between the category K and the category O.

Proposition 5.69 ([Urq79]) L € P, if and only if the dual space D(L) =
(X,<,7,9) of L satisfies g™ (x) = g"(x) for every x € X.

Let Pyn be the full subcategory of K whose objects are algebras in Pp,,, and
let Omn be the full subcategory of O whose objects are those Ockham spaces
(X, <,7,g) that additionally satisfy ¢™(z) = ¢g"(x) for every z € X.

Corollary 5.70 ([Urq79]) The dual equivalence between the category of Ock-
ham algebras and the category of Ockham spaces induces a dual equivalence
between Py, and Omp.

Theorem 5.71 ([Urq79]) If L is an Ockham algebra and (X, <,7,g) the dual

space of L, then L is subdirectly irreducible if and only if {x | g ({z}) # X} is
not dense in X (where g (Y') stands for {g"(y) |n >0,y € Y}).

8A Stone lattice is a structure S = (L, V, A, *,0,1), where (L,V,A,0,1) is a distributive
lattice with 0 and 1, and # is a unary operation such that 0* =1,z Az* =0,(zAy) = z* Vy"
for every z,y € L.

178 5 Fibered Representation and Universal Algebra

If L is finite, then 7 is the discrete topology on L, which gives us the following
consequence.

Corollary 5.72 ([Urq79]) If L is a finite Ockham algebra and (X, <,7,g) the
dual space of L, then L is subdirectly irreducible if and only if for some x € X,

9*({=}) = X.

For m > n > 0, let Sy, be the structure (X, <, 7, g) defined by setting X =
{0,1,...,m — 1}, with the discrete topology and order, and with g(k) =k + 1
for k < m—1and g(m —1) = n. Now let Ly, be the dual algebra of the space
Smn (the lattice of all subsets of Sy, with f(Y) = Spn\g H(Y)).

O 1 2 n-1 n 1
* —=—0—=0 o%mn+
/ °

m-1 o N2
m2 %3

Figure 5.5: Sy

Remark 5.73 For every m > n > 0, Ly, is subdirectly irreducible.

Proof: Follows from the fact that ¢*°({0}) = {0,1,...,m — 1} = Sp,. O

In fact, an even stronger result holds:

Proposition 5.74 ([Gol81))

(1) A finite distributive Ockham algebra is simple if and only if it is a subal-
gebra of Lo for some m > 0,

(2) A finite distributive Ockham algebra is subdirectly irreducible if and only
if it 1s a subalgebra of L., for some m >mn > 0.

Theorem 5.75 ([Urq79]) Every algebra in Py, is isomorphic to a sublattice
of a product of copies of Lp,y,.

Corollary 5.76 ([Gol81], [AP94],p.6) The variety Py, is generated by the
subdirectly irreducible algebra whose dual is Sy,

Note that in this case we only know the form of the dual of the algebra that
generates the variety P,,-

Let L, be a logic with set of variables Var and with connectives V, A
(binary) and f (unary) that is sound and complete with respect to the variety
Ppn, i.e. such that for every formula ¢ in the language of Ly,

Fe,.. ¢ if and only if P, = ¢ = 1.

5.4.1 Py,,-logics 179

Since the variety P,,, is generated by the algebra L,y,,, it follows that

Fr,.. ¢ if and only if L, = ¢ = 1.

r
By the considerations in Section 5.3.1 we can define a relation |= as follows:
Let v : Var — O(Smn) be a meaning function that has as values order-filters
in Sy = D(Lpny). Let m: Ly, — O(Smn) be the canonical bijection between
Lyn and O(D(Lpyy)), and let n~! be its inverse. Let ¥ : Fma(Var) — O(Smn)
be defined by v(¢) =no (np~1ow).
We define

Smn [Fy , ¢ if and only if z € v(¢),
Smn =, ¢ if and only if 7(¢) = Sy,

Smn = ¢ if and only if for every v : Var = O(Smn), Smn =, ¢-

By Proposition 5.35, for every formula ¢ in the logic £,,, we have
r
Lon = ¢ if and only if Sy, = @

Proposition 5.77 The following holds:
(1) Spn =y @1 A 05 if and only if S =y, 61 and S 1=y 5 G,
(2) Sn =y &1V 0 if and only if Sn =y 61 07 S =g 0 63
(3) Smn [£(9) if and only if Smn V-,) 6

Proof: (1) and (2) hold since the operations V and A in O(Sy,,) are union
resp. intersection.

In order to prove (3) note first that the definition of f in O(Smy) is f(U) =
Smn\gil(U) Hencea Smn |:v,w f(¢) if and OIlly if

z€v(f()) =no(n 'ov)(f(¢)) =
=n((n_! o v)(f(¢))) =
=n(f((ntov) Ov)() =
= f(n((n~tow)(d) =
= Smn\g~ (77((77 (11 0v)(9))),
if and only if g() & n((n~" 0 v)(9))-

Thus, Smn =, f(¢) if and only if Sy =, o, ¢- -

In this case, it is easy to see that the space S, is much simpler than the
Ockham algebra L,,,, which we did not explicitly construct here. However,
note that L,,, has 2™ elements.

180 5 Fibered Representation and Universal Algebra

5.4.2 SHKn-Logic

Let SH Kn be the logic obtained from the SHn logic by adjoining the following
axiom:

(A16) (ah ~a) = (bV ~ b).

It is easy to see that SH Kn-logics are sound and complete with respect
to the subvariety SH Kn of the variety of SHn-algebras, consisting of those
S Hn-algebras that satisfy the Kleene law:

(an ~a) < (bV ~ b).

The fact that the Eukasiewicz-Moisil algebras of order n (cf. Definition 3.15)
satisfy the Kleene property has been proved in [Sic67] and [Cig70] in two dif-
ferent ways. The fact that every SHn-algebra that satisfies the Kleene law is
a Lukasiewicz-Moisil algebra of order n is proved in [Itu82].

Theorem 5.78 ([Itu82]) For a SHn-algebra A the following conditions are
equivalent:

(1) A satisfies the Kleene law,

(2) A is a Lukasiewicz-Moisil algebras of order n.

In [I096], in order to obtain a Kripke semantics for SH Kn-logics, SHKn-
frames are defined as S Hn-frames that satisfy the following condition:

(K14) R(z,g(x)) or R(g(z),x).

Soundness and completeness of SH Kn-logics with respect to the class of
S H Kn-frames are proved.

This suggested us to investigate whether the Priestley duality between the
category of S Hn-algebras and that of S Hn-spaces restricts to a dual equivalence
between the category of SH Kn-algebras and a suitable subcategory of SHnSp.

Lemma 5.79 Let A be an SH Kn-algebra and let D(A) = (D(A),<,7,9,81,---,5n)
be the SHn-space associated with A by the Priestley duality for SHn-algebras.
Then for every h € D(A), h < g(h) or g(h) < h.

Proof: Assume that there exists an h € Homp,, (A4,{0,1}) in D(A) such
that h £ g(h) and g(h) £ h. Then there exist two elements of A, say a and b
such that h(a) =1, g(h(a)) = 0; and h(b) = 0, g(h(b)) = 1. But g(h(a)) =0 if
and only if h(~ a) =1, and g(h(b)) =1 if and only if h(~ b) = 0.

Therefore, there exist a,b € A such that h(aA ~ a) = h(a) A h(~a) =1
and h(bV ~ b) = h(b) V h(~ b) = 0. This is a contradiction, because h is a
homomorphism of algebras, hence h(aA ~ a) < h(bV ~ b) for every a,b € A. O

5.4.2 SH Kn-Logic 181

Definition 5.32 The category SHKnSp of SH Kn-spaces has as

Objects: spaces (X,<,7,9,81,...,8,—1) such that:
(1) (X,<,7,9,81,.--,8n_1) 15 an SHn-space,
(2) for every xz € X, x < g(z) or g(z) < z.

Morphisms: continuous order-preserving mappings that
(1) satisfy the condition (H2') and
(2) preserve the operations g,$1,...,8n—1.

Lemma 5.80 Let (X,<,7,9,81,--.,8,_1) be an SHKn-space. Let E(X) be
its dual as an SHn-space. Then E(X) satisfies the Kleene law.

Proof: Assume that there exist two elements f1, fo € E(X) = Homp(X, {0,1})
such that fiA ~ f1 £ foV ~ fo. Then there exists an x € X such that
fi(z)A ~ fi(z) = 1and fo(x)V ~ fa(xz) =0, i.e. such that fi(z) = ~ fi(z) =1
and fo(x) = ~ fa(z) = 0. By the definition of ~ if follows then that
fi(z) = 1, f1(g(z)) = 0, fa(x) = 0, f2(g(xz)) = 1. But in X we know that
either z < g(z) or g(z) < z, hence we should have either f;(z) < fi(g(z)) and

fa(z) < fa(g(w)), or fi(g(x)) < fi(x) and fa(g(z)) < fa(x). Contradiction.
This shows that for every f1, fo € E(X), fiA ~ f1 < faV ~ fo. O

Theorem 5.81 The Priestley duality between the category of SHn-algebras
and that of SHn-spaces restricts to a dual equivalence between the category of
SHKn-algebras (which coincides with the category of Lukasiewicz-Moisil alge-
bras) and the category SHKnSp of SH Kn-spaces.

In what follows we will use the term “Lukasiewicz-Moisil algebras” instead of
S H Kn-algebras, because the varieties are the same; the Heyting implication in
a Lukasiewicz-Moisil algebra is expressed by z = y = yVA ! (~ (Si(2)) V Si(y)).

Let Ly, be the algebra ({0, %, ce Z—:%, 1}V, A, ~,81,...,5,-1,0,1), where

zVy = mazx(z,y), tAy = min(z,y),~ 2z = 1—z, and for every i € {1,...,n—1},
1 ifi+j>n

. L _ . . . _ . . _
Si(+11) 0 ifitj<n’ L, is a Lukasiewicz-Moisil algebra. On L, an
other operation (namely the Heyting implication) can be defined by

n—1
z=y = yV N (~(Si(z)VSi(y)).
i=1

It is well-known that the subdirectly irreducible algebras in £,, are L,, and
its subalgebras, each of which is simple. Thus, the variety of Lukasiewicz-Moisil
algebras is generated by L.

Let D(L,) be the Priestley dual of the n-element Lukasiewicz-Moisil alge-
bra. D(L,) is isomorphic to the ordered set of the join-irreducible elements

of L, namely with the ordered set D(L,) = ﬁ, %, e Z—j, 1} (these ele-
ments correspond to the prime filters 1 nL;l, i=1,...,n—1). The additional

operations g, $1,...,8,_1 are defined by:

182 5 Fibered Representation and Universal Algebra

Q(Tﬁ): ko 6Ln|g(kl)ngil}:{nﬁ eLn|1 <nL;1 :T Z_:i’
si ﬁ)—{nlein\s(kl)ETnl}—{ GLnIS(k)Zﬁ}:{nilE
Lo | SiGE) =1} ={;Eg €bn|i+thk>n} = {—ELnI Sy >} = 12 for
everyt=1,...,n—1.
b Un-1

//IM/n-l

S \

‘S/ |si

%.é_% - in-1

'/\\
] 9
/| : \
// \.\ /llnl
! '\
C e)
S 1 IS

Figure 5.6: D(L,): The Priestley Dual of L,

Since the variety L,, is generated by the n-element Lukasiewicz-Moisil alge-

bra L,, it follows that
SHEKn |= ¢ ifand only if L,, = ¢ =1
r

By the remarks in Section 5.3.1, we can define a relation |= as follows:

Let v : Var — O(D(L,)) be a meaning function that has as values order-
filters in D(Ly,). Let n : L,, — O(D(L,)) be the canonical bijection, and let 5!

be its inverse. Let v : Fma(Var) — O(D(Ly,)) be defined by 5(¢) = no(n~! o v).
We define

r

D(L,) =, , ¢ if and only if 2 € v(¢),
D(Ly) =, & if and only if 5(¢) = D(Ln),
D(L,) = ¢ if and only if for every v : Var — O(D(Ly)), D(Ly) =, ¢
By Proposition 5.35, for every formula ¢ in the SH Kn-logic, we have
SHKn = ¢ if and only if D(L,,) |; 0]

Lemma 5.82 The following holds:

(1) D) |-y p &1 A 63 if and only if D(Ea) =, 61 and D(L) |-, , 6.
(2) D(En) 5 61V if and only if D(Ly) [, 61 07 DUE) =, 62
() D(Ln) Loy SK(6) if and only if D(En) Loy s 0y 6
(4) D(Ln) 1=, 9(@) if and only if D(En) ¥,) &

5.5 An Implementation 183

Proof: (1) and (2) are obvious. In order to prove (3) note that, taking into
r
account the definition of s; in O(D(Ly)) as s;(U) = S; *(U), D(Ly) =2 Si(®)

if and only if z € 9(S5i(¢)) = no (n~' 0v)(Si(¢)) = n((n~" 0 v)(Si(¢))) =
n(Si((n~t o v)(9))) = Siln((n~" e v)(¢))) = 5{1(77((?71 ov)(¢))), if and only

if s;(z) € n((n"'ov)(¢)) = v(¢). Thus, D(L,) =,, Si(#) if and only if
D(Ln) Fy s5(z) @ (4) follows similarly taking into account the definition of g.00

5.5 An Implementation

Theorem proving by resolution is essentially a two stage process. The first step
is translating a given assertion to clause form. The second step is the actual
proof. The first step is the one which captures the logic; the second is a purely
computational, algebraic process, independent of the underlying logic.

The existing implementations of resolution-type methods for many-valued
logics normally only present the solution of the first step, namely clause gen-
eration. This is the case with the approach of Baaz and Fermiller and that
of Hahnle. The second step, the actual proof by resolution is the most time-
consuming; it would seem that creating an interface with an existing system
in which resolution is implemented (as Otter, Isabelle, etc.) would solve the
problem.

In what follows we will present both an algorithm for translating formulae
to clause form and an algorithm (based on negative hyperresolution) for the
actual proof.

To understand the structure of the method, it is helpful to look at the
general structure of the algorithm:

Algorithm for Resolution in Non-Classical Logics

Input: a formula ¢.

Output: O if ¢ is unsatisfiable.

Algorithm :

Find a set F of clauses such that ¢ is a theorem if and only if F is
unsatisfiable.

Apply many-valued hyperresolution to F'.

Our theorem prover is implemented in SICStus Prolog. According with the
remarks above, the automated proof procedure consists of a procedure for the
translation to clause form and a proof procedure by negative hyperresolution.

The implementation of the main procedure, prove(¢, V, Ord), takes as in-
put a formula ¢, a set of possible worlds V' (corresponding to D(A)) and an
ordering Ord on V. The output is O if the formula is a theorem.

184 5 Fibered Representation and Universal Algebra

The data structures used are lists (or atoms, in the case of variables). We
represent the data as follows:

e Every propositional variable p is represented as an atom p,

e Every formula of the form op(t1,...,t,) is represented as a list of the form
[op,l1,...,1n], where ly, ... [, are the lists that represent, recursively, the
formulae t1, ..., t,,

e Every literal of the form pt (resp. pf) is represented by [z, p,t]
(resp. [z,p, f]),

e The clauses are represented as lists of literals, such that the positive lit-
erals occur first. Thus, a clause is negative if and only if it begins with a
negative literal.

We made our implementation in SICStus Prolog as modular as possible. The
parts that are logic-specific are either given as an argument to the procedure
(as V and Ord) or are supposed to be given separately (as are the definitions
of the special operators on D(A)).

Roughly, the structure of the prove(¢, V, Ord) is as follows:

prove(¢, V, Ord)

/ \

to — clauses(Fma, V, Ord) read — clauses(M, N) prove — hyperresolution(M, N, Ord)

operations

Here are brief descriptions of the procedures:

e to-clauses generates the set F' of clauses, which are written in a separate
file.

e read-clauses(M, N) reads the clauses and separates them in the list M
of nonnegative clauses and the list N of negative clauses.

e prove-hyperresolution(M, N, Ord) applies negative hyperresolution
to the clauses M U N, taking into account that the list M contains the
nonnegative clauses and N the negative clauses.

e operations contains definitions of the operations on V', corresponding to
the specific logic. It is used in generating the clauses, in the procedure
to-clauses.

5.5.1 Implementation for the Translation to Clause Form 185

These procedures will be presented into more detail in Sections 5.5.1 and
5.5.2.

For a more comfortable manipulation of lists we also defined some proce-
dures of technical nature. They are contained in the source code and we will
not describe them here.

5.5.1 Implementation for the Translation to Clause Form

The procedure for translation to clause form is based on Corollary 5.47 and
Lemma 5.48; if any other operations, like for example Heyting implication or
modal operators are involved, their transition to clause form is based on lemmas
such as Lemma 5.50 or Lemma 5.51.

Corollary 5.47 states that ¢ is a theorem if and only if the following con-
junction of formulae is unsatisfiable:

([t O0)]pfV 1 L 0)]hn A AN e EA I EALAYEA L2

z€D(S, 2) ¢ subformula of ¢

The general structure of a procedure for transition to clause form, based on
Corollary 5.47, is as follows:

Algorithm for Translation to Clause Form

Input: a formula ¢.

Output: A set of clauses F' such that ¢ is a theorem if and only if F' is un-
satisfiable.

Algorithm to-clauses(¢, V, Ord):

Let py be a new propositional symbol.

Cy = {[z] p(]; | minimal in D(A)},

F .= {Cl}
for all subformulae v of ¢ that are not variables
do

Let py, be a new propositional symbol.

Fy :=clauses-transform([z "),
F, :=clauses-transform([z Jp7),

F::FU{{f;}UC’|C’EF1}U{{fp}UC\C’EF2}.
od

The procedure clauses-transform generates the clauses associated with ¢t
resp. 1/)f, according to the structure of .

186 5 Fibered Representation and Universal Algebra

We illustrate the ideas for the case of SHn-logics.
Procedure clauses-transform for SHn-logic

Input: an ezpression e of the form [z’ or 1,bf, where ¥ is not a proposi-
tional variable.

Output: A set of signed clauses F' that is satisfiable if and only of the expres-
ston e is satisfiable.

Algorithm :

We distinguish several cases:

if e = [2] (1 V)" then F:= {{ [z] pl, .[2] p}),}},

if e = [@] (1 V) then F = {{ [2] P}, }, { [&] /., }},

if e = [2] (11 A o)t then F o= {{ [z] p}, },{ [2]p,}},

if e = [2] (Y1 A4)f then F = {{ [z]p] ,[2]p],}}.

if e = [z] Sj(4)" then F:= {{ [5,()] ¥'}},

if e = [2] Sj(¢)f then F := {{1/)f}};

if e = [z] ~ () then F == {{ [s()| ¥/}},

if e = [z] ~ () then F:= {{[s(x)] ¥'}},

if e = [] (1 =)" then F:= {{{y] 1/ ,[g] ¥} |y > z},

if e = [2] (1 = o)’ then F = {{{max{y |y > 2} | ¢a'}, {{z] vo/}} U

{{z) ' [w2] o} | 21,20 > 2,20 # 22},
if e = [z] ~(¥)" then F := {{{[y| ¢/} |y >z},
if e = [2] ~(¢)/ then F:= {{[y] ¢ | y > «}},

In the case of first-order logics we also have to take quantifiers into consid-
eration. The structure-preserving translation is done exactly as in the case of
propositional logic.

By Lemma 5.62 we additionally have the following cases:

ife= ((Vu)A(u))! then F := {{{z] A(u)'}} for every (ground)

term u,

ife= ((Vu)A(u))! then F := {{{z] A(f(v))f}} where f is a
new (Skolem) function and v is the set of all varlables that appear
unbound in (Vu)A(u).

if e = ((Fu)A(u))t then F := {{{z] A(f(v))'}} where f is a

new (Skolem) function and v is the set of all varlables that appear
unbound in (Vu)A(u).

5.5.1 Implementation for the Translation to Clause Form 187

ife= ((Bu)A(u))? then F := {{[z] A(u)’}} for every (ground)

term u.

Our implementation in SICStus Prolog closely follows the algorithm de-
scribed above. The parts that are logic-specific are either given as an argument
to the procedure (as V and Ord) or are supposed to be given separately (as are
the definitions of the special operators on D(A)).

We briefly describe the structure of our procedure for translation to clause
form in more detail.

to — clauses(¢, V, Ord)

/ \

clause — negation(¢, V, Ord) clauses — equiv(¢, V, Ord)

operations

Here are brief descriptions of the procedures above:

e clause-negation(¢, V,0Ord) generates the clause that is a consequence
of the fact that the formula ¢ is supposed to be false, namely that there
is some minimal possible world = at which ¢ is false. The clause is C; :=

{[z] pé | minimal in D(A)}.

e clauses-equiv(¢,V,0Ord) generates the set F of clauses that are conse-
quences of ¥ < py, for all subformulae v of ¢.
The procedure generates all subformulae of ¢, and for every subformula v,
according to the structure of the formula and the operations on V' (defined
in operations) it constructs the set of clauses F = {{ f;} ucC|Ce
F}u{{ Z)} UC | C € Fy}, where F; := clauses — transform([z]i)")
and Fy := clauses — transform([z 7).

We present some examples:

Example 5.5 Consider the SHn-logic for n = 2. Let ¢ = Si(p) V —=(S1(p)).
The algebra Sy2 and its dual are represented in Figure 5.7.

Thus, the dual D(Sy2) of Sy2 consists of two incomparable elements. We
know that SI(T (LO)) =t (170); SI(T (Oa 1)) =1 (07 1)’ and g(T (LO)) =1 (07 1);
g(t (0,1)) =t (1,0).

We will denote D(Sy2) by V = [a,b], where Ord = []. The module opera-
tions in this case contains the following definitions:

d_si(a, a).
d_si(b, b).

d_sim_neg(a, b).
d_sim_neg(b, a).

188 5 Fibered Representation and Universal Algebra

L1

(0,1 (1,0 1©0,2) o * 1,0

1.0

Figure 5.7: Sy2 and its Priestley Dual.

corresponding to the fact that s1(a) = a,s1(b) = b,g(a) = b, g(b) = a.

The following set of clauses is obtained:
| ?- to_clauses([or, [s1, pl,[neg, [s1, pl1l, [a, ®bl, [1).
[[a,p_or_sl_p_neg_si_p,f],[b,p_or_sl_p_neg_si_p,fl].
[[a,p_s1_p,t],[a,p_neg_si_p,t],[a,p_or_sl_p_neg_si_p,fl].
[[a,p_or_sl_p_neg_s1_p,t],[a,p_sl_p,f]l].
[[a,p_or_sl_p_neg_si_p,t],[a,p_neg_si_p,fl].
[[a,p_s1_p,f],[a,p_neg_si_p,fl].
[[a,p_s1_p,t]l, [a,p_neg_si_p,tl].
[[a,p,t],[a,p_s1_p,fl].
[[a,p_si_p,t],[a,p,fl].
[[b,p_s1_p,t],[b,p_neg_si_p,t],[b,p_or_sl_p_neg_si_p,fl].
[[b,p_or_sl_p_neg_si_p,t]l,[b,p_si_p,f]l].
[[b,p_or_s1_p_neg_si_p,t],[b,p_neg_si_p,fl].
[[b,p_s1_p,f]l, [b,p_neg_si_p,fl].
[[b,p_si_p,t], [b,p_neg_sl_p,tl].
[[b,p,t],[b,p_si_p,fl].

[[b,p_s1_p,t]l,[b,p,fl].

Example 5.6 Consider now the SHn-logic forn = 3. Let ¢ = S1(p)V—(S1(p))
as above. The algebra S;2 and its dual are represented in Figure 5.8.

We know that s1(T (1,0)) = s1(T (%,0)) =1 (1,0) and s1(1T (0,1)) =
s1(T (0,%)) =1 (0,1); moreover, so(1 (1,0)) = s1(1 (%,0)) (% 0) and
s2(1(0,1)) = s1(1 (0, 3)) =1 (0, 3).

We will denote D(Ss2) by V = [a,b, ¢, d], where Ord = [[a, b], [c, d]].

The module operations in this case contains the following definitions:

5.5.1 Implementation for the Translation to Clause Form 189

1.0

Figure 5.8: S32 and its Priestley dual.
d_s1(X, a) :- X = a; X = b.
d_s1(X, c) :- X =c¢; X =d.

d_s2(X, b) :- X = a; X = b.
d_s2(X, d) :- X =c; X =4d.

d_sim_neg(a, d).
d_sim_neg(d, a).

d_sim_neg(b, c).
d_sim_neg(c, b).

corresponding to the fact that s1(a) = s1(b) = a,s1(c) = s1(d) = ¢
32(b) = ba 82(0) = 82(d) = d: and g(a) = dag(d) = aag(b) = C,g(C) =b.
The following set of clauses is obtained:

| ?- to_clauses([or, [s1, pl,[neg, [s1, pl1]l, [a, b, ¢, dI, [[a, bl, [c, d]]).
[[a,p_or_s1_p_neg_s1l_p,f],[c,p_or_sl_p_neg_si_p,f]l].
[[a,p_si_p,t],[a,p_neg_s1_p,t],[a,p_or_sl_p_neg_si_p,fl].
[[a,p_or_sl_p_neg_sl1_p,t]l,[a,p_sl_p,f]l].
[[a,p_or_s1_p_neg_sl1_p,t],[a,p_neg_si_p,f]l].
[[a,p_si_p,f],[a,p_neg_si_p,fl].
[[b,p_si_p,f],[a,p_neg_sl1_p,fl].

[[a,p_s1_p,t], [b,p_sl_p,t], [a,p_neg_si_p,tl].
[[a,p,t],[a,p_sl_p,fl].

[[a,p_sl_p,t],[a,p,f]1].

[[b,p_si_p,t],[b,p_neg si_p,t],[b,p_or_si_p neg si_p,£ll.

[[b,p_or_si_p_neg_s1_p,t],[b,p_sl_p,f]l].

190 5 Fibered Representation and Universal Algebra

[[b,p_or_s1_p_neg_si_p,t],[b,p_neg_si_p,fl].
[[b,p_si_p,f]l,[b,p_neg_si_p,fl].

[[b,p_si_p,t], [b,p_neg_sl_p,tl].

[[a,p,t],[b,p_si_p,f]].

[[b,p_si_p,tl,[a,p,fl].

[[c,p_si_p,t], [c,p_neg_si_p,t], [c,p_or_si_p_neg_si_p,£ll.
[[c,p_or_sl_p_neg_sl_p,tl,[c,p_s1_p,f]1].
[[c,p_or_s1_p_neg_si_p,t],[c,p_neg_si_p,f]].
[[c,p_si_p,f],[c,p_neg_si_p,fl].
[[d,p_s1_p,f],[c,p_neg_s1_p,fl].

[[c,p_sl_p,t], [d,p_si_p,t]l, [c,p_neg_si_p,tl].
[[c,p,t],[c,p_sl_p,fl].

[[c,p_s1_p,t], [c,p,f]1].
[[d,p_s1_p,t],[d,p_neg_s1_p,t],[d,p_or_si_p_neg_si_p,fl].
[[d,p_or_sl_p_neg_sli_p,t]l,[d,p_sl_p,f]l].
[[d,p_or_sl_p_neg_si_p,t],[d,p_neg_si_p,fl].
[[d,p_s1_p,f],[d,p_neg_si_p,fl].

[[d,p_si_p,t], [d,p_neg_sl_p,tl].

[[c,p,t]l,[d,p_si_p,f]1].

[[d,p_s1i_p,tl, [c,p,fl].

Example 5.7 Consider the logic Ly, discussed in Section 5.4.1, with m = 2
and n = 1. Let ¢ = f2(p) V f(p). We know that g(0) = 1, g(1) = 1. We

0 1

=

Figure 5.9: The space Sa1
will denote Sa1 by [a,b], with Ord = [|. The module operations in this case
contains the following definitions:

d_f(a, b).
d_f(b, b).

5.5.1 Implementation for the Translation to Clause Form

The following set of clauses is obtained:

| ?- to_clauses([or, [f, [f, pll, [f, pl], [a, bl, [1).

[[a,p_or_f_f_p_f_p,t]l,[a,p_f_p,fl].
[[b,p_f_p,fl,[a,p_f_f_p,fl].
[[b,p_f_p,t]l,[a,p_f_f_p,t]].
[[b,p,f],[a,p_f_p,f]1].
[[b,p,t],[a,p_f_p,t]].
[[b,p_f_f_p,t],[b,p_f_p,t]l,[b,p_or_f_f_p_f_p,fl].
[[b,p_or_f_f_p_f_p,t]l,[b,p_f_f_p,fl].
[[b,p_or_f_f_p_f_p,t]l,[b,p_f_p,fl1].
[[b,p_f_p,f],[b,p_f_f_p,fl].
[[b,p_f_p,t],[b,p_f_f_p,t]].
[[b,p,f],[b,p_f_p,£f]1].

[[b,p,t],[b,p_f_p,tl].

191

Example 5.8 Consider the logic L,,,, discussed in Section 5.4.1 with m = 3

and n =0. Let ¢ = f3(p) V p.
0 1 2
Figure 5.10: The space Ssp.

We know that g(0) = 1, g(1) = 2 and g(2) = 0.

We will denote Ssg

by [a,b,c], with Ord = []. The module operations in this case contains the

following definitions:

d_f(a, b).
d_f(b, c).
d_f(c, a).

The following set of clauses is obtained:

192 5 Fibered Representation and Universal Algebra

| ?- to_clauses([or, [f, [f, [f, pl1l, pl, [a,b,cl, [1).
[([a,p_f_f f p,t],[a,p,t],[a,p_or_f f f p p,fl].
[[a,p_or_f_f_f p_p,tl,[a,p_f_f_f_p,fl].
[[a,p_or_f_f_f_p_p,tl,[a,p,f]1].
[[b,p_f_f_p,f]l,[a,p_f_f_f_p,fl].
[[b,p_f_f_p,t],[a,p_f_f_f_p,tl].
[[b,p_f_p,fl,[a,p_f_f_p,fl].
[[b,p_f_p,t],[a,p_f_f_p,t]].
[[b,p,f],[a,p_f_p,£1].

[[b,p,t],[a,p_f_p,t]].

[([b,p_f_f f p,t],[b,p,t],[b,p_or_ f f f p p,fl].
[[b,p_or_f_f f p_p,tl,[b,p_f_f_f_p,fl].
[[b,p_or_f_f_f_p_p,tl,[b,p,f]1].
[lc,p_f_f_p,f]l,[b,p_f_f_f_p,fl].
[lc,p_f_f_p,t],[b,p_f_f_f_p,tl].
[[c,p_f_p,f1,[b,p_f_f_p,fl].
[lc,p_f_p,t],[b,p_f_f_p,t]].
[lc,p,f]1,[b,p_f_p,£1].

[[c,p,t],[b,p_f_p,t]].
[lc,p_f_f_£f_p,tl,[c,p,t],[c,p_or_f_f_f _p_p,fl].
[lc,p_or_f_f f p_p,tl,[c,p_f_f_f_p,fl].
[[c,p_or_f_f_f_p_p,tl,[c,p,f]1].
[[a,p_f_f_p,fl,[c,p_f_f_f_p,fl]l.
[[a,p_f_f_p,t],[c,p_f_f_f_p,tl].
[[a,p_f_p,f],[c,p_f_f_p,fl].
[[a,p_f_p,t]l,[c,p_f_f_p,tl].
[[a,p,f],[c,p_f_p,f]].

[[a,p,t],[c,p_f_p,tl].

5.5.1 Implementation for the Translation to Clause Form 193

It can be seen from the examples above that in the propositional case this
method is not always more efficient than the method of direct verification: in
Example 5.5 (resp. 5.6) only one propositional variable occurs, hence there are
only 4 (resp. 9) possible values for this variable to be tested.

In Example 5.7 and Example 5.8 the advantage of this method consists of
the fact that we do not need to compute the algebra Lo (resp. L3p) and can
directly use its dual space. However, this algebras have 22 = 4 (resp. 2° = 8)
elements, hence a direct verification is also possible.

In general if there are few variables the method of direct verification is more
efficient, whereas if many variables occur our method may be better. Never-
theless, the real advantages of the use of resolution in many-valued theorem
proving are in automated theorem proving for the first-order case, where no
direct verification by plugging in truth values can be applied. In what follows
we will illustrate the way clauses are generated in first-order logic.

Example 5.9 Consider a first-order version of Example 5.5. Let A(zx) be
formula in this logic, containing a free variable © and let ¢ = (Vx)S1(A(z))
~(S1(A(2))).

Therefore in this case a clause form for ¢ is:

a
V

| ?- to_clauses([[forall, x], [or, [s1l, [a, x]], [neg, [s1, [a, x]1]111]1, [a, bl,
[[a,pfii;all_x_or_s1_a_x_neg_sl_a_x,f],[b,p_forall_x_or_s1_a_x_neg_sl_a_x,f]].
[[a,[p_or_sl_a_x_neg_sl_a_x,x],t],[a,p_forall x_or_sl_a_x_neg_sl_a_x,f]].
[[a,p_forall_x_or_sl_a_x_neg_sl_a_x,t],[a,[p_or_sl_a_x_neg_si_a_x,f1],f]].
[[a,[p_sl_a_x,x]1,t],[a,[p_neg_si_a_x,x],t],[a, [p_or_sl_a_x_neg_sl_a_x,x],fl].
[[a,[p_or_sl_a_x_neg_sl_a_x,x],t],[a,[p_sl_a_x,x],f]].
[[a,[p_or_sl_a_x_neg_sl_a_x,x],t],[a,[p_neg_sl_a_x,x],f]].

[[a, [p_sl_a_x,x],f], [a, [p_neg_s1_a_x,x],f]].

[[a,[p_sl_a_x,x],t], [a,[p_neg_si_a_x,x],t]].
[[a,[p_a_x,x],t],[a,[p_si_a_x,x],£f]].

[[a,[p_si_a_x,x1,t],[a, [p_a_x,x],f]].

[[b, [p_or_sl_a_x_neg_sl_a x,x],t],[b,p_forall x or_sl_a_x_neg_sl_a_x,f]].
[[b,p_forall_x_or_sl_a_x_neg_sl_a_x,t],[b,[p_or_sl_a_x_neg si_a_x,f2],f]1].
[[b,[p_sil_a_x,x]1,t],[b,[p_neg_si_a_x,x],t],[b, [p_or_sl_a_x_neg_sil_a_x,x],fl].
[[b,[p_or sl a x neg si_ a_x,x],t],[b,[p_st_a x,x],£1].
[[b,[p_or_sl_a_x_neg_sl_a_x,x],t],[b,[p_neg_si_a_x,x],£f]].

[[b,[p_sl_a_x,x],f],[b, [p_.neg_si_a_x,x],f]].

194 5 Fibered Representation and Universal Algebra

[[b,[p_sl_a_x,x],t],[b,[p_neg_si_a_x,x],t]l].
[[a,[p_a_x,x],t],[b, [p_si_a_x,x],f]].

[[b, [p_s1l_a_x,x],t],[a,[p_a_x,x],£f]].

5.5.2 Hyperresolution

The procedure for theorem proving by hyperresolution is an adaptation of the
algorithm given in [CL73].

Algorithm for many-valued hyperresolution

Input: A set F' of signed clauses.
Output: O if F' 1s unsatisfiable.

Algorithm :

M := The set of all negative clauses in F,
N := The set of all non-negative clauses in F,

1:=0,
AO Z:@, Bg ::N,

repeat

while A; does not contain O and B; # 0
do

Wii1 = The set of ordered resolvents of Cy against Cy, where
C1 is an ordered clause or an ordered factor of an ordered
clause in M, Cy is an ordered clause in B, the resolved lit-
eral of C1 contains the “largest” predicate symbol in C1,
and the resolved literal of Cy is the “last” literal of Cs.

A; 1 = The set of negative ordered clauses in W1,
Biy1 := The set of non-negative ordered clauses in Wiy,
t:=14+1,

od

if A; contains O then Return,

T :=AU...UA;, M:=MUT,

R := The set of ordered resolvents of Cy against Cy, where C is
an ordered clause or an ordered factor of an ordered clause

i T,Cy 1s an ordered clause in N, and the resolved literal
in Cp contains the “largest” predicate symbol in C1.

(Note that the resolved literal in Co can be any literal in Cs,
not necessarily the last literal.)

Ay := The set of all negative literals in R,

5.5.2 Hyperresolution 195

By := The set of all nonnegative literals in R.

Our implementation in SICStus Prolog follows the algorithm described above.
We briefly describe the structure of our procedure for negative hyperresolution.

prove — hyperresolution(M, N, Ord)

hyper — aux(M, N, A, B, T, Ord)

/ \

resolvents — 1 resolvents — 2

(B#) (B=10

Here are brief descriptions of the procedures above:

e prove-hyperresolution(M, N, Ord) calls hyper-aux(M, N, [], N,
[, Ord)

e hyper-aux(M, N, A, N, T, Ord) If B is not empty, this procedure
calls resolvents-1 which generates a set W of ordered clauses between
M and B. Let Al be the list of negative clauses in W, and B1 the list of
non-negative clauses in W. Al is added to T to form T'1 (the list of newly
generated negative clauses). Then hyper-aux is applied recursively to
M, N, A1, B1,T1. This continues until either no non-negative clauses are
generated or a contradiction is deduced.

If B =[], the resolvents between T and N are generated with resolvents-
2. Let Al,B1 be the lists of negative resp. non-negative clauses gen-

erated this way. The procedure hyper-aux is applied recursively to
M, N, Al, B1,]].

e resolvents-1(M, B, M1, N1, Ord-Pred, Ord) generates the set of
ordered resolvents of Cy against Cs where C; is an ordered clause or an
ordered factor of an ordered clause in M, C5 is an ordered clause in B,
the resolved literal of C; contains the “largest” predicate symbol in Cf,
and the resolved literal of Cy is the “last” literal of Cs.

e resolvents-2(T, N, M1, N1, Ord-Pred, Ord) generates the set of
ordered resolvents of C; against Cy where C is an ordered clause or an
ordered factor of an ordered clause in T, C5 is an ordered clause in IV,
and the resolved literal of C; contains the “largest” predicate symbol in

Ci.

Example 5.10 Consider the SHn-logic for n = 2, as described in Example 5.5.
Let ¢ = Si(p) V =(S1(p)). In what follows we present the execution of the

196 5 Fibered Representation and Universal Algebra

procedure prove(o,[a,b],[]). All the clauses generated at every application of
resolvents-1 or resolvents-2 are explicitly printed.

| ?- prove([or, [si, pl,[neg, [s1, plll, [a, bl, [1).
hyper_aux:

M:

1 [[a,p_or_sl_p_neg_si_p,f],[b,p_or_si_p_neg_si_p,f]]

2 [[a,p_s1l_p,f],[a,p_neg_si_p,f]]

3 [[b,p_si_p,f],[b,p_neg_si_p,f]l]

B:

1 [[a,p_sl_p,t],[a,p_neg_s1_p,t]l,[a,p_or_sil_p_neg_si_p,f]]
2 [[a,p_or_si_p_neg_si_p,t]l,[a,p_si_p,f]]

3 [[a,p_or_s1_p_neg_s1_p,t],[a,p_neg_si_p,f]l]

4 [[a,p_si_p,t],[a,p_neg_s1_p,t]]

5 [[a,p,t],[a,p_s1_p,f]]

6 [[a,p_si_p,t]l,[a,p,f]]

7 [[b,p_si_p,t]l,[b,p_neg_si_p,t],[b,p_or_si_p_neg_si_p,f]]
8 [[b,p_or_s1_p_neg_si_p,t],[b,p_si_p,f]]

9 [[b,p_or_si_p_neg_si_p,t],[b,p_neg_si_p,£]l]

10 [[b,p_si1_p,t],[b,p_neg_si_p,t]l]
11 [[b,p,t]l,[b,p_s1_p,£]]
12 [[b,p_si_p,t]l,[b,p,fl]

resolvents_1 completed; hyper_aux follows
Read clauses starts:

Al:
1 [[a,p_sl_p,f],[b,p_or_sl_p_neg_sil_p,f]]

2 [[a,p_neg_s1_p,f],[b,p_or_si_p_neg_si_p,f]l]
3 [[b,p_si_p,f],[a,p_or_sl_p_neg_sl1_p,f]]

4 [[b,p_neg_s1_p,f],[a,p_or_sil_p_neg_si_p,f]l]
5 [[a,p,f],[a,p_neg_s1_p,£f]]

6 [[b,p,f],[b,p_neg_si_p,fl]

B1:

hyper_aux: B = []

T:

1 [[a,p_s1l_p,f]l,[b,p_or_si_p_neg_si_p,f]]

2 [[a,p_neg_s1_p,f],[b,p_or_si_p_neg_si_p,f]l]
3 [[b,p_si_p,f],[a,p_or_sl_p_neg_sl1_p,f]]

4 [[b,p_neg_s1_p,f],[a,p_or_sil_p_neg_si_p,f]l]
5 [[a,p,f],[a,p_neg_s1_p,£f]]

6 [[b,p,f],[b,p_neg_si_p,f]]

M:

1 [[a,p_or_s1_p_neg_si_p,f],[b,p_or_sl_p_neg_sl_p,f]]
2 [[a,p_s1l_p,f],[a,p_neg_s1_p,f]]

3 [[b,p_si_p,f],[b,p_neg_si_p,f]]

M1:

1 [[a,p_s1l_p,f]l,[b,p_or_si_p_neg_si_p,f]]

2 [[a,p_neg_s1_p,f],[b,p_or_sl_p_neg_sl_p,f]]
3 [[b,p_si_p,f]l,[a,p_or_s1_p_neg_s1_p,f]]

4 [[b,p_neg_s1_p,f],[a,p_or_sl_p_neg_si_p,f]]
5 [[a,p,f],[a,p_neg_s1_p,f]l]

6 [[b,p,f],[b,p_neg_si_p,f]]

7 [la,p_or_si_p_neg_sl_p,f],[b,p_or_si_p_neg_si_p,£f]]
8 [[a,p_si_p,f],[a,p_neg_s1_p,f]l]

9 [[b,p_si_p,f],[b,p_neg_si_p,f]]

out of resolvents_2

Al:

1 [[a,p,f],[b,p_or_si_p_neg_si_p,f]]
2 [[b,p_si_p,f],[a,p_neg_si1_p,f]]

5.5.2 Hyperresolution 197

3 [[b,p,f]l,[a,p_or_si_p_neg_si_p,f]]

4 [[a,p_sl_p,f],[b,p_neg_si_p,f]]

5 [[a,p_neg_s1_p,f],[b,p_neg_s1_p,f]]

B1:

1 [[a,p_neg_s1_p,t],[b,p_or_s1_p_neg_si_p,f]]

2 [[b,p_neg_si1_p,t],[a,p_or_sl_p_neg_sl_p,f]]

3 [[a,p_si_p,t],[a,p_or_s1_p_neg_si_p,fl,[a,p,f]]
4 [[b,p_si_p,t],[b,p_or_si_p_neg_si_p,f],[b,p,f]]

hyper_aux:

M:

1 [[a,p_sl_p,f]l,[b,p_or_si_p_neg_si_p,f]]

2 [[a,p_neg_s1_p,f],[b,p_or_sl_p_neg_sl_p,f]]

3 [[b,p_si_p,f]l,[a,p_or_s1_p_neg_si_p,f]]

4 [[b,p_neg_s1_p,f],[a,p_or_sl_p_neg_si1_p,f]]

5 [[a,p,f],[a,p_neg_s1_p,£f]]

6 [[b,p,f],[b,p_neg_s1_p,f]]

7 [la,p_or_si_p_neg_sl_p,f],[b,p_or_si_p_neg_si_p,£f]]
8 [[a,p_si_p,f],[a,p_neg_s1_p,f]l]

9 [[b,p_si_p,f],[b,p_neg_si_p,f]]

B:

1 [[a,p_neg_s1_p,t],[b,p_or_s1_p_neg_si_p,f]]

2 [[b,p_neg_s1_p,t],[a,p_or_sl_p_neg_si_p,f]l]

3 [[a,p_sil_p,t],[a,p_or_sl_p_neg_sl1_p,f],[a,p,£]]
4 [[b,p_s1_p,t],[b,p_or_si_p_neg_si_p,f],[b,p,f]]

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 [[b,p_or_si_p_neg_si_p,f],[a,p,£]]

2 [[a,p_or_s1_p_neg_si_p,f]l,[b,p,f]]

3 [[a,p_or_sl_p_neg_sl_p,f],[a,p,£f],[a,p_neg_s1_p,£]]
4 [[b,p_or_si_p_neg_si_p,f]l,[b,p,f],[b,p_neg_si_p,f]]

B1:

hyper_aux: B = []

[[b,p_s1_p,f],[a,p_neg_s1_p,f]]
[[a,p_s1_p,f],[b,p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[b,p_neg_si_p,f]]
[[b,p_or_s1_p_neg_s1_p,fl,[a,p,£]]
[[a,p_or_s1_p_neg_si_p,f],[b,p,f]]
[[a,p_or_s1_p_neg_si_p,f],[a,p,f],[a,p_neg_si_p,f]]
[[b,p_or_s1_p_neg_s1_p,f]l,[b,p,f], [b,p_neg_si_p,£f]]

N O WwND = A

[[a,p_s1_p,f],[b,p_or_s1_p_neg_si_p,f]l]
[[a,p_neg_s1_p,f],[b,p_or_sl_p_neg_sl_p,f]]
[[b,p_s1_p,f]l,[a,p_or_sl_p_neg_si_p,f]]
[[b,p_neg_s1_p,f],[a,p_or_sl_p_neg_s1_p,f]]
[[a,p,f],[a,p_neg_s1_p,£f]]
[[b,p,f],[b,p_neg_s1_p,f]]
[[a,p_or_s1_p_neg_s1_p,f],[b,p_or_sl_p_neg_si_p,f]]
[[a,p_s1_p,f],[a,p_neg_s1_p,f]]
[[b,p_s1_p,f]l,[b,p_neg_si_p,f]]

O 00N O wN ==

[[b,p_s1_p,f],[a,p_neg_si_p,f]]
[[a,p_s1_p,f],[b,p_neg_s1_p,f]]
[[a,p_neg_s1_p,f],[b,p_neg_si_p,f]]
[[b,p_or_s1_p_neg_s1_p,f]l,[a,p,£]]
[[a,p_or_s1_p_neg_si_p,f],[b,p,f]]

O W N =

198 5 Fibered Representation and Universal Algebra

[[a,p_s1_p,f]l,[b,p_or_s1_p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_si_p,f]]
[[b,p_s1_p,f],[a,p_or_sl_p_neg_si_p,f]]

9 [[b,p_neg_s1_p,f],[a,p_or_sl_p_neg_si_p,f]l]

10 [[a,p,f],[a,p_neg_s1_p,£f]]

11 [[b,p,f],[b,p_neg_si_p,f]]

12 [[a,p_or_s1_p_neg_sl_p,f],[b,p_or_sl_p_neg_si_p,f]]
13 [[a,p_sl_p,f],[a,p_neg_s1_p,f]l]

14 [[b,p_s1_p,f],[b,p_neg_s1_p,f]l]

0 N O

out of resolvents_2

Al:

1 [[b,p_si_p,£f],[a,p,£f]]
[[b,p_neg_s1_p,£],[a,p,£]]
[[a,p_s1_p,f]l, [b,p,f]]
[[a,p_neg_s1_p,£], [b,p,£]]
[[a,p_s1_p,f],[a,p,f],[a,p_neg_si_p,£]]
[[b,p_s1_p,f],[b,p,f], [b,p_neg_si_p,f]]

O WN

[[a,p_s1_p,t],[b,p_neg_s1_p,£]]
[[b,p_s1_p,t]l,[a,p_neg_si_p,fl]

N =

hyper_aux:

[[b,p_s1_p,f],[a,p_neg_si_p,f]]
[[a,p_s1_p,f],[b,p_neg_s1_p,f]]
[[a,p_neg_s1_p,f],[b,p_neg_si_p,£f]]
[[b,p_or_s1_p_neg_si_p,f],[a,p,f]]
[[a,p_or_s1_p_neg_s1_p,f]l,[b,p,£]]
[[a,p_s1_p,f],[b,p_or_sl_p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[b,p_or_sl_p_neg_sl_p,f]]
[[b,p_s1_p,f],[a,p_or_sl_p_neg_si_p,f]]

9 [[b,p_neg_s1_p,f],[a,p_or_sl_p_neg_si_p,f]l]
10 [[a,p,f],[a,p_neg_s1_p,£f]]

11 [[b,p,f],[b,p_neg_s1_p,f]]

12 [[a,p_or_si_p_neg_s1_p,f],[b,p_or_si_p_neg_s1_p,f]]
13 [[a,p_sl_p,f],[a,p_neg_s1_p,f]]

14 [[b,p_s1_p,f],[b,p_neg_si1_p,f]]

0N OB wN ==

[[a,p_s1_p,t],[b,p_neg_s1_p,£]]
[[b,p_s1_p,tl,[a,p_neg_si_p,fl]

N =

resolvents_1 completed; hyper_aux follows

Read clauses starts:
Al:
1 [[a,p_neg_s1_p,f]]

2 [[b,p_neg_s1_p,f]]

3 [[b,p_neg_si_p,f],[b,p_or_sl_p_neg_sl_p,f]]
4 [[a,p_neg_s1_p,f],[a,p_or_sl_p_neg_si_p,f]l]
5 [[b,p_neg_s1_p,f]l,[a,p_neg_s1_p,f]]

B1:

hyper_aux: B = []

[[b,p_s1_p,f], [a,p,£f]]

[[a,p_s1_p,f]l, [b,p,f]]

[[a,p_neg_s1_p,£f]]

[[b,p_neg_s1_p,£f]]
[[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[a,p_or_sl_p_neg_sl_p,f]]
[[b,p_neg_s1_p,f]l,[a,p_neg_si_p,f]]

N O w4

5.5.2 Hyperresolution 199

0N O wN ==

=R e = O
B W N = O

[[b,p_s1_p,f],[a,p_neg_si_p,f]]
[[a,p_s1_p,f],[b,p_neg_s1_p,f]]
[[a,p_neg_s1_p,f],[b,p_neg_si_p,£f]]
[[b,p_or_s1_p_neg_si_p,f],[a,p,f]]
[[a,p_or_s1_p_neg_s1_p,f]l,[b,p,£]]
[[a,p_s1_p,f],[b,p_or_sl_p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_si_p,f]]
[[b,p_s1_p,f],[a,p_or_sl_p_neg_si_p,f]]
[[b,p_neg_s1_p,f]l,[a,p_or_s1_p_neg_si_p,f]]
[[a,p,f],[a,p_neg_s1_p,£]]
[[b,p,f],[b,p_neg_s1_p,f]]
[[a,p_or_s1_p_neg_s1_p,f],[b,p_or_sl_p_neg_si_p,f]]
[[a,p_s1_p,f],[a,p_neg_s1_p,f]]
[[b,p_si_p,f],[b,p_neg_si_p,f]]

=
jury

0N OO WN =

[[b,p_s1_p,f]l, [a,p,f]]
[[a,p_s1_p,f],[b,p,f]]

[[a,p_neg_s1_p,f]]

[[b,p_neg_s1_p,£]]
[[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[a,p_or_sl_p_neg_s1_p,f]]
[[b,p_s1_p,f],[a,p_neg_s1_p,f]]
[[a,p_s1_p,f],[b,p_neg_s1_p,f]]
[[a,p_neg_s1_p,f],[b,p_neg_si_p,£f]]
[[b,p_or_s1_p_neg_si_p,f],[a,p,f]]
[[a,p_or_s1_p_neg_s1_p,f],[b,p,£]]
[[a,p_s1_p,f]l,[b,p_or_s1_p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[b,p_or_sl_p_neg_s1_p,f]]
[[b,p_si_p,f]l,[a,p_or_s1_p_neg_si_p,f]]
[[b,p_neg_s1_p,f],[a,p_or_sl_p_neg_s1_p,f]]
[[a,p,f],[a,p_neg_s1_p,£]]
[[b,p,f],[b,p_neg_s1_p,f]]
[[a,p_or_s1_p_neg_s1_p,f],[b,p_or_sl_p_neg_si_p,f]]
[[a,p_s1_p,f],[a,p_neg_s1_p,f]]
[[b,p_si_p,f],[b,p_neg_si_p,f]]

out of resolvents_2

Al:
1

OO W N =

[[a,p,f],[b,p,f]1]

[[b,p_neg_s1_p,t],[a,p,f]]
[[a,p_neg_s1_p,t],[b,p,f]]
[[a,p_s1_p,t]]

[[b,p_s1_p,t]]
[[b,p_si_p,t],[a,p_neg_si_p,f]]
[[a,p_s1_p,t],[b,p_neg_s1_p,£]]

hyper_aux:

00N O WwN ==

[[b,p_s1_p,f],[a,p,£f]]

[[a,p_s1_p,f]l, [b,p,f]]

[[a,p_neg_s1_p,£f]]

[[b,p_neg_s1_p,£]]
[[b,p_neg_s1_p,f],[b,p_or_s1_p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[a,p_or_sl_p_neg_si1_p,f]]
[[b,p_s1_p,f],[a,p_neg_s1_p,f]]
[[a,p_s1_p,f],[b,p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[b,p_neg_si_p,f]]
[[b,p_or_si_p_neg_s1_p,f],[a,p,f]]
[[a,p_or_s1_p_neg_si_p,f],[b,p,f]]
[[a,p_s1_p,f],[b,p_or_s1_p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[b,p_or_sil_p_neg_s1_p,f]]
[[b,p_si_p,f]l,[a,p_or_s1_p_neg_s1_p,f]]

200 5 Fibered Representation and Universal Algebra

15 [[b,p_neg_s1_p,f]l,[a,p_or_si_p_neg_si_p,f]l]

16 [[a,p,f],[a,p_neg_s1_p,f]l]

17 [[b,p,£f],[b,p_neg_s1_p,£]]

18 [[a,p_or_s1_p_neg_s1_p,f]l,[b,p_or_s1_p_neg_si_p,f]]
19 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]

20 [[b,p_si_p,f]l,[b,p_neg_si_p,f]]

[[b,p_neg_s1_p,t]l,[a,p,f]]
[[a,p_neg_s1_p,t], [b,p,£]]
[[a,p_s1_p,t]]

[[b,p_s1_p,t]]
[[b,p_si_p,t],[a,p_neg_si_p,f]]
[[a,p_s1_p,t],[b,p_neg_s1_p,£]]

DO WN =

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 [[b,p,f]]

2 [[a,p,f]]

3 [[b,p_or_s1_p_neg_sl_p,f]l]

4 [[a,p_or_sl_p_neg_s1_p,f]]

5 [[a,p,f]l,[b,p,f]]

6 [[b,p_neg_si_p,f],[a,p_neg_s1_p,f]l]

hyper_aux: B = []

[[b,p,£]1]

[[a,p,£f]]
[[b,p_or_s1_p_neg_si_p,f]]
[[a,p_or_s1_p_neg_sl_p,f]]
[[a,p,f],[b,p,f]1]
[[b,p_neg_s1_p,f],[a,p_neg_si_p,£f]]

OO WwNR A

[[b,p_s1_p,f], [a,p,£]]

[[a,p_s1_p,f]l, [b,p,f]]

[[a,p_neg_s1_p,£f]]

[[b,p_neg_s1_p,£fl]
[[b,p_neg_s1_p,f],[b,p_or_sl_p_neg_sl_p,f]]
[[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_si_p,f]]
[[b,p_s1_p,f],[a,p_neg_si1_p,f]]
[[a,p_s1_p,f],[b,p_neg_s1_p,f]]

9 [[a,p_neg_s1_p,f],[b,p_neg_si_p,f]l]

10 [[b,p_or_si_p_neg_sl_p,f],[a,p,f]]

11 [[a,p_or_si_p_neg_s1_p,f]l,[b,p,f]]

12 [[a,p_s1_p,f],[b,p_or_si_p_neg_s1_p,f]]

13 [[a,p_neg_s1_p,f],[b,p_or_si_p_neg_si_p,f]l]
14 [[b,p_s1_p,f],[a,p_or_sil_p_neg_s1_p,f]]

15 [[b,p_neg_s1_p,f]l,[a,p_or_si_p_neg_si_p,f]l]
16 [[a,p,f],[a,p_neg_s1_p,£f]]

17 [[b,p,£f],[b,p_neg_s1_p,f]]

18 [[a,p_or_s1_p_neg_s1_p,f]l,[b,p_or_s1_p_neg_si_p,f]]
19 [[a,p_s1_p,f],[a,p_neg_s1_p,f]]

20 [[b,p_s1_p,f]l,[b,p_neg_si_p,f]]

0N O WwN =R

1 [[b,p,f]]

2 [[a,p,f]]

3 [[b,p_or_s1_p_neg_sl_p,f]l]
4 [[a,p_or_sl_p_neg_si_p,f]]
5 [[a,p,f],[b,p,f]]

6 [[b,p_si_p,fl,[a,p,f]]

5.5.2 Hyperresolution 201

7 [[a,p_si_p,fl,[b,p,fl]

8 [[a,p_neg_s1_p,f]]

9 [[b,p_neg_si_p,£l]

10 [[b,p_neg_s1_p,f],[b,p_or_si_p_neg_si_p,f]l]
11 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]
12 [[b,p_s1_p,f],[a,p_neg_s1_p,£f]l]

13 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]

14 [[a,p_neg_s1_p,f],[b,p_neg_si_p,f]]

15 [[b,p_or_si_p_neg_s1_p,f]l,[a,p,f]]

16 [[a,p_or_sl_p_neg_si_p,£],[b,p,£]]

17 [[a,p_s1_p,f],[b,p_or_s1_p_neg_si_p,f]]

18 [[a,p_neg_si_p,f],[b,p_or_si_p_neg_s1_p,f]]
19 [[b,p_s1_p,f],[a,p_or_s1_p_neg_si_p,f]]

20 [[b,p_neg_s1_p,f]l,[a,p_or_sl_p_neg_si_p,f]]
21 [[a,p,f],[a,p_neg_s1_p,f]]

22 [[b,p,f],[b,p_neg_s1_p,£f]]

23 [[a,p_or_sl_p_neg_s1_p,f],[b,p_or_si_p_neg_s1_p,£f]]
24 [[a,p_s1_p,f]l,[a,p_neg_si_p,f]]

25 [[b,p_si_p,f],[b,p_neg_si_p,£f]]

out of resolvents_2
Al:

1 [[b,p_si_p,£]]

2 [[a,p_si_p,f]]

B1:
1 [[b,p_si_p,t],[a,p_neg_si_p,f]]
2 [[a,p_s1l_p,t],[b,p_neg_si_p,f]]

hyper_aux:

[[b,p,£]1]

[[a,p,£f]]

[[b,p_or_s1_p_neg_si_p,f]]
[[a,p_or_s1_p_neg_sl_p,f]]

[[a,p,f],[b,p,f]1]

[[b,p_s1_p,f], [a,p,£f]]

[[a,p_s1_p,f]l, [b,p,f]]

[[a,p_neg_s1_p,£f]]

9 [[b,p_neg_si_p,£l]

10 [[b,p_neg_s1_p,f],[b,p_or_si_p_neg_si_p,f]l]
11 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]
12 [[b,p_s1_p,f],[a,p_neg_s1_p,f]l]

13 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]

14 [[a,p_neg_s1_p,f],[b,p_neg_si_p,f]]

15 [[b,p_or_sl_p_neg_si_p,f],[a,p,f]]

16 [[a,p_or_si_p_neg_si_p,f]l,[b,p,f]]

17 [[a,p_s1_p,f],[b,p_or_si_p_neg_si_p,f]]

18 [[a,p_neg_s1_p,f],[b,p_or_si_p_neg_s1_p,f]]
19 [[b,p_s1_p,f],[a,p_or_s1_p_neg_si_p,f]]

20 [[b,p_neg_s1_p,f]l,[a,p_or_sil_p_neg_si_p,£f]]
21 [[a,p,f],[a,p_neg_s1_p,f]]

22 [[b,p,f],[b,p_neg_si_p,£]]

23 [[a,p_or_sl_p_neg_si_p,f],[b,p_or_si_p_neg_si_p,f]]
24 [[a,p_sl_p,f],[a,p_neg_s1_p,f]]

25 [[b,p_si_p,f],[b,p_neg_si_p,£f]]

0 ~NOOOddWwNN ==

1 [[b,p_si_p,t],[a,p_neg_si_p,f]]
2 [[a,p_s1l_p,t],[b,p_neg_si_p,f]]

resolvents_1 completed; hyper_aux follows
Read clauses starts:

Al:
1 [[a,p_neg_si_p,f],[a,p,f]]

202 5 Fibered Representation and Universal Algebra

2 [[b,p_neg_si_p,fl,[b,p,fl]
3 [[b,p_neg_si_p,f],[a,p_neg_s1_p,f]l]

B1:

hyper_aux: B = []

T:

1 [[b,p_si_p,£]]

2 [[a,p_si_p,f]]

3 [[a,p_neg_si_p,f],[a,p,f]]

4 [[b,p_neg_si_p,f],[b,p,£]]

5 [[b,p_neg_s1_p,f],[a,p_neg_s1_p,f]l]

M:

1 [[b,p,£]]

2 [[a,p,f]]

3 [[b,p_or_s1_p_neg_sl_p,f]l]

4 [[a,p_or_sl_p_neg_sl_p,f]]

5 [la,p,f]l,[b,p,f]]

6 [[b,p_si_p,f],[a,p,f]]

7 [[a,p_si_p,fl,[b,p,fl]

8 [[a,p_neg_s1_p,f]]

9 [[b,p_neg_si_p,fl]

10 [[b,p_neg_s1_p,f],[b,p_or_si_p_neg_si_p,f]l]
11 [[a,p_neg_s1_p,f],[a,p_or_s1_p_neg_s1_p,f]]
12 [[b,p_s1_p,f],[a,p_neg_s1_p,f]l]

13 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]

14 [[a,p_neg_s1_p,f],[b,p_neg_si_p,f]]

15 [[b,p_or_s1_p_neg_sl_p,f],[a,p,£f]]

16 [[a,p_or_si_p_neg_si_p,f]l,[b,p,f]]

17 [[a,p_s1_p,f],[b,p_or_si_p_neg_s1_p,f]]

18 [[a,p_neg_s1_p,f],[b,p_or_sil_p_neg_s1_p,f]]
19 [[b,p_s1_p,f],[a,p_or_s1_p_neg_si_p,f]]

20 [[b,p_neg_s1_p,f]l,[a,p_or_sl_p_neg_si_p,f]]
21 [[a,p,f],[a,p_neg_s1_p,f]]

22 [[b,p,f],[b,p_neg_s1_p,£f]]

23 [[a,p_or_s1_p_neg_si_p,f],[b,p_or_si_p_neg_si_p,f]]
24 [[a,p_sl_p,f],[a,p_neg_s1_p,f]]

25 [[b,p_si_p,f],[b,p_neg_si_p,£f]]

M1:

1 [[b,p_si_p,£]]

2 [[a,p_si_p,f]]

3 [[b,p,£f1]

4 [[a,p,f]]

5 [[b,p_or_si_p_neg_si_p,£f]]

6 [[a,p_or_s1_p_neg_sl_p,f]l]

7 [la,p,f]1,[b,p,£]]

8 [[b,p_si_p,f],[a,p,f]]

9 [[a,p_si_p,f]l,[b,p,fl]

10 [[a,p_neg_s1_p,£f]]

11 [[b,p_neg_s1_p,fl]

12 [[b,p_neg_s1_p,f],[b,p_or_si_p_neg_s1_p,f]]
13 [[a,p_neg_s1_p,f],[a,p_or_si_p_neg_si_p,f]l]
14 [[b,p_s1_p,f],[a,p_neg_si1_p,f]]

15 [[a,p_s1_p,f],[b,p_neg_s1_p,f]]

16 [[a,p_neg_s1_p,f],[b,p_neg_si_p,f]]

17 [[b,p_or_sl_p_neg_si_p,f],[a,p,£]]

18 [[a,p_or_si_p_neg_s1_p,f]l,[b,p,f]]

19 [[a,p_s1_p,f],[b,p_or_si_p_neg_s1_p,f]]

20 [[a,p_neg_s1_p,f],[b,p_or_s1_p_neg_si_p,f]]
21 [[b,p_si_p,f],[a,p_or_sl_p_neg_si_p,f]]

22 [[b,p_neg_s1_p,f],[a,p_or_s1_p_neg_si_p,f]]
23 [[a,p,f]l,[a,p_neg_s1_p,f]]

24 [[b,p,f],[b,p_neg_si_p,f]]

25 [[a,p_or_s1_p_neg_si_p,f],[b,p_or_si_p_neg_si_p,f]]

5.5.2 Hyperresolution

26 [[a,p_s1_p,f]l,[a,p_neg_si_p,f]]
27 [[b,p_s1_p,f]l,[b,p_neg_si_p,f]]

out of resolvents_2

Al:

B1:

1 [[b,p_neg_si_p,t]l]

2 [[a,p_neg_s1_p,t]]

3 [[a,p_sil_p,t],[a,p_or_s1l_p_neg_sl1_p,f],[a,p,£]]
4 [[b,p_si_p,t],[b,p_or_si_p_neg_si_p,f],[b,p,f]]
5 [[b,p_si_p,t],[a,p_neg_si_p,f]]

6 [[a,p_si_p,t],[b,p_neg_si_p,f]l]

hyper_aux:

[[b,p_s1_p,£]]

[[a,p_s1_p,£]]

[[b,p,£]1]

[[a,p,£f]1]

[[b,p_or_s1_p_neg_sl_p,f]]
[[a,p_or_s1_p_neg_si_p,f]]

[[a,p,f],[b,p,f]]

[[b,p_s1_p,f]l, [a,p,f]]

[[a,p_s1_p,f]l, [b,p,f]]

[[a,p_neg_s1_p,£f]]

[[b,p_neg_s1_p,£f]l]
[[b,p_neg_s1_p,f],[b,p_or_sil_p_neg_s1_p,f]]
[[a,p_neg_s1_p,f],[a,p_or_sil_p_neg_si_p,f]]
[[b,p_si_p,f],[a,p_neg_s1_p,f]]
[[a,p_s1_p,f],[b,p_neg_si_p,f]]
[[a,p_neg_s1_p,f],[b,p_neg_si_p,f]]
[[b,p_or_si_p_neg_s1_p,f],[a,p,£]]
[[a,p_or_s1_p_neg_si_p,f],[b,p,f]]
[[a,p_s1_p,f],[b,p_or_sl_p_neg_si_p,£f]]
[[a,p_neg_s1_p,f],[b,p_or_si_p_neg_si_p,f]]
[[b,p_s1_p,f],[a,p_or_sl_p_neg_si_p,f]]
[[b,p_neg_s1_p,f],[a,p_or_si_p_neg_si_p,f]]
[[a,p,f],[a,p_neg_s1_p,£]]
[[b,p,f],[b,p_neg_si_p,fl]
[[a,p_or_s1_p_neg_si_p,f],[b,p_or_si_p_neg_si_p,f]]
[[a,p_s1_p,f],[a,p_neg_s1_p,f]]
[[b,p_s1i_p,f],[b,p_neg_si_p,f]]

0N O WwN R =R

NN NDNDNDNDNDNR B B =R e = O
NOoO D WNERE, OO NOOd WNR, O

[[b,p_neg_s1_p,t]]

[[a,p_neg_s1_p,t]]
[[a,p_s1_p,t],[a,p_or_s1_p_neg_si_p,f]l,[a,p,f]]
[[b,p_s1_p,t],[b,p_or_si_p_neg_si_p,f],[b,p,£]]
[[b,p_si_p,t],[a,p_neg_si_p,f]]
[[a,p_s1_p,t],[b,p_neg_s1_p,£]]

DO WN =

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 1

[[b,p_or_s1_p_neg_s1_p,f]l,[b,p,f], [a,p_neg_si_p,£f]]
[[a,p_or_s1_p_neg_si_p,f],[a,p,f],[b,p_neg_si_p,f]]

[[a,p_or_s1_p_neg_s1_p,f]l,[a,p,f], [a,p_neg_si_p,£f]]
[[b,p_neg_s1_p,f]l,[a,p_neg_si_p,f]]
[[b,p_or_s1_p_neg_si_p,f],[b,p,f],[b,p_neg_si_p,f]]

0N OO WwN

[[a,p_or_s1_p_neg_s1_p,f]l,[a,p,f], [b,p_or_sl_p_neg_sl_p,f]]
[[b,p_or_s1_p_neg_si_p,f],[b,p,f],[a,p_or_sl_p_neg_si_p,f]]

203

204 5 Fibered Representation and Universal Algebra

Is a theorem: Contradiction is found

Note that if we use the structure of D(S,2) we can reduce the number
of clauses that are generated, for those formulae that do not contain the De
Morgan negation ~. Namely, we can use the fact that D(S,,z) consists of two
branches and that the transformation rules for the operations in {V, A, -, =}
preserve the branch of D(S,2). It is easy to see that it is sufficient to give a

refutation for
([1(0,1)]piA

AN N (0,0 |00 | (g opes))N (0,0) | V] (0,0) | (s 0pgs))N
iy subformula of ¢
P=1p101)2
AN N O] P[00 (V)) A 00] 0l v](0,0) | (Tpy,)).
iy subf():rmzlla of »

(i.e. in just one of the branches of D(S,:)); for the other branch a similar
refutation can be constructed by simply renaming the nodes, and they can be
then combined to a refutation by resolution for

([t ©,1)]] v[11,0)]p])n

A A ([z] Pl V] (P 0 Pya)') A ([2] Py V[E] (P © Pya) A
z€D(S,2) ¢ subformula of ¢
P=1p10th2
A A ([=]), V2] (Vpy,)') A (2] Pl V] (Vpy,)T).

z€D(S,,2) ¢ subformula of ¢
Y=V

Example 5.11 Consider the SHn-logic for n = 2, as described in Example 5.5,
and let ¢ = S1(p) V —=(S1(p)). If we consider only the branch {a} of D(Sy2), we
obtain:

| ?- read_clauses(M, N, res_1), prove_hyperresolution(M, N, []).
hyper_aux:

M:

1 [[a,p_or_sl_p_neg_si_p,f]]

2 [[a,p_s1l_p,f],[a,p_neg_s1_p,f]]

[[a,p_s1_p,t],[a,p_neg_s1_p,t],[a,p_or_sl_p_neg_si_p,£f]]
[[a,p_or_s1_p_neg_si_p,t],[a,p_s1_p,f]]
[[a,p_or_s1_p_neg_sl_p,t],[a,p_neg_s1_p,f]]
[[a,p_s1_p,t],[a,p_neg_s1_p,t]]

[[a,p,t],[a,p_s1_p,f]]

[[a,p_s1_p,t],[a,p,f]]

OO wWwNN =W

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 [[a,p_sl_p,£]]

2 [[a,p_neg_s1_p,f]]

3 [[a,p,f],[a,p_neg_s1_p,£f]]

B1:

5.5.2 Hyperresolution 205

hyper_aux: B = []

T:

1 [[a,p_sl_p,£]]

2 [[a,p_neg_s1_p,£f]]

3 [[a,p,f]l,[a,p_neg_s1_p,f]l]
M:

1 [[a,p_or_sl_p_neg_si_p,f]]

N

[[a,p_s1_p,f],[a,p_neg_s1_p,£]]
M1:

[[a,p_s1_p,£]]

[[a,p_neg_s1_p,f]l]

[[a,p,f],[a,p_neg_s1_p,£f]]

[[a,p_or_s1_p_neg_si_p,f]]

[[a,p_s1_p,f],[a,p_neg_s1_p,£]]

O W N

out of resolvents_2
Al:
1 [[a,p,£]]

B1:

1 [[a,p_neg_si_p,t]]

2 [[a,p_s1_p,t]]

3 [[a,p_si_p,t],[a,p_or_s1_p_neg_s1_p,fl,[a,p,f]]

hyper_aux:

[[a,p_s1_p,£]]
[[a,p_neg_s1_p,£f]]
[[a,p,f],[a,p_neg_s1_p,f]]
[[a,p_or_s1_p_neg_sl_p,f]]
[[a,p_s1_p,f],[a,p_neg_s1_p,£]]

O w N ==

[[a,p_neg_s1_p,t]]
[[a,p_s1_p,t]]
[[a,p_s1_p,t],[a,p_or_s1_p_neg_si_p,f]l,[a,p,f]]

w N = W

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 11

2 [[a,p,f]]

3 [[a,p_or_s1_p_neg_sl_p,f],[a,p,f],[a,p_neg_si_p,£]]

B1:

Is a theorem: Contradiction is found

Note that this is specific to the SHn-logics. In what follows we illustrate
the general procedure for £,,,-logics.

Example 5.12 Consider the Ly, logic, with m = 2 and n = 1, as described
in Example 5.7. Let ¢ = f%(p)V f(p). In what follows we present the ezecution
of the procedure prove(o,[a,b],[]). All the clauses generated at every application
of resolution-1 or resolution-2 are explicitly printed.

| ?- prove([or, [f, [f, pl], [f, pl]l, [a, b, [1).
hyper_aux:

M:

1 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f p_f_p,f]]

206 5 Fibered Representation and Universal Algebra

[[b,p_f_p,f],[a,p_f_f_p,£fl]
[[b,p,f],[a,p_f_p,f]]
[[b,p_f_p,£f],[b,p_f_f_p,f]]
[[b,p,f],[b,p_f_p,fl]

o W N

B

1 [[a,p_f_f_p,t],[a,p_f_p,t]l,[a,p_or_f_f p_f_p,f]]
2 [[a,p_or_f_f_p_f_p,tl,[a,p_f_f_p,fl]

3 [[a,p_or_f_f_p_f_p,tl,[a,p_f_p,fl]

4 [[b,p_f_p,t]l,[a,p_f_f p,t]]

5 [[b,p,t],[a,p_f_p,t]]

6 [[b,p_f_f_p,tl,[b,p_f_p,t],[b,p_or_f_f p_f p,fl]
7 [[b,p_or_f_f_p_f_p,t]l,[b,p_f_f_p,fl]

8 [[b,p_or_f_f p_f_p,t],[b,p_f_p,£fl]

9 [[b,p_f_p,t]l,[b,p_f_f_p,t]]

10 [[b,p,t],[b,p_f_p,tl]

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 [[a,p_f_f_p,f]l,[b,p_or_f_f p_f_p,fl]
2 [la,p_f_p,f],[b,p_or_f_f p_f_p,f]]

3 [[b,p_f_f_p,fl,[a,p_or_f_f_p_f_p,f]]
4 [[b,p_f_p,f]l,[a,p_or_f_f_ p_f_p,f]l]

B1:
1 [[a,p_f_f_p,t],[b,p,£]]
[[b,p_f_f_p,t]l,[b,p,fl]

hyper_aux:

M:

1 [[a,p_or_f_f p_f p,f]l,[b,p_or_f f p f p,f]]
2 [[b,p_f_p,fl,[a,p_f_f_p,fl]

3 [[b,p,f]l,[a,p_f_p,f]]

4 [[b,p_f_p,f]l,[b,p_f_f_p,f]l]

5 [[b,p,f],[b,p_f_p,f]]

B:

1 [[a,p_f_f_p,t],[b,p,£]]

2 [[b,p_f_f_p,tl,[b,p,f]]

resolvents_1 completed; hyper_aux follows

Read clauses starts:
Al:

B1:

hyper_aux: B = []

T:

1 [[a,p_f_f_p,f],[b,p_or_f f p f p,f]]
2 [la,p_f_p,f]l,[b,p_or_f_f_p_f_p,fl]

3 [[b,p_f_f _p,f]l,[a,p_or_f_f p_f_ p,f]]
4 [[b,p_f_p,f]l,[a,p_or_f f p_f p,f]]
M:

1 [[a,p_or_f_f_p_f_p,f]l,[b,p_or_f_f p_f_p,f]]
2 [[vb,p_f_p,f]l,[a,p_f_f_p,f]]

3 [[b,p,f]l,[a,p_f_p,fl]

4 [[b,p_f_p,f],[b,p_f_f p,f]]

5 [[b,p,f],[b,p_f_p,fl]

M1:

1 [[a,p_f_f_p,f],[b,p_or_f_f p_f_p,f]]
2 [[a,p_f_p,fl,[b,p_or_f_f_p_f_p,fl]

5.5.2 Hyperresolution 207

[[b,p_f_f_p,f]l,[a,p_or_f_f_p_£f_p,fl]
[[b,p_f_p,fl,[a,p_or_f_f_p_f_p,f]]

[[b,p_f_p,f],[a,p_f_f_p,£fl]
[[b,p,£f],[a,p_f_p,f]]
[[b,p_f_p,f],[b,p_f_f_p,£fl]
[[b,p,£], [b,p_f_p,£1]

O 00 ~NO O W

out of resolvents_2

Al:

1 [[a,p_f_f_p,f],[b,p_f_f_p,f]]
2 [[a,p_f_p,f],[b,p_f_f_p,f]l]

3 [la,p_f_f_p,f],[b,p_f_p,fl]

4 [[a,p_f_p,f]l,[b,p_f_p,f]]

B1:

hyper_aux: B = []

T:
1 [[a,p_f_f_p,f]l,[b,p_f_f_p,fl]
2 [[a,p_f_p,f]l,[b,p_f_f_p,fl]
3 [la,p_f_f_p,f]l,[b,p_f_p,f]l]
4 [[a,p_f_p,f]l,[b,p_f_p,fl]
M:
1 [[a,p_f_f_p,f]l,[b,p_or_f_f p_f_p,fl]
2 [la,p_f_p,f],[b,p_or_f_f p_f_p,f]]
3 [[b,p_f_f_p,fl,[a,p_or_f_f_p_f_p,f]]
4 [[b,p_f_p,f]l,[a,p_or_f f p_f p,f]]
5 [la,p_or_f_f p_f_p,f],[b,p_or_f_f_p_f_p,fl]
6 [[b,p_f_p,f]l,[a,p_f_f_p,f]]
7 [[b,p,f]l,[a,p_f_p,f]]
8 [[b,p_f_p,fl,[b,p_f_f_p,fl]
9 [[b,p,f],[b,p_f_p,f]]
M1:
1 [[a,p_f_f_p,f]l,[b,p_f_f_p,fl]
2 [[a,p_f_p,f]l,[b,p_f_f_p,fl]
3 [la,p_f_p,f],[b,p_f_p,£]]
4 [[a,p_f_f_p,f]l,[b,p_or_f f p_f p,f]]
5 [la,p_f_p,f]l,[b,p_or_f_f_p_f_p,fl]
6 [[b,p_f_f p,f]l,[a,p_or_f_f p_f_ p,f]]
7 [[b,p_f_p,fl,[a,p_or_f_f_p_f_p,fl]
8 [[a,p_or_f_ f p_f p,f],[b,p_or_f_f p_f_p,f]]
9 [[b,p_f_p,fl,[a,p_f_f_p,fl]

10 [[b,p,f]l,[a,p_f_p,£f]l]
11 [[b,p_f_p,fl,[b,p_f_f_p,f]l]
12 [[b,p,f]l,[b,p_f_p,fl]

out of resolvents_2
Al:

B1:

1 [[a,p_f_p,t]l,[a,p_or_f_f_p_f_p,f],[b,p_f_f_p,fl]
2 [[b,p_f_p,t],[b,p_f_f_p,f]]

3 [[b,p_f_p,t],[a,p_f_f_p,f]]

4 [[b,p,t],[b,p_f_f_p,fl]

5 [[b,p,t],[a,p_f_f_p,£]]

6 [[a,p_f_f_p,tl,[a,p_or_f_f_p_f_p,fl,[b,p_f_p,£f]l]
7 [[b,p,t],[b,p_f_p,f]]

8 [[a,p_f_f_p,t],[a,p_f_p,fl]

9 [[b,p_f_f_p,tl,[a,p_f_p,f]l]

10 [[b,p,t]l,[a,p_f_p,fl]

hyper_aux:
M:

208 5 Fibered Representation and Universal Algebra

[[a,p_f_f_p,f]l,[b,p_f_£f_p,f]]
[[a,p_f_p,f],[b,p_f_f_p,£fl]
[[a,p_f_p,£f],[b,p_f_p,£f]]
[[a,p_f_f_p,f]l,[b,p_or_f_f_p_f_p,f]]
[[a,p_f_p,f],[b,p_or_f_f p_f _p,f]]
[[b,p_f_f_p,f]l,[a,p_or_f_f_p_f_p,f]]
[[b,p_f_p,f]l,[a,p_or_f_f p_f_p,f]]

9 [[b p_f_p f1,[a, p_f_f_p f]]

10 [[b,p,f]l,[a,p_f_p,fl]

11 [[b,p_f_p,f]l,[b,p_f_f_p,f]l]

12 [[b,p,f],[b,p_f_p,fl]

0N O WN =

[[a,p_f_p,t],[a,p_or_f_f_p_f_p,f]l,[b,p_f_f_p,fl]
[[b,p_f_p,t],[b,p_f_f_p,f]]
[[b,p_f_p,t],[a,p_f_f_p,f]]
[[b,p,t],[b,p_f_f_p,fl]

[[b,p,t],[a,p_f_f_p,fl]
[[a,p_f_f_p,t],[a,p_or_f_f_p_f_p,f]l,[b,p_f_p,fl]
[[b,p,t],[b,p_f_p,f1]
[[a,p_f_f_p,t]l,[a,p_f_p,£fl]
[[b,p_f_£f_p,t]l,[a,p_f_p,f]]

0 [[b,p,t],[a,p_f_p,fl]

= O 00N O WwN =W

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 [[a,p_f_f_p,fl]

2 [[b,p_f_f_p,f]]

3 [[b,p_f_f_p,f],[b,p,£]]
4 [[a,p_f_f_p,f],[b,p,£]]
Bi:

hyper_aux: B = []

1,[b,p,£]1]
1,[b,p,£1]

B wWw N =
—
—
o'
1
"h"h"h"h
1
"h"h"h"h
1
Fh Fh Fh b

[[a,p_f_f_p,f],[b,p_f_f p,£f]]
[[a,p_f_p,f],[b,p_f_f_p,£fl]
[[a,p_f_p,f],[b,p_f_p,fl]
[[a,p_f_f_p,f],[b,p_or_f_f p_f_p,f]]
[[a,p_f_p,f],[b,p_or_f_f_p_f_p,fl]
[[b,p_f_f_p,f]l,[a,p_or_f_f p_f_p,f]]
[[b,p_f_p,f]l,[a,p_or_f_f_p_f_p,f]l]
[[a,p_or_f_f p_f p,f],[b,p_or_f_f p_f p,f]]
[[b,p_f_p,f],[a,p_f_f_p,£fl]

10 [[b,p,f]l,[a,p_f_p,f]]

11 [[b,p_f_p,f]l,[b,p_f_f_p,f]l]

12 [[b,p,f]l,[b,p_f_p,fl]

00N O WwN ==

©

M1:

1 [[a,p_f_f_p,£]]

2 [[b,p_f_f_p,£1]

3 [[b,p_f_f_p,fl,[b,p,f]]

4 [[a,p_f_f_p,f]l,[b,p,£]]

5 [la,p_f_f_p,f]l,[b,p_f_f_p,fl]

6 [[a,p_f_p,f]l,[b,p_f_f_p,fl]

7 [la,p_f_p,£f]l,[b,p_f_p,£1]

8 [[a,p_f_f_p,fl,[b,p_or_f_f_p_f_p,fl]

5.5.2 Hyperresolution 209

9 [la,p_f_p,f]l,[b,p_or_f_f_p_f_p,fl]

10 [[b,p_f_f_p,fl,[a,p_or_f_f_p_f_p,fl]

11 [[b,p_f_p,f]l,[a,p_or_f_f p_f_p,£f]]

12 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,f]]
13 [[b,p_f_p,f]l,[a,p_f_f_p,£f]]

14 [[b,p,f]l,[a,p_f_p,f]]

15 [[b,p_f_p,f]l,[b,p_f_f_p,f]]

16 [[b,p,f]l,[b,p_f_p,fl]

out of resolvents_2
Al:

1:
[[a,p_f_p,t],[a,p_or_f_f p_f _p,f]]
[[b,p_f_p,tl]
[[a,p_f_p,t],[a,p_or_f_f_p_f_p,£f]l, [b,p,f]]
[[b,p_f_p,t],[b,p,£]]

S w N R W

hyper_aux:

M:

1 [[a,p_f_f_p,£]]

2 [[b,p_f_f_p,£1]

3 [[b,p_f_f_p,f],[b,p,£f]]

4 [[a,p_f_f_p,f],[b,p,£]1]

5 [la,p_f_f_p,f]l,[b,p_f_f_p,fl]

6 [la,p_f_p,£f]l,[b,p_f_f_p,£]]

7 [la,p_f_p,f],[b,p_f_p,fl]

8 [[a,p_f_f_p,f],[b,p_or_f f p_f_p,fl]
9 [la,p_f_p,f]l,[b,p_or_f_f_p_f_p,fl]

10 [[b,p_f_f_p,f],[a,p_or_f_f p_f_p,f]]
11 [[b,p_f_p,fl,[a,p_or_f_f_p_f_p,£f]]
12 [[a,p_or_f_f_p_f_p,f],[b,p_or_f_f_p_f_p,fl]
13 [[b,p_f_p,fl,[a,p_f_f_p,£]]

14 [[b,p,f]l,[a,p_f_p,fl]

16 [[b,p_f_p,f]l,[b,p_f_f p,£f]]

16 [[b,p,f]l,[b,p_f_p,fl]

B:

1 [[a,p_f_p,t],[a,p_or_f_f p_ f p,f]]

2 [[b,p_f_p,tl]

3 [[a,p_f_p,t]l,[a,p_or_f_f_p_f_p,fl,[b,p,fl]
4 [[b,p_f_p,t]l,[b,p,£f]]

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 [[a,p_or_f_f_p_f_p,f]l,[b,p_f_£f_p,fl]
2 [[a,p_or_f_f p_f_p,f],[b,p_f_p,£fl]

3 [[a,p_f_p,fll

4 [[b,p,f]]

B1:

hyper_aux: B = []

T:

1 [[a,p_or_f_f_p_f p,f]l,[b,p_f_f_p,f]]
2 [[a,p_or_f_f_p_f_p,f]l,[b,p_f_p,£fl]

3 [[a,p_f_p,£f]l]

4 [[b,p,f]]

M:

1 [[a,p_f_f_p,fl]

2 [[b,p_f_f_p,f]]

3 [[b,p_f_f_p,fl,[b,p,f]]

210 5 Fibered Representation and Universal Algebra

4 [[a,p_f_f_p,f],[b,p,£]1]

5 [la,p_f_f_p,f]l,[b,p_f_f_p,fl]

6 [[a,p_f_p,f],[b,p_f_f p,f]l]

7 [la,p_f_p,f]l,[b,p_f_p,fl]

8 [la,p_f_f_p,f],[b,p_or_f_f p_f p,f]]
9 [[a,p_f_p,f]l,[b,p_or_f_f_p_f_p,fl]
10 [[b,p_f_f_p,f]l,[a,p_or_f_f p_f_ p,f]l]
11 [[b,p_f_p,f]l,[a,p_or_f_f_p_f_p,f]]
13 [[b,p_f_p,f]l,[a,p_f_f_p,f]l]

14 [[b,p,f]l,[a,p_f_p,f]]

15 [[b,p_f_p,f]l,[b,p_f_f_p,f]]

16 [[b,p,f]l,[b,p_f_p,fl]

[[a,p_f_p,f]]

[[b,p,£]1]

[[a,p_f_f_p,f1]

[[b,p_f_f_p,£]l]
[[b,p_f_f_p,f],[b,p,£]]
[[a,p_f_f_p,f]l,[b,p,£]l]

[[a,p_f_f _p,f],[b,p_f_£f p,f]]
[[a,p_f_p,f],[b,p_f_f_p,£fl]
[[a,p_f_p,£f],[b,p_f_p,f]]

10 [[a,p_f_f_p,f]l,[b,p_or_f_f_p_f_p,fl]
11 [[a,p_f_p,f]l,[b,p_or_f_f_p_f_p,f]l]
12 [[b,p_f_f_p,f],[a,p_or_f_f p_f_p,f]]
13 [[b,p_f_p,fl,[a,p_or_f_f_p_f_p,fl]
14 [[a,p_or_f_f p_f _p,f],[b,p_or_f f p_f_p,f]]
15 [[b,p_f_p,fl,[a,p_f_f_p,f]l]

16 [[b,p,f]l,[a,p_f_p,f]]

17 [[b,p_f_p,f]l,[b,p_f_f_p,f]l]

18 [[b,p,f]l,[b,p_f_p,fl]

0N O WN =

©

out of resolvents_2
Al:
1 [[a,p_f_f_p,f]l,[b,p_f_p,fl]

B1:

1 [[a,p_f_f_p,t]l,[a,p_or_f f p f p,f]]
2 [[b,p,t]l]

3 [[a,p_f_p,tl]

4 [[b,p_f_p,tl]

hyper_aux:

[[a,p_f_p,£f]]

[[b,p,£]1]

[[a,p_f_f_p,f]l]

[[b,p_f_f_p,f1]
[[b,p_f_f_p,fl,[b,p,£]]
[[a,p_f_f_p,f],[b,p,£]]
[[a,p_f_f_p,f]l,[b,p_f_f_p,f]]
[[a,p_f_p,f],[b,p_f_f_p,f]]

9 [la,p_f_p,f],[b,p_f_p,fl]

10 [[a,p_f_f_p,f]l,[b,p_or_f_f p_f_ p,f]l]
11 [[a,p_f_p,f]l,[b,p_or_f_f p_f_p,f]]
12 [[b,p_f_f_p,fl,[a,p_or_f_f_p_f_p,fl]
13 [[b,p_f_p,f]l,[a,p_or_f_f_ p_f_p,f]]
16 [[b,p_f_p,f]l,[a,p_f_f_p,£f]]

16 [[b,p,f]l,[a,p_f_p,fl]

17 [[b,p_f_p,f]l,[b,p_f_f_p,f]]

18 [[b,p,f]l,[b,p_f_p,fl]

0N O WwN ==

1 [[a,p_f_f_p,t],[a,p_or_f_f_ p_f_p,f]]

5.5.2 Hyperresolution 211

2 [[b,p,t]]
3 [[a,p_f_p,tl]
4 [[b,p_f_p,tl]

resolvents_1 completed; hyper_aux follows

Read clauses starts:

Al:

1 [1

[[a,p_or_f_f_p_f_p,f]]
[[a,p_or_f_f_p_f_p,fl,[b,p,£]]
[[a,p_or_f_f p_f p,f]l,[b,p_f_f_p,f]]
[[b,p_f_p,f1]

o W N

B1:
Is a theorem: Contradiction is found

We present the execution times for several examples. All the experiments
were carried out under SICStus Prolog running on a SUN workstation with
128MB RAM, equipped with a SPARC processor and a SPARC floating point
processor with the following parameters: 86.1 MIPS, 10.6 MFLOPS, 44.2 SPECint92,
52.9 SPECfp92. The field “Refined” in the table containing the execution times
for the resolution procedure refers to the fact that only one branch of the dual
space D(S,2) was used, as illustrated in Example 5.11.

Translation to clause form

Formula Logic | |A| | |D(A)| | Nr.Clauses | Time*
Si(p) vV =S1(p) SH?2 4 2 15 50
SH3 9 4 31 110
SH4 | 16 6 49 170
SH5 | 25 8 69 300
SHG6 | 36 10 91 470
(p=9q) Vig=0p) SH?2 4 2 19 70
SH3 6 49 140
SH4 | 16 6 99 270
(r=(p=r)) SH2 4 2 13 30
(p=q=r)=(r=((p=r)) | SH3 9 6 91 380
f*(p) v f(p) Ly 4) 15 40
) Vp L3 8 3 28 60
Resolution
Formula Logic | |A] | |D(A)] General Refined
Nr.Cl. | Time* | Nr.Cl. | Time*
S1(p) V =51 (p) SH2 | 4 2 15 | 10480 8| 330
SH3 9 4 31 - 16 6369
=9 V(g=p SH?2 4 2 19 - 10 449
SH3 9 4 49 - 25 2079
r=@m=r) SH2 | 4 2 13 2510 7| 240
(p=>q)=>r)=>(=@p=>r) [SH3 | 9 4 91 — 46 | 4899
2oV)) 4 2 15 | 4500 - -

* Time is expressed in milliseconds.

212 5 Fibered Representation and Universal Algebra

5.6 Comparison with Existing Approaches and Final
Remarks

We showed that for some classes of logics (e.g. those satisfying properties (P1) —
(P3)) both a procedure for translation to clause from using structure-preserving
rules, and a method for proving non-satisfiability of a set of clauses by negative
hyperresolution.

The idea of using literals of the form [a]P? and [a]P/ occurred to us when
investigating the properties of SHn-logics and when we noticed that they are
sound and complete with respect to the finite SHn-frame D(S,,2), consisting of
all 0,1-lattice homomorphisms® from S,z to {0,1}. The work towards finding
a procedure for automated theorem proving for this class of logics was inspired
by the papers of Baaz and Fermiiller [BF95] and Hahnle [Hah94].

We want to point out that our approach is not as general as that presented
in [BF95] or [H&h93]. The goal of our approach is to exploit the finer structure
of the algebra of truth values of a given logic, and, when this structure allows it,
to improve the efficiency of the algorithm (i.e. to reduce the number of clauses
that are generated, or to avoid using the truth tables of the operations, and
instead use the tables for the corresponding operations on the dual space — with
smaller cardinality — and the corresponding transformation rules).

In [BF95] it is shown that, applying structure-preserving rules, the clause
form of a formula with & occurrences of at most r-ary operators and m occur-
rences of quantifiers contains no more than

(S) kW[4+ m2Wl 41

clauses, if optimal translation rules are used (where W is the set of truth values).
Thus, for a formula with & occurrences of at most r-ary operators and no
quantifiers, the clause form contains no more than k|W|" clauses.

For instance it can be seen (by directly checking) that for ¢ = S1(p)V-S1(p)
the number of clauses generated with this very general method is n* — 4n® +
8n? — 8n + 4 if we consider S,,2 as a set of truth values. If we only consider the
clauses generated by S;(p) V =S1(p)7(11) and those induced by the definitions
of the subformulas S;(p) and —S;(p) we obtain 6n? — 4n + 1 clauses. Thus, 17
clauses are generated for n = 2, 43 for n = 3, 81 for n = 4, 131 for n = 5, 193
for n = 6, etc.

The theoretical result of Baaz and Fermiiller is very beautiful (it establishes
a general method for resolution-based theorem proving in finite-valued quan-
tificational first-order logics, and in the same time it presents the resolution
procedure in a new light). However, in practical applications, because of the
exponential explosion of clauses in the resolution procedure, it is desirable to
reduce as much as possible the number of clauses that occur during the pro-
cess, either by improving the procedure for transformation to clause form, or
by using refinements of the resolution procedure.

“Note that the idea of using “valuations” instead of values appears already in [Sco73], in
the context of Lukasiewicz logics.

5.6 Comparison with Existing Approaches 213

In [H&h94] it is shown that in every n-valued logic L, for every signed for-
mula S : ¢ there is a CNF-representation ® of ¢ of length O(n?|4|) such that
S : ¢ is valid if and only if the empty clause can be deduced by signed resolution
from ®. This CNF-representation is also computed using structure-preserving
translation rules. Moreover, a generalized concept of “polarity” for the de-
fined subformulae is taken into consideration in order to reduce the number
of clauses that are generated. It is also pointed out that for a certain class
of finitely-valued logics (called regular logics) the signed resolution rule can be
simplified: a generalized version of negative hyperresolution is presented that
works very well for regular clauses.

Our method described in this section extends the version of negative hyper-
resolution developed by Hahnle for regular logics to the case when the set of
truth values is not linearly ordered. It is efficient especially in the cases when
the set of truth values is not linearly ordered, i.e. when the algebra of truth
values has considerably more elements than its dual space.

For example, in the case of SHn-logics, the clause form of a formula with
I subformulae (i.e. [occurrences of operators) has at most O(n?l), whereas the
upper bound of the number of clauses computed in the general case is O((n?)?1)
(because the algebra of truth values in this case has n? elements).

The difference is even more considerable in the case of P,,,-logics: by our
procedure the clause form of a formula with [subformulae has at most 1 + 3 m
1 clauses, whereas the upper bound of the number of clauses computed in the
general case is O((2™)%]) (because the algebra of truth values has 2™ elements
in this case).

In the case of SH Kn-logics, the method using “regular signs” developed in
[H&ah94] is essentially the same as the one described here, since Pt = P

ande:P.

Running our Prolog program on several tests we noticed that not all the
clauses generated were actually used in the resolution process. Preliminary ex-
perimental results suggest that the number of generated clauses can be reduced
using a concept very similar to the concept of “polarity” introduced by Hahnle.
This will be subject for further work.

We would like to make some remarks about Lukasiewicz logics. The Lu-
kasiewicz-Moisil algebras of order n were created by Moisil as an algebraic
counterpart for the many-valued logics of Lukasiewicz. However, it turned
out that n-valued Lukasiewicz-Moisil algebras are models for the n-valued log-
ics of Lukasiewicz only for n = 3 and n = 4. Rose showed that for n > 5

1 ife <y
1—(z—y) ifz>y)
cannot be expressed in terms of the Lukasiewicz-Moisil algebra operations
V,A,~,D; on L,. This can be seen by noticing that for every n > 5, S,, =
{0, nll, Z—:%, 1} is a subalgebra with respect to the Lukasiewicz-Moisil algebra

. n—2 1 2
operations, but 7= = =5 = =7 € Sh.

the Lukasiewicz implication (defined by =z — y =

214 5 Fibered Representation and Universal Algebra

In [Cig82] Cignoli introduced so-called proper Lukasiewicz algebras of order
n and showed that n-valued Lukasiewicz logics are sound and complete with
respect to the class of proper Lukasiewicz algebras of order n.

Finding a Priestley-type representation for proper Lukasiewicz algebras of
order n is (to our knowledge) still an open problem. Hence, our method cannot
yet be applied for Lukasiewicz logics.

We would like to point out that analyzing our proofs above we noticed
that the restrictive condition imposed on the logic £ (i.e. that the logic L is
sound and complete with respect to a variety V of algebras with an underlying
distributive lattice structure, such that V is generated by one finite algebra
A and the Priestley duality extends to a dual equivalence between V and a
category VSp of Priestley spaces with operators) can be relaxed.

In the procedure for automated theorem proving described above we did
not use all the duals of the algebras in the variety V, but only the dual of the
finite algebra A that generates V.

As already said in Section 1.2 it seems that it suffices if £ is sound and
complete with respect to a finite Kripke-style frame (a finite set endowed e.g.
with an order relation and with additional relations associated to the opera-
tions in the logic). We would like to investigate the degree of generality of this
approach. In the thesis we decided to keep the initially imposed set of condi-
tions on the logic £ because the Priestley duality for the variety V furnished an
intuitive description of the way such a finite Kripke frame can be constructed.
Moreover, it turned out that the duality theorem offers a general framework
for describing certain classes of Kripke models for these logics and a way of

r
defining the validity relation |= for these Kripke models starting from validity

a
relation |= on the algebraic models.

Chapter 6

Towards a Sheaf Semantics for
Systems of Interacting Agents

In this chapter we give the main motivation for an approach to modeling inter-
acting agents (robots) based on sheaf theory.

At the beginning, as a motivation for our theoretical study, we illustrate
the problems that appear on a simple example, adapted from [Pfa93]. This ex-
ample leads to a formal definition of a system. We then show how morphisms
between systems can be defined in general; thus, we introduce a category SYS
of systems. We show that the admissible states and the admissible parallel ac-
tions define functors from SYS? to Sets (presheaves), and that the transitions
between states defined by the admissible parallel actions define a natural trans-
formation in PreSh(SYS), Tr : Act — Q515 or, alternatively, that they define
a subpresheaf Tr of Act x St x St. A natural question arises: is it possible
to define a covering relation on SYS that induces a Grothendieck topology on
SYSI'In the next chapters we will answer this question. However, for the sake
of simplicity we do not consider the general case. Instead, in Chapter 7 and
Chapter 8 we restrict to the case when the morphisms are inclusions. A general
theory that takes arbitrary morphisms between systems into account will be
subject for future work.

6.1 A Motivating Example

We begin with a simple example (adapted from [Pfa93]) as a motivation for our
theoretical study, for the definitions that will be given, and for the assumptions
that will be made.

Let Ry, R1, Ro, R3 be four robots performing the following task:

e Ry receives a work piece a and a work piece b and performs an assembly
task. The work piece r obtained from assembling a and b is placed on the
assembly bench.

e R, furnishes pieces of type a. He checks whether there are pieces of type a
left in stock, and whether a piece of type a or an r resulting from assembling

215

216 6 Towards a Sheaf Semantics for Systems of Interacting Agents

a and b is placed on the assembly bench of Ry. If there are pieces of type a
in stock, and if no a or r are placed on the table, R; brings a piece of type
a to Ry.

e Ry furnishes pieces of type b. He checks whether there are pieces of type
b left in stock, and whether a b or an r is placed on the table. If there are
pieces of type b in stock, and no b or r is on the table, Ry brings a piece of
type b to Ry.

e After Ry has assembled a and b, R3 receives the result r and transports it to
the stock.

Let S be the system resulting from the interaction of these robots. We can
assume that the system can be “described” by the interconnected subsystems
So, S1, So, and S3, which correspond to the robots Ry, R1, Rs and Rjs.

6.1.1 States

The states of the system S can be expressed using the control variables de-
scribed in the table below. The set of control variables relevant for system Sy is
Xo = {pa, pv, pr}, the one for Sy is Xy = {sq4, pa, pr}, for So, Xo = {ss, pp, Pr},
and for S3, X3 = {p,}. We will assume that the subsystems Sy,...,S3 com-
municate via common control variables. In Figure 6.1 we show how the control
variables are shared, and how they can be used for communication with “ex-
ternal” systems (e.g. Stock-a, Stock-b).

Variable ‘ Description ‘ System ‘
8q = in-stock-a “there is at least one piece of type a in stock” | Sy

sp = in-stock-b “there is at least one piece of type b in stock” | Sy

pa = on-table-a “a piece of type a is on the assembly bench” S0,51

pp = on-table-b “a piece of type b is on the assembly bench” 50,5

pr» = on-table-res | “the result r is on the assembly bench” So, S1,
527 S3

A state of the system S is a possible assignment of truth values to the
relevant control variables. We might additionally assume that only some of
these assignments are admissible, imposing some constraints on the values that
can be taken by the control variables. This turns out to be especially useful
when the control variables are not independent.

Let us assume for example that in the given system it is not allowed to have
a result piece and a piece of type a or b on the working bench at the same time,
but it is allowed to have a piece of type a and one of type b. That means that
pe and p, cannot both be true, and p, and p, cannot both be true. This can be

6.1.1 States 217

expressed by a set of identities on the boolean algebra freely generated by the
control variables of the system, in this case Id = {p, A p, = 0,pp A p, = 0}.

The agents Ry and R; can “communicate” using the control variables com-
mon to these systems, namely the set Xo; = {p,, pr}. Analogously, the agents
Ry and Ry can “communicate” using the set Xg2 = {ps, pr}, and R; and Ry
using the set Xi2 = {p, }(= X3). We can therefore assume that the structure
of the given systems of cooperating agents as an interconnection of subsystems
determines a topology on the set of control variables. Also the set of constraints
(if they do not link variables in different subsystems) can be “distributed” over
the subsystems in the same way.

R 0
:" ~“ Ry \ R, ," \‘
: :) ' '
! 1 1
" , on-table-a 4 on-table-b " :
! 1 ! 1
Stock-a 1 |in.gock-a ' yinstock-b | ! Stock-b

! 1 ! 1

1 1
: : on-tabl eres/ : !
1 1

1 1
1 ,I - 1 :I

..........

—

R3

Figure 6.1: Control Variables

Consider the basis B = {Xg, X1, X2, X3, Xo1, Xo2}, consisting of the sets
of control variables corresponding respectively to the subsystems consisting of
the robots Ry, ..., Rs, as well as to their “subsystems” by means of which the
communication is done. The corresponding restrictions of the set of constraints
are {Idg,Id1,1d2,fd3,fd01,fd02}, where Id(] = Id, Idl = {pa A pp = 0}, Idg =
{py A pr = 0}, and Idyy = Idgy = Id3 = (), corresponding to the subsystems
mentioned above.

The set of states of the system will be the set of those assignments of truth
values to the control variables that satisfy this set of identities. Similarly, the
set of states for system S; (corresponding to the agent R;) is St(S;) = {s; :
Xz' — {0,1} ‘ S; |: Idl} Thus St(SO) = {50 : XO — {0,1} | Sg(pa)SO(pr) =
O,Sg(pb)SO(p,«) == 0}, St(Sl) == {81 . X1 — {0, 1} | Sl(pa)sl(pr) == 0}, St(Sg) ==
{s2 : X9 — {0,1} | sa(pp)s2(p,) = 0}, and St(S3) = {s3 | s3: X3 — {0,1}}.

It is easy to see that for every family (s;);—o,. 3 with the property that s;
is a state for the system S; (corresponding to R;), and such that for every i, 7,
s; and s; coincide on the common control variables, there is exactly one state
of the system, s, such that the restriction of s to the control variables P; is s;
for every 7. This means that the following gluing condition is satisfied:

e For every {sp}pBcg, where sg : B — {0, 1} satisfies the equations in Idg =

218 6 Towards a Sheaf Semantics for Systems of Interacting Agents

{e € Id | Var(e) C B}, such that for every By, By € B, s, g,np, =
SBy|p,nB,> there exists a unique s : P — {0,1} that satisfies the set of
constraints Id, such that for every B € B, s|p = sp.

Since there are typical properties of a sheaf visible, this leads to the idea
that the link between local and global states could best be described by sheaves
over a suitable topology on the set of control variables (or over a suitable Gro-
thendieck topology on a category of systems) defined by the structure of the
given system.

Remark: Note that the gluing property described above does not hold for
every topology on the set X of control variables of the system. Consider for
example the discrete topology on X. Then X can be covered by the fam-
ily {{sa},{sp},{pa}, {ps},{pr}}- Then the following family of assignments of
truth values to the control variables: s¢,.1(sa) = 0, s¢5,1(s5) = 0, 8(5,1(Pa) = 1,
Stpy} (D) = 1, 84p,3(pr) = 1 agrees on common control variables (because the do-
mains are disjoint), but no information about the constraints can be recovered,
hence by “gluing” these mappings together one obtains a map s : X — {0,1}
which does not satisfy the set Id of identities. This shows that an appropri-
ate topology on X has to respect the way the constraints are shared between
subsystems.

6.1.2 Actions

The system S is also characterized by a set of (atomic) actions. Below we will
give the list of the atomic actions (with pre- and postconditions) and the agent
that performs them.

‘ Action ‘ Description Precond. ‘ Postcond. ‘ Agent /Interpr. ‘

A Assemble a piece of type a | p, = 1 pe =0 Ry: assemble
with one of type b pp =1 pp =0
pr =0 pr =1
B, Bring a piece of type a Pa =0 pa =1 R;y: give-a
Sq =1 sq =20 Ry: receive-a
pr =0 pr =0
By Bring a piece of type b pp =0 pp =1 Rs: give-b
Sq =1 sq =20 Ry: receive-b
pr =0 pr =0
T, Store the result pr=1 pr =0 Rj3: receive-r
Ry: give-r

We can assume for example that Ry and R can perform the actions of
bringing a piece of type a respectively b in parallel but that Ry is not allowed
to execute in parallel the action of taking a piece of type a and of giving the
result to R3. We also can assume that other actions, as for example give-a (by
R1) and receive-a (by Rg) have to be executed in the same time. Therefore, they
have been “identified” in the larger subsystem under the name B,. Figure 6.2
shows how actions are shared between subsystems, and some relations between

6.1.2 Actions 219

RO
assemble .
1
givea give-b !
_ = 1
1
Stock-a receive-a receive-b 1 Stock-b
1
giveres N
Tt K receive-res j Seemma- ‘
transport
R

3

Figure 6.2: Actions

them (for the sake of simplicity we do not consider the actions get-a, get-b and
transport in what follows). It is also natural to suppose that some constraints
are given, expressing which of these actions can be performed in parallel, which
cannot, which must be executed in the same time, and so on.

There are many possibilities to specify this kind of constraints. One solu-
tion is to consider parallel actions as subsets of the set of atomic actions A, or
equivalently by maps f : A — {0,1}, where f(a) = 1 means that a is executed
and f(a) = 0 means that a is not executed. In this case the constraints can
be described by imposing restrictions on the combinations of the values (0 or
1) that can be assigned to the atomic actions in an admissible parallel action.
This approach is very similar to the one adopted in the description of states
(section 6.1.1). We will assume that the constraints can be described by identi-
ties on the boolean algebra freely generated by the set of atomic actions A. (On
our example, among the constraints are: give-a = receive-a, give-b = receive-b,
give-res = receive-res, give-res A receive-a = 0, give-res A receive-b = 0, etc.).

There exist approaches for modeling concurrency where it is necessary to
specify which actions can be performed in parallel and which not. One such
approach is based on considering a “dependence” relation on the set of (atomic)
actions, i.e. a reflexive and symmetric relation D C A x A: the parallel execution
is then only allowed for those actions which are “independent” w.r.t. D. This
leads to the study of partial-commutative monoids (cf. [Die90]). The link with
this approach is analyzed in Chapter 8.

As when considering states, the structure of the system as an interconnec-
tion of subsystems induces a topology on the set of all actions. Correspondingly,
the constraints distribute over the subsystems (it seems natural to make the as-
sumption that all the constraints are made “inside” some specified subsystem).
A basis B for this topology is obtained as explained in the study of states, tak-
ing the family of all actions corresponding to the subsystems Sy, ..., S3, as well
as to the “subsystems” by means of which the communication is done (i.e. finite
intersections of those sets). In the case where there are constraints that link
actions in different subsystems (that could for example be expressed in some

220 6.2 Towards a Sheaf Semantics for Systems of Interacting Agents

special “scheduling systems”), the actions that correspond to these scheduling
systems will also be considered elements in the basis. Also in this case a similar
gluing property holds:

e For every family of parallel actions {fg}BcB, where fg : Agp — {0,1}
satisfies the constraints Idg = {e € Id | Var(e) C B}, such that for every
By,Bs € B, fBl\BmBz = fBa\BmBz’ there exists a unique f : A — {0,1}
that satisfies Id such that for every B € B, fip = fB.

Note that the fact that the gluing property holds is strongly related to the
specific form of the constraints in C4 (boolean equations in our case). If for
example a parallel action f : A — {0, 1} is allowed if and only if £ 1(1) is finite,
then the infinite gluing property does not hold.

6.2 Systems

Taking into account the considerations in section 6.1, we will assume that a
system S is described by:

e A set X of control variables of the system (where for every control variable
x € X, a set V, of possible values for z is specified), and a set I' of
constraints, specifying which combinations of values for the variables are
admissible (i.e. satisfy I'). An admissible combination of values of the
control variables will describe a state of the system S. The set of states
of the system will be denoted St(S),

e A set A of atomic actions (where for every a € A, X, denotes the minimal
set of control variables a depends on and Tr, C St(S)x, x St(9)x, a
relation indicating how the values of these variables change when the
action a is performed), together with a set C' of constraints that shows
which actions are incompatible and cannot be performed in parallel, or
which actions have to be performed at the same time.

We first say some words about a possible way of modeling interaction (com-
munication) between systems. Consider for instance two agents (robots or
production units). Every agent has its own set of control variables (parame-
ters) and its own set of actions, together with a specification of their pre- and
postconditions.

In order for the two systems to be able to communicate they need a “dictio-
nary”, at least for some of these notions. The situation is pictorially represented
in Figure 6.3.

In what follows we assume that we can identify those elements that are
shown equal by the dictionary, hence we can assume that communicating agents
have common control variables and common actions. We further assume that
the sensors of the two agents are compatible, in the sense that the values of
the common control variables “sensed” at a given moment of time by two such
agents are the same.

6 Systems 221

Rq Ro

, 0 va,
Acty =y

% & = % % Pre- &
PO o
Cond; Cond

—

‘Dictionary =
Act

Figure 6.3: Two agents that can communicate.

Therefore, agents that communicate can be seen as part of the system ob-
tained by their interconnection; they can be represented by putting into evi-
dence their common part, identified by the common “dictionary” (cf. Figure 6.3)
as illustrated in Figure 6.4.

Pre- & Pre- &
Post Post
Cond; Cond,

Figure 6.4: The system obtained by interconnecting two agents that can com-
municate.

We begin with a formal definition of a system. The relationships between
systems that make possible communication will be discussed in Section 6.3.

In order to formally express the constraints on the possible combinations of
values for the control variables, we need a language in which these are expressed.

Definition 6.1 A system S = (X, X,I', M, A,C) consists of:

222 6.2 Towards a Sheaf Semantics for Systems of Interacting Agents

(1) A language Lg consisting of
(1a) a signature ¥ = (Sort, O, P) (Sort is the set of sorts, O the set of
operation symbols, and P the set of predicate symbols),
(1b) a (many-sorted) set of variables X = { X}, gort

(2) A set ' C Fmax(X) closed with respect to the semantical consequence
relation' |=yr (the set of constraints of S),

(8) A model M (structure of similarity type),

(4) A set of actions A; for every a € A a set X, C X of variables on which
the action a depends, and a transition relation Tr,,

(5) A set C of constraints, expressed by boolean equations over Fg(A) (the free
boolean algebra generated by A) stating which actions can (or have to) be
executed in parallel, and which cannot. (We impose that C contains all
the possible boolean equations that can be deduced by C'.)

Remarks:

(1) In what follows we will consider, for the sake of simplicity, only finite
systems, i.e. systems in which the signature, the set of control variables and the
set of actions are finite.

(2) In Definition 6.1 we fix a model M for the system S (corresponding
e.g. to the real world) and as constraints we allow formulae in the many-sorted
language of the system.

The formulae in Fmay(X) are formed as explained in Section 3.3, Defini-
tion 3.54. The semantical consequence relation |=j is defined by I' =3 ¢ if
and only if for every s : X — M with the property that if for every vy € ', s |y
then s |= ¢ (where the relation s |= ¢ is defined as explained in Section 3.3,
Definition 3.56). The closure of a set of I' of formulae under the consequence
relation =57 will be denoted by I'*.

Concerning the variables, we point out that in this approach they are con-
sidered rather generators than simple variables as in first-order logic. Formulae
of the type ¢ = Vz9 are allowed; such a formula is satisfied at a given state of
s (assignment of values in M to the variables in X) if for every other state s’
that agrees with s except possibly at = ¢ holds at s’. Thus, in what follows, Vz
has the meaning “for every possible value of x in M”.

(3) Note also that we assume that the constraints on actions are expressed
by boolean equations over the free boolean algebra Fp(A). In what follows
we will assume that the constraints are of the form a; = ao, with a1,a0 € A
(expressing the fact that a; and ay have to be performed at the same time) or
a1 N ag = 0 (expressing the fact that a; and as are not allowed to be performed
in parallel).

Given a system S, if not otherwise specified, we will refer to its signature, set
of variables, constraints on the values of the variables, model, set of actions

'The relation =a is defined by T' =a ¢ if and only if for every assignment of values in M
to the variables in X, s: X — M, if s = for every v € I, then s |= ¢ (see also Remark (2))

6 Systems 223

and constraints on actions by Xg, Xg, I's, Mg, Ag, Cs respectively. For every
atomic action a € Ag the minimal set of variables a depends on will be denoted
by Xf, and the transition relation associated with a will be denoted by Trf.

If a family of systems {S;}ics is given, if not otherwise specified we will
refer to the signature, set of variables, constraints on the values of the variables,
model, set of actions and constraints on actions of S; by 3;, X;, I';, M;, A;, C;,
for every ¢ € I. For every atomic action a € A; the minimal set of variables a
depends on will be denoted by X!, and the transition relation associated with
a will be denoted by Tr5:.

We will denote by Term(S) the algebra of terms of the system S, and by

Fma(S) the formulae of S.

Definition 6.2 (States) The states of a system S = (X, X,I',M,A,C) are
those interpretations s : X — M that satisfy all the formulae in T.

The set of states of a system S is St(S) ={s: X - M | s =T}.

Definition 6.3 (Admissible Parallel Actions) The set of admissible actions
of the system S = (3, X,T', M, A, C) will be the set Act(S) ={f: A — {0,1} |
f satisfies C}.

As pointed out before, in what follows we will assume that all the constraints
imposed on the actions can be expressed by boolean equations (in the boolean
algebra freely generated by A) of the form a; = ag with a1, a2 € A or a;Aaz = 0.

An equation of the form a; = ao expresses the fact that a; and as have to
be performed in parallel. We assume that for every aq, as with a3 = as € C (or
deducible from C) we have X,, = X,, and Try, = T'rq,.

The set of admissible actions of the system S = (X, X, ', M, A, C) will be
the set Act(S) = {f: A — {0,1} | f satisfies C}.

Let f € Act(S) be a parallel action. The set of variables on which f depends
18 Xf = Ua,f(a):l Xa-

Without loss of generality we may identify the actions ay and as if a; = as
is deducible from C (i.e. we consider that they are one and the same action).

The compatibility of the actions in an admissible parallel action can be
expressed, depending on the situation, by one of the following two properties
of the transitions (which are not equivalent):

(Gluing) If f € Act(S) and if s € St(S) such that for every a € A with
f(a) = 1 there is a s, € St(S)x, such that (sx,,s,) € Trq, then the
new local states “agree on intersections”, i.e. for every xz € X4, N X,,,

Sa, () = sy, (x). Then we can associate a transition relation T'rs to f, that

ai
shows how the state of the system changes after the action is performed,
namely: TT? C St(S)x; x St(S)x;, Tr? = {(s1,82) | (51)x,,52/x,) €

Tr, for every a such that f(a) = 1}.

224 6.2 Towards a Sheaf Semantics for Systems of Interacting Agents

The transition on the states of S induced by f is Tro(f) = {(s1,s2) |
s1,82 € St(S), (s1)x,,52|x,) € Trq for every a such that f(a) =1, and
s1(z) = sa(z) if = & Ua,f(a):1 Xa}

(Independence) Let f € Act(S) and sg € St(S). Let us identify all the el-
ements a1,as € A with a1 = as € C and f(a1) = f(ag) = 1. After this
identifications, let f (1) = {a1,...,a,}. Assume that for any subset

{a},...,al,} of f71(1) = {a1,...,a,}, if we have sg B By oy Sm
then f . g (1) , g (9) , TG (1m)

en for every permutation o, we have s9 — s} — sh... = s (the
final state is the same). Then we can associate a transition relation to f,
that shows how the state of the system changes after the action is per-

formed, namely: Tr(f) C St(S) x St(S), defined by Tr°(f) = {(s0, sn) |
there exist states sq,...,8, 1 S.t. (Sifl\Xa.asi\Xa.) € Trq,V1 <i<n}.

It is easy to see that if (sg,s,) € Tr°(f) then for every z € Xg\X;
so(z) = sp(z). Thus Tr? can be defined by Tr? = {(s1x;,82x;) |

(s1,82) € Tro(f)}.

The property (Gluing) makes sense in situations when a parallel action
f:A—{0,1} is admissible if and only if the actions do not “consume” common
resources. This happens for example if for every aj,as € A with f(a1) =
flaz2) = 1 we either have a; = a2 € C (i.e. a; and ay are to be executed at
the same time) or X,, and X,, are disjoint. In this case, obviously, a parallel
action f: A — {0,1} can be applied at a state s if and only if its components
can be applied locally, in the respective systems, at the corresponding restricted
state. We might enforce this when defining a system by imposing a; A as = 0
whenever a; and as do not have to be performed in parallel, and X,, N X,, # 0.

The property (Independence) represents the way transitions of parallel
actions are interpreted when the actions to be performed in parallel actually
consume common resources. Moreover, it is specific to the situation when, after
executing an action, the state reached is uniquely determined (i.e. in the case of
deterministic actions). In this case, the fact that all the components of a given
parallel action f: A — {0,1} can be applied at a given state sy is a necessary
condition for the action f to be applicable at state sp, but in general it is not
sufficient: additionally, one has to be sure that there are enough resources, such
that all the actions can be performed.

Let S be a system and let f € Act(S). In what follows we will denote by
Tr(f) the set of transitions between states induced by f, i.e.

Tr(f) = {(s1,82) | 81,82 € St(5), (s1)x,,82|x,) € Try, and s1(z) = s2(z)Vz ¢ X}

If a is a single action we denote by T'r(a) the set of transitions between states
induced by a, i.e.

Tr(a) = {(s1,s2) | 51,52 € St(S), (51|x,,52/x,) € Tra, and s1(z) = s2(z) Vz & X, }.

6.3 The Category of Systems SYS 225

6.3 The Category of Systems SYS

Systems often arise in relationship with other systems. The corresponding
relationships between systems are expressed by morphisms. Obviously, there is
some choice in how to define appropriate morphisms, depending on the extent
of the relationship between systems we want to express.

For instance, a category of systems SYS can be defined, with systems as
its objects. Intuitively, a morphism f in SYS from a system S; to a system
Sy consists of a “translation” of the language (resp. actions) of S; into the
the language (resp. actions) of Sy (i.e. a family of mappings fy : X1 — 3o,
fx : X1 = Xo, fa: Ay — Ay) that maps the constraints of S; to constraints
of 52.

Definition 6.4 There is a morphism f : S1 — Sy if and only if

(M1) There are maps fx : X1 — Xo,fa : A1 — As, and a morphism of
signatures fx, : $1 — Yo, i.e. a triple (fs, fo, fp), where fg : Sort; —

Sorta, fo is a Sort] x Sorty-indezxed family of maps on operation symbols,
§1...8n,8

o 1 Os,. 508 = 0,5(51)---f5(5n),f5(5)’ and fp 1s a Sort*-indezed family
of maps on predicate symbols, fp'*" : Py, 5, — PJI‘s(h)...fs(sn)’

(M2) The model My of Sy is the restriction of My to the signature ¥y via fx
(26 M; = Str(fx)(M2)),

(M3) fE .(T1) C Ty,

(M4) f4(C1) C O,

where Str is the functor from the category Stry, of Ya-structures to the category
Stry, of X1-structures induced by the morphism of signatures fs (cf. Propo-
sition 3.20), f,Ema is the unique morphism of X-structures from Fma(Sy) to

Fma(Ss) induced by fx and fx, and fEl is the unique extension to a morphism
of Boolean algebras of f4.

Remark: Conditions (M3) and (M4) express the fact that for every ¢ € I'y
(resp. in Cy) the “translation” of ¢ to the language of Sy via fx, fx (resp. fa)
isin I'y (resp. in Cy).

Definition 6.5 (Local Morphism) A morphism f = (fs, fx,fa) : S1 — So
s a local morphism if it additionally satisfies

(M5) If an action a € A depends on some variables in fx(X1), then a €
fa(Ar), and Uy, -0 Xp = fx' (X2).

(M6) For every a € fa(A1) such that f (a) = {b1,...,bn}, let g: A; — {0,1}
be defined by g(a1) = 1 iff fa(a1) = a.
With this notation, for every s1,s2 € St(S2) such that (s1)x2,52/x2) €

a

TrS2, we have (s o fx|x,82° fx|x,) € Trgl.

226 6 Towards a Sheaf Semantics for Systems of Interacting Agents

It will be shown later that conditions (M5) and (M6) ensure that every
transition in Sy can be restricted to a valid transition in S;.

Let SYS), be the category with systems as objects and local morphisms as
arrows.

Lemma 6.1 Let f = (fs, fx, fa) : S1 — S be a morphism, where fx : ¥1 —
Yo, fx : X1 — X9 and fa: Ay — Ay. Then there is a map St(f) : St(S2) —
St(S1).

Proof: For every state s : X9 — My of Sy, consider so fx : X1 — Ms. Note
that for every =z € (X1)s, fx(z) € (X2)s4(s), hence s(fx(z)) € (Ma)sg(s) =
(Mg‘fz)s = (My)s. Therefore, so fx : X; — M;. We will show that if s = I
then so fx =TI';. Note first that by the considerations in Section 3.3, we have:

e There exists a unique morphism of O;-algebras, (fQX)Hrerm : To, (X1) —
Toz(Xg)‘fE that extends fx : X1 — Xo, fs : Sort; — Sorts, and fo :

01 —)Oz.

e There exists a unique morphism of Os-algebras, sgl-erm : To,(X2) — My,
that extends s. This morphism induces a unique morphism of O-algebras,
Sgl'erm\fz : Toz(Xz)\fE — M.

e There exists a unique morphism of O;-algebras, (so fX)hTerm 1 To, (X1) —
M that extends s o fx.

It can be checked that (s o fX)Hl'erm and Sgl'erm\fg o (fX)uTerm coincide on X7,
i

Term = sgrerm‘fz o (fX)gl'erm' Similarly, by the universality property

of the algebra of formulae it follows that (s o fX)fzma = sE:ma‘fZ o (fg)E:ma. Let

¢ € T1. Then (s © f5)fma(®) = St o (F9)Ema(9)) = SEma((£2)Ema(®)). By
(M3), (f).,(¢) € Ta. Therefore, since s = Tq, sk ((fs)%,,(4)) = 1, hence

Fma

sofx = ¢. O

hence (so fx)

Lemma 6.2 Let f = (fs, fx,fa) : S1 — Sa be a morphism, where fx : 31 —
Yo, fx : X1 = Xo and f4 : Ay — As. Then there is a map Act(f) : Act(Sz) —
ACt(Sl).

Proof: Let h € Act(Sy) then h: Ay — {0,1} and h = Cy. Let Act(f)(h) =
hofa:A; — {0,1}. As in the case of states it is easy to show that:

e There is a unique morphism of Boolean algebras (h o f4)! : Fp(4;) —
{0,1} that extends h o f4 (from the universality property of Fg(A1)).

e There is a unique morphism of Boolean algebras h? : Fg(4;) — {0,1}
that extends h (from the universality property of Fg(Az2)).

e There is a unique morphism of Boolean algebras fAh : Fp(A;) — Fp(As)
that extends f4.

6.3 The Category of Systems SYS 227

It is easy to see that h’o f4" and (h o f4) coincide on A;, hence they are
equal. Let (ej,e}) € Ci. By (M4), (fi(el),fi(e'l)) € Cy. Since h = Cy,
it follows that (h o fa)i(e1) = Ao fa¥(er) = RE(faf(er)) = AA(fAl(e})) =
hio faf(e)) = (ho fa)%(e}). Thus we proved that (ho f4) = Ci. O

Proposition 6.3 St : SYS® — Sets and Act : SYS®? — Sets are presheaves.

Proof: Follows from Lemma 6.1 and Lemma 6.2. O
It follows that St : SYS|,P — Sets and Act : SYS|,P — Sets are also
presheaves.

We now analyse the transitions induced by the admissible parallel actions.

Lemma 6.4 Let f : S — So be a local morphism. Let a € fa(A1) be such
that fY(a) = {b1,...,bn}, and let g : Ay — {0,1} be defined by g(a1) = 1 iff
falar) = a.

For every si,ss € St(S3) with (s1,s2) € Tr%(a), (s10 fx,s20 fx) €
Tr(g).

Proof: Let a € fa(A1), and sq,s5 € St(Sy) with (s1,s9) € Tr2(a). We
want to show that (sy o fx,ss0 fx) € Tr5(g), i.e. (510 fx|xp: 820 fX‘X;) €
Trgl and for every x ¢ Xgl, s10 fx(xz) = sy 0 fx(z).

The fact that (sq o fX‘X!},SQ o fX\X;) € Trgl follows by (M6). Assume now
that s1 o fx(z) # s2 0 fx(z) for some =z & Xgl. Then fx(z) € X2, hence
v € fx'(X2). But by (M5), fx"(X2) = Up f(ty=a X3 = X,- Thus, it follows

that z € X!

g+ contradiction. Hence, for every z ¢ Xgl, s10 fx(z) = s90 fx(z).

a

Proposition 6.5 Assume that the transitions of parallel actions are composed
using the property (Gluing). Let f : S — Sy be a local morphism in SYSin,.

Let g € Act(S2), and let (s1,s2) € TT;Z. Then (s10 fx,s20 fx) € TrgS;fA.

Proof: Let f:S; — S be a local morphism, g € Act(S3) and (s1,82) €
Tr!*]g?. We want to show that (s; 0 fx,s20 fx) € Trfc}fA, i.e. that

(a) (s10 fx|x1,820 fX‘X;) € Trl;91 for every b such that g(fa(b)) = 1,

(b) s10 fx(z) =s20 fx(z) for every x € X1\ Uy g(74(5))=1 X}

In order to prove (a), note that if g(fa(b)) =1, then (s xz s

3 1‘)(2) S
s) fa®) fa®)
Try}) Then, by (M6) it follows that (s o fx|x1,810 fX‘X;) € Tr;gl, where g :
Ay — {0, 1} is defined by g(c) = 1 iff fa(c) = fa(b). By the property (Gluing)
it follows that for every c with fa(c) = fa(b) we have (s1 o fx x1,51 0 fx|x1) €
Trfl. In particular, we have (s o fX\X,}a 810 fX‘X;) € Trfl.

In order to prove (b), let be such that s; o fx(x) # sg 0 fx(z). Then
s1(fx(z)) # sa(fx(z)), hence fx(x) € X2 for some a € Ay with g(a) =
1. Therefore, = € fy'(X2) = Us, 4 (6)=a X}. Note that for every b with

228 6 Towards a Sheaf Semantics for Systems of Interacting Agents

fa(b) = a we have also g(fa(b)) = 1. Hence, z € fy'(X2) = Us, f4(8)=a X} C
Us,g(£4(8))=1 X}. This proves that for every = € Xl\Ub,g(fA(b)):l X} we have
s10 fx(x) = sy 0 fx(z). |

Proposition 6.6 Assume that the transitions of parallel actions are composed
using the property (Independence). Let f : S; — Sy be a local morphism in
SYSim. Let g € Act(S2), and let (s1,s2) € Tr52. Then (s1 0 fx,s820 fx) €

S1
TTQOfA'

Proof: Let (s1,82) € Ter. Assume that after identifying the elements
ai,az € As with a; = as € C and g(a1) = g(az) = 1, we have g (1) =
{a1,...,a,}. By the property (Independence) we know that the final state
in the sequence s; = sh 23 s/ B s, 2 ... 2 5! = 559 does not depend on the
order in which the actions are executed.

For every i € {1,...,n}, let g; be the parallel action composed of those
b € A; with g(b) = a;. Then by Lemma 6.4, (s; 10 fx,s; 0 fx) € Tr5(g;).
Thus, sjo0 fx = shofx B shofx B shofx B ... 8 s ofx =sy0 fx.
We know that the final state of a sequence containing all elements b in A;
with g(fa(b)) = 1 does not depend of the order in which they are executed.
Therefore, (s1 0 fx,s20 fx) € Tr5 (g o fa). O

Let PreSh(SYSy,) be the category of presheaves over SYS,.
We now show that we can construct a natural transformation T'r from Act
to QStXSt.

Lemma 6.7 Let S € SYS,. For f € Act(S), g: S — S and s1,s2 € St(S'),

the set Trg(f)(S")(g, s1,82) = {S" g | (syohx,s20hx) € TrS”(f 0gaoha)}
is a sieve on S'.

Proof: Let S” be an arbitrary element of Trs(f)(S')(g, s1, s2) (i.e. S g
such that (s;ohx,s20hx) € TrS”(f 0ggaohg)). Let 5" be such that S ™ "

Therefore, FR LN S', By Lemma 6.4, (s; o hx o h'y,s9 0 hx o hly) €
Tr5" (f 0 gq 0 hq o h'). Hence, " ok g1 ¢ Trs(f)(S") (g, s1,82). O
Lemma 6.8 Let Trg(f) : y(S)xStxSt — Q be defined, for every system S’, by
Trs(f)(S") : Hom(S', S) x St(S’) x St(S") — Q(S"), where for every g: S' — S
and every s1,s2 € St(S") Trs(f)(S")(g, s1,82) = {S" g | (s1o0hx,s20hx) €
Tr5"(f 0 gq 0 ha)}. Then Trs(f) is a natural transformation.

Proof: In order to show that Trg(f) : y(S) x St x St — Q is a natural
transformation we have to show that for every two objects in SYS),, and every
arrow between them the corresponding diagram is commutative.

Let S % S'. We show that the following diagram is commutative:

Hom(S", S) x St(S) x St(5") =P g1
Hom(u)x St(u)x St(u) Q(u) (6.1)
_ ! _ —, Trs(f s '
Hom(S', 8) x St(S) x St(§) =)

6.3 The Category of Systems SYS 229

Let (g, s1,82) € Hom(S",S) x St(S’) x St(S"). Then, on the one hand,

"

Qu)(Trs(£)(S')(g, 1. 82)) = {8" 55 | 5" "L §" € Trg(£)(S')(g,51,82)} =

= {?” h g | (sioux ohx,sa0ouxohx) € TTS”(f ogaougoha)}.

On the other hand, we have Trg(f)(S")(g o u,s1 o ux,s20ux) = {§” LN

S| (s1oux ohx,s30uxohx) € TrS" (fogaousohys)}l. Thus, the diagram
commutes. O

Consequence 6.9 For every system S and f € Act(S), Trs(f) € Q554(S).
Proof: Follows from the definition of Q51*5%(S) in PreSh(SYSy). O

Lemma 6.10 T : Act — Q55 defined for every system S by Trg : Act(S) —
QOS5 S) is a natural transformation in PreSh(SYSy,).

Proof: We show that for every S £ S the following diagram commutes:

Trg

Act(S) —= QStxSt(8)
Act({)‘ QStht(g) (62)

< TT? Stx St/

Act(5) QStxSt(g)

Let f € Act(S). Then Q5S(¢)(Trs(f)) : y(S x St(S) x St(S) is defined
for every S 5 S and s1, 55 € St(S) by

QS) (Trs (£))(S) (u,1,82) = Trs(f)(S)(E o u,s1,82) = {5 55|

(s1ohx,s90hy) € TS (folaougohy)} =Trg(fo £A)(§I)(u,sl, S9). O
It is also easy to see that T'r : SYS|,P — Sets defined by
Tr(S) = {(f.5,8) | f € Act(S),s,s' € St(S), (s, 5') € Tr’(f)}

is a subpresheaf of Act x St x St (follows from Proposition 6.5 resp. Propo-
sition 6.6, depending on the rule applied for computing transitions of parallel
actions).

We showed that St and Act are presheaves and T'r defines a natural trans-
formation (or, alternatively, a subpresheaf of Act x St x St).

Until now we did not consider the interaction between systems, or the pos-
sibility of expressing that a system arises by interconnecting (in a certain way)
a given family of systems.

Consider for example two systems that have a “common dictionary”.

The situation in Figure 6.5 can be described in terms of category theory
by the pushout of the diagram defined by the two systems Sy, So together with
their “dictionary” seen as a system Sis that is “translated” in both S; and Ss:

230 6 Towards a Sheaf Semantics for Systems of Interacting Agents

| | Vanp
Act1p

Figure 6.5: The system obtained by interconnecting two interacting systems.

Thus, interconnecting systems can be modeled by taking colimits (cf. [Gog92]).

A natural question arises: is it possible to define a covering relation on
SYS)» that induces a Grothendieck topology on SYS,,,I"

For the sake of simplicity we will not consider the general case here: we
will restrict ourselves to the case where the morphisms are inclusions, i.e. the
elements in a given family {S;}icr of interconnected systems are seen as “parts”
(subsystems) of the system S obtained by interconnecting them; as parts of S
they are supposed to communicate via their “common subsystems”.

A general theory that takes into account arbitrary morphisms between sys-
tems will be subject for future work.

Chapter 7

Categories of Systems with
Inclusions as Morphisms

There are cases when systems are not able to “communicate” using “dictionar-
ies” or “translations”, as described in Section 6.3; important is that the systems
have common subsystems by means of which the communication is done. In
what follows, we will focus on this last aspect. We will first present some sub-
categories of the category SYS considered in Chapter 6, in which a morphism
f:S1 — 8o exists if Sy is a subsystem of Sy (possibly satisfying an additional
“tightness” condition).

In this case, communication between two systems is assumed to take place
only via the common subsystems. This situation arises naturally if the systems
are assumed to be already “interconnected” and are regarded as parts of the
system obtained by their interconnection.

Figure 7.1: Interconnecting two systems with a common subsystem.

We begin by studying the category SYS; that has systems as objects and
inclusions as morphisms. Some categorical constructions in this category are
illustrated and it is shown that two functors can be defined, one that associates
with every system S its set of states St(S), and one that associates with every
system S its set of admissible parallel actions Act(S). We show that these

231

232 7 Categories of Systems with Inclusions as Morphisms

functors satisfy a “gluing” property with respect to colimits (interconnections)
of systems.

The colimit (interconnection) of a family {S; | i € I} of systems has as
control variables the union X of the control variables X; of the systems S;, and
as atomic actions the union A of the atomic actions A; of the systems S;.

The sets X;,i € I can be regarded as open sets in a suitable topology on
X expressing some appropriate notion of “neighborhood”. Similarly, the sets
A;,i € I can be regarded as open sets in a suitable topology on A.

But when considering an interconnection of systems we would like to take
into account these topological spaces (as well as the repartitioning of the con-
straints among systems) simultaneously, since the whole information character-
izes a system.

In this case topology is not sufficient. Therefore we consider the category
SYS; and - in order to be able to express the notion of covering between sys-
tems — we define a Grothendieck topology on SYS;; it is proved that states and
parallel actions can be modeled by sheaves with respect to this Grothendieck
topology.

We would like to point out that — although SYS; can be seen as a partially
ordered set — it is in general not a lattice (it does not have a largest element,
neither do all finite suprema (coproducts) nor all finite infima (products) exist
in SYS;). Additionally, even in the case when the respective suprema and in-
fima exist, no distributivity condition is fulfilled in general, as will be shown in
Example 7.2. Therefore, the category SYS; cannot be regarded as a locale (or,
dually, as a frame).

However, the category SYS; only captures the static aspect of systems. It
can be the case that, if S; — S and we regard a transition in Sy from the
perspective of Sq, some variables in S; may change their values with no apparent
cause. This happens when some actions in Sy, unknown in S;, depend on
variables of S7. We call a subsystem S; — S5 in which all changements of the
variables in S7 can be explained transition connected.

We therefore consider SYS;, the subcategory of SYS having as objects sys-
tems and as morphisms so-called transition-connected inclusions.

We define a Grothendieck topology J on SYS; and show that the presheaves
St, Act (where for every system S, St(S) is the set of states of S (i.e. possible
configurations of values for the variables that control S), and Act(S) the set
of admissible parallel actions) are sheaves with respect to this Grothendieck
topology. Moreover, we show that the transitions induced by admissible parallel
actions define a natural transformation Tr : Act — Q55¢ (in Sh(SYS;, J)) (or,
alternatively, a subsheaf of Act x St x St). We use these results for modeling the
behavior of the systems. We start with the formalism developed by Goguen in
[Gog92], and slightly modify Goguen’s definition for the behavior of a system,
explicitly indicating for every moment of time not only the state of the system
but also the action performed at the given moment, and obtain a contravariant
functor from the category of systems to the category of sheaves over time. We
show that a contravariant functor from 7 to the category of sheaves over Sys

7.1 The Static Aspect: SYS; 233

can also be defined.

We conclude by investigating behavior by traces of execution. Assume that
all constraints between actions are of the form a; A a; = 0 (meaning that
a; A aj = 0 cannot be performed in parallel). Then the functor that associates
to every system S the partially commutative monoid M(S) (obtained as a
quotient of the free monoid freely generated by the set of actions of S by the
congruence generated by {ab = ba | a,b independent}) is a sheaf only under
very restrictive conditions.

7.1 The Static Aspect: SYS;

For a first approximation to representing the states of a system and the pos-
sible parallel actions — in which only the “static aspects” are represented — no
information about the transitions is needed.

We therefore give a simpler definition of a system, namely as a tuple

S = (E’ X? P’ M’ A’ C)’

and ignore the description of the variables on which each action depends, as well
as the description of transitions and the way transitions of admissible parallel
actions are computed.

In this context we can define a notion of subsystem (“static”, for the begin-
ning).

Definition 7.1 Let S1 and Sy be two systems. We say that Sy is a subsystem
of Sy (or S is an extension of S1) if and only if X1 C Xy, X7 C Xo, A; C A,
the constraints in 'y (resp. C1) are consequences of the constraints in T'y (resp.
C3), and the model My is the restriction of the model My to the signature of Sy
(My = Ug? M),

Remark: Since we assumed that the sets I's and Cg of constraints in a system
S are complete with respect to semantical consequence, it follows that the
condition “the constraints in I'; (resp. Cj) are consequences of the constraints
in Iy (resp. C2)” in a subsystem in fact amounts to I'y C I'y (resp. C; C Cy).

Let SYS; be the category having systems as objects, and a morphism from
S7 to So if and only if Sy is an extension of Sy (i.e. all morphisms are inclusions
— that is why we use the index i in the name of the category). We will briefly
discuss the meaning of the standard limit and colimit constructions in the cat-
egory SYS;.

7.1.1 Categorical Constructions in SYS;

1. Limits:

The pullback is the largest common subsystem of two systems that are known

234 7 Categories of Systems with Inclusions as Morphisms

to be contained in a larger system.

Sl Xg Sg = Sg
[(7.1)
=S

Sa

Namely, if for i = 1, 2 Sz = (Ei, Xi, Fi, Mi, Ai, Cz) — S = (E,X, F, M, A, C),
then S; xg Sy = (21 NY9, X1 N X9, 'y NTy, My, Ay N As,C1 N Cg) where Mo
is the restriction of M to the signature 3y N Xs.

Pullbacks of this type always exist in SYS;.

The product S1 x Sy of two systems Sy and Ss (if it exists) is a system with
the following properties:

e S1 X Sy is a subsystem of both 57 and S,

e For every system S that is a subsystem of both S; and S5, S is a subsystem
of Sl X SQ,

i.e. §1 X S9 is the “largest” common subsystem of S; and S;. The product of
two systems exists only if their models are compatible, in the sense that their
restrictions to the common signature coincide.

SYS; does not have a terminal object (i.e. there is no system that contains
all the systems in SYS;).

2. Colimits:

Colimits play a special role in the study of systems. As already pointed
out in Section 6.3 (cf. also [Gog92]), the system obtained by interconnecting
a given family (diagram) of systems can be obtained computing the colimit of
the given diagram.

A coproduct S; I1 S5 in SYS (the category with arbitrary morphisms) of a
diagram consisting of only two systems S7 and S5 is the system obtained by tak-
ing the disjoint union of their languages, control variables, actions, respectively
the closures under consequence of the unions of the corresponding constraints.

In SYS; the morphisms are inclusions. Therefore, the coproduct of the
diagram consisting of only two systems S; and Sy is the system .S such that

e 51,859 are subsystems of S,

e For every system T such that Sy, .So are subsystems of T', S is a subsystem
of T.

In other words, the coproduct in SYS; of S; and S5 is the smallest system that
contains both S7 and S3. Note that the coproduct in SYS; of the diagram con-
sisting of S7 and S, exists only if S; and Sy are compatible, in the sense that
My 5,ns, = Majz,nx,. In this case, the coproduct in SYS; of S and Sy is the
colimit in SYS of the diagram defined by {S1, S2, S1 X S2} (with the correspond-
ing inclusions between them).

7.1.1 Categorical Constructions in SYS; 235

It is easy to see that if S; and Sy are independent systems then St(S,11.S3) =
St(Sl) X St(S2), and ACt(Sl 11 52) = ACt(Sl) X ACt(S2).

The pushout S; IIg So in SYS (see diagram 7.2) represents the system ob-
tained by interconnecting S7 and S “gluing” them via their common subsystem

S.
S——51

] n2)
SQ I Sl HS 52

The pushout S1 Ilg Sy in SYS; coincides with the coproduct of S; and Sy in
SYS;.
It is easy to see that if S; and S5 have S as a largest common subsystem, then

St(Slﬂ,sSg) = St(Sl)XSt(S)St(Sg) and Act(SlLISSg) = ACt(Sl)XACt(S)ACt(Sg).

In what follows we will be interested in colimits in SYS; of families of sub-
systems of a given system S. We show here how colimits of such families can
be computed.

Lemma 7.1 Let S = (X, X,M,I',A,C) be a system and {S; — S |i € I} a
family of subsystems of S, closed under taking subsystems, where for everyt € I,
S; = (%4, X3, M;,T;, A;, C;). The colimit of this family of systems is S with
Yo = Uier Xi; Xg = Uier Xi, Mg = M\ Uier i I's = (UieI i), A§ = Usjer 4i,
Cg = (Uier Gi)®.

Proof: It is easy to see that S is a cocone. It remains to show that it
satisfies the universality property of a colimit. Let T" be another cocone, i.e.
such that S; < T for every i € I. Then obviously ;c; ¥; C X7, U;er Xi C X7,
M; = Mrs,, Uier Ai € Ar, and the constraints in [J;c; I'; (resp. U;cr Ci) are
consequences of the constraints in I'r (resp. Cr), hence also their consequences
are consequences of the constraints in I (resp. Cr). It follows that S — T.

O

Note that this colimit is equal to the colimit in SYS of the diagram obtained
from the family {S; | i € I} by closing it under all subsystems.

The initial object in SYS; is the empty system, denoted by 0 (X5 = Xy =
Ty=A43=Cy=10).

It is easy to see that a system may be subject to more constraints when

interconnected with other systems than when considered independently, as can
be seen from the following example.

SR

236 7 Categories of Systems with Inclusions as Morphisms

Example 7.1 Let ¥ = {0,1, <} be a signature where 0 and 1 are 0-ary function
symbols and < is a binary predicate symbol. Let M = ({0,1},{O0nr, 1nr, <m}) be
a X-structure where <p; is an order relation and 0 <p; 1. Consider the systems

Sl = (Ev{aaba d}a{a S b}aMa AlaCI)a

S2 = (Ea {ba ¢, d}a {b < ¢ C < d}a Ma Ag, 02)
Let S the system obtained by interconnecting S1 and Ss.

S =(3,{a,b,c,d},{a <bb<c,c<d}, M, A UAy, (C;UCy)®).

Note that for every s : {a,b,c,d} — M such that s = {a < bb< ¢,c < d} we
have s(a) <p s(b) <m s(c) <u s(d), hence s(a) <pr s(d). Thus, a < d is a
consequence of the constraints {a < b,b < ¢,c < d}.

This shows that for every state s € St(S), we have s|s, = a < d. It follows
therefore that for every sy, s2, with s; € St(S1), and so € St(S2) and such that
811X,nX; = $2|x;nXys 1 = a < d.

Intuitively, this expresses the fact that in S1 seen as a “part” of S, a < d
has to be satisfied (by interconnecting systems new constraints may arise).

7.1.2 A Grothendieck Topology on SYS;

Our goal now is to define a covering relation on the category SYS;. A first
possible notion of “covering” (we will call it quasi-covering) is given below. We
use the name quasi-covering in this case because it will be shown that it does
not induce a Grothendieck topology. Later (in Definition 7.3) we will define a
notion of cover that does define a Grothendieck topology.

Definition 7.2 A quasi-covering family for a system S = (X, X, T, M, A, C) is
a family {S; — S| i € I} of subsystems of S, with the property that |J; £; = %,
Ui Xi = X, U; 4i = A, and such that T' = (U;c; Ti)® and C = (U; Ci)°.

It is easy to see that the states and parallel actions satisfy a gluing condition
on the quasi-covering families defined above.

Proposition 7.2 Let S = (X, X,I', M, A,C) and {S; — S| j € J} be a quasi-
covering family for S, where for every j € J, S; = (¥;,X;,I';, M, A;,C;).
Let {sj | j € J} be a matching family of elements s; € St(S;) (i.e. such that
for every ji,j2 € J, S X nX;, = Si2|X; mXh). Then there exists a unique
s € St(S) such that s|x, = s; for every j € J.

Proof: We can define s : X — M, by s(x) = sj(z) if z € X;. Let ¢ € UT;.
Then ¢ contains exclusively symbols in £; = (X;, X;) for some j, s satisfies ¢
because its restriction to X;, namely s;, does (we used Lemma 3.19). Therefore
s satisfies all constraints in |J I'j, hence also all their consequences, i.e. it satisfies
all formulas in I' = (JT;)®; so s € St(S). It is easy to see (by the definition
of s) that s is the unique element of St(S) such that for every i € I, s/x, = s;.
This proves that St is a sheaf. O

A similar result also holds for the parallel actions:

7.1.2 A Grothendieck Topology on SYS; 237

Proposition 7.3 Let S = (X, X,I',M,A,C) and {S; — S | j € J} be a cover
of S, where for every j € J, S; = (X;,X;,I'j,M;, A;,C;). Let {f; | i e I} be
a family of parallel actions f; € Act(S;) such that for everyi,j € I, fi\AmAj =
ff\AmAy" Then there erists a unique f € Act(S) such that fi4, = fi.

These gluing properties naturally raise the question whether the covering
relation defines a Grothendieck topology such that St and Act are sheaves with
respect to this Grothendieck topology.

We therefore have to check whether the notion defined before satisfies the
properties of a basis for a Grothendieck topology, cf. Definition 3.96, namely:

(1) {S} is a quasi-cover for S,

(2) If {S; — S| i € I} is a quasi-cover for S then for any morphism T' — S
the family of pullbacks {S; x¢ T — T |€ I} is a quasi-cover for T

(3) If {S; — S | i € I} is a quasi-cover for S and if for each i € I one has
a family {S;; — S; | j € I;} that is a quasi-cover for S;, then the family
{Sij = S |i€I,je€ I} is a quasi-cover for S.

Properties (1) and (3) are obviously satisfied. It is however easy to see that
condition (2) (similar to a distributivity property) is not satisfied, as shown
by the following example (for the sake of simplicity we assume that the set of
actions is empty):

Example 7.2 Let ¥ = {0,1,<} be a signature where 0 and 1 are 0-ary function
symbols and < is a binary predicate symbol. Let M = ({0,1},{0nr,1pr,<m})
be a X-structure where <p; is an order relation and 0 <p; 1. Consider the
following systems:

S1 = (3,{a,b},{a <b},M, A C),
Sy = (Ea {ba C}, {b < C},M,A, C)a
T'=(2{a,c},{a<c}, M AC).

Let S be the system obtained by interconnecting S1 and Ss.

S =(3,{a,bc},{a<bb<ca<c}MAC).

238 7 Categories of Systems with Inclusions as Morphisms

The family {S1, Sa,S1 N Sa} is a quasi-covering family for S, according to Def-
inition 7.2. T is a subsystem of S, but Sy NT = {X,{a},0,M,A C) and
SoNT ={%,{c},0,M, A, C), hence {S1NT,SoNT,S1NSyNT} does not cover
T.

This shows that the quasi-covering relation introduced in Definition 7.2 does
not define a basis for a Grothendieck topology. Also, the induced “covering”
relation J by sites,

R € J(S) iff there exists a quasi-cover T for S such that T C R

does not satisfy property (2) of a Grothendieck topology (consider in Exam-
ple 7.2 the sieve generated by {Si, Sa2}).

This suggests that the obvious notion of quasi-cover defined above is not
completely appropriate. We give a new definition of cover, trying to avoid
situations like the one described in the example above.

Definition 7.3 (Covering Family) Let S = (3, X,T', M, A, C) be a system.
A covering family for S is a family S = {S; — S | i € I} of subsystems of S,
with the following properties:

(C1) S is a sieve (i.e. it is closed under subsystems),
(C2) S is a colimit of the diagram defined by the sieve S,

(C3) For every T C S, T is the colimit of the diagram defined by the sieve
TﬂSZ{SiGS‘SZ"—)T}.

It is easy to see that, with the notation used in Example 7.2, the sieve S
generated in SYS; by {Si, S2,S1 N Sa} is not a covering family for S according
to Definition 7.3 because T is a subsystem of S, but is not a colimit of the
diagram defined by the sieve {S; € § | S; — T} ={S1NT,S2NT,S1NSaNT}.

Proposition 7.4 The function J assigning for every system S the set J(S) of
all covering families for S is a Grothendieck topology on SYS;.

Proof: We show that the axioms required in the definition of a Grothen-
dieck topology are satisfied:

(1) Let § = {T | T — S} be the sieve of all subsystems of S. Since S is an
element of §, it follows immediately that .S is a colimit of the diagram defined
by S, and since every T' < S is an element of T'N S, it is the colimit of the
diagram defined by the sieve T N'S. Thus § is a covering family for S.

(2) Let S = {S; — S |ie I} € J(S) and T — S. We show that the sieve
TNS={S;€8|S;— T} is acover for T. It is obvious that it is a sieve and
that its colimit (as a diagram) is T (by (C3), since § € J(S)). Let T' — T. By
the fact that T"'N (T NS) =T'N S, and since T" is in particular a subsystem

7.1.2 A Grothendieck Topology on SYS; 239

of S, it follows that 7" is the colimit of the diagram defined by 7' N (T'N S).
Thus, TNS ={S; € S| S; = T} is a cover for T.

(3) Let S ={S; = S |ie I} € J(S), and R an arbitrary sieve on S such that
for every S; € S, S; MR € J(S;) (we assume that fori € I, S;NR ={S;; | j €
L}).

In order to show that R € J(S) we have to prove that (C1),(C2) and (C3)
are fulfilled.

(C1) is obviously true since R is a sieve.

In order to prove (C2) note that the following holds:

EZUEiZ U Ez’j;X:UXi: U Xij,

i€l i€l jel; i€l i€l jel;

MlimR_M52_M5’F_<UFi) _(U Fij))

el icljel;

A:UAZ-: U A;;,C = (U C’ij) .
i i icl,jel;

In order to prove (C3), let T < S be a subsystem of S. We have to show
that T'N'R has T as a colimit.

We show that in fact TN{S;; | i € I,j € I;} has T as a colimit — and hence
T is also the colimit of TN R.

TN{SylieljeL}={TNS;|iel,jel;}. Itiseasy tosee that,
since TN S; = S; and {S;; | j € I;} € J(S;), the following holds:

UEinsr) = ;0 (Erns) =Srny;,
jel; jel;

U (X nXr) = Xrn X5, | (4ij N Ar) = Ap N 4,

JjEel; Jel;
(UFUHPT) :FTﬂPi,(U CijﬂCT) =CrngaG;.
Jel; Jjel;

Since § = {S; — S | i € I} € J(S), T is the colimit of T N S, i.e.
Y7 = Ujer 27 N %; (similarly for X7 and A7), and the constraints in I'z
(resp. Cr) are exactly the consequences of the constraints in J;c; [t NT'; (resp.

UiEI CT ﬂ CZ)
Therefore,

Y = UETHEZ' = U U (2” HET),XT = U U (X” QXT),
i€l icl jeI; i€l jel;

I'r = (zLer It N Fi>. = (ZGUI (]LEJI 'y N Fij)) . = (zeLJI]LGJI It N FU) . ,

240 7 Categories of Systems with Inclusions as Morphisms

Mr = Mgz, = MS‘UEZ.].,AT = UI UI (Aij N Ar),
el gel;

Cr = (iUICTmCi). = (H (UI_CT”Cz'j).). = (H UI_CT”Cz'j).-

From this it follows that 7' is the colimit of the sieve {T'NS;; |i € I,j € I;}.
Since S;; € R for every i € I,j € I;, this implies that T is the colimit of the
sieve T'N'R. Thus we proved that R € J(S5). O

Note that all the covering families according to Definition 7.3 are also quasi-
covering families according to Definition 7.2. It is easy to see that in this case
the gluing properties for St and Act are indeed sheaf conditions. Therefore, the
following theorem holds.

Theorem 7.5 The functors St, Act : SYS;°? — Sets are sheaves with respect to
the Grothendieck topology J.

7.2 The Dynamic Aspect: SYS;

In order to also capture the “dynamic” aspect of systems, i.e. the way they
evolve in time, we have to be able to represent the way the states of a system
change when actions are executed. So, besides the language and actions, more
information is needed in the definition of a system S. Namely, for every action
we have to know which variables the action really depends upon, and the way
these variables change after the action is performed.

Therefore, a system is represented as

S = (Ea X, I, M, Aa C, {Xa }aGAa {Tra}aGA)a

where for every a € A, X, is the (minimal) set of all variables in X action a
depends upon, and T'r, C {(s1|x,, S2|x,) | 51,52 € St(S)} shows how the values
of these variables may change if a is performed.

It is easy to see that, given two systems S7 < S, if we have a transition in
S and regard it from the “perspective” of Si, it may happen that in S; some
variables change their values with no apparent cause. This is usually the case
when some actions in Sy, that are unknown in S, depend on variables of Sy
(and change their values).

A subsystem S; — Sy in which all changes of the variables in S; can be
explained “internally” will be called transition connected. Below we give the
formal definition.

Definition 7.4 (Transition Connected Subsystems) Let S; — Sy be a
subsystem. We say that Sy is a transition-connected subsystem of So if

(TC1) For every a € Aa, if X, N X1 # 0 then a € Ay, and X} = X2 N X;,

(TC2) For every a € Ay and for every si,ss € St(S2) if (51‘X3,32‘X3) € Tro:
then (Sl‘Xé,SQ‘X(}) € TT(‘lgl.

7.2 The Dynamic Aspect: SYS; 241

The next result shows that if S; C Sy is transition-connected then valid
transitions in Sy restrict to valid transitions in Sj.

Lemma 7.6 Let Sy be a transition-connected subsystem of Sz, and let a € A;.
Let (s1,s2) € Tr%2(a). Then (511x,, 82|x,) € Tr51(a).

Proof: Let (s1,s2) € Tr52(a). Then (s1x2,82|x2) € Tr32, hence, since S is
a transition-connected subsystem of Sy, by (T'C2), (s1x2nx,, S2/x2nx,) € Trst.
Let € X; be such that s;(z) # sy(z). Then € X2 N X; = X!. Thus, for
every r € X1 X,, s1(z) = s2(z). This proves that (s1x,,s2/x,) € Troi(a). O

We will now show the link between local morphisms of systems and transition-
connected systems. We begin by defining the image of a system S via a (local)
morphism of systems.

Definition 7.5 Let f : S — So be a local morphism. The tmage of S1 by f is

F(S1) = (f(Z0), Fx (X1), (fEma(T1))*s Ma g, Fa(Ar), (£5(C1))* XIS TSy),
where

o for all actions a € fa(A1), xJ5) — Fx(Usa(5)=a X;), and

o for every a € fa(A1) and s1,s2 € St(f(S1)), let g :+ A1 — {0,1} be
defined by g(b) =1 iff fa(b) = a. Then Tri™) = {51y s50)5 82 g £50)) |

(s10 fx|x, s2° fx|x,) € Trg}.

Lemma 7.7 Let f : S1 — S be a local morphism. Then for every a € fa(A1),
X[= X2 fx(x0).

Proof: By the definition of f(S7), for all actions a € f4(A;), X({(Sl) =
fX(UfA(b):a XI})

Since f is a local morphism, by (M5) it follows that for every a € f4(A1),
Ufa(b)=a X! = fx'(X2). Tt remains to show that fx(fyx' (X2)) = X2N fx(X1).

First note that if € fx(fyx'(X2)), then z = fx(z1) with z; € f'(X2).
Hence, z = fx(z1) € X2 N fx(X3).

Let now * € X2 N fx(X1). Then z € X2 and = = fx(71) with z; € X;.
Therefore, fx(z1) € X2, hence, z1 € fx' (X2). Thus, z € fx(fx (X2). O

Proposition 7.8 The following holds:

(1) Let Sy be a transition-connected subsystem of Sy. Then the inclusion of
S1 in Sy is a local morphism.

(2) Let f: S1 — Sa2 be a local morphism. Then f(S1) is a transition-connected
subsystem of So.

242 7 Categories of Systems with Inclusions as Morphisms

Proof: (1) Assume that S; is a transition-connected subsystem of S;. Con-
dition (M5) in the definition of a local morphism follows from condition (7'C'1),
and condition (M6) follows from condition (T'C2).

(2) Let f : Sy — Sy be a local morphism. It is easy to see that f(S7) is a
subsystem of Ss. We show that it is a transition-connected subsystem.

Let a € Ay be such that X, N fx(X1) # 0. Then, by (M5), a € fa(41).

Let a € fa(A1). Then by, Lemma 7.7, XJ®V = X2 1 f(X1). Let 51,50 €
St(S2) such that (s1x2, s2(x2) € Tr32. Then, by (M6), (s1 o fx|x, 820 fx|x,) €
Tr3t, where g : Ay — {0,1} is defined by g(a;) = 1 if and only if f4(a1) = a.

g)
Therefore, by the definition of f(S7), (sl‘Xf(Sl)’SQ‘Xf(SI)) c TTZ(SI). O

Remark 7.9 Assume that S1 is a transition-connected subsystem of Sa, and
So is a transition-connected subsystem of S3. Then Si is a transition-connected
subsystem of Ss.

Proof: Assume that S; is a transition-connected subsystem of S, and S5
is a transition-connected subsystem of S3. Let a € A3 such that Xa3 N X1 #0.
Since X; C X, it follows that X3 N X, # 0, and by the fact that Sy is a
transition-connected subsystem of S3 we have a € Ay and Xg = X;:’ N Xo.
Hence, X2 N X; # 0, and thus, since S is a transition-connected subsystem of
Sy it follows that a € A; and X; = Xg NX; = Xa3 NXsNXy = Xa3 N Xi.

Let now a € Ay and s1,s2 € St(S3) such that (31\X3a32\xg) € Trf3. Then
(31\X3a32\xg) € Tr;fQ, and hence, (Sl‘X{},SQ‘X{}) € Tr;fl. This shows that S is
a transition-connected subsystem of Ss. O

Definition 7.6 SYS; will denote the category having as objects systems and a
morphism between S1 and Ss if and only if S1 is a transition-connected subsys-
tem of Sy (i.e. all morphisms are transition-connected inclusions).

7.2.1 Categorical Constructions in SYS;
Proposition 7.10 The category SYS; has pullbacks.

Proof: Let S1,S3 be two transition-connected subsystems of S, as shown
in Diagram 7.3.

S12 —= 51
‘ L (7.3)
Sg > S

Then My = My,, My = My,; additionally, for every a € A; (resp. in
Ag), X} = X5 N Xy (resp. X2 = X7 N Xy). It follows therefore that for every
a€AiNAy XINXe=X2NnX, =X5n XN Xy

Let S5 = (21 N X, X1 N Xy, T'1 N FZaMS\ElﬂEzaAl N Az,Cl N 02), and
such that for every a € A; N Ay, X2 = XN Xy, = X2Nn X, = XN XN
X5, and TTCIL2 = {(Sl‘X;Z,SQ‘X;Z) | 81,89 € St(Sl),(Sl‘X;,SQ‘X;) S TT‘fl} U
{(SI\X;2,32\X;2) | 81,82 € St(Sg), (Sl‘X{%,SQ‘X{%) S TT‘&SQ}.

7.2.1 Categorical constructions in SYS; 243

It is easy to see that Sio is a transition-connected subsystem of both S7 and
Ss. As an example, we prove it for Sj.

Let a € A; be such that X} N X; N Xy # 0. Then X! N X, # 0, hence
X5 N Xy # 0. Since Sy — S is transition-connected it follows that a € As.
Thus, a € AN As.

Ifa € Ay N Ay, then X;2 = X; NXi1NXy = X; N X19, and if s1, 89 € St(Sl)
with (s1)x1,82)x1) € Tr31, then by the definition of Trl2, (81)x12, S2|x12) €
TTéQ. This shows that Sio is a transition-connected subsystem of S;. Analo-
gously it can be shown that Sio is a transition-connected subsystem of Ss.

In order to check that Sy is indeed the pullback we show that it satisfies the
universality property of a pullback: Let T be a transition-connected subsystem
of both S7 and S3. We prove that T is a transition-connected subsystem of Sis.

It is easy to see that

YrCYiNEy, Xr CXiNXy= X9, ' CI'yNTy = Tyo,

Ar C A1 NAy = A1, Cr CC1 N0y = Cha.

Furthermore, we know that for every a € Ay, ifX;ﬂXT # () thena € A{NAT
and X' = X! N X7 (and similarly for A;). Hence, if X2 N X7 # () then
a € AiNAsNAr = A1aNAg, and XI' = X NXr = X2N X7 = XN X2N X7 =
X;Q N Xrp.

We also know that if s1,s2 € St(S;), such that (s1)x:,s2/xi) € Trdi, (for
i =1ori=2), then (s1xr,s2x1) € Trl.

Let now a € Ar and s1,s2 € St(S12) such that (sl‘Xéz,széa) € Trl2 By
the definition of T'r}2, there are either 51,5, € St(S;) with (El‘X‘%,Eg‘X&) € Trfl,
or 81,82 € St(Sg) with (51\X3a§2\X2) € Tragz, such that s; = 51|X12552 = 52| X1,
In both situations it follows that (31 xr,32x7) € Trl. This proves that T is
a transition-connected subsystem of Si2, and thus that Sy is the pullback of
Diagram 7.3. O

Proposition 7.11 Let S = (X, X, M,T', A,C) be a system and {S; — S | i €
I} a family of transition-connected subsystems of S, where for every i € I,
S = (%, Xi, M;,T;, A;, C;). The colimit of this family in SYS; is the system
S with Eg = Uie] Ez‘, Xg = UiEIXi7M§ = M‘ Uielzi’rg = (UieIFi).aA§ =
User Ai,_C’g = (Uier Ci)*, and where for every a € U;cr Ai XS = Uae 4, X,
and Trs = {(31\X§’ 82‘Xa§) | s1,82 € St(S), and for everyi € I witha €

Ai, (s1)xi,52xi) € Tryi}.

Proof: 1In order to see that for every ¢ € I, S; is a transition-connected
subsystem of S, note that if a € Az depends on z € X; for some i € T it
follows that a € A; (because a € As C A, using the fact that S; is a transition-
connected subsystem of S). Moreover, if a € A; then Xagﬂ X; = (UaeAj Xg) N
X; = X! (in order to prove the last equality note that, on the one hand, it is
obvious that X! C (UaeAj X{l) N X;, and on the other hand, since for every
Jj € I, S; is a transition-connected subsystem of S, it follows that if a € A;

244 7 Categories of Systems with Inclusions as Morphisms

then XJ = X5 N X; C X§; hence, Uyea, XJ C X5, and (Uyea, X§) N X; C
X3nX;=X}).
Let a € A; and 51,52 € St(S) be such that (81‘X§,82‘X§) € Trs. By the

definition of T'r? it follows that (81)x:,82/xi) € Tr3i. Thus, S; is a transition-
connected subsystem of S for every i € I.

In order to show that S satisfies the universality property of a colimit, let 7'
be such that for every i € I, S; is a transition-connected subsystem of 7. Then
Uic1 i € 27, User Xi € X7, Ujer 4i € A7, and the constraints in J;c; s
(resp. U;er Ci) are consequences of the constraints in I'z (resp. Cr).

We want to show that in this case S is a transition-connected subsystem of
T.

Let a € Ar be such that X7 NXg # 0. Then XI'nXg, # 0 for some i € I,
and since S; is a transition-connected subsystem of T', it follows that a € A; C
Uier 4i = Ag. Moreover, XT N X5 = XT N (Ujes Xi) = User (X7 N X;) =
Uiel:aeAi X«i = XE?-

Let 51,82 € St(T), be such that (s1xr,s2x7) € TrI. Then it follows that
(Sl‘Xé',SQ‘Xé') € TrSi for every i € I with a € A;, hence, by the definition of
Tr, (81\X§’ SQ‘Xag) € Trf. Thus, S is a transition-connected subsystem of T'.

O

7.2.2 A Grothendieck Topology on SYS;

In order to define a covering relation on SYS; we have to request additionally
that if a transition is “locally” defined on elements of a cover then from this
“local” transitions a “global” transition can be constructed. In what follows, if
not explicitely specified otherwise, all morphisms S; < S will be supposed to
be transition-connected.

Definition 7.7 (Covering Family) A family S = {S; — S | i € I} of
transition-connected subsystems of S is a covering family for S iff it has the
following properties:

(C1) S is a sieve (i.e. it is closed under all transition-connected subsystems),

(C2) S is a colimit in SYS; of the diagram defined by the sieve S,

(C3) For every transition-connected subsystem T' — S, T is the colimit in SYS;
of the diagram defined by the sieve TNS ={S; € S| s; — T}.

As in Proposition 7.4, it is easy to check that this notion of covering family
induces a Grothendieck topology on SYS;,.

Proposition 7.12 The following holds:

(1) The function J assigning for every system S the set J(S) of all covering
families for S is a Grothendieck topology on SYS;j.

7.2.3 Transitions within SYS; 245

(2) The functors St, Act : SYS;°? — Sets are sheaves with respect to the Gro-
thendieck topology J.

Proof: (1) The proof closely follows the proof given in the case of SYS;.
The first condition in the definition of a Grothendieck topology is obviously
satisfied. The proof of the second condition is the same as in the case of SYS;.
In order to see that the third condition is also satisfied, it only remains to check
that if S = {S; | i € I} is a cover for S and R a sieve on S such that for every
iel, S;NR ={Si|j€ Ji} covers S; then:

(i) for every a € Ag, X5 = UaeAs,-]- X&gija and

(ii) if a € As and s1, 82 € St(S) are such that (s1)x,;nxs,82x,,nxs) € Try
for all S;; with a € Asij, then (Sl\X(;Sa SQ‘X;?) S Tr;f.
For the first part, note that X; = U; aeas X' = Uiacas Ujacas X5 =
k) ,,: k) 'L k) 'LJ

Sij
UivjaaeASij Xa .

For the second part, assume that a € A; and s1,s2 € St(S) are such that
(s1)x,,nx5> 82x,;nx5) € Try" for all Sij with a € Ag,,. Note that for every
i,j, Xiy N X5 = X% = X;; 1 X5, Since {Sy; | j € I} € J(S:), it follows that
if (51)x,,1x85 52/x,,nxs) € Tra” for alli € I and j € J; with a € Ag,), then
(811x,nx5:82|x,nx5) € Tr3i for all i € I such that a € Ag,. From the fact that
{Si | i€ I} € J(S) it then follows (s1|xs,S2|xs) € Trs.

(2) Follows immediately, since the covers in SYS; are in particular covers in
SYSi. O

7.2.3 Transitions within SYS;

We now study the relationships between transitions in the elements of a covering
family for a system S and the transitions in S.
For atomic actions the following result holds.

Lemma 7.13 Let {S; | i € I} be a covering family for S. Let a € Ag, and
51,83 € St(S) be such that (s1x;,52x;) € Tr%(a) for every i € I. Then
(1, 89) € Tr(a).

Proof: Let si,sy € St(S) be such that (s1|x;,s2x,) € Tr5% (a) for every
i € I. Then, for every ¢ € I with a € A;, (s1)x,nx5,52/x,nx5) € Trdi and
s1(z) = sa(z) for all z € X;\ X2, For every i € I with a € A;, S1x; = S2|x;-

Since for every i € I with a € A;, (s1)x,nx5, 52/ x;nx5) € Trdi, it follows
(by (C2)) that (s1xs,s2/xs) € TrS. If 2 € X5\ X2 then z € X;\X? for some
i € I, hence s1(z) = sa(z). O

Proposition 7.14 shows that a similar gluing property also holds for parallel
actions, if transitions of composed actions satisfy (Gluing).

246 7 Categories of Systems with Inclusions as Morphisms

Proposition 7.14 Assume that the transitions associated to admissible parallel
actions satisfy (Gluing). Let S = {S; | i € I} be a cover for S in SYS;. Let
s1,52 € St(S) and f € Act(S). Assume that (s1)x,,s2)x,) € Tr%(f|a,) for
every i € I. Then (s1,s2) € Tro(f).

Proof: Let s1,s2 € St(S) and f € Act(S), and assume that (s1x,, s2/x,) €
Trsi(f‘Ai) for every i € I.

Let a € As with f(a) = 1. Then (s1xsnx,,S2|x5nx,) € Trdi for alli € T
with a € A;. Hence, by the property of a covering family, (s1|xs,s2/xs) € TrS.
For = & Ug, f(a)=1 X3 we know that s11x,(7) = s2x,(z) if z € X;, hence s1(z) =
so(x). Thus, by (Gluing), (s1,s2) € Tr5(f). O

If we assume that the actions may consume common resources and are de-
terministic, and the transitions of parallel actions are obtained according to the
(Independence), then a similar results holds, but under stronger conditions.

Lemma 7.15 Let {S; | i € I} be a covering family for S. Assume that the
actions in S and {S; | i € I} are deterministic (the final state is uniquely
determined by the initial state in case an action is applied).

Let a € Ag and let s € St(S) be such that for every i € I there ezists a state
s; € St(S;) such that (s|x,, 8:) € Trdi(a) (i.e. ifa & A; then 8|x, = 8i, otherwise
(81x;nx55 8ix,nxs) € Tr3i and s(z) = si(x) if ¢ € X;\X7). Then there is a
unique state 3 € St(S) such that for alli € I, 3x, = s; and (s,5) € Tr%(a).

Proof: By the determinism of actions and by the fact that {S; |i € I} is a
sieve (hence, closed under pullbacks (“intersections”) of systems), it follows that
for every i,j € I, sijx,nx; = Sj|XinX, Therefore there is a unique s € St(.5)
such that 5)x, = s;. It follows that (sx,,3|x,) € Tri(a) for every i € I, hence
by Lemma 7.13, (s,3) € Tr(a). O

Remark: Note that in proving the previous lemma we used the fact that the
covering family § for S has the property that for every Sy, .S2 € S, the pullback
S1 X g Se is a transition-connected subsystem of both S; and S, hence is in S.
This is true in SYSj;, but might not be true in some of its subcategories, if they
are not closed under pullbacks. In Section 8 we will show that a similar result
holds for a certain subcategory of SYS;; which is not closed under pullbacks.

The next proposition shows that a gluing condition holds, similar to that of
Proposition 7.14, under the assumption that the transitions of parallel actions
satisfy (Independence). Since one of the conditions in this case is that for
every a € As, f !(a) is finite, we assume, for the sake of simplicity, that the set
of atomic actions of the system S is finite. Since we decided to consider only
finite systems, this is not a limitation.

Proposition 7.16 Let S = {S1,...,Sn} be a covering family for S in SYS;.
Assume that the transitions associated to admissible parallel actions obey (In-
dependence). Let s1,s2 € St(S) and f € Act(S). Assume that (s1)x,, s2|x;) €
Trsi(f‘Ai) for every i € I. Then (s1,s9) € Tro(f).

7.2.3 Transitions within SYS; 247

Proof: Assume that we have identified all elements ai,a3 € Ag with
a1 = as € Cg and f(a1) = f(az) = 1, and after this identification, f!(1) =
{a1,...,a,}. We proceed by induction on the number n of elements in f (1)
after this identification.

If n = 1 then f consists of only one action, and the property is true by
Lemma 7.13.

Assume that the property is true for every admissible action ¢ such that
(after identifying all elements a1,ay € Ag with a1 = as € Cs and g(a1) =
g(az) = 1), the set g~ (1) has n — 1 elements.

Let f € Act(S) with f (1) = {a1,...,a,}. Since all possible relations
between the actions in Ag are of the form a A a’ = 0, it follows that also the
parallel action g : A — {0,1} with g(a) =1 iff a € {a9,...,a,} is admissible,
i.e. g € Act(S), and so are all restrictions of g to elements in the covering family
gja;, for any 1 € I.

We know that (s1|x,,s2|x,) € Trsi(f‘Ai) for every i € I. By (Indepen-
dence) it follows that for every i € I, f|4, can be applied at s1|x, in the system
Si, and the final state does not depend on the order in which the actions are
applied. Therefore we can assume that a; is applied first in all systems S; with
a1 € A;.

Hence, for every i € I there exists a state s; € St(5;) such that (s1|x;,si) €
Tr% (ay) if a; € A;, or such that s1x; = si if a1 ¢ A;. It also follows that g4,
can be applied at s; for every i € I (note that the final state does not depend
on the order in which the actions are applied), i.e. that (s;, s2|x,) € Trs(g‘Ai)
for all ¢ € I.

By Lemma 7.15 and by the determinism of parallel actions guaranteed by
(Independence) it follows that there is a unique state 3 € St(S) such that
51x, = s and (s1,3) € Tr%(a). Moreover, for every i € I, (51x;5 s2|x;) €
Trsi(g‘Ai). Therefore, by the induction hypothesis, (3,s2) € Tr%(g). This
proves that (s1,s2) € Tr(f). |

Note again that, since in the proof we used Lemma 7.15, Proposition 7.16
only holds if all covering families are closed under intersections (pullbacks).
Therefore, it may not remain valid in subcategories in SYS; that are not closed
under pullbacks. In Section 8 we will show that for a particular such subcate-
gory, Sys(InSys), the result is still true.

In what follows we assume that the transitions of parallel actions are com-
puted by (Gluing) or resp. (Independence) and show that transitions can
be expressed by natural transformations between the sheaves Act and Q5% 5t
over the site (SYS;, J) or resp. (SYS, J), where SYS/ is the full subcategory of
SYS; having as objects finite systems.

In what follows, SYS} will denote either SYS;, if the transitions of paral-
lel actions are computed by (Gluing), or (SYSf,J) in case the transitions of

parallel actions obey (Independence).

Lemma 7.17 Let S € SYS;|. Let f € Act(S) be an admissible parallel action,
g : S <= S a transition-connected subsystem, and s1,sy € St(S'). Then the

248 7 Categories of Systems with Inclusions as Morphisms

h " .
set Trs(£)(S')(g, s1,52) = {S" = S' | (s1)xn, 52 x1) €Tr® (fogaoha)} isa
closed sieve on S'.

Proof: Let S" LNy = Trs(f)(S')(g, s1,52), and let S Eogr By g We
want to show that 5" &% s & § ¢ Trs(f)(S") (g, s1,82)-

Since S" % §' € Trs(f)(S')(g, 51, s2) it follows that (s1|xw, s2xn) € Tr5" (fo
gaohy). Therefore, by Proposition 6.5 resp. Proposition 6.6, (sl‘Xg,, , 32‘X§,,) €
Trgu(f ogao(haoh'y)). Hence, S ol g e Trs(f)(S")(g, s1,$2). This proves
that Trs(f)(S")(g, s1, s2) is a sieve on S'.

In order to prove that it is a closed sieve, let S i) S and assume that

— h; — . - .
{§;i = S LN | i € I} covers S, where for every i € I, (Sl‘Xgl,SQ‘XEV) €
Trgi(f ogaohaoh;4)}. By Proposition 7.16 it then follows that (31\X§, 52‘X§) €

TrS(f ogaoha), ie. S € Trs(f)(S')(g,51,52). Hence, Trs(f)(S")(g, 1,) is
a closed sieve. O

A proof analogous to the one given in Lemma 6.8 leads to the following
result.

Lemma 7.18 Trg(f) : y(S) x St x St — Q, defined, for every system S',
by Trs(f)(S') : Homgys: (5", S) x St(S') x St(S') — Q(S"), where for every
g: S — S and s1,s9 € St(S) Trs(f)(S") (g, s1,s2) = {S" g | (sohx,s90
hx) € Tr5"(f o ga o ha)}, is a natural transformation.

Consequence 7.19 For every system S and f € Act(S), Trs(f) € Q5*5(S9).

Proof: Q55! is defined in Sh(SYS}) as follows: for every S € SYS!,
Q55 S) = {1 : y(S) x St x St — Q| 7 natural transformation}.

In Lemma 7.18 we showed that Trg(f) : y(S) x St x St — Q is a natural
transformation. Hence, Trg(f) € Q5*5¢(S). O

Proposition 7.20 Tr : Act — Q55 defined for every system S by Trg :
Act(S) — Q55Y(S) is a natural transformation in Sh(SYS}).

Proof: We have to show that for every i : S§1 — So, where Sy is a transition-
connected subsystem of Sy, the following diagram is commutative:

TTS? QStht(S2)
Ad(i)‘ QStht(i) (74)

ACt(SQ)

/ Tr
Act(Sy) —2 Q<S8
Let f € Act(Ss). Then Q55(3)(Trs,(f)) : y(S1) x St x St — Q is defined
for every g : Sq < S; and s, 89 € S7 by

QS)(Trsa(f))(gl)(g,%Sz) = Trs, (£)(S1)(i o g,51,82) = {5" & 51 |
(Sl‘Xu,Sg‘XH)ET’P (fo(iAogA)OhA)}.

7.2.4 Temporal Behavior of Systems in SYS; 249

On the other hand, Trs, (f|4,) is defined for every g : S1 <> S; and 51,59 € S;
by

— h — " .
Trs, (fia,)(S1) = {S" = S1 | (s1)x7,s21x7) € Tr¥ ((f 0ia) 0 gaoha)}.
This proves that the diagram commutes. O

It is also easy to see that T'r : SYS;;? — Sets defined by
Tr(S) = {(f,s,5') | f € Act(S),s,5' € St(5),(s,s') € Tr¥(f)}

is a subsheaf of Act x St x St (a short direct proof of this fact can be given:
from Proposition 6.5 resp. Proposition 6.6 it follows that it is a subpresheaf,
and from Proposition 7.14 resp. Proposition 7.16 it follows that it is a sheaf).

7.2.4 Temporal Behavior of Systems in SYS;

The starting point of our approach to dealing with temporal behavior is the
formalism developed by J. Goguen in [Gog92]. He starts with the assump-
tion that every system can be described by a set of attributes X, each at-
tribute £ € X having a prescribed set of values V. In what follows we as-
sume that time is considered to be discrete. In this particular situation, in
[Gog92] the behavior of a given system S in time is modeled by a functor
F : T — Sets, where T is the basis for the topology on N consisting of all
the sets {0,1,...,n},n € N. Intuitively, for every open set U = {0,1,...,n},
F(U) represents the “observations” in the interval of time U. Formally, the
functor F is defined on objects by F(U) = {h : U — [l,cpVp | K(h)} where
K (h) represents a set of conditions that have to be satisfied by h — usually
some prescribed rules indicating how the states of the system can change, re-
flecting the pre- and postconditions of the relevant actions. It is defined on
morphisms by F(.¥})(h) = hy for every W 1V — U and every h € F(U). In
order to study the behavior of a system consisting of several subsystems the
intercommunication between the subsystems is taken into account. A system is
seen as a diagram of subsystems, where the morphisms represent inheritance.
Goguen shows that the behavior of the system can be described by F(U) =
{{h, ‘ 1€ I} ‘ h; € FZ(U) and if ¢ : S; — Sy then qﬁe(hi) = hil}, where for ev-
ery ¢ € I, F; is a sheaf that describes the behavior of the system S;. Therefore,
the behavior of a system is the limit of the behaviors of its subsystems (for
details see [Gog92]).

In what follows we will develop the idea of representing behavior in time of
systems by sheaves over time. We modify the definition for the behavior of a
system slightly, by also taking into account the actions that are performed at
every step. We will assume that all actions need one unit of time. In future
work the more realistic case where actions can have different durations will be
considered.

Definition 7.8 Let S be a system in SYS;. The behavior of S is a functor
Bg : TP — Sets defined for everyU € T by Bg(U) = {h: U — St(S)x Act(S) |
K(h,U)}, where K(h,U) can be expressed by

250 7 Categories of Systems with Inclusions as Morphisms

for every n, if n,n+ 1 € U and h(n) = (s, f), h(n + 1) = (', f')
then (s,s') € Tr(f),

and for every 1 :V C U, Bs(1) : Bs(U) — Bgs(V') is the restriction to V.

Thanks to the particular form of the open sets of 7 (all {0,1,...,n} for
some n), it can easily be shown that Bg is a sheaf.

Let ¢ : S; — S5 in SYS;;. We define pgf : Bg, — Bg, by pgi(U) : Bg,(U) —
Bg, (U) for every U € T, where for every h : U — St(S2) x Act(Sa), pgf(U)(h) =
(St(e), Act(e)) o h : U — St(S1) x Act(S1) (with St(1)(s) = sx, for every
s € St(S2) and Act()(f) = fia,)- In what follows, for every U € T and every
h € Bs, (U), we will abbreviate pg*(U)(h) by hjs,.

(SYS;} will denote either SYS;, if the transitions of parallel actions are com-
puted by (Gluing), or (SYSf, J) in case the transitions of parallel actions obey
(Independence).)

Lemma 7.21 Let U € T be arbitrary but fized. Let By : SYS;? — Sets be
defined for every object S € SYS} by By;(S) = Bs(U) and for every morphism
t:S1 = Sy by By () = pgf : Bg,(U) — Bg,(U). Then By, is a sheaf.

Proof: Let S € SYS; and {S; — S| j € J} be a cover of S. Let {h;}jcs
be such that for every j € J, hj € Bs,;(U) is a matching family, i.e. such that
for every j1,j2 € J, hjl‘SjIXSsz = hjl\s,-l x$55,° We show that there is a unique
h € Bs(U) such that kg, = h; for every j € J.

From the definition of the behavior of a subsystem, for all j € J and every
t €U, h(t) = (s}, f}), where s’ € St(S;) and f} € Act(S;), and if t,t +1 € U
then (st s§-+1) € Tr(f}).

]7
The family {h; | j € J} is compatible; therefore for every ¢t € U and every
;o t _ ot t _ gt :
J1,J2 € J, ShixinXs = Si2|XinX and fj2\A1r1Az = Fhaainay Since St and

Act are sheaves, it follows that for every ¢t € U there is a unique st € St(.9)

such that S\th = 33 for every j € J, and a unique f! € Act(S) such that
f‘tAJ_ = f} for every j € J. Define h : U — St(S) x Act(S) by h(t) = (s', f*)
for every t € U. Note that if ¢,t + 1 € U, then (s§,3;+1) € Tr(f]t) for every
j € J, hence (s""Xj,s"f;;) € Tr(f‘tAj) for every j € J. By Proposition 7.14 or
Proposition 7.16 (depending on the rule which is applied for the computation
of transitions of parallel actions), (st, s'*1) € Tr(f!). It follows that h satisfies

also the conditions K(f). Then h € B(S) and for every j € J, hjg, = h;. O

Proposition 7.22 Let B : SYS;? — Sh(T) be defined for every object S of
SYS;; by B(S) = Bs : T — Sets, and for every morphism ¢ : Sy — Sy by
B(i) = pgi : B(S2) — B(S1), and let B': T°P — Sh(SYS}) be defined for every
UeT by B'(U) : SYS}P — Sets, B'(U)(S) = Bs(U). Then B and B' are
functors.

Proof: By the fact that all morphisms in SYS; are transition-connected in-
clusions and from Proposition 6.5 resp. 6.6 (depending of the rule for computing

7.2.4 Temporal Behavior of Systems in SYS; 251

transitions of parallel actions) it follows that if S; < S5 is a morphism in SYS,
then for every h € Bg, (U), pgf(h) € Bg, (U), i.e. that pgf is well-defined. It is
easy to see that pgf : Bg, — Bg, is a natural transformation. Let V C U, and

let ¥ be the inclusion of V in U. Then the following diagram commutes:

Bs, (1Y)

Bg, (V) U Bg, (V)

pst (V)

Hence, B is a functor. In order to show that B’ is a functor, note first that from
Lemma 7.21 it follows that B’ is well-defined on objects. Let i : V < U be the
inclusion between the open sets U,V € T. Let us define B'(i) : B'(U) — B'(V)
by B'(i)(S) : Bs(U) = Bg(V) by B'(i)(S)(h) = Bs(i}})(h) = hyy for every
h:U — St(S)x Act(S) € Bs(U). B'(i) is a natural transformation between the
sheaves B'(U) and B'(V). This follows from the commutativity of diagram 7.5.

O

Proposition 7.22 suggests that it might be possible to define behavior as a
sheaf Bhv : (SYS; x T)° — Sets for a suitable Grothendieck topology on the
product category SYS;j x 7. One possible notion of covering is presented in
what follows.

Definition 7.9 A covering family for (S,U) € |SYS} x T| is a family that
contains a family of the form {S; | ¢ € I} x {U} where {S; | i € I} is a cover
for S in J.

Lemma 7.23 The map that associates with every system (S,U) the family
K(S,T) of covering families for (S,U) in the sense of Definition 7.9, is a basis
for a Grothendieck topology on SYS; x T.

Proof: (1) The first property from the definition of a basis for a Grothen-
dieck topology is satisfied, since {(S,U)} is a cover for (S,U) according to
Definition 7.9.

(2) Let (S",U') < (S,U), and let S € K(S) contain {S; | i € I} x {U}. Then
SN (S, U") contains (§NS") x {UNU'}. Therefore it is a cover for (S',U"),
since SN S’ is a cover of S'.

(3) Let S € K(S,U). Assume that S contains the family {S; | i € I} x {U}.
For every i € I, let §; € K(S;,U). Assume that for every i € I, §; contains the
family ({S; | j € Ii} x {U}).

Therefore, {T' | T € S;,i € I} contains {S;; | i € I,j € I;} x {U}. We
know that {S;; | ¢ € I,j € I;} is a cover for S; it therefore follows that
{T'|T € S;,i €I} covers (S,U). O

Let Jg7 be the Grothendieck topology generated by the basis K.

252 7 Categories of Systems with Inclusions as Morphisms

Proposition 7.24 The functor B : (SYS] x T)° — Sets defined by B(S,U) =
Bgs(U) is a sheaf with respect to the Grothendieck topology Jsr.

Proof: Let (S,U) be an object in SYS} x T and let S = {(S;,U;) |i € I} €
JST(S, U). Let (hi)iel be such that for every i € I, h; : U; — St(SZ) X ACt(SZ'),
and for every ¢,j € I, the restriction to U; N U; of hjs;x4s, is equal to the
restriction to U; N Uj of hj\sixss,-' We will show that there is a unique h: U —
St(S) x Act(S) such that for every i € I, hy(g, v,) = hi-

Since § € Jgr, it follows that it contains a family of the form ({Sy | k €
K} x {U}) where {S; | i € I} is a cover for S in J. We will denote the index
in S of (Sk,U), k € K, by ig.

Since (h;)icr is compatible, it follows that, in particular, its subfamily
(hi,)kex is compatible. Therefore, there is a unique h : U — St(S) x St(S)
such that hg, = h;,. From the compatibility of the family (h;);cr it follows
that h(s, ;) = h; for every i € I. O

Proposition 7.22 also suggests that the theory can be developed in two
further directions:

(1) Regard the category of systems as an internal category in Sh(7). This
might offer some generalizations to the study of systems that vary in time,
and is left as a topic for future research.

(2) Regard T as an internal category in Sh(SYS},J). That is, regard every
time interval U in T as a sheaf in Sh(SYS], J). This can easily be done
if for every U € T we consider the sheaf U : SYS;°? — Sets obtained by
sheafification from the constant presheaf ¢/ : SYS;? — Sets, defined on

objects by U(S) = U, and for every h : S; — Sy by U(h) = Idy.

This approach will be analyzed in Section 8.5.2 (in the particular case
when only those systems are considered that arise by interconnecting a
given family of systems), and used in order to express temporal properties
of systems.

We will show that the representation of time intervals as sheaves over
(SYS},J) in a natural way allows to have “different time cycles” for in-

dependent systems.

Now we focus on simpler models for the behavior of systems, namely those
that only take the actions performed into account, and ignore the states.

7.2.5 Models for the Behavior of Systems: Monoids and Lan-
guages

In what follows we will assume that all the constraints on actions are of the
form a; A aj = 0 (the constraints state which actions are dependent and cannot
be performed in parallel).

7.2.5 Models for the Behavior of Systems 253

In the model proposed in Section 7.2.4, the behavior of a system was de-
scribed by a functor Bg : T — Sets, defined for every U € T by Bg(U) =
{h:U — St(S) x Act(S) | K(h,U)}, where K (h,U) can be expressed by

for everyn, ifn,n+1 € U and h(n) = (s, f), then h(n+1) = (s', f')
such that (s,s') € Tr(f),

and for every ¢ : V C U, Bg(t) : Bs(U) — Bg(V) is the restriction to V.

If we ignore the states of the system, then for every system S we can express
the behavior of S by

Ls={fi...falneN,fieAct(S):Vie {1,...,n},3h € Bg({1,...,n}),3s; €
St(S), s.t. Vi € {1,...,n},h(i) = (si, fi) }-

The elements of Lg are strings of elements in Act(S).

For every system S, let Act(S)* be the free monoid freely generated by
Act(S), where the empty action 0 : Ag — {0,1}, 0(a) = 0 for every a € Ag is
identified with the identity e.

Let S; < S2 be a transition-connected subsystem. The restriction map
Act(S2) — Act(S1) extends in a canonical way to a morphism of monoids,

ACt(S2)* — ACt(Sl)*.

Note that in general, if arbitrary constraints on actions are allowed, this canon-
ical morphism of monoids is not necessarily surjective: since in Ss more con-
straints may exist, not every parallel action that is allowed in S; is also allowed
in 52.

Lemma 7.25 Assume that all the constraints on actions are of the form a; A
a; = 0. Let S; <= Sa. Then the following affirmations are equivalent:

(1) For every action f € Act(Sy) there exists an action f € Act(Ss) such that
7‘141 = f'

(2) Ci=0Cyn F%(Al)

Proof: (1) = (2) : Assume C; # Cy N F2(A;), i.e. there is a constraint
a; Naj =0 € Cy, with a;,a; € Ay, but a; Na; =0 & C.

Let f : Ay — {0,1} such that f(a;) = f(a;) = 1. Then there is no
f € Act(Sz) such that 7‘A1 = fo.

(2) = (1) : Assume C; = CoNF2(A;). Let f € Act(Sy). Let f : Ay — {0,1}
be defined by f(a) = f(a) for every a € A; and f(a) = 0 for every a € Ay\A4;.

Let a; A a; = 0 be a constraint in Cs. If a;,a; € Ay, then a; Aa; =0 € Cy,
hence F(ai) A F(a) = F(ai) A flag) =0. o

If at least one of a;,a; & Ay (say a;) then f(a;) = 0, hence f(a;) A f(a;) = 0.
This proves that f = C. O

Let now S be a system and {S; | i € I} a cover of S. For every i € I, let
p;i + Act(S)* — Act(S;)* be the canonical morphism of monoids that extends
the restriction map, and let §; = ker(p;). Let 6 = A, 6;.

254 7 Categories of Systems with Inclusions as Morphisms

give-a

give-b

Stock-a receive-a receive-b Stock-b

emmEmmm—--—
D [p—

L

give-res

\ receive-res / ------

Ry

Figure 7.2: A simple robotics scenario

For every i,j € I such that S; — S; let p{ . Act(S;)* — Act(S;)* be the
unique morphism of monoids that extends the restriction function from Act(S;)
to Act(S;). Let D be the diagram defined by {Act(S;) | i € I} with morphisms
pg for every S; — S;. Then the limit of this diagram is

@DAct(Si)* = {(wi)ier \pf(w]) = w; for every i,j € I s.t. S; — S;}.

Then the canonical morphism p : Act(S)* — LDAct(Si)*, defined by

p(fi-- fn) = (f14; - - - fnja, i1, is such that ker(p) = 6.

Remark: Note that the morphism p : Act(S)* — H&Act(si)* is not necessarily
injective (in general § # A), as can be easily seen from the following example
(in what follows we will denote by a the parallel action consisting only of a):

Example 7.3 Consider the example given in Section 6.1 and described in Fig-
ure 7.2. Let S the system covered by the sieve generated by Sy, S2,S1 N Sy. Let
f,9 € Act(S)*, f = bring-a - bring-b, g = bring-b - bring-a. Then fis, = g5, =
bring-a, fis, = g5, = bring-b, and fis,ns, = 95,15, = €. Similarly, for any
other system S’ in the sieve generated by Sy, S2,S1 NSy we have flss =g =¢.
However, f # g.

%
sarily surjective. There may be compatible families (even if we only consider

singleton parallel actions) of sequences of actions that cannot be “glued to-
gether” to a sequence of actions on Act(S), as can be seen in the following
example:

Remark: Note that the morphism p : Act(S)* — limielAct(Si) is not neces-

Example 7.4 Let S1, 52, S3 be three systems all having the same language, the
same constraints on variables and the same model for the variables, such that

Ag, ={a,b},Cs, = {a Nb= 0},

Ag, ={b,c},Cs, = {b AN c=0},

7.2.5 Models for the Behavior of Systems 255

As, = {a,c},Cs, = {a ANc=0}.

Let S be the system obtained by interconnecting Sy, S2,Ss. Then
As ={a,b,c},Cs ={aNb=0,bAc=0,aAc=0}.

Consider wy = ab € Act(S1)*, wa = be € Act(Ss)*, wg = ca € Act(Ss)*.

It is easy to see that ply(w1) = ply(wz) = b, p23(we) = p3s(w3) = c,
pis(wi) = pis(ws) = a, but there is no w € Act(S)* such that wys, = w;,i =
1,2,3.

It follows that the (injective) map a,

Act(8)* /6 < Hm Act(S;)* — [] Act(Si)*.
iel

is not necessarily surjective. This shows that the functor Act* : SYS; P — Sets
defined by Act*(S) = Act(S)*, is in general not a sheaf: neither the existence
nor the uniqueness of a “global” sequence of actions that extends a compatible
family of “local” sequences of actions is guaranteed.

The phenomenon illustrated by Example 7.4 — namely the fact that there
may exist “compatible” families of “local” sequences of actions that cannot be
glued together to a “global” sequence of actions — has been studied in the (less
general) context of asynchronous models for computations. In what follows we
briefly present some results concerning modeling behavior in the asynchronous
case, by using partially commutative monoids, and then make the link between
our approach and such models. For the basic definitions cf. Section 4.3.1; for
details see also [Die90].

Definition 7.10 Let S be a system, with set of actions Ag and set of con-
straints C's. Assume that all the constraints in Cs are of the type a; A a; = 0.

(1) Let Dg C Ag x Ag be defined by (a,b) € Dg iff aANb =0 € Cg. The
dependence alphabet (As,Ds U Ayg), denoted D(S), is the dependence
alphabet of S.

(2) The partially commutative monoid M (D(S)), denoted M(S), is the par-
tially commutative monoid of S.

(8) The graph (Ag,Dg), denoted G(S), is the dependence graph of S.

Let S; — Sy in SYS;. Then Ags, C Ag, and Dg, C Dg,. By Theo-
rem 4.21, there is a unique canonical projection, p? : M(Sy) — M(S;) (which
is surjective). The canonical projection p? is the unique morphism of (free)
partially commutative monoids that extends the map h : Ag, — Ag, defined

) a ifac€Ag,
byh(“){s if a ¢ Ag,.

256 7 Categories of Systems with Inclusions as Morphisms

Let S be a system and § = {S; | ¢ € I} a covering family for S. For
every ¢ € I, there is a canonical projection p; : M(S) — M(S;) (which is
surjective). Moreover, if S; — S;, then we denote the canonical projection by
pg: : M(Sj) — M(S;), and if S;,S; € S, then pgj : M(Sj) — M(S; N Sj), and
p;; + M(S;) — M(S; N S;) are the canonical mappings.

Proposition 7.26 Let S a system and S = {S; | i € I} a covering family for
S.

(1) If the covering S is finite, then there is a canonical embedding
it M(S) = {(mi)ier | ms € M(S;),¥i € I and pl;(ms) = pl;(m;),¥i,j € T},

The canonical embedding is an isomorphism if and only if every chordless
cycle in the dependence graph Gg of S is a cycle in a subgraph Gs; for
somet € I.

(2) If the covering S is infinite, and if for every a € Ag there are at most
finitely many ¢ € I such that a € Ag,, then there is an injective morphism
M(S) — @;cr M(S;), where @ M(S;) = {(wi)icr | wi € M(S;),w; =

e almost everywhere} is the weak product of the family {M(Gsi)}sie In-Sys-

Proof: (1) The first part of the affirmation follows from Consequence 4.22.
The second part follows from Theorem 4.23 (see also [Die90], [MP86]).

(2) The affirmation follows from the comments following Consequence 4.22
(see also [Die90]). O

Remark: Intuitively, affirmation (2) can be explained by the fact that the
traces have to be of finite length: if infinitely many systems are working in
parallel this has to be “controlled” by requiring that a family (m;);c; has
almost all its components equal to ¢.

(Note also that weak products are special cases of global sections of sheaves
of algebras (namely of sheaves over the co-finite topology on the index set)
[KC79].)

It follows that the presheaf M : SYS; — FPCM satisfies a gluing property
for those finite covers S = {S; | j € J} of an object S that have the additional
property that every chordless cycle in the dependence graph of S is a cycle in
the dependence graph of S; for some j € J.

Chapter 8

Interconnecting a Given
Family of Interacting Systems

In concrete applications we usually are only interested in some subcategory of
SYS;, having as objects those systems relevant for the given application (in the
example in Section 6.1 the relevant systems are Sy, ..., Ss together with their
common subsystems, and the systems obtained by interconnecting them).

In what follows we will assume a family InSys of interacting systems given.
To enforce the compatibility of models on common sorts, we may assume that
all these systems are subsystems of a finite “universal system” Sy. We assume
that they are transition-connected subsystems of Sy. We further assume that
the family InSys is closed under intersections (pullbacks in SYS;; as subsystems
of Sy) i.e. it contains all those subsystems by means of which intercommuni-
cation is done. The elements of InSys are the “building blocks” from whose
interconnection larger systems arise.

We can regard a system obtained by interconnecting the elements of the
family InSys either as a system on its own, or as the set of all elements of InSys
by whose interaction it arises (i.e. as a downwards-closed subset of InSys). We
will analyze both these approaches, and then the relationship between them.

First we study the category Sys(InSys) that has as objects all the systems
that can be obtained by interconnecting elements in InSys.

Note that, as in the case of SYS; and SYS;, although Sys(InSys) is a par-
tially ordered set, it is in general not a lattice (meets may not exist) and even
if the corresponding meets and joins exist the distributivity law is not always
satisfied. Thus, Sys(InSys) is not a locale.

We define a Grothendieck topology J on Sys(InSys) and show that in this
case admissible states and parallel actions define sheaves with respect to the
Grothendieck topology J. Transitions are also analyzed: we show that also in
this case they define a natural transformation between Act and Q5¢*5?.

Often it is useful to regard systems that arise when interconnecting elements
in InSys as “diagrams”, or equivalently, as subsets of InSys closed under all pos-

257

258 8 Interconnecting a Given Family of Interacting Systems

sible subsystems. Let €1 (InSys) consist of all families of elements of InSys which
are closed under subsystems. We can regard it as a partially ordered set with
respect to set inclusion. Alternatively, if we assume given a coverage relation
C on the elements in InSys we can instead consider the free frame generated by
(InSys, C). If no system in InSys can be covered by other systems this frame is
exactly €1(InSys)\0. In what follows we will denote by InSys* the set InSys\{
and by Q(InSys*) the Heyting algebra of all downwards-closed subsets of InSys*.
(Q(InSys*) is isomorphic to 24 (InSys)\0.)

States and parallel actions can be defined component-wise; it can be easily
seen that they define again sheaves (over the topological space (InSys*, Q(InSys*)).
Behavior can also be analyzed in this case: this can be done as in the case of
SYS;. We also analyze the behavior given by traces of executions. Our ap-
proach is different from the approach presented in [MP86]: we apply a theorem
by Davey [Dav73] on the existence of a sheaf of algebras having as fibers quo-
tients of a given algebra, and obtain a result similar to the one given in [MP86],
but for partially commutative monoids instead of monoids. It shows that there
is a sheaf of monoids having as fibers the free partially commutative monoids as-
sociated to the systems in InSys, but that only under very restrictive conditions
the monoid of global sections is isomorphic to the free partially commutative
monoids associated to the system obtained by interconnecting the elements in
InSys.

In order to study the link between the categories Sys(InSys) and Q(InSys), we
show that there is an adjunction ¢ : Sys(InSys) — Q(InSys) and 7 : Q(InSys) —
Sys(InSys) such that the functor ¢ preserves the covering relation. This adjoint
pair induces a geometric morphism f : Sh(InSys) — Sh(Sys(InSys), J).

In order to express properties about systems we need a language in which to
formulate them, and an interpretation in different categories. Since many such
properties are statements about states, actions and transitions, and we showed
that they can be expressed by sheaves in both cases considered above, it seems
natural to define a language and interpret it in Sh(Sys(InSys), J) and Sh(InSys).

Therefore, we use geometric logic, having as goal to analyze the links be-
tween properties of the systems in InSys and those of the system obtained by
interconnecting these systems. We show how certain sorts (denoting e.g. states,
actions, pairs of states, sets of states) and function symbols (e.g. for represent-
ing transitions) can be interpreted in the toposes analyzed above. If we consider
the topos Sh(InSys), we note that the stalk functors (inverse image functors)
preserve the validity of so-called coherent axioms; since they are also collec-
tively faithful they also reflect it. On the other hand, the global section functor
is an example of direct image functor (it preserves limits), hence it preserves
the validity of so-called cartesian axioms. If the topological space Q(InSys*) is
compact and totally disconnected (i.e. if there are finitely many independent
systems) then the restrictions about uniqueness for the existentially quantified
variables are not necessary anymore.

These considerations help in deciding which properties are inherited by the
system obtained by interconnecting a family of given systems. Several examples

8.1 Sys(InSys) 259

are provided: determinism, deadlock freedom, fairness of execution, as well as
a discussion of general properties of the behavior of systems in time.

In this chapter, if not explicitly specified otherwise, S; — S will denote a
transition-connected morphism.

8.1 The Category of Systems Obtained by Intercon-
necting Elements of InSys, Sys(InSys)

Definition 8.1 (Interconnection) Let {S; | i € I} be a family of elements in
InSys. The system obtained by their interconnection is the colimit of the family
{S; | i € I}, computed in SYS;.

Definition 8.2 The category Sys(InSys) has as objects all systems that can be
obtained by interconnecting elements in InSys, and a morphism from Si to Ss
if and only if Sy is a transition-connected subsystem of So.

It is easy to see that as a subcategory of SYS;;, Sys(InSys) is closed under
colimits (colimits of colimits of elements in In-Sys are again colimits of elements
in In-Sys), but it is in general not closed under pullbacks: it can happen that
the pullback in SYS; of two systems that are colimits of elements in InSys is
not the colimit of elements in InSys, as the following example will show.

Example 8.1 Let ¥ = {0,1,<} be a signature where 0 and 1 are 0-ary function
symbols and < is a binary predicate symbol. Let M = ({0,1},{0nr,1pr,<m})
be a X-structure where <p; is an order relation and 0 <z; 1. For the sake of
simplicity we assume that in what follows the set A of atomic actions and the
set C of constraints are empty.

Assume that InSys consists of the systems:

S1 = (3,{a,b},{a <b},M, A C),
So = (E,{b,c},{b<c}, M, A C),

T:(E’{a7cﬂe’f}’{a§c7eéf})M’A’C))

together with their intersections. The family InSys is represented in Figure 8.1
Let S be the system obtained by interconnecting S1 and Ss.

S =(3,{a,b,c},{a <bb<ca<c}MAC)
is the colimit of the diagram {S1,S2,S1 N Sa} in SYS;, hence S € Sys(InSys).

Consider the pullback S N'T of S and T (as subsystems of the systems
obtained by interconnecting all elements in InSys) in SYS;,

SAT = (2,{a,c},{a < c}, M, 4,0).

It is easy to see that SN T is not a colimit of elements in InSys.

260 8 Interconnecting a Given Family of Interacting Systems

D
/N
—

ﬁ
=/
//\
BN
(@]

QL |

Figure 8.1:

The covering families are defined as in SYS;.

Definition 8.3 Let S be a system in Sys(InSys). A family S = {S; | i € I} of
transition-connected subsystems of S, in Sys(InSys) is a covering family for S
if and only if

(C1) S is a sieve in Sys(InSys),
(C2) S is a colimit of the diagram defined by S,

(C3) For every transition connected subsystem T of S in Sys(InSys),
TNS={S; € S|S; transition-connected subsystem of T'}
has T as colimat.

Example 8.2 We give two examples:

(1) Consider the family InSys introduced in Example 8.1, and represented in
Figure 8.1. It is easy to see that {S1, Sa, S1NSa, S1NST, S2NST} is a cover of S.

(2) Assume that InSys consists of the systems:
Sl = (2, {a’ b}’ {a S b}’ M)’

Sy = (%,{b,c},{b < c}, M),
T = (%,{a,c},{a < c}, M),
together with their intersections (where ¥, M, A, C are as in Example 8.1). The

family InSys is represented in Figure 8.2.
Let S be the system obtained by interconnecting S1 and S, t.e.

S =(3,{a,b,c},{a <bb<ca<c}MAC)

is the colimit of the diagram {Si,S3,S1 N Sa}

It is easy to see that {S1,S2,S1 N Sa} is not a covering family for S because
in particular T — S is a transition-connected subsystem, but {TNS1,TNS2, TN
S1 N Sy} does not have T as a colimit.

8.1 Sys(InSys) 261

Figure 8.2:

Proposition 8.1 The function J assigning for every system S the set J(S) of
all covering families for S is a Grothendieck topology on Sys(InSys).

Proof: The proof closely follows the proof given in the case of SYS;,. O

Lemma 8.2 Let S be an object in Sys(InSys). Then the family of all transition-
connected subsystems of S contained in InSys, {S; € InSys | S; — S} is a
covering famaily for S.

Proof: S is an object of Sys(InSys), hence S = EQ){Rk | k € K}, where
Ry, € InSys for every k € K. The set {Ry | k € K} is contained in the set
{S; € InSys | S; — S}, hence by the universality property of the colimit it
follows that S = 11_m>{Sz € InSys | S; — S}.

Let T'— S be a subsystem of S in Sys(InSys). Then T = lim{7; | 1 € L},
with T} € InSys for every [€ L. Since T} — T and T — S, it follows that {77 |
le L} C{S; €lInSys | S; — S}, hence {T} |l € L} C {S; € InSys | S; — T}.
Thus, by the universality property of the colimit it follows that T is the colimit
of {S; € InSys | S; — T'}.

This shows that all conditions in the definition of a cover are fulfilled, and
that {S; € InSys | S; — S} is a covering family for S. O

Proposition 8.3 Assume that in InSys no system is a colimit of other sub-
systems. Let S be a system in Sys(InSys). Then every covering family of S
contains all the elements of InSys that are subsystems of S.

Proof: Let S = {S;|i € I} be a cover of S. Let T' € InSys be a transition-
connected subsystem of S. Then, by the definition of a covering family it follows
that T is covered by {S; | S; € §,S5; — T}.

We know that for every i € I, S; is covered by the family S(S;) = {S;; €
InSys | Sj; — S;}. Hence, the family {S;; | Si; € S(S;),S; — T} covers T.
It follows that 7' = S;; for some S;; € S(S;), where S; — T. Thus, we have
T — S;, hence, T = S; for some i € I. O

Definition 8.4 A finest cover is a cover none of whose elements can be further
decomposed via a cover (except the trivial one).

262 7 Categories of Systems with Inclusions as Morphisms

Consequence 8.4 Assume that in InSys no system is a colimit of other sys-
tems. Then every system S in Sys(InSys) has a finest cover, namely {S; €
InSys | S; — S}.

Until now, all categories taken into consideration had pullbacks. Hence,
when checking whether a functor is a sheaf it sufficed to use Proposition 3.32.

Since Sys(InSys) does not have pullbacks, we will need to use the general
definition of a sheaf, as given in Definition 3.98 in what follows, namely:

A presheaf F' over Sys(InSys) is a sheaf if and only if for every object S
in Sys(InSys) and each cover S of S in Sys(InSys), the following diagram is an
equalizer:

p

Fio)-%]I F(S) —= II Fr). (8.1)
S;—S€eS T—Sj,

Sj‘—)SES

Lemma 8.5 The functors St : Sys(InSys)®” — Sets and Act : Sys(InSys)”? —
Sets defined by St(S) = {s: Xs — Mg | s = T's} and Act(S) = {f : As —
{0,1} | f = Cs} are sheaves.

Proof: In order to prove that for every cover § = {S; | i € I} of S, St(S) is
the coequalizer from diagram 8.1 (with F' correspondingly replaced by St), we
have to show that every family {s;}icr, such that for every i € I, s; € St(S;),
and for every S; — Sj, six, = s; can be amalgamated to a unique s € St(S).

Let {s;}ic; be such that for every i € I, s; € St(S;), and for every i,j € I
with S; C §;, Si|x; = Sj- We first show that for every S;,,S;, € S there exists
a system S; € S such that X; = X;, N X;,.

Let S;,,S;, € S be arbitrary but fixed. S;; = li_m>{T].1 | j € i}, Si, =
Em{T2 | k € J,}, where T},Tk2 are elements of InSys.

By the fact that InSys is closed under intersections and from the universality
property of colimits it follows that T = li_111>{Tj1 NTZ|j€ Ji,k € l}isa
transition-connected subsystem of both S;, and S;,. Moreover, T is a system
in Sys(InSys), so, since § is a sieve, T is in S. Thus, T' = S; for some j € I.

Therefore, Siy|x; = 8§ = Sia)x,- It is easy to see that X; = X; N X;,. Thus,
we proved that for every iy,19 € I, Sin| X, NX;, = Si2| X, NXi,"

Then it follows immediately that there is a unique s : X — M such that

s|x; = s; for all i € I. Since for every i € I, s; = Iy, it follows that s |=
(UierTi)* =Ts.
The fact that Act is a sheaf can be proved analogously. O

8.1.1 Transitions within Sys(InSys)

We now study the properties of transitions in Sys(InSys).

8.2 Q(InSys) 263

The fact that for every arrow S; < Sy in Sys(InSys) valid transitions in S
restrict to valid transitions in S is a consequence of Proposition 6.5, Proposi-
tion 6.6 and Proposition 7.8.

Concerning the relationship between transitions in the elements of a covering
family for a system S and the transitions in S, note first that the proof of
Proposition 7.14 also holds in this case. Hence, if the transitions associated to
admissible parallel actions satisfy (Gluing) and S = {S; | ¢ € I} is a cover for
S in Sys(InSys) then for every si,sy € St(S) and f € Act(S), (s1/x,,52/x;) €
Tr%i(f4,) for every i € I implies (sq,s2) € Tr°(f).

If we assume that the actions may consume common resources and are
deterministic, and the transitions of parallel actions are obtained according to
the rule (Independence), then it turnes out that Proposition 7.14 also holds
for Sys(InSys), although this category is not closed under pullbacks.

Proposition 8.6 Let {S; | i € I} be a covering family for S. Assume that
the actions in S and {S; | i € I} are deterministic (the final state is uniquely
determined by the initial state in case an action is applied).

Let a € Ag and let s € St1(S) such that for every i € I there exists a
state s; € St1(S;) such that (s|x,,s;) € Tr%(a) (i.e. if a ¢ A; then s/x, = s;,
otherwise (sx,nx,,Six,nx,) € ITryi and s(x) = si(z) if € X;\X,). Then
there is a unique state 3 € St1(S) such that for all i € I, 3)x, = s; and
(5,3) € Tro(a).

Proof: From the hypothesis we know that for every ¢ € I there exists a
state s; € St1(S;) such that (s|x,,s:) € Tr%(a). By the determinism of actions
it follows that the family {s; };cs is such that for every i € I, s; € St(S;) and for
every S; — S;, 8i|x; = 8j (from the fact that if S; — S;, (s‘X]., Si\Xj) € Tr% (a),
and from the determinism of a in S;).

By Proposition 8.5, this family can be amalgamated to a unique 5 € St(S).
It follows that (sx,,3|x,) € Tr5% (a) for every i € I, hence by Lemma 7.13,
(5,5) € Tro(a). |

All the other results from Section 7.2.3 also hold for the category Sys(InSys).
Thus also in this case transitions define a natural transformation between
sheaves in Sh(Sys(InSys), J), Tr : Act — Q5S¢

As in Section 7.2.3, note that T'r : Sys(InSys)” — Sets defined by
Tr(S) = {(f,5,5') | f € Act(S),s,5' € St(S), (s, 8) € Tr*(f)}

is a subsheaf of Act x St x St.

8.2 The Category of Downwards-closed Subsets of
InSys Q(InSys)

It is often useful to regard systems that arise when interconnecting elements in
InSys as “diagrams”, or equivalently, as subsets of InSys closed under all possible

264 8 Interconnecting a Given Family of Interacting Systems

subsystems. We now show that, if we assume that the elements in InSys are
independent then the family of those “diagrams” of elements in InSys consist-
ing of subsets of InSys\(closed under all possible subsystems is the free frame
freely generated by InSys together with the constraint that the empty family of
systems covers the empty system.

We assumed that the “building blocks” form a meet-semilattice InSys. Let C
be a coverage relation on InSys, i.e. a function assigning to each S € InSys a set
C(S) of subsets of | S, called coverings of S, with the following “meet-stability”

property:
If R € C(S) then for all T — S,T € InSys, {RNT | Re R} € C(T).

Let Fg(InSys,C) be the free frame freely generated by the meet semilat-
tice InSys with the coverage relation C. It is known ([Joh82], pp.57-59) that
Fe(InSys, C) is isomorphic (as a frame) with the frame of all C-ideals of InSys (a
C-ideal of InSys is an order-ideal I of the meet-semilattice InSys that satisfies

If 3R € C(S) such that R C I then S € 1.)

In what follows we assume that the systems in InSys are independent, in
the sense that no (non-empty) element in InSys is the colimit of other elements
of InSys. (However, the empty system () is the colimit of the empty family of
systems.) This defines a covering relation C' on InSys. Let Fg(InSys, C) be the
free frame freely generated by InSys together with the covering relation C'. We
know that Fg(InSys, C) is isomorphic to the set of all C-ideals of InSys. It is
easy to see that an order-ideal I of InSys is a C-ideal if and only if it contains
the empty set.

Therefore, the free frame freely generated by InSys together with the cover-
ing relation C is the family of those order-ideals that contain the empty system.

Let Q(InSys) consist of all families of elements of InSys which are closed
under subsystems. We can regard it as a partially ordered set with respect to
set inclusion. It is easy to see that there is an isomorphism of frames between
Fe(InSys, C) and Q4 (InSys)\0. But Q1 (InSys)\0 is isomorphic (as a frame) with
the set of downwards-closed subsets of InSys that do not contain §.

Therefore, in what follows we will consider the set Q(InSys) of those downwards-
closed subsets of InSys that do not contain) (it is easy to see that this is indeed
a topology on InSys\0).

We will denote by Sh(InSys) the category of sheaves over InSys\() with the
topology Q(InSys).

States and parallel actions of such “diagrams” of systems can be expressed
component-wise.
Let St : Q(InSys)°P — Sets be defined on objects by

E(U) = {(Si)SiEU ‘ 8; € St(Si), and if S; — Sj then s; = Sj\Xi}’

and such that for ¢ : Uy C Us, St(1) : St(Ua) — St(Uy) is defined by St(1)((si)s;cv,) =
(Si)SiEUl'

8.2 Q(InSys) 265

Let Act : Q(InSys)°P — Sets be defined on objects by
M(U) = {(fi)SieU | fz € ACt(Si), and if S; — Sj then fl = -fj\Ai}’

and such that for « : Uy C Uy, Act(t) : Act(Uz) — Act(Uy) is defined by
Act(e)((fi)s;evz) = (fi)sieun-

Proposition 8.7 St and Act are objects in Sh(InSys) (as a topological space)
with the topology consisting of all downwards-closed sets.

Proof: Obvious. O

In what follows, for every S; € InSys we will denote by | S; the set of all
elements in InSys that are contained in S.

Lemma 8.8 Let F : Q(InSys)? — Sets be a sheaf. Then for every S; € InSys,
the stalk of F' at S;, Fs, is in bijective correspondence with F (| S;).

Proof: We know that the stalk of F' at S;, Fs, = H_ID>S_€UF(U). It is easy
to see that, if U is a downwards-closed set with S; € U, then | S; C U. It is
easy to show that F(] S;) satisfies the universality property of the colimit of

U
the diagram {F(U) | S; € U} (with the appropriate morphisms F(U) g F(V)
for every V' C U). This shows that there is a bijection between Fg, and F (] S;).
a

Consequence 8.9 For every S; € InSys, the stalk of St at S;, Sts, is in bijec-
tive correspondence with St(| S;) and the stalk of Act at S;, Actsg, is in bijective
correspondence with Act(| S;).

Proof: Follows from Lemma 8.8, since St and Act are sheaves. O

Proposition 8.10 Let U € Q(InSys) be a downwards-closed set, and let S be
the colimit of the diagram defined by U. There is a bijective correspondence
between St(S) and St(U), and a bijective correspondence between Act(S) and
Act(U).

Proof: The colimit of the diagram defined by U = {S; | ¢ € I} is the system
S, with Yg = UZ-GIEZ-,XS = UieIXiaMS = MU\ESaFS = (UieIFi)‘,AS =
Uier 4i, Cs = (Uier Ci)®.

Let s € St(S). Then s : J;c; Xi — M, hence for every i € I, 5; = s|x, :
X; - M; € St(SZ) Define f(S) = (Si)SiEU- Then f(S) € St(U)

Conversely, for every (s;)s,cv such that s; € St(S;) and if S; — S;, s; =
Sjix, there exists a unique s € St(S) such that s|x, = s;, for every i € I
(follows from the fact that InSys is closed under intersections). This proves the
bijectivity of f. O

Consequence 8.11 For every S; € InSys there are bijective correspondences
between the stalk Sts, at S; and St(S;), and between the stalk Acts, at S; and
ACt(Si).

266 8 Interconnecting a Given Family of Interacting Systems

8.2.1 Transitions within Q(InSys)

We now study the transitions between systems. Recall that for every system S;
in InSys and every action a € A;, the transition defined by a in S; is denoted
by Tr%(a). For every f € Act(S;), we denote the transition associated to f in
S; by Tro%(f).
For every U € Q(InSys) and every f = (fi)s,cv € Act(U) we will denote by
WU(f) the set {(s,s") | s = (8i)icv, s = (8})icv € St(S;) and Vi € U, (s;,s}) €
Tr(fi)}-

We want to show that, like in the category SYS;, transitions can be modeled
by a natural transformation Tr : Act — Q52*5t. We proceed as in Section 7.2.3:

For every U € Q(InSys) and every f = (fi)s,cv € Act(U), let Try(f) :
y(U) x St x St — Q be defined for every U' C U and every s,s’ € St(U') by

Tru(f)(U')(s,s") = {U" CU |VS; € U", (si,57) € Tr¥(f:)}.
Lemma 8.12 For every U,U" € Q(InSys) with U' C U, every f = (fi)s,cv €
Act(U), and every s = (si)ievr, 8" = (sp)icrr € SHU'), Tru(f)(U")(s,s') is a

closed sieve.

Proof: Tt is easy to see that Try(f)(U')(s, s') is a sieve. We prove that it
is closed.

Let {U}}rex be a cover for U". Assume that for every k € K, U}/ €
Tru(f)(U')(s,s'), ie. for every S; € UL, (si,sl) € Tr'(fi). Let S; € U".
Then S; € Uy for some k € K, hence (s;,s}) € Wsz(fl) This proves that
U" € Try(f)(U"). Thus, Try(f)(U’) is a closed sieve. O
Lemma 8.13 Let f = (fi)s,cv € Act(U). Then Try(f) : y(U) x St x St — Q,
defined for every U' € Q(InSys) and every s = (8;)icyr,s' = (sh)icor € St({U')
by Try(f)(U')(s,s') = {U" C U | VS; € U", (si,8) € Tro(f;)}, is a natural
transformation.

Proof: Tt is easy to see that for every U; C Us C U’ the following diagram
is commutative:

SE(Us) x SHUs) L))

Si(i) x Si(i) (i) (8.2)

SHU St(U — QU
(U1) x St(1)T7U(f)(U1) (Uh)

Indeed, for every (s,s') € St(Uy) x St(Us) such that s = (s;)icv, and s’ =
(st)icu,, we have on the one hand

Qi) (Tro(f)(Us)(s,s') = {U" CUL | U" C UL CUs € Tru(f)(Ua)(s,8')} =
—{U" C U\ | (si,sh) € T (f3),Vi € U"},

and on the other hand, T_TU(f)(Ul)(S\UI’STUI) — {(U" C UL | (si,8)) € T_’I‘Si(fi),Vi c
U"}. This proves that the diagram commutes. O

8.3 Temporal Behavior in Sys(InSys) and Q(InSys) 267

Consequence 8.14 For every U € Q(InSys) and f € Act(S), Try(f) €
QSSHD).

Proposition 8.15 Tr : Act — QSt<5t defined for every U € Q(InSys) by Try :
Act(U) — Q5SYU) is a natural transformation in Sh(InSys).

Proof: We show that for every U; C Uy € Q(InSys) the following diagram
commutes:

QSIx51(j) (8.3)

Let f = (fi)icu, € Act(Us). Tlrl_en_Q§X§(z')(T_rU2(f)) is defined for every
U' C Uy and s,s' € SHU") by Q5 (3)(Tru, (1))(U")(s, ') = {U" C U" |
(sjum, 8(n) € Truy (flom} = Troy (fjo,)(U') (s, 8'). O

Also, Tr : Q(InSys)® — Sets defined by

Ir(U) ={(f,5,5) | f = (fi)sieu € Act(U), s = (si)s;ev,

SI = (Sg)SiEU S Q(U), (si,sg) S TTSi(fi),\V/Si S U}

is a subsheaf of Act x Act x Act.

8.3 Temporal Behavior in Sys(InSys) and 2(InSys)

For the sake of simplicity, in what follows Sys will denote one of the cate-
gories Sys(InSys) or Q(InSys). The objects of the category (either systems of
downwards-closed subsets of InSys) will be denoted by S, S1,Sa,...,Si,....

On both these categories we have a suitable notion of covering, that induces
Grothendieck topologies. By St, Act, and T'r we will denote either the sheaves
St, Act resp. the natural transformation T'r if Sys = Sys(InSys) or St, Act, and
Tr in the case when Sys = Q(InSys).

Definition 8.5 Let S be a system in Sys. The behavior of S is a functor
Bg : TP — Sets defined for every T € T by Bs(T') = {h : T — St(S) x Act(S) |
K(h,T)}, where K(h,T) can be expressed by

for every n, if n,n +1 € T and h(n) = (s, f), h(n + 1) = (', f')
then (s,s') € Tr(f),

and for every 1 : Ty C Ty, Bg(1) : Bg(T») — Bg(T1) is the restriction to Ty.

Thanks to the particular form of the open sets of 7 (all {0,1,...,n} for
some n), it can easily be shown that Bg is a sheaf.

268 8 Interconnecting a Given Family of Interacting Systems

Let ¢ : S1 <= S in Sys. We define p:gi : Bg, = Bg, by pgf(T) : Bg, (T) —
Bg, (T) for every T € T, where for every h : T — St(S2) x Act(S2), pgf (T)(h) =
(St(1), Act(r)) o b T — St(S1) x Act(S1) (with St(¢)(s) = sx, for every
s € St(S2) and Act(¢)(f) = f1a,)- In what follows, for every T' € T and every
h € B, (T), we will abbreviate p? (T')(h) by hjs,.

Lemma 8.16 Let T € T be arbitrary but fized. Let Bl : Sys®? — Sets be
defined for every object S € Sys by BL.(S) = Bg(T) and for every morphism
t:S1 = Sy by Bi(1) = pgi : Bs,(T) — Bg,(T). Then Bl is a sheaf.

Proof: Let S € Sysand {S; — S| j € J} be a cover of S. Let {h; | j € J},
hj € Bs,(T) be a matching family. We show that there is a unique h € Bs(T)
such that h|s, = h; for every j € J.

From the definition of the behavior of a subsystem, we know that for all
j € Jandevery t € T, hj(t) = (s?,f;), where 53- € St(S;) and f]'-5 € Act(S;j),
and if t,¢t + 1 € T then (s, s5*1) € TrSi(f]).

Since {h; | j € J} is a matching family, the families {s’ | j € J} and
{f}|j € J} are matching families for every ¢ € T.

Since St and Act are sheaves, it follows that for every ¢ € T' there is a unique
st € St(S) such that s‘tsj = s§ for every j € J, and a unique f! € Act(S) such
that f‘tsj = f]'? for every j € J. Define h : T — St(S) x Act(S) by h(t) = (st, f!)
for every t € T. Note that if ¢, + 1 € T, then (sé, S;_H) € Trsf(f;) for every
j € J, hence (s""si,s"fgfil) € Trsf(f‘tsi) for every j € J. By Proposition 7.14
adapted to Sys(InSys) or Proposition 8.6 (depending on the rule which is applied
for the computation of transitions of parallel actions) if Sys = Sys(InSys), resp.
by the definition of Tr, if Sys = Q(InSys), we know that (st, st*1) € Tr9(f?). It
follows that also h satisfies the conditions K(f). Then h € B(S) and h|g;, = h;.

O

Proposition 8.17 Let B : Sys®? — Sh(T) be defined for every object S of
Sys by B(S) = Bg : T —Sets, and for every morphism ¢ : S; — Ss by
B(i) = pzi : B(S2) — B(S1), and let B' : T°P — Sh(Sys) be defined for every
T €T by B'(T): Sys® — Sets, B'(T)(S) = Bs(T), and for every Ty é Ty by
B'(1) : B'(Ty) — B'(T%), where for every system S, B'(1)s = Bgs(t) : Bs(T1) —
Bgs(Ty). Then B and B' are functors.

Proof: We know that in both Sys(InSys) and Q(InSys) for every arrow
S1 < 89, transitions in Sy restrict to transitions in S;. It follows that if
S1 < So is a morphism in Sys, then for every h € Bg,(T), pgf(h) € Bg, (T),
i.e. that pgi is well-defined. It is easy to see that pgi : Bg, — Bg, is a natural
transformation. Let 77 C Ty, and let z% be the inclusion of T7 in T,. Then the

8.4 Models for Behavior in Q(InSys): Traces 269

following diagram commutes:

S
psi(]b)

BSz(T2) — BS1 (TQ)

B, (ir?) Bs, (ir?) (8.4)

Bg, (Tl) S Bg, (Tl)

pSi(]H)

I

Hence, B is a functor. In order to show that B’ is a functor, note first that from
Lemma 8.16 it follows that B’ is well-defined on objects. Let i : Ty — T be
the inclusion between the open sets T, T» € T. Let us define B'(7) : B'(Ty) —
BI(Ty) by B'i)(S) : Bs(Ts) — Bs(T1) by B'()(S)(h) = Bs(i)(h) = hyr, for
every h : Ty — St(S) x Act(S) € Bg(T»). B'(7) is a natural transformation be-
tween the sheaves B'(Ty) and B'(T}). This follows also from the commutativity
of diagram 8.4. O

Similar functors, Bgy, B, resp. Bact, Bl4.; can be defined, in which only the
information about states (resp. actions) is encoded. Natural transformations
can be defined: e.g. for every object T of T, 71 : B'(T) — BY%,(T) and 73 :
B'(T) — B';;(T) defined for every system S by 7{ (S)(h) = moh : T — St(S)
and 71 (S)(h) = mp o h: T — Act(S).

8.4 Models for Behavior in 2(InSys): Traces

If we ignore the states of the system, then we can express the behavior of any
diagram of systems V € Q(InSys) by

Ls={fi...fanlneN, ficAct(V)Vi e {1,...,n},3h € Bs({1,...,n}),

ds; € Q(S), such that Vi € {1,...,n}, h(i) = (s4, fi) }-

The elements of Lg are strings of elements in Act(V).

In what follows we will assume that all constraints on actions are of the
form a; A aj = 0 (the constraints state which actions are interdependent and
therefore cannot be performed in parallel).

Consider the family {Act(S;)* | S; € InSys}, where for every S; € InSys,
Act(S;)* is the monoid freely generated by Act(S;). For every S;,S; € InSys
such that S; — §;, let pgz : Act(S;) — Act(S;) be the restriction to S;. The
restriction extends in a canonical way to a homomorphism of monoids, p{ :
Act(S;)* — Act(S;)*.

Let M = {(wi)SielnSys ‘ w; € ACt(SZ)* and VSZ — Sj,pg(wj) = wz}

Lemma 8.18 M is the limit of the diagram {Act(S;)* | S; € InSys} (with the
appropriate morphisms p! for every S; — S;).

270 8 Interconnecting a Given Family of Interacting Systems

Proof: It is easy to see that M defines a cone and satisfies the universality
property of a limit. O

For every V' € Q(InSys) let M (V') be defined by M (V) = {(w;)s,ev | w; €
Act(S;)* and wj|s, = w; for every S; — S;}. M(V) is the limit of the diagram
{Act(S;)* | S; € V} (with the corresponding morphisms).

Proposition 8.19 Let M : Q(InSys)°? — Sets be defined on objects by M(U) =
{(wi)s;ev | wi € Act(S;)* and wis; = wj for every S; — Si}, and for ev-
ery v : Uy C Uz by M(¢) : M(Ua) — M(Uy) defined for every (w;)s,cu, by
M(¢)((ws)s,ev,) = (wi)s,ev,- Then M is a sheaf of monoids.

Proof: Let U € Q(InSys) and {Uy | k € K} be a cover for U. Let {wg}rex
be a family of elements, such that for every k € K, wy = (w!)s,cv, and for
every ki, ks € K, if S; € Uy, N Uy, then w;'cl = wfcz.

Let w = (w;)sicy be defined as follows: for every S; € U, S; € Uy, for some
k. Then w; is defined to be w}c It is easy to see that w; is well-defined, because
of the compatibility of the family {wy}rexr. It is clear that pgh(w) = wy, for
every k € K. The uniqueness of w follows easily from the fact that for every
w' = (wj)s,ev such that p{j (w') = wy for every k € K we have wj = w} for
every S; € Uy. O

However, note that in general M (U) is not in bijective correspondence with
the monoid Act(S)*, where S is the colimit of the diagram defined by U.

In what follows we will focus on “one-element” actions, i.e. take into ac-
count models for asynchronous systems. Instead of using the method described
in [MP86], we will use the results on sheaves of algebras presented in Sec-
tion 4.1.1. This method seems to be more natural, since intuitively, when
studying a system of interacting systems we start by studying the “fibers”, not
the open sets. We will deduce (in a slightly more general form) results similar
to those given in [MP86].

Let S be the colimit of the diagram defined by InSys. Let (Ag, Dg) be the
dependence alphabet of S, and M(S) = M(As,Dg). For every S; € InSys,
S; # 0, let M(S;) = M(A;, D;) be the partially commutative monoid associ-
ated with the dependence alphabet of S;. We know that As = Ug,cinsys 4i
and Ds = Ug,cinsys Di- By Theorem 4.21, for every S; € InSys there is a
canonical projection p; : M(S) — M(S;) (which is surjective)'. Moreover, if
Sj < S;, then we denote the canonical projection by p;'- : M(S;) — M(S;), and
if S;,S; € S, then pl; : M(S;) — M(S; N S;), and pi; + M(S;) — M(S; N S;)
are the canonical mappings. Note that by Theorem 4.21 all homomorphisms
p§ : M(S;) = M(S;) and pﬁj : M(S;) = M(S; NSj) are surjective.

!The canonical projection p; is the unique morphism of (free) partially commutative
a ifa€A;

monoids that extends the map h; : A — A; defined by h;(a) = { e ifag A

8.4 Models for Behavior in Q(InSys): Traces 271

For every S; € InSys let §; = ker(p;). Then M (S;) ~ M(S)/6;.
From the definition of the canonical projections p; it follows that for every
S; — S, the following diagram is commutative:

P} M(S) (8.5)

Lemma 8.20 Q(InSys) is a S-topology (cf. Definition 4.2).

Proof: We have to show that for every my,mq € M(S), if p;(m1) = p;i(m2)
then there exists an open neighborhood U of S; in Q(InSys) such that for every
S; € U, pj(m1) = pj(ma).

Let my,mq € M(S). Assume that p;(m1) = pi(mz). Let U =| S; be the
downwards-closed subset of InSys\ (0 generated by S;. It is an open set, and from
the commutativity of Diagram 8.5, pj(m1) = pg (pi(mq)) = pg (pi(m2)) = pj(m2)
for every S; € U. O

Let (F, f,InSys) be defined by F' = [lg cinsys M(Si), and f : F — InSys
be the natural projection. Assume that a subbasis for the topology on F' is
SB = {[m](U) | U € Q(InSys), m € M(S)}, where [m](U) = {pi(m) | S; € U}.
Since (InSys) is an S-topology, by Theorem 4.3 and Corollary 4.4 it follows
that:

(1) (F, f,InSys) is a sheaf space of algebras,
(2) The stalk at S; € InSys is isomorphic to M (S;),
(3) In M(S) 3 I'(InSys, F) < [1s,cinsys M(Si) = M(S;):
(3.1) m; o v is an epimorphism,
(3.ii) M(S) is a subdirect product of the family {M(S;)}s;cinsys
if and only if o is a monomorphism.

Lemma 8.21 Let s : InSys — [1g,cinsys M (Si) be such that s(S;) € M(S;) for
every S; € InSys. Let m € M(S) and U € Q(InSys). Then S; € s '(Im](U)) if
and only if S; € U and s(S;) = pi(m).

Proof: Note that s 1([m](U)) = {S; € InSys | s(S;) € [m](U)} = {S; €
InSys | 5(5:) € {pj(m) | S, € U},

For proving the direct implication assume that S; € s ([m](U)). Then
5(S;) = pj(m) for some S; € U. Since f o s(S;) = S;, it follows that S; =
f(s(Si)) = f(pj(m)) = S;, hence S; € U and s(S;) = pi(m).

To prove the converse, assume that S; € U and s(S;) = pi(m). Then
3(S;) € {pj(m) | S; € U}, hence S; € s~ ([m](V)).

This shows that S; € s 1([m](U)) if and only if S; € U and s(S;) = p;(m).

O

272 8 Interconnecting a Given Family of Interacting Systems

Lemma 8.22 Let 7 be the topology on F = g, cinsys M(Si) generated by SB
as a subbasis. Then s :1nSys — [1g, cinsys M(Si) such that for every S; € InSys,
s(S;) € M(S;) is continuous if and only if for every S;, S; € InSys such that
Sj = Si, p;(s(Si)) = s(S;)-

Proof: Since SB is a subbasis for the topology on F = [, ciasys M(Si),
s InSys™ — Tl g,cinsys M (Si) is continuous if and only if for every [m|(U) € SB,
s H([m](U)) € Q(InSys).

In order to prove the direct implication, assume that s : InSys — []g,cjnsys M (Si)
is continuous. Let S;, S; € InSys be such that S; — S;. We prove that
pz(s(S)) = 5(S;). Let U = | S; € Q(InSys) and let m € M(S) be such that
pi(m) = s(S;) (the existence of m is ensured by the fact that p; : M(S) — M(S;)
is surjective).

From the continuity of s we know that s~ 1([m](] S;)) € Q(In
S; € sY([m](} Si)). Therefore, since S; < S;, S; € s ([m]
by Lemma 8.21, s(S;) = p;(m). Therefore s(S]) = pj(m) =
Pi(s(S0).

Conversely, assume that for every S;, S; € InSys such that S; — S; it holds
that p;(s(S,)) = 5(5j). We prove that s is continuous.

Let [m](U) € SB, where m € M(S) and U € Q(InSys). We prove that
s H(m](U)) € Q(InSys). Let S; € s Y([m](U)). Then S; € U and s(S;) =
pi(m). Let S; — S;. Then S; € U and by the hypothesis, s(S;) = p](s(Si))
pé(pz(m)) = pj(m). Thus, S; € s~ ([m](U)). Therefore s~!([m](U)) € Q(InSys

Sys). Obviously,
(J S;)), hence,

Pi(pi(m)) =

o

Lemma 8.23 The set I'(InSys, F') of global sections of F has the form
I'(InSys, F') = {(m;)s,cinsys | mi € M(S;) and VS; — S; € InSys,pé(mi) = m;}.

Proof: T'(InSys, F') = {s : InSys — [, cinsys M (Si) | s continuous and s(S;) €
M(S;),VS; € InSys}. So, the elements of I'(InSys, F') are indexed elements
(5(5i)) s;cinsys- We show by double inclusion that I'(InSys, F') = {(m;)s,cinsys |
VS; € InSys, m; € M(SZ) and VS]' — 5; € InSys,p;-(mi) = mj}.

Let s : InSys — [Ig,cinsys M(Si) be continuous. Then by Lemma 8.22 it
follows that for every S; — S; € InSys, p](5(S;)) = s(S;).

Let now (m;)s;clnsys be such that for every S; € InSys,m; € M(S;) and if
S; — S; € InSys then p;(mz) = my. Define s : InSys — [lg,cinsys M (Si) by
8(S;) = m; for every S; € InSys. Hence, for every S; — S; € InSys, pi(s(S;)) =
5(S;), and by Lemma 8.22 it follows that s is continuous. O

Therefore, the following result holds:

Proposition 8.24 Let (F, f,InSys) be defined as above. Then (F, f,InSys) is a
sheaf of algebras, and the stalk at S; € InSys is isomorphic to M(S;). The set
of global sections is

I'(InSys, F') = {(m;)s,cinsys | mi € M(S;) and VS; — S; € InSys,pj'(mz-) =m;}.

8.5.1 Properties of the Topology Q(InSys) 273

Additionally the following holds:

(1) If InSys is finite, then M(S) — T'(InSys, F') < [Is,cinsys M (Si) T M(S))
18 a subdirect product.
The embedding M(S) — T'(InSys, F') is an isomorphism if and only if
every chordless cycle in the dependence graph Gg of S is a cycle in a
subgraph G, for some S; € InSys.

(2) If InSys is infinite, and if for every a € Ag there are at most finitely
many S; € InSys such that a € A;, then there is an injective morphism
M(S) = @icr M(Si), where @ M(Si) = {(wi)ier | wi € M(S;),w; =
e almost everywhere} is the weak product of the family {M(Gsi)}sie In-Sys-

Proof: The form of the set of global sections of F' follows from Lemma 8.23.
The next results follow from Corollary 4.22 and the subsequent comments. O

8.5 Some More Remarks Concerning 2(InSys)

We make some comments about the topology 2(InSys) and about an internal
representation of time in Sh(InSys).

8.5.1 Properties of the Topology (InSys)

We make some remarks about the topological space (InSys\@, Q(InSys)).

It is easy to see that this space is separated if and only if for every two
elements S7, Sy € InSys, their largest common transition-connected subsystem
S1 N Sy is the empty system.

Moreover, it is easy to see that if this is the case then (InSys, Q(InSys)) is
totally disconnected.

The space (InSys\0, 2(InSys)) is Hausdorff compact if InSys is finite, and all
elements in InSys are independent, in the sense that they do not have common
subsystems.

Proposition 8.25 Assume that InSys is finite and all the elements in InSys are
independent (they have no common (nonempty) subsystems). Then the sheaf
M : Q(InSys)°P — Sets has the property that for every U € Q(InSys), if S is the
colimit of the diagram defined by U, and M (S) is the trace language associated
with S, then M (S) is isomorphic to the set of global sections of M.

8.5.2 Internal Representation of Time in Sh(InSys)

The remarks in Section 7.2.4 suggest that, in order to reason about the evo-
lution in time of systems, it may be useful to express time internally in the
category Sh(InSys) (or in Sh(Sys(InSys), J)).

In what follows we assume that the time is discrete, hence it can be modeled
by the set N of natural numbers. Let N : Q(InSys)?? — Sets be the constant

274 8 Interconnecting a Given Family of Interacting Systems

presheaf defined by N (U) = N, for every U € Q(InSys), and for every U é V,
N(@i) : N(V) — N(U) is the identity of N. It is easy to see that N is not
necessarily a sheaf. Let N : Q(InSys)°? — Sets be the sheafification of N.

The sheafification N of N (denoted (N*)* in [MLM92] p.130) can be con-
structed as follows:

(1) Construct Nt : Q(InSys)?? — Sets, defined by N*(U) = N if U # () and
NT(0) = 1 (for the empty cover there is exactly one matching family,
namely the empty one).

(2) Construct (NT)* : Q(InSys)®? — Sets. An element of (N7)"(U) is an
equivalence class of sets of elements i; € N'(U;) for some open covering
{U; | j € J} of U, which match (i;, = i;,) whenever the overlap U;, NUj,
is nonempty. Thus, these elements “glue” together to give a function
i : U — N, with the property that every point of U has some open
neighborhood on which the function is constant.

Therefore, for every U € Q(InSys), N(U) = {i : U — N | f locally constant?} .

It also follows that there are arrows (in Sh(InSys)), 1 % N = N. The sheaf N is
the natural number object in Sh(InSys). (For details on the construction of the
associated sheaf functor for a given presheaf we refer to [MLM92] pp.128-134.)

Assume that all the systems in InSys are independent from each other (i.e.
for every S1,S2 € InSys; S; NSy = 0). Therefore, Q(InSys) is the set of all
subsets of InSys\(, i.e. the discrete topology. Let U € Q(InSys). In this case
any function f : U — N is locally constant.

From the above remarks it follows that the internal representation of time in
Sh(InSys) by the sheaf N enables us to model the fact that independent systems
may have independent clocks.

8.6 Relationship between Sys(InSys) and Q(InSys)

We can define a functor ¢ : Sys(InSys) — Q(InSys), that associates to every
system S of Sys(InSys) the family of all elements of InSys which are transition-
connected subsystems of S. It is easy to see that if S; < Sy are systems in
Sys(InSys), then every member of ¢(.S7) is also a transition-connected subsystem
of Sy, hence it is contained in ¢(S3). So ¢ is order-preserving and hence a
functor.

We can also define a functor 7 : Q(InSys) — Sys(InSys) that associates to
every downwards-closed family U of elements from InSys its colimit (the system

2f : U — X is locally constant if for every « € U there is an open neighborhood U; C U
of £ on which f is constant.

8.6 Relationship between Sys(InSys) and Q(InSys) 275

obtained by the interconnection of the elements in U). It is easy to see that 7
is order preserving.

Proposition 8.26 The functors ¢ : Sys(InSys) — Q(InSys) and = : Q(InSys) —
Sys(InSys) define an adjoint pair.

Proof: Tt is easy to see that for every system S, w(¢(S)) = S, hence
o(m(4(S))) = ¢(S) and for every U € Q(InSys) n(¢(n(U))) = «(U). Moreover,
for every set U € Q(InSys) U C ¢(n(U)). Therefore it follows that there are
two natural transformations, 7 : idg(insys) — @7 and € : T — idsyg(1nsys), Which
satisfy the following two triangular identities (which state that ¢ is a right
adjoint of 7):

idx
mn

TOT

(3
O

It is easy to see that (InSys) is a Heyting algebra, whereas Sys(InSys) is
a partially ordered set (in which meets, when they exist, do not in general
distribute over joins).

Moreover, being a right adjoint, the functor ¢ preserves limits (if they exist),
but in general it does not preserve the colimits (joins). Similarly, being a left
adjoint, m preserves colimits.

Proposition 8.27 The functor ¢ preserves the covering relation.

Proof: Let {S; | i € I} be a covering family for S. For every i € I, let U; =
(;5(51) = {S” € InSys | Sl'j — SZ}, and let U = (]5(5) = {Tk € InSys ‘ Ty — S}
We prove that U = J;c; U;.

It is easy to see that (J;c; U; C U, since for every i € I, if S;; — S; then
Sl'j — S.

Let Tj, € InSys be such that T — S. By Lemma 8.2 we know that for
every i € I, ¢(S;) = {Sij € InSys | S;; — S;} is a cover for S;. Moreover, since
{Si | i € I} is a covering family for S, we know that {S;; |i € I,j € J;} is a
covering family for S. Therefore, since T}, — S, it follows that T} is a colimit
Of{TkﬂSij liel, je J}.

Since InSys is closed under intersection, and we assumed that no element
in InSys is the colimit of other (different) elements in InSys, it follows that
Ty = T, N S;; for some ¢ € I and j € J;. Hence, T, C S; for some ¢ € I, i.e.
Ty € ¢(S;) for some i € I. O

Remark: In general m does not map covers to covers, as can be seen from
the following example.

Example 8.3 Consider the situation described in Ezample 8.2 (2), and repre-
sented in Figure 8.3 where InSys is supposed to be {S1,S2,T,S1 NSy, TNS1, TN

276 8 Interconnecting a Given Family of Interacting Systems

Figure 8.3:

Sg}. Let U = {51,52,51 NSy, TNS, TN Sg}, U, = {Sl,Sl NSy, TN Sl},
Uy = {SQ,Sl ﬂSQ,TﬂSQ}, Uig = {Sl N SQ}, Uir = {Tﬂ Sl}, Usr = {TﬂSQ}.

Then U,Uy,Usy, Uro, Uy, Ust are downwards-closed sets, and U = Uy UUy U
U2 UUr7UUsr. However, 7T(U1) =51, 7T(U2) =S, 7T(U12) = 51NS,, 7T(U1T) =
Sl ﬂST, 7T(U2T) = 52 ﬂST, and 7T(U) == S, but {51,52,81 ﬂSQ,TﬂSl,TﬂSQ}

s not a covering family for S.

So far we proved that there is an adjoint pair
¢ : Sys(InSys) — Q(InSys) 7 : Q(InSys) — Sys(InSys)

where ¢ is right adjoint of 7, and additionally that ¢ preserves covers. In order
to point out the link between the sheaves over the two sites, we use the following
theorem.

Theorem 8.28 (cf. [MLM92] p.412) Let (C,J) and (D,K) be sites, and let
m:D — Cand ¢ : C— D be functors such that 7 is left adjoint to ¢. If ¢
preserves covers, then there is an induced geometric morphism f : Sh(D,K) —
Sh(C,J), with inverse and direct image functors described, for sheaves F on

(C,J)) and G on (D,K) by f*(F) =a(F on) and f.(G) = G o ¢.

Consequence 8.29 The adjoint pair ¢ : Sys(InSys) — Q(InSys), w : Q(InSys) —
Sys(InSys) induces a geometric morphism f : Sh(InSys) — Sh(Sys(InSys), J),
with inverse and direct image functors described, for sheaves F' on (Sys(InSys), J)

and G on Q(InSys), by
f*(F) = a(For) : Q(InSys)”” — Sets f+«(G) = Gog : Sys(InSys)®? — Sets.

Remark: For every sheaf F on (Sys(InSys),J), f*(F) is the sheafification of
Fom, where (Fomr)(U) = F(S), with § =1im{S; | S; € U}. For every sheaf G
on Q(InSys), and every object S of Sys(InSys), f.(G)(S) = G(¢(5)) = G({S; €
InSys | S; — S}).

In particular, for St, Act € Sh(Sys(InSys), J), note that St o m and Act o
are again sheaves. Hence, f*(St), f*(Act) : Q(InSys)” — Sets are defined by

fr(8t)(U) = stim{s; | i € U}),

8.7 Geometric Logic, Preservation of Axioms 277

F*(Act)(U) = Act(im{s; | i € U}).

Consider now St, Act € Sh(InSys). f.(St), f«(Act) : Sys(InSys)®” — Sets are
defined by
£.(S7)(S) = SH({(S: € InSys | 5 < 5}) =
= {(8i)s;emsys | 8i € St(Si)VS; € InSys and VS; = Sj, 55y, = si},

S;—S
f+(Act)(S) = AcL({S; € InSys | Si; = S}) =

{(fi)s;cmsys | fi € Act(Si)VS; € InSys and VS; — Sj, 555, = si}-
S;—S
Concerning behavior, note that for the sheaf of monoids M : Q(InSys)” —
Mon, its image via fi, f«(M) : Sys(InSys) — Sets is defined by

f*(M)(S) = {(mi)?glnsés | m; € M(Sz) and VSi — Sj’mj\Si = mi},
amd

and by the remarks made in Section 8.4, it is in general different from M(S).

8.7 Geometric Logic, Preservation of Axioms

We showed so far that for both categories considered in this section, namely
Sys(InSys) and Q(InSys), states and parallel actions can be expressed by sheaves
St, Act (resp. St, Act), and transitions by a subsheaf T'r of Act x St x St (resp.
a subsheaf Tr of Act x St x St). Additionally, we showed that behavior over a
fixed interval of time T' can be described by a sheaf, Bp. Similarly, the set of
observations of states of the system over the interval 7' can be described by a
sheaf, Bgt, and the set of observations of actions of the system over the inter-
val T' can be described by a sheaf, Bq‘i‘Ct. There exist natural transformations
wst : Br — Bﬁgf’ and mae : Br — B%Ct. Also, we can single out the empty
action &, which can be considered a constant of sort Act, ¢ : 1 — Act.

Some properties about systems can be expressed in terms of states, actions
or behavior in time. In order to be able to express these properties in a uniform
way we will now introduce a many-sorted language £, having among its sorts
St (for states), Act (for actions), Time for time, and Brime, B2, resp. Bt
for the behavior in time, relations as =xC X x X for every sort X and Tr C
Act x St x St, etc.

Let £ = Sh(InSys), F = Sh(Sys(InSys),J). The above mentioned sorts,
function and relation symbols of the language £ can be interpreted in both £

and F as will be showed in what follows.

On the other hand, for every system S we know that St(S) represents the
set of states of S, Act(S) the set of states of S, etc. Thus, for every system we
obtain a concrete interpretation in Sets of the language L.

We have therefore the following possible interpretations of the language £
in the topoi & = Sh(InSys), F = Sh(Sys(InSys), J), and Sets:

278 8 Interconnecting a Given Family of Interacting Systems

& = Sh(InSys) F = Sh(Sys(InSys), J) Sets
X XM XN XMs
St St St St(S)
Act Act Act Act(S)
Time Ng N]: N
Brime Bng Bnr Bn(S)
e:1— Act eg £F e € Act(S)
=xC X x X =z =F =
Tr C Act x St x St Tr Tr TrS

We recall that if M is an interpretation of a language in a topos £, then the
interpretations of the formulae are defined as follows:

If ¢ = t1(z1,...,2,) = ta(21,...,2,), then the subobject {(x1,...,z,) |
t; = to} is the equalizer of the arrows tM and t},

{(ml,...,xn)‘t1:t2}—“X{MX...XXéM—;‘YM

If ¢ = R(t1,...,t;) for a relation symbol R and terms t; of sort Y; (each with
free variables among x1,...,z, with sorts Xi,...,X,), then {(z1,...,z,) |
R(t1,...,t;)}M is the pullback of the subobject RM (the interpretation of R)
along (t1,...,tx):

{(z1,...,2,) | R(t1, ..., tx)}M _ pM

(8.6)

WV

(f1,0tk)
XM x . x XM

M M
= Y7 x ... XY

(Note that it may happen in particular cases that some of the terms (say t;)
does not involve all the variables z1,...,z,, and so defines a morphism Xﬂ/l X
coe X Xi];/[— Y M for some 1 <ij <ipg <...< ip < n; if so, we simply compose
with the appropriate product projection XM x ... x XM — Xiji/[X ... X Xz],\,/[)

Let T be a theory in £. M is a model for T if all the axioms of T" are valid
in M.

Example 8.4 Assume that sg : 1 — St is a constant of sort St. Let Deadlock,
be the formula that expresses that sy is a deadlock state.

Deadlocks, = (Va : Act)(Vs : St)(T'r(a, so,s) = (a =¢) A (s = s0)).

Let M be the interpretation of £ in £ described above. Deadlocks, is true
in M if {(a,s) | Tr(a,so,s)}M is a subobject of {(a,s) | (a =€) A (s = so)}¥
in £.

Let s} : 1 — St be an interpretation of s9. We briefly explain how {(a,) |
Tr(a, s0,5)}™ and {(a,s) | (a =€) A (s = 59)}M are constructed.

8.7 Geometric Logic, Preservation of Axioms 279

(1) {(a,s) | Tr(a, so, s)}M is the pullback of Tr™ along the terms t(a, s) = a,
ta(a,s) = sg and t3(a,s) = s. The interpretation in M of ¢; : Act X St —
Act is the first projection t}M : Act x St — Act. Similarly, t3 : Act x St —
St is the second projection and t! : Act x St — St is the composition

L sM
Act x St -1 — St.

{(aa 5) | Tr(a, S0, 5)}M —Tr = {(av S,a 3)

(85457 ’

Act x St ~ Act x St x St

(2) {(a,s) | (a=¢)A(s=s0)}M is the pullback in € of {(a, s) | a = ¢}M and
| s = s0}M. {(a,s) | a =e}M is the equalizer
1

{(a,8) |a = e} —Act x ST—="7ck

where 7 : Act x St — Act is the first projection, whereas ¢ : Act x St —
Act is the composition Act x St 51 Ei)l Act.
Similarly, {(a,s) | s = sg}™ is the equalizer
{(a,9) | s = s} —— et x 5t ——= 57
where 7y : Act x St — St is the second projection, whereas sq : Act x St —

—_ —_— _ M _
Act is the composition Act x St 51% 5,

Example 8.5 Consider the formula that expresses determinism:
Determ = (Vs, s',s" : St)(Va : Act)((Tr(a,s,s') ANTr(a,s,s")) = (s' =s")).

The formula Determ is valid in M if {(a, s, s',s") | Tr(a, s, s')ATr(a,s,s")}M
is a subobject in £ of {(a,s,s',s") | s’ = s"}M.

(1) {(a,s,s",s") | Tr(a,s,s)A\Tr(a,s,s")} is the pullback in & of {(a, s, §',s") |
Tr(a,s,s')}M and {(a,s,s',s") | Tr(a,s,s")}M.
(2) {(a,s,s',s") | s" =s"}M is the equalizer

3

{(a,s,8',s") | s ="M EEXQXQXQ#Q

where 73 is the third projection and w4 is the fourth projection.

We know that if £ and & are topoi and f : &2 — £; a geometric morphism,
then the inverse image functor f* yields for every interpretation M of L in &;
an interpretation f*M of L in &, such that

280 8 Interconnecting a Given Family of Interacting Systems

(1) XxF'™M = f*(XM) for every sort X,

(2) RF'M = f*(RM) C le*M x ... x XJ'M for every relation symbol R C
X1 X ... x Xy,

(3) Let g be a function symbol of arity X; x ... x X, — Y. The interpretation
of g is translated similarly:

XM x . x XM)y——— (Y M)

XM ox XI'M -y M

In what follows we will use these facts in order to study the link between
models in different topoi.

8.7.1 The Stalk Functors: Preservation Properties

For every S; € InSys let f; : {#} — InSys defined by f;(*) = S;. The correspond-
ing inverse image functor f* : Sh(InSys) — Sets is the functor that associates to
every sheaf F' € Sh(InSys) the stalk at S;, F§,, which by Lemma 8.8 is isomor-
phic to F (| S;). Therefore, for all S; € InSys the functor f; : Sh(InSys) — Sets
preserves the validity of coherent axioms. The stalk functors are collectively
faithful, hence they also reflect the validity of coherent axioms (cf. also [Joh82],
p.178).

This shows that the topos Sh(InSys) satisfies a coherent axiom ¢ if and only
if each stalk satisfies ¢. For example, we can say that Sh(InSys) has (internally)
property ¢ if and only if S; has property ¢ for every system S; € Sh(InSys).

We now point out how coherent axioms in the language £ are translated by
the stalk functions:

For every sort F of £, let FM € Sh(InSys) be its interpretation in Sh(InSys).
Then, the corresponding sort in Sets induced by f} is f*(FM) = Fé\f , the stalk
at S; of the sheaf F™. Similarly, for every function symbol f : F| — F in L,
let fM . FM — FM be its interpretation in Sh(InSys). Then, the corresponding
function in Sets induced by f7 is f(fM) : fr(FM) — fr(FM), i.e. the image
of fM by the stalk functor, fé\f[: FlMsi — F2Msi- The translation of relation
symbols is done in a similar way.

Example 8.6 Consider the formula Deadlocks, analyzed in Example 8.4, namely:
Deadlocks, = (Va : Act)(Vs : St)(T'r(a, so,s) = (a =€) A (s = s0)).
Let M be the interpretation of £ in £. Assume that Deadlocks, is true in

M ie. {(a,s) | Tr(a,so,s)}M is a subobject of {(a,s) | (a =€) A (s = s9)}M in
E.

8.7.1 The Stalk Functors: Preservation Properties 281

By the remarks above we know that {(a,s) | Tr(a, sg,s)}™ is a subobject
of {(a,s) | (a =¢) A (s = s9)}M in £ if and only if f*({(a,s) | Tr(a,so,s)}M)
is a subobject of f#({(a,s) | (a =€) A (s = s0)}) in Sets for every S; € InSys.

We now analyze what is the form of f*({(a, s) | Tr(a, so, 5)}M) resp. f({(a

(a=c¢)A(s=s0)}M).

(1) Since {(a,s) | Tr(a,sq,s)}™ is the pullback of Tr™ along the terms
ti(a, s) = a, ta(a,s) = sg and t3(a,s) = s:

{(a,s) | Tr(a,se,8)}™ ——=Tr = {(a,s',s) | Tr(a,s',s)}

Act x St ~ Act x St x St

and f} commutes with pullbacks it follows that f*({(a, s) | T(a, so, s)})
is the pullback (in Sets):

fi({(a,5) | Tr(a, s0,5)}™) F(Tr) = f;({(a,s',s) | Tr(a,s',5)})

\% /

fi(Act) x fF(St) ——— fi(Act) x f}(St) x fF(St).

Taking into account that f}(Act), fF(St) resp. f}(Tr) are in bijection
with Act(S;), St(S;) and Tr(S;) = {(f,s,s) | (s,8') € TrSi(f)} it follows
that ff({(a,s) | Tr(a, so,s)}M) is the pullback (in Sets):

fi{(a,5) | Tr(a, s0,5)}") Tr(Si)

Act(S;) “ St(S;) ———— Act(S;) x St&Si) x St(S;)

Thus, f({(a,s) | Tr(a,so,s)}M) = {(a,s) | Tr(a,sq,s)}si.

(2) {(a,s) | (a=¢)A(s=s0)}M is the pullback in € of {(a,s) | a = ¢}M and
{(a,s) | s = so}M, where {(a,s) | a = e}M is the equalizer

7"1

{(a,s) | a = e¥M ——Act x St —= Act

and {(a,s) | s = so}M is the equalizer

1

{(a,8) | s = so}™ ——Act x St ——=3t.

Since f;* preserves equalizers, it follows that

_ Act(S;) x St(S;) /== Act(S;)

€

fi{(a,s) | a=e})

75)‘

282 8 Interconnecting a Given Family of Interacting Systems

is an equalizer in Sets, and

f3({(a,5) | 's = so}™M) —— Act(S) x St(S;) —= St(S})
is an equalizer in Sets. Thus, f({(a,s) | a = e}M) = {(¢,5) | s € St(S;)}
and ff({(a,s) | s = s0}™) = {(a,50(5i)) | a € Act(S))}.
Moreover, f*({(a,s) | (a =) A (s = s0)}M) is the pullback in Sets of
fi{(a,s) | a =e}") and f7({(a,s) | s = so}™). Thus, f¥({(a,s) | (a =
e) A (s = 50)}M) = {(e, 50(5))}-

Thus, Deadlocks, is valid in the interpretation M in £ is and only if for every
S; € InSys (s0(S;),s") € Tr%(a) implies a = € and s' = 54(.5;).

Example 8.7 Now consider Example 8.5. Let
Determ = (Vs, s',s" : St)(Va : Act)((Tr(a,s,s') ATr(a,s,s")) = (s' =s"))

be the formula that expresses determinism. The formula Determ is valid in M
if {(a,s,s',s") | Tr(a,s,s') NTr(a,s,s")}M is a subobject in &£ of {(a, s, s',s") |
_ M
s =M.
For every S; € InSys we explain how f;({(a, s, s',s") | Tr(a,s,s')ATr(a,s,s")}M)
and f*({(a,s,s',s") | s = s'}M) can be computed.

(1) {(a,s,s',s") | Tr(a,s,s)\Tr(a,s,s")} is the pullback in & of {(a, s, §',s") |

Tr(a,s,s')}M and {(a,s,s',s") | Tr(a,s,s")}™. These are computed as
equalizers in £. Therefore, f#({(a, s, s',s") | Tr(a,s,s')ATr(a,s,s")}M)is
the pullback in Sets of 7 ({(a, s, s',s") | Tr(a, s, s')}™) and f*({(a, s, s’,s") |
Tr(a,s,s")}M).
It is easy to see that f*({(a,s,s’,s") | Tr(a,s,s')}M) = {(a,s,s",s") |
(s,8") € Troi(a)}, and f¥({(a,s,s',s") | Tr(a,s,s")}M) = {(a,s,s',s") |
(s,s") € Tr%(a)}. Hence, f}({(a,s,s',s") | Tr(a,s,s)\Tr(a,s,s")}M) =
{(a,s,s',s") | (s,s") € Tr(a) and (s, s") € Tr%(a)}.

(2) {(a,s,s',s") | s =s"}M is the equalizer

- __ _ms3 o
{(a,s,s',s") | ¢ =s"}M — Act x St x St x St ——= St
Therefore, f7({(a,s,s',s") | s' = s"}M) is the equalizer

J5({(ays,8',5") | 8 = 8"}M) —— Ack(S,) x SE(S5) x SH(S5) x SH(S,) === St(S:)
in Sets, i.e. f*({(a,s,s',s") | s’ = s"¥M) = {(a,s,s',5") | a € Act(S;),s,s',s" €
St(S;),s' = §"}.

Thus, Determ is valid in interpretation M in £ if and only if for every
S; € InSys, for every a € Act(S;) and every s,s',s" € St(S;), (s,s') € Tr(a)
and (s,s") € Tr(a) implies s’ = s".

8.7.2 The Global Section Functor: Preservation Properties 283

8.7.2 The Global Section Functor: Preservation Properties

Consider now the unique map g : InSys — {*}. The corresponding direct image
functor, g, : Sh(InSys) — Sets is the global section functor g.(F) = F(InSys)
for every sheaf F' € Sh(InSys).

Direct image functors preserve limits but in general they do not preserve
unions or images, hence they do not preserve the validity of coherent axioms.

Following Johnstone [Joh82], we define a formula to be cartesian relative
to a a given theory T if it is constructed from atomic formulae using only
conjunction and existential quantification over “I’-provably unique” variables
(i.e. variables whose values, in any model of 7', are uniquely determined by the
values of the remaining free variables). Similarly, one defines cartesian axioms
(relative to a given theory T') as axioms of the form (Vz)(¢(z) = ¢(z)) where
the formulae ¢ and ¥ are cartesian relatively to T'. We say that a theory is
cartesian if its axioms can be ordered such that each is cartesian relative to
those which precede it. Then it follows that models of cartesian theories are
preserved by direct image functors (in particular by global section functors).

For every sort F' of £, let F™ ¢ Sh(InSys) be its interpretation in Sh(InSys).
Then, the corresponding sort in Sets induced by g, is g(FM) = I'(InSys, FM),
the set of global sections of F'M.

For every function symbol f : F; — Fy in L, let fM : FM — FM be its
interpretation in Sh(InSys). Then, the corresponding function in Sets induced
by g is g«(f™) : T(InSys, F{¥) — T'(InSys, F¥). The translation of relation
symbols is done in a similar way.

Example 8.8 Consider the formula Deadlocks, analyzed in Example 8.4, namely:
Deadlocks, = (Va : Act)(Vs : St)(T'r(a, so,s) = (a =€) A (s = s0)).

Assume that Deadlocks, is true in M i.e. {(a,s) | Tr(a, so,s)}™ is a subobject
of {(a,s) | (a=¢)A(s=s0)}M in E.

We know that if {(a,s) | Tr(a,so,s)}™ is a subobject of {(a,s) | (a =
e)A(s = s0)}M in € then g.({(a, s) | Tr(a, sq,s)}M) is a subobject of g.({(a, s) |
(a=¢)A(s=s50)}M) in Sets.

We now analyze the form of g, ({(a, s) | Tr(a, se,s)}™) and g« ({(a, s) | (a =
) A (s = so)}M).

(1) {(a,s) | Tr(a, so, s)}M is the pullback of Tr™ along the terms t(a, s) = a,
ta(a, s) = so and t3(a,s) = s

{(aa 5) | Tr(a, S0, 5)}M —Tr = {(avsla 3) ‘ T_r(a, 3178)}

’ (851457

Act x St ~ Act x St x St.

284 8 Interconnecting a Given Family of Interacting Systems

Since g, commutes with pullbacks,

g9«({(a,) | Tr(a, s0,8)}) —— g:(Tr) = g9.({(a, ', 5) | Tr(a, ', 5)})

\%

gx(Act) x g4 (St) ——————— g, (Act) x ¢ (St) x g.(St).
is an equalizer in Sets. Let S be the system obtained by interconnecting all

elements of InSys. It is easy to see that up to a bijection, g,(Act) = Act(S),
9+(St) = St(S), g«(Tr) = Tr(S). Hence,

9«({(a,) | Tr(a, s9,8)}) —————Tr(S)

y v

Act(S) x St(S) Act(S) x St(S) x St(S)

is an equalizer in Sets. Thus, g.({(a,s) | Tr(a,s0,5)}M) = {(a,s) €
Act(S) x St(S) | (sq,8) € Tr(a)}.

(2) {(a,s) | (a=-¢e)A(s=sg)}" is the pullback in £ of {(a,s) | a = ¢}¥ and
{(a,s) | s = so}M, where {(a,s) | a = e}M is the equalizer

1

{(a,s) |a = e} ——Act x ST——=Act

and {(a,s) | s = so}M is the equalizer

1

{(a,s) | s = s} —— Act x St 2

so

St.

Since g, preserves equalizers, it follows that

1

g-({(a,s) | a = e}M) = Act(S) x St(S) —= Act(S).

€

is an equalizer in Sets, and

ge({(a,5) | s = 50}M) —— Act(S) x St(S) == St(S)

S0

is an equalizer in Sets. Thus, g.({(a,s) | a = e}™) = {(¢,s) | s €
St(S)} and g«({(a,s) | s = so}™) = {(a,50(S)) | a € Act(S)}. Moreover,
g«({(a,s) | (a =€) A (s = s9)}M) is the pullback in Sets of g.({(a,s) |
a = e} and g.({(a,s) | s = so}™). Thus, g.({(a,s) | (a =€) A (s =
s0)}") = {(e,T(InSys, s0)}-

Thus, if Deadlocks, is valid in the interpretation M in £ then for every a €
Act(S) and s’ € St(S), (50(S),s') € Tr®(a) implies @ = £ and s’ = T'(InSys, s).

8.7.3 Link Between Sh(InSys) and Sh(Sys(InSys), J) 285

Example 8.9 Now consider Example 8.5. Let
Determ = (Vs, s',s" : St)(Va : Act)((Tr(a,s,s') ATr(a,s,s")) = (s' =s"))

be the formula that expresses determinism. The formula Determ is valid in M
if {(a,s,s',s") | Tr(a,s,s') NTr(a,s,s")}M is a subobject in £ of {(a, s, s',s") |
s = SII}M‘

(1) {(a,s,s',s") | Tr(a,s,s)A\Tr(a,s,s")} is the pullback in & of {(a, s, §',s") |
Tr(a,s,s')}M and {(a,s,s',s") | Tr(a,s,s")}™. These are computed as
equalizers in €. Therefore, g.({(a, s,s',s") | Tr(a, s, s')ATr(a,s,s")}M)is

the pullback in Sets of g.({(a, s,s",s") | Tr(a, s,s')}M) and g.({(a, s, s', s") |

Tr(a,s,s")}M). Tt is easy to see that g.({(a,s,s’,s") | Tr(a,s,s")}M)

{(a,s,s',5") | (s,8") € Tr¥(a)}, and g.({(a,s,s',s") | Tr(a,s,s")}M) =

{(a,s,s',s") | (s,8") € Tr%(a)}. Hence, g.({(a,s,s',s") | Tr(a,s,s') A

Tr(a,s,s")}M) = {(a,s,s',8") | (s,8') € Tr¥(a) and (s,s") € Tr3(a)}.

(2) {(a,s,s',s") | s" =s"}M is the equalizer

3

{(a,s,s',s") | s =s"}M —— Act x St x St x ETQ
Therefore, g.({(a,s,s',s") | s' = s"}M) is the equalizer

g({(a, 5,8, 8") | 8" = s"}M) —— Act(S) x St(S) x St(S) x St(S) —= St(S)

T4

in Sets, i.e. g.({(a,s,s',8") | s = s"}M) = {(a,s,s',s") | a € Act(S),s,s',s" €
St(S),s' = s"}.

Thus, if Determ is valid in interpretation M in £ then for every a € Act(S) and
every s,s',s" € St(S), (s,s') € Tr(a) and (s,s") € Tr(a) implies s’ = s".
8.7.3 Relationship between Sh(InSys) and Sh(Sys(InSys), J)

In Proposition 8.26 we showed that there is a geometric morphism f : Sh(InSys) —
Sh(Sys(InSys), J), with inverse and direct image functors

f* : Sh(Sys(InSys), J) — Sh(InSys) and £, : Sh(InSys) — Sh(Sys(InSys), J)
described, for sheaves F' on (Sys(InSys), J) and G on Q(InSys), by
f*(F) = a(For) : Q(InSys)”” — Sets f+«(G) = Gog : Sys(InSys)”? — Sets.

f* preserves the validity of geometric axioms, and f, the validity of coherent
axioms.

Let S be the colimit in SYS;, of all elements of InSys.

Let 1 be the category with only one object, namely %, and only one arrow,
namely the identity arrow.

286 8 Interconnecting a Given Family of Interacting Systems

Let ¢g : 1 — Sys(InSys) defined by ¢(x) = S, and ¢(ids) = idg, and let
¥ : Sys(InSys) — 1 be defined for every T' € Sys(InSys) by (T) = * and for
every h : Ty — T, by ¥(h) = id,.

Then there exist natural transformations n : idsys(nsys) — ¢s¥ and € :
Yos — idy.

For every system T in Sys(InSys), nr : T — S is the canonical inclusion,
and for % in €, : * — * is the identity.

Moreover, the following diagrams commute:

o 6s —2% poipis
idy
\/¢N k #s¢ (8.7)
Y5 (0 os

E’Kﬂ/

(for every object T of Sys(InSys), (65 ($(T))) = * — $(T) and és (s (+))) —
S = ¢s(*)).

Thus, ¥ is left adjoint to ¢g. Let J, be a covering relation on 1 defined by
J(x¥) = {{x}}. Tt is easy to see that it induces a Grothendieck topology on 1.
It is obvious that ¢g preserves covers,

Therefore, by Theorem 8.28, ¢ and ¢g induce a geometric morphism

hs : Sh(Sys(InSys), J) — Sh(1, J,)

with inverse and direct image functors described, for sheaves F' on Sh(1, J,) and
G on Sh(Sys(InSys), J) by h§(F) = a(F o) and hg, (G) = G o ¢.

Since Sh(1,J,) = Sets, the direct image functor hg, : Sh(Sys(InSys),J) —
Sets is defined by hg, (F) = F(S).

8.7.4 Concluding Remarks

In conclusion, we have the following (direct and inverse geometric functions):

Sets
o
hs. f_*\
Sets —— Sh(Sys(InSys), J) ~ Sh(InSys)
Sets

A geometric formula ¢, holds (internally) in Sh(InSys) if and only if it holds in
S; for every S; € InSys.

If ¢ is a cartesian axiom (with respect to a cartesian theory T') and it holds
(internally) in Sh(InSys), then it holds in S, where S is the system obtained by
interconnecting all elements in InSys.

If ¢ is a cartesian axiom (with respect to a cartesian theory T') and it holds
(internally) in Sh(InSys), then it also holds (internally) in Sh(Sys(InSys), J).

8.7.4 Concluding Remarks 287

If ¢ is a cartesian axiom (with respect to a cartesian theory T') and it holds
(internally) in Sh(Sys(InSys), J), then it holds also in S, where S is the system
obtained by interconnecting all elements in InSys.

If additionally all the elements in InSys are independent (do not have com-
mon subsystems) (we assumed that there are finitely many elements in InSys)
then the global section functor g, also preserves image factorization, hence it
preserves the truth of all formulas that contain only conjunction and existential
quantification.

Example 8.10 Let ¢1 be the formula that expresses determinism:
¢1 = (Vs : St)(Va : Act)(Vs' : St)(V¥s" : St)

[(Tr(a,s,s') ANTr(a,s,s")) = s =s"].

@1 18 a cartesian axiom. The theory presented above and the Examples 8.7 and
8.9 show the following:

If ¢y is true in all systems in InSys (i.e. if for every S; € InSys, (s,s') €
Tr% (a) and (s,s") € Trd(a) implies s' = s") then ¢, is true (internally) in
Sh(InSys), and it is also preserved by the global section functor. Moreover, it is
also true (internally) in F = Sh(Sys(InSys)) and its truth is preserved by hg, .

Example 8.11 We analyze the formula that expresses deadlock freedom:
¢ = (Vs : St)(Ja : Act)(3s' : St)(Tr(a,s,8') A (s # §)).

It can be seen that this formula is not a geometric axiom (it contains the nega-
tion sign), hence it is not necessarily preserved by direct and inverse geometric
morphisms, in particular it is not preserved by the global section functor, nor
by the stalk functors.

Therefore, we cannot infer anything about the system obtained by intercon-
necting a family of systems, if we know that the components are deadlock free.
Intuitively, it is easy to see that it is possible that all the systems in InSys can
be deadlock free while in the system obtained by interconmecting them deadlock
may occur, because the corresponding actions a; that can be “locally” executed
at a given state s (or the final states s;) may not form a matching family.

Example 8.12 Consider now the formula expressing fairness of execution:
¢3 = (Yh: B'(N))(Va : Act)(Vi : N)

((3s: 5t)Tr(a, mse(h(1)), s) = ()G =@ N mac(h(j)) = a))

¢3 1s a geometric aziom. However it is not a coherent axiom. Hence, it is not
preserved by the global section functor.

Assume that the systems in InSys are independent, in the sense that they
do not have common nonempty subsystems. In this case ¢3 is preserved by the
global section functor.

288 8 Interconnecting a Given Family of Interacting Systems

Of course, many other properties of systems can be formulated in the lan-
guage L as in the above examples. We will now present some classes of prop-
erties of systems taken from [Kr687] and will explain under which conditions
these classes of properties can be expressed in L, and use the theoretical re-
sults established so far for explaining the way these properties are preserved by
interconnection.

Example 8.13 Taking a more general viewpoint, we now consider translations
in the language of sheaves of classes of properties of programs adapted from
[Kr687]. Let h : B'(N) be a possible behavior in time in Sh(InSys).

(a) Safety (or invariance) properties: Safety properties are properties of
the form (Vj)(P(h(0)) = Q(h(j))), where P and Q are formulae in L.
Ezamples of such properties are:

(a1) Partial Correctness: (Vj)(P(h(0)) A Final(h(5)) = Q(h(3))),
(a2) Global Invariance of Q: (Vj)(P(h(0)) = Q(h(j)).

(b) Liveness (or eventuality) properties: Liveness properties are proper-
ties of the form P(h(0)) = (37)(Q(h(j))). Examples of such properties
are:

(b1) Total correctness and termination: P(h(0)) = (3j)(Final(h(j)) A
Q(h(5))),

(b2) Accessibility: (h(0) = so) = (37)(h(j) = s¢).

(c) Precedence properties: Precedence properties are properties of the form

(V5)(P(R(0)) A A(R(3))) = Q(h(5))-

(al) Partial Correctness: We make the following assumptions:

(1) the final states form a subsheaf St; of St (this happens for example if
in the definition of a system final states are specified by additional con-
straints, and in defining the covering relation this information is also
used). Let ¢ : Sty — St be the inclusion.

In this case the property Final(s) can be expressed by (3s': Sty)(i(s') =
s). Since Sty is a subobject of St, it is easy to see that if such a state
exists, it is unique.

(2) the properties P and @ can be expressed in the language £, and can
be interpreted in Sets (for every system S; in InSys expressing the corre-
sponding property of S;) as well as in £ and F.

Then, the formula that describes partial correctness is preserved under in-
verse image functors if in the definitions of P and @ appear only conjunction,
disjunction and existential quantification.

8.7.4 Concluding Remarks 289

It is preserved by both direct and inverse functors if in the definitions of P
and @ occur only conjunctions and the existential quantifier (requiring unique-
ness; existential quantification without requiring uniqueness is allowed if all
systems in InSys are independent).

(a2) Global Invariance of Q: Assume that the properties P and @ can be
expressed in the language £, and can be interpreted in Sets (for every system
S; in InSys expressing the corresponding property of S;) as well as in £ and F.

The formula that describes the fact that @ is a global invariant is preserved
under inverse image functors if in the definitions of P and) appear only con-
junction, disjunction and existential quantification. It is preserved by both
direct and inverse functors if in the definitions of P and @ only conjunctions
and the existential quantifier (requiring uniqueness; existential quantification
without requiring uniqueness is allowed if all systems in InSys are independent).

(bl) Total Correctness and Termination: We make the following assumptions:
(1) the final states form a subsheaf Sty of St,

(2) the properties P and @ can be expressed in the language £, and can
be interpreted in Sets (for every system S; in InSys expressing the corre-
sponding property of S;) as well as in £ and F.

It was shown that under these assumptions Final(s) can be expressed by
(3s' : Stf)(i(s') = s). Therefore, the formula describing total correctness and
termination is a geometric formula. It is therefore preserved under inverse image
functors if in the definitions of P and) appear only conjunction, disjunction
and existential quantification. It is preserved by both direct and inverse functors
if in the definitions of P and @ only conjunctions and the existential quantifier
(requiring uniqueness; existential quantification without requiring uniqueness
is allowed if all systems in InSys are independent).

(b2) Accessibility: The formula describing the accessibility of s¢ from sq in A,
is a geometric axiom, hence it is preserved by inverse image functors.

If the existence of j is provably unique (with respect to some cartesian the-
ory T), or if all systems in InSys are independent, then the formula is also
preserved by direct image functors.

(c) Precedence properties: Assume that the properties P and @ can be expressed
in the language L.

Formulas describing precedence properties are preserved under inverse im-
age functors if in the definitions of P, A, and @) appear only conjunction,
disjunction and existential quantification. They are preserved by both direct
and inverse functors if in the definitions of P, A, and @ only conjunctions
and the existential quantifier (requiring uniqueness; existential quantification
without requiring uniqueness is allowed if all systems in InSys are independent).

Chapter 9

Applications

This chapter contains applications of the theoretical results in the previous
chapters. We present several problems that occur in distributed systems. The
solutions to some of these problems will be presented as algorithms.

e given a set of actions decide using only “local information” if they can be
performed in parallel,

e “parallelize” a sequence of atomic actions,

e study whether plans elaborated “locally” can be “glued together” to a
global plan,

e study the link between properties of component parts and properties of
the system obtained by interconnecting them.

We would like to point out that many of the problems that appear in mod-
eling distributed systems can be formulated as particular cases of “divide-and-
conquer” problems: the domain of the problem is “split” (e.g. by finding a cover
for a given system), then “local subproblems” are solved locally and finally the
local solutions are combined (if possible) to a global solution.

Finally, we will present a case study, part of our joint research together
with J. Pfalzgraf and K. Stokkermans, towards possible uses of fibered models
for describing robotics scenarios in which space- and time-dependent formulae
appear.

9.1 Checking Whether a Set of Atomic Actions can
be Performed in Parallel in a Distributed System

Let a family InSys of interacting systems be given, satisfying the conditions
imposed in Chapter 8. We assume that no element in InSys is the colimit of
other elements of InSys. Sys(InSys) denotes the category of all systems obtained
by interconnecting elements in InSys. In Chapter 8 we studied the properties
of Sys(InSys). We showed that a Grothendieck topology J can be defined on

290

9.1 Distributing an Action in a Distributed System 291

Sys(InSys) such that a family S is a covering family for a system S if and only
if § contains all the elements of InSys that are transition-connected subsystems
of S. Therefore, a finest! cover exists for every object S in Sys(InSys), namely

{Si € InSys ‘ S; — S}

Description of the problem:
Given: a system S in Sys(InSys), a state sg of S and a set of actions f C Ay.

Task: Decide whether all the actions in f can be executed in parallel in state
sp in S, and if so compute the final state.

In order to make the problem computationally tractable, we make the ad-
ditional assumption that InSys is finite (and all its elements are finite systems).
In this situation all objects in the site (Sys(InSys),J) are finite, and a finest
cover exists for each object and is finite.

Usually, a system S is specified by giving a cover § = {S; | i € I} for S by
elements of InSys. If the system S is complex (i.e. is obtained by interconnecting
many components), it may be quite time consuming to actually construct S
and then “globally” decide if the action f can be performed in S. Many of the
systems that compose S may not even be involved in executing the action.

A “modular approach” seems to be more appropriate. Namely, we do not
construct S, but analyze the components in § one by one, and see if the corre-
sponding restrictions of f are admissible parallel actions in these components.
If this is the case, we obtain a compatible family of elements {f; | i € I},
where f; = fig, and f; € Act(S;), that has a unique amalgamation, namely
fis € Act(S).

If additionally f C Ag, then it follows that f € Act(S).

The final state can then be computed from the local final states by applying
Proposition 7.14 (if transitions of parallel actions are obtained according to rule
(Gluing)) or Proposition 8.6 (if all the actions are deterministic and transitions
of parallel actions are obtained according to rule (Independence)).

The data can be represented as follows:

Data Structure:

e InSys: a finite set of finite systems.

e Every S; € InSys will be represented by
— X;, the set of control variables (ordered list);
— A;, the set of atomic actions (ordered list);
— (;, the set of constraints on atomic actions;
of the form a; A aj = 0 or a; = a; (ordered list of constraints);
— St(S;) the set of states, where every state s € St(S;) is represented as
an ordered list

((z1,v1) (22, 2) - - . (Tns vn));

~ Tr(a) C St(S;) x St(S;), the set of transitions induced by a, for every
a € A

YA finest cover is a cover none of whose elements can be further decomposed via a cover.

292 9 Applications

e Every element S of (Sys(InSys), J) will be represented by its finest cover.
Distributing Parallel Actions in Distributed Systems

Given :
A finite family of finite systems InSys,
a system S in Sys(InSys) (a finest cover S for S),
an initial state sy of S,

a parallel action f = {f1,..., fn}.

Task : Decide whether f can be performed at state sg in S. If so, determine
the active subsystems of S, and the final state.

Sketch of the Algorithm :
[Step0] Decompose S

Let S = {S; | j € J} be the finest cover for S in (Sys(InSys), J).
[Stepl] Check if f is contained in Ag

[Stepla] Solve Subproblems

For every i € {1,...,n},j € J test if f; € Ag;.

Let {Si,,...,Si,} be the set of those systems in the cover that
contain at least one action in f.

For every i € {i1,...,ix} let fig, be the set of all actions in f
contained in Ag;.

[Steplb] Compose

If there exists some action in f that is not contained in Ag; for
any j then Return(f not known in S).

Otherwise f is known in S; goto [Step2].

[Step2] Check if f = {f1,...,fn} € Act(S)

[Step2a] Solve Subproblems

For every j € J
if fis;, & Act(S;) then Return(f & Act(S)).
if fis; € Act(S;) and cannot be applied in state 80| x;
then Return(f cannot be applied at sq).
if f\Sj can be applied in state so|x; let s; be the state
of S; reached after performing fs,.

[Step2b] Compose
Use the sheaf property of Act to deduce that f € Act(S).

Use the sheaf property of St to glue the family of locally com-
puted states {s;};ccs together. The amalgamation of this fam-
ily is in this case the final state.

9.1 Distributing an Action in a Distributed System 293

RO
assemble .
1
givea give-b !
_ = 1
1
Stock-a receive-a receive-b 1 Stock-b
1
giveres N
Tt K receive-res j Seemma- ‘
transport
R

3

Figure 9.1: Actions

Example 9.1 Consider the situation described in Section 6.1. Let Ry, Ry, R,
R3 be the four robots, and let Sy, S1,S2,S3 be the corresponding systems.
We have:

InSys = {So, 51,52, Ss} U{() Si | I € {0,1,2,3}}.
iel
Input:
(1) S, the system obtained by interconnecting Sy, S1, S2, Ss,
(2) sp a state of S, and

(3) f = {bring-a, bring-b}.

Task:
Decide whether f can be performed at s¢ in S, and if so, which are the subsys-
tems of S that are active and what is the final state.

We can proceed as follows:

The actions in f are bring-a and bring-b. bring-a is known in the systems S
and Sp; bring-b is known in the systems Sy and Sy. We know that the parallel
action { bring-a, bring-b } is allowed in Sy.

If bring-a can be executed at sos, in 51 and bring-b can be executed at
s0|s, in Sz, and bring-a || bring-b can be executed at sqg|g, in So, then by the
properties of transitions in Sys(InSys) (cf. Section 8.1.1) it follows that f = {
bring-a, bring-b } can be executed at sy in S. Additionally, it can be seen that
the subsystems (in InSys) of S that have a role in performing f are Sy, S1, Ss.

We can compute the transition (in S) associated with this action by com-
puting (locally) the transitions associated with f, and then gluing the final
states together.

Example 9.2 Consider now f = { bring-a, give-res }.
The actions in f are bring-a and give-res. bring-a is known in Sy and S7 and
give-res is known in Sy and Ss.

294

9 Applications

RO
assemble .
1
givea give-b !
= = !
1
Stock-a receive-a receive-b 1 Stock-b
1
giveres N
Tt K receive-res j ----- ‘
transport
R

3

Figure 9.2: Actions

Hence, they are both known in Sy, but in Sy we have the additional con-
straints bring-a A receive-res = 0 and receive-res = give-res, so they cannot be

performed in parallel in Sy. It follows that they cannot be performed in parallel
in S.

9.2 Parallelizing Global Plans

Plans in complex systems can be described as successions of actions. We illus-
trate the notion, referring again to the example described in Section 6.1.
Consider the following problem:

Given: Initial state:
3 pieces of type a are in Stock,, and
2 pieces of type b are in Stockp.
Nothing on the assembly bench.
No robot holds a piece.

(le 8¢ = 3,8y = 2,hg = hy = 0,pa = pp = pr = 0)
Task: Assemble two pieces of type r and move them to the stock.

A possible plan is the following:

get-a, get-b, bring-a, bring-b, assemble, give-res, transport,
get-a, get-b, bring-a, bring-b, assemble, give-res, transport.

Assume that the following constraints on actions are imposed:

Ry :
assemble A bring-a = 0, assemble A bring-b = 0, assemble A give-res = 0,
bring-a A give-res = 0, bring-b A give-res = 0,
bring-a = receive-a = give-a,give-res = receive-res,

9.2 Parallelizing Global Plans 295

R1 :
get-a A bring-a = 0, bring-a = give-a = receive-a,

Ry :
get-a A bring-a = 0, bring-a = give-a = receive-a, get-b A bring-b = 0,
bring-b = give-b = receive-b,

R3 :
give-res A transport = 0, give-res = receive-res.

Therefore, the plan given before can for instance be parallelized as follows:

[get-a || get-b], [bring-a || bring-b], [assemble || get-a || get-b], give-res, [transport
|| bring-a || bring-b], assemble, give-res, transport.

At this level of generality we assume that all actions need the same amount
of time. The parallelization of sequences of actions (considered “plans”) when
all actions need the same amount of time, taking into account which actions
are independent can be done for instance by computing the Foata normal form
(for the definition see Section 4.3.1). For an algorithm for computing the Foata
normal form we refer to [Die90] p.30. In what follows we just give the main
idea of the algorithm:

Let S be a system and let G(S) = (Ag, D(S)) be the associated dependency
graph. Let {Gy,...,Gy} be a covering of G(S) by cliques (i.e. complete sub-
graphs), G; = (A4;, A; x A;) for every ¢ € {1,...,k}. By Theorem 4.22 there
exists a canonical embedding M (S) — []F_, A%

The algorithm in [Die90] has an input a sequence w of atomic actions in
As = UL, Ai. The algorithm can be schematically represented as follows:

Data structure

e Every system S will be represented by its dependence graph (A, D(S)),
(A : list, D(S) : list of pairs of elements in A),

e Every clique S; is represented by its set of vertices A; (list),

e A word w € A* is represented as a list.
Foata Normal Form

Given :

A system S = (A, D(S)) and a finite covering of its dependency graph by
cliques {S; | i € I},

w e A*

Task : Find elementary steps Fi, ... Fy, with [w] = [Fi]...[Fy] in M(S) such
that for every ¢ € {1,...m} a,b € F; implies (a,b) ¢ D(S) and for
every i € {2,...m} and every a € F; there exists a b € F;_; such that
(a,b) € D(S).

296 9 Applications

Sketch of the Algorithm :
S:=1,
while w # ¢ do:

F := min(w),

S:=5F,
w:=F 1w
endwhile

end.

If w = wywy in M(S) then wy 'w is by definition wy. min(w) provides the
set of the “minimal” elements of w, i.e. the set of F' of atomic actions a with
the property that a is the first symbol in w4, for every i such that a € 4;.

Finding Minimal Elements (min(w))

Given: A system S and a covering of its dependency graph by cliques,
w € M(S).
Task : Find the set F' of atomic actions a with the property that a is the first
symbol in wy, for every i such that a € A;.
Sketch of the Algorithm min(w) :
b := true,
F =0,
I'={ie{l,....k} |wa, # ¢},
while I # () do

choose i € I, I := I\{i},
a = firstuya), J == {i | a € AN},
while J # 0 and b do

choose j € J,
if j € I and a = first(w),) then I := I\{i},J :=
J\{7}

else b := false
if b then F' := F U {a},
else b := true
endwhile,
return F

end.

9.3 Putting Together Local Plans 297

Restrict a word to a subalphabet (w)y,)

Given: A word w € A* and A4; C A,
Task : Find the restriction w; = wiyg, € A7 of w to A;.

Sketch of the Algorithm :
w; = nil,
while w # nil do
a := first(w),
w = rest(w),

if a € A; then w; := concatenate(w;, (a)),

endwhile end.

The parallelization in the example above can be obtained choosing the cov-
ering by cliques of D(S) as shown in Figure 9.3.

Ra Transport |

Figure 9.3: Covering of the Dependence Graph by Cliques

9.3 Putting Together Local Plans

Another problem that often arises in decentralized planning is that of putting
together compatible local plans to a global plan.
Consider the following example:

Given: Initial state:
3 pieces of type a are in Stock,, and
2 pieces of type b are in Stockp.
Nothing on the assembly bench.
The robots hold no pieces.

298 9 Applications

Task: Assemble one piece of type r and move it to the stock.

We assume that every agent knows the problem and elaborates a “local”
plan for solving it. For instance, assume that the local plans are as follows:

RO: bring-a, bring-b, assemble, give-res,
R1: get-a, bring-a,

R2: get-b, bring-b,

R3: give-res, transport.

It is easy to see that these plans are compatible, in the sense that for every
two systems, if we “delete” actions that do not belong to both of them, we
obtain the same sequences of actions.

These plans can be “glued together” to a global plan, for instance to:

get-a, get-b, bring-a, bring-b, assemble, give-res, transport.

This global plan can be further parallelized as discussed before, for example
to:

[get-a || get-b], [bring-a || bring-b], assemble, give-res, transport.

Theorem 4.23 (based on the results in [CM85], [MP86] and [Die90]) shows
that it is always possible to glue together compatible local plans in the above
example.

The theorem states that for every finite system S obtained by interconnect-
ing the family {S1,..., Sy}, if G = Uj—; G(S;) then the following assertions are
equivalent:

(1) Every compatible family of local plans {wy, ..., w,}, where for
every i, w; € A}, can be glued to a global plan w € (Ui-; 4:)*.

(2) Every chordless cycle in the graph G is a cycle in a subgraph
G(S;) for some i € {1,...,n}.

In the example described above the condition is satisfied, as can be seen
from the dependence graph of the system represented in Figure 9.4.

From the proof of Theorem 4.23 given in [MP86] (for the case when G(S;)
is complete for every S; € InSys) it is easy to deduce a way of constructing w €
A* = (Uit Ai)" such that w),, = w; for every matching family {ws,...,wy},
where w; € A} for every i € {1,...,n}.

In what follows we present a method that, given a a matching family of
elements w; € M(S;), provides a way of computing the element w € M (S) with
the property w)4, = w;, under the assumption that every chordless cycle in the
graph G is a cycle in a subgraph G(S;) for some i € {1,...,n}.

We first recall that for every system S every trace w = ay ...a, € M(S) can
be represented by a directed graph (that has a set of vertices {vq,...,v,}, each

9.3 Putting Together Local Plans 299

Figure 9.4: Dependence Graph

vertex v; being labelled with the value a;, and for every ¢ < j there is a directed
edge from v; to v; if and only if (z;,z;) € D(S)). In what follows, in order to
distinguish different occurrences of the same symbol a we will represent these
occurrences by (a,1),(a,2),...,(a,k) (where (a,k) occurs before (a,l) if and
only if £ < I). For two occurrences (a, k) and (b,1) at vertex v; respectively v,
we say that (a, k) occurs before (b,1) if there is a directed path from v; to v;. It
is easy to see that for every two occurrences (a, k) and (b,1) in w either (a, k)
occurs before (b,1) or (b,1) occurs before (a, k), but not both.

Lemma 9.1 Let {ws,...,wn} be a matching family of elements w; € A}.

(1) Let a € A. If a occurs in some w; € A} then it occurs in every w; € Aj
such that a € A;.

For every w; with a € A;, a has a finite number of occurrences in w;. We
represent these occurrences by (a,1),(a,2),...,(a, k) (where (a, k) occurs before

(a,l) if and only if k < 1).

(2) If a € A; for some other S; the number of occurrences of a in w; and w;
1s the same.

Let 7 be the relation on the set of occurrences defined by (a,k)w(b,1) if and
only if a,b € A; for some i, and (a, k) occurs before (b, 1) in w;.

(3) Assume that every chordless cycle in the graph G is a cycle in a subgraph
G(S;) for somei € {1,...,n}. Then there is an occurrence (a, k) that has
no mw-predecessor.

300 9 Applications

Proof: (1) and (2) follow immediately from the compatibility of the family
{wl, ca ,’U_)n}.

(3) Consider the directed graph (V, E, \) obtained by taking the union of
the directed graphs {G(w;) | ¢ € I'} corresponding to the family {w; | i € I}, by
identifying the vertices labeled with the same occurrence symbol. Such a union
exists because the family {w; | i € I'} is a matching family. Note that for every
i € I, G(w;) does not contain any directed cycle.

Assume that every occurrence (a, k) has a m-predecessor. In this case it is
easy to see that the graph (V, E, \) contains (directed) cycles. Let (z1,...,z,)
be a directed cycle of minimal length. It is easy to see that the assumption
that every chordless cycle is a cycle in a subgraph G(S;) for some i € {1,...,n}
implies that n > 3. (If (z,y) € E then (y,z) ¢ E; otherwise both “A(z)
precedes A(y)” and “A(y) precedes A(z)” hold in some w;, which is absurd.)

We show that in this case the actions in the labels A(z1),..., A(zy) are all
different. Assume that for i # j we have A(z;) = (a,k;) and A(z;) = (a, k;).
Without loss of generality we can assume that i, j are the minimal indices with
this property, ¢ < j and i — 1 # j (mod n). Let A(xz;_1) = (b,1). Since there
is an edge between z; 1 and x;, it follows that (b,a) € D(S,,) for some m € I.
Thus, we have either (z;_1,2;) € E or (zj,z,-1) € E. In the first case we
found a shorter cycle, namely (z1,...,%;_1,j,...,2,), contradiction. In the
second case, (z;,2;—1,%i,...,2;j—1) is a shorter cycle if j + 1 # i — 1 (mod n).
If j+1=4—1 (mod n), we distinguish again several cases:

Case 1: i +1 = j (mod n). In this case we have

Ti—1 = Tj

N,

Zj

This is impossible since on the one hand it follows that (a, k;) precedes (b, j) in
Sm, which precedes (a, k;), and on the other hand, (a, k;) precedes (a, k;).
Case 2: i+ 1 # j (mod n). Assume that A(x;1) = (¢,r). From the fact
that (z;,z;41) € E it follows that (a,c) € D(Sp) for some p € I, hence either
(it1,25) € Eor (zj,2i41) € E.
If (zi41,2;) € E we obtain on the one hand that (a, k;) precedes (a,k;) in
W, and on the other hand that (a, k;) precedes (a, k;) in w,. Contradiction.

If (zj,xz;4+1) € E we can find a shorter cycle, namely (x;y1,%iy2,...,z;} if
i+1<j<nor{xi, Tit2,...,Tn,21,...,2j_1} if n is between 7 + 1 and j.
Contradiction.

Thus, all the labels A(z1), ..., A(z,) are different, and {A(z1),...,A(zy)} is

a chordless cycle in the dependence graph G(S), hence, it is contained in the
dependence graph G(S;) for some i € I. This impossible because the restriction
to S; of the graph (V, E, \) is the graph G(w;) which does not contain cycles.
O

Lemma 9.2 Let {S1,...,S,} be a cover of S. Assume that every chordless
cycle in the graph G is a cycle in a subgraph G(S;) for somei € {1,...,n}. Let

9.3 Putting Together Local Plans 301

{w1,...,w,} where for everyi € {1,...,n}, w; € M(S;) be a matching family.
Then there exists w € M(S) such that for every i € {1,...,n}, wg, = w;.

Proof: We proceed by induction on the number of occurrences in the family
{wl, ce ,’U)n}.

If wi =wy =... =wy, = ¢ then w = ¢ has the required property.

Assume that at least one element of {ws,...,w,} is different from . Let m
be the number of occurrences in {wq,...,w,}. We assume that the property is
true for every family {v1,...,v,} with at most m — 1 occurrences.

Determine the set M of occurrences (a, k) that have no w-predecessor. Then
for every S;, w; = [M|g,]v; (where [Mg,] =[[{a | (a,k) € M and a € 4;}). It
is easy to see that {v1,...,v,} is a compatible family of elements v; € M (S;).

There are strictly less occurrences of atomic actions in {vy,...,v,} than in
{wy,...,w,}. Then, by the induction hypothesis there exists a v € M(S) such
that for every i € {1,...,n}, vj4, = v;. It is easy to see that w = [M]v has the
property that for every i € {1,...,n}, w4, = w;. O

The “amalgamation” of the family {wy,...,w,} can then be recursively
constructed as follows:

Given: A family of systems S; = (A;, D(S;)), satisfying the condition in (3),
A matching family {wi,...,w,}, w; € M(S;).

Task: Find w € M(S) such that for every i € {1,...,n}, w4, = w;.

Sketch of the Algorithm (glue(ws,...,w,))
If wy =... =w, = ¢ then w := ¢, exit.
Determine the relation ;

Determine the set M of occurrences (a, k) that have no w-predecessor;

For every i € {1,...,n}

determine v; € M(S;) such that w; = [M|g,]v;;

v := glue(vy, ..., vp);
w = [M]v
end.

We conclude with a classical example in which it can be seen that there
are situations when compatible local plans cannot be glued together to a global
plan.

Example 9.3 (cf. [MP86, Gog92]) Let n philosophers sitting around a cir-
cular table the center of which always contains a plate of food. This food must
be eaten seated at the table with one fork in each hand. The table has n forks,
one between each two adjacent chairs. Philosophers can be seen as “agents” that

302 9 Applications

Dining Philosophers Dining Philosophers
n=2 n=4

Figure 9.5:

have as goal to eat. For the sake of simplicity we assume that a philosopher
eats iff he has a fork in each hand, and that this process takes one unit of time.
The system (in the case n = 2) can be described as follows:

The individuals considered are Philosopher;, Philosophers, Fork;, Forks.

(1) Philosopher;, i = 1,2, can ezecute two actions: take-fork}, take-forks.

(2) Forki, i = 1,2, can ezecute two actions: to-philosopher?, to-philosophers .

We assume that take—forkg if and only if to—philosopher{, hence they can be
tdentified.

Consider the following local plans:

Philosopher;: take-fork}, take-fork}
Philosophers,: take-forkZ2, take—fork%
Fork;: to-philosopher} (= take-fork?), to-philosopher} (= take-fork})
Forks: to-philosopher? (= take-fork}), to-philosopher3 (= take-fork3).

It can be easily seen that these global plans cannot be glued to a global plan.
The reason s that in this case the dependence graph, represented in Figure 9.6,
contains a cycle that is not contained in the dependence graph of any of its
composing subsystems.

9.4 Properties of the Interconnection of a Family of
Systems
From the remarks in Section 8.7 we know that those properties that can be ex-

pressed in terms of states, actions, transitions, possibly involving behavior over
an interval of time, are “inherited” by the system obtained by interconnecting

9.5 Description of a Time and Space Dependent Scenario 303

| to-philosopher L Philosopher to-philosopher i

o 1 ¢ ; 1 !

o tkefoky T [taefoky

| : | I Fork
Fork !

1 | 2
. , o 2
o Y e,
| = Philosopher
! 2

1 . 2
to-philosopher 1 | t<}phllosopher2
2 1

Figure 9.6: Dining Philosophers (n = 2), Dependence Graph

a given family of systems if these properties can be expressed by cartesian sets
of axioms (i.e. sets of axioms that can be ordered in such a way that each is
cartesian relative to those which precede it).

Therefore a *
such axioms could be formulated as follows:

‘modular” approach to checking whether a system S satisfies

Given :
A finite family of finite systems InSys,
A cartesian set of axioms T involving information about states, actions,

transitions, behavior over time (V).

Task : Decide whether the system S obtained by interconnecting the elements
satisfies the axioms in 7.

Sketch of the Algorithm :
[Stepl] Solve subproblems
For every system S; € InSys check whether the axioms in T" hold
in S;.
[Step2] Compose

If for all system in InSys the axioms in T" hold, Return(T holds
in S).

Note that if there exists one system in InSys where one axiom in T' does not
hold, we do not know whether T holds in S or not.

9.5 Description of a Time and Space Dependent Sce-
nario

We now present a scenario in which time- and space-dependency arise in a
natural way. This is part of joint work with J. Pfalzgraf and K. Stokkermans in
which fibered structures are used for modeling cooperating agents cf. [PSS96b].

304 9 Applications

The following scenario is based on the original sample scenario of [Pfa9d1].
However, it is significantly extended in that it now reflects a generic way to
deal with time and space dependency.

Ro

0
Dassemble

1 2
Dtable Dtable
Rl RZ
. J/
1 2
Dtransport 12 Dtransport
Dtransport
V3 B ~‘ .’- ------------- 1 T EEEEEEES .
1
. 1 - 12 L2 :
' Dstock v stock v D stock .
1 1 1
! ' T 1
1 1
1 HE M '
R ’ N m m e mmmm - ’ R 4
Stock-a Stock-res Stock-b

Figure 9.7: Partition of the Workspaces

Mixing space and time dependency, formally we have in mind the product
of space and time, as follows. Let X denote the space (physically, this can
be the coordinatized ground floor in a working hall, for example) and T the
entire set of time parameters (possibly a union of time intervals or clock cycles
corresponding to individual agents). Then time constraints arise in cooperation
of agents (synchronization constraints) and this can depend on that part of the
working cell of an agent where he cooperates with others. Thus, if D C X
denotes such a subdomain and if m; : X x T' — X is the first projection map,
then in ﬁfl(D) we are modeling the time dependent processes, including time
constraints arising over subdomains D where cooperation of different agents
takes place.

The following scenario is taken from [PSS96b] and contains three robots,
Ry, Ry, and Rs. They perform an assembly task similar to those described in
[PSS95, PSS96a).

e Ry receives a work piece a and a work piece b and performs an assembly
task. The work piece r obtained from assembling a and b is placed on
the assembly bench, at a part reachable for both Ry and Ry (so in the
intersection of all three workspaces).

e R; furnishes pieces of type a. He checks whether there are pieces of type
a left in stock, and whether a piece of type a or an r resulting from
assembling a and b is placed on the assembly bench of Ry. If there are
pieces of type a in stock, and if no a or r are placed on the table, R;
brings a piece of type a to Ry (and places it in the intersection of their
workspaces).

9.5 Description of a Time and Space Dependent Scenario 305

e R, furnishes pieces of type b. He checks whether there are pieces of type
b left in stock, and whether a b or an r is placed on the table. If there are
pieces of type b in stock, and no b or r is on the table, Ry brings a piece
of type b to Ry, placing it in the intersection of their workspaces.

e After Ry has assembled a and b, either R; or Ry transports the result r
from the table to the final storage; under certain circumstances, the two
robots R; and Ry will have to cooperate to transport the piece r though;
this will be described below.

Since the agents are performing complex and different tasks (taking pieces,
transporting them, assembling) and are able to cooperate, we can assume that
their working space can be partitioned in different subdomains where specific
tasks are performed. A partition of the workspaces for the example described
above is illustrated in Figure 9.7.

Moreover we will assume that every agent knows “where” in space he is (at
least in which domain) and that at the moment when a given agent begins to
execute an action A, an internal clock cycle begins. Moreover, at this moment
the agent knows the time ¢4 needed for accomplishing A. If this limit time
is reached with the action not accomplished, a signal to a control device C is
activated (meaning that something is going wrong). C will then correct the
situation.

In the scenario described here, we assume that in the different regions of
their workspace the robots can do specific actions and can have access to certain
information (in the form of values for control variables). This is described in
Table 9.8 (where A is the action being performed and ¢ 4 is a maximal duration,
assumed to be sufficient for performing A).

One possible development of the scenario is the following:

Initial State: The agents Ry and R, are at the positions z; € Dt

transport
(resp. xo € D2transport)' There are no pieces of type a in stock and there

is at least one piece of type b in stock. No piece is on the table.

Goal: Transport the piece r obtained by assembling a piece of type a and one
of type b in the stock of pieces of type r.

A Possible Plan (note that the logical state spaces of agents — control vari-
ables, activation values for actions — vary depending on the moment of time
and the position in space of the agents).

(1) Agent R; moves to the stock (in Dlstock)‘
0. He reaches the stock at moment ¢; (the normal time necessary for
reaching the stock), and attempts to take a piece from the stock. The
internal clock is set to 0 again. Since no piece of type a is left in stock,
after the time ¢, (sufficient in normal circumstances for taking a piece of
type a from the stock) the action is still not accomplished. Therefore at

His internal clock is set to

306 9 Applications
Agent | Domain Time Variables Actions
(int. clock:
[07 tA))
Ry Dlstock 0<t<ts | Sa,T1,t1,hq take-a,
rm"’e'to'Dltransport
t=ta in addition: alarm-C(A) | call-C(A)
I T
D transport 0<t<ty | x1,t1,h, move-to-D table’
move—to—DlStock
t=ta in addition: alarm-C(A) | call-C(A)
Dltable 0 S t < tA pavprv'rlatlaha give_a?

1

move-to-Dyyansport
t=ty in addition: alarm-C(A) | call-C(A)
Ry DQStock 0<t<tys | sp,xa,ta,hp take-b,
2
move-to-D%yansport
t=ty in addition: alarm-C(A) | call-C(A)
) 2
D transport 0<t<ty | xo,to,hy move-to-D table’
move—to—Dzstock
t=ta in addition: alarm-C(A) | call-C(A)
D2tab|e 0 S t < tA Db, Dr, L2, t25 hb give—b,
2
move-to-D transport
t=1ty in addition: alarm-C(A) | call-C(A)
Ri, Ry Dltzable 0<t<ts | pr,x1,t1,hq,xa,t, hy take-res
t=ty in addition: alarm-C(A) | call-C(A)
Ry 0 csemble | 0 <t <ta | Da,pb Pr,20,t0 assemble,

1
move—to—thable,
move-to-D table’
move-res-to-D table

t=ta in addition: alarm-C(A) | call-C(A)
Dltable 0<t<tas | pa,pr,To,to receive-a,
rﬂove'a'to'DOassembIe
t=ty in addition: alarm-C(A) | call-C(A)
D bie 0<t<ta | ps,pr,To,to receive-b,
r'nove'b'to'DOassembIe
t=ta in addition: alarm-C(A) | call-C(A)
Dltzable 0<t<tas |przo,to put-res,
moVe_to_DOassemble
t=ta in addition: alarm-C(A) | call-C(A)

Figure 9.8: Description of Space and Time Dependencies

9.5 Description of a Time and Space Dependent Scenario 307

T A
Local Clock of RO laea - O 3
0 take-b l
v |
t brinq)/ Tl put 0 !
Local Clock of R t l
1 tl 0 as :
2
t bring
. 0 0
3 c & t,
| bring morepieces @ |
l of type 2 Local Clock of R
A

Figure 9.9: Time Cycles

moment t, a signal is activated, by which Ry asks the control device C
for help. C takes care that the stock is provided with more pieces of type
a, and Ry can eventually perform the action of picking a piece. He brings
it to the assembly bench and puts it there.

Agent Ry does an analogous task for pieces of type b. Since there still
are pieces of type b in stock, the intervention of C is not necessary in this
case.

A piece of type a and a piece of type b are on the assembly bench. Robot
Ry starts to assemble the pieces. At the beginning of the process the
internal clock of Ry is set to 0. Assume that the assembly process is
not successful, in the sense that after the time ¢,5, normally sufficient for
assembling the pieces, they are still not assembled. Then at the moment
tqs a signal is activated, by which Ry asks for help from C.

C discovers which of the pieces causes the problem and gives the corre-
sponding agent the command to bring another piece of that type. After
this is provided and the assembly process is completed, Ry puts the result
on the assembly bench.

The result has to be transported to a stock with pieces of type r (by one or
both agents). R; moves to the table (region D1t2able’ which is accessible to
all the robots) and tries to lift r. Its internal clock is set to 0. If after the
time ¢, (sufficient for lifting r) the action has not yet been accomplished,
R; activates a signal which is sent to C. The control device then calls Rs

to help lifting and transporting the piece.

308 9 Applications

The cooperation between R; and Ry is only possible in the domains

12 12
D {sple and D transport-

The robot Rs comes to help R;. Together they lift the piece r and trans-
port it to the stock. While R; and R work together, their internal clocks
must be synchronized.

The behavior in time of the system is illustrated in Figure 9.9. For the sake
of simplicity, the error situation described in (3) above is omitted. The local
clock-cycles are denoted by intervals of the form [0,%4), where ¢4 is a maximal
duration, assumed to be sufficient for executing a given action A. We used this
type of notation in order to emphasize the fact that at the moment ¢ 4 the state
space changes: if the action is not yet accomplished a signal is switched on, and
the robot asks for help from the control device C.

The way these local time-cycles synchronize and build one time-cycle for
the whole system is represented in Figure 9.10.

Take-a

Put-res

@ic
morepieceS ——— -

in stock

Take-res

' Coop—,Td(’éfes
Start St

Figure 9.10: Synchronization

Chapter 10

Conclusions and Plans of
Future Work

In this thesis we pointed out some applications of fibered structures in computer
science, namely in solving algorithmic problems in algebra and logic, as well as
in modeling interacting systems. We will give a summary here, and indicate
some directions for future research.

10.1 Applications for Solving Algorithmic Problems
in Universal Algebra and Logic

In Chapter 5 we presented representation theorems in universal algebra — such
as sheaf representation and Priestley type representation theorems — and their
applications in solving algorithmic problems in algebra or logic.

We started with a motivating example, namely that of the SHn-logics,
because the idea of the approach to automated theorem proving presented here
came to us when studying S Hn-logics.

We presented two representation theorems for the algebraic models of SHn-
logics, namely a sheaf representation theorem, which is an easy consequence of a
theorem due to Werner about the representability of algebras in discriminator
varieties as sheaves of algebras over boolean spaces, and a duality theorem
derived from the Priestley duality for distributive lattices with 0 and 1.

The common feature of these representation theorems is that they state
that every element of a given SHn-algebra A can be regarded as a continuous
map s : I — [[;c; Ai, with the property that for every i € I, s(i) € A;, and
which additionally might preserve some relations defined on I and [];c; 4;.
Note that also the notion of Logical Fiberings (cf. [Pfa91]) is based on the idea
of decomposing logics by defining a “base space” and “fibers”.

In what concerns sheaf representation and applications, we specialized the
theorems on the existence of most general unifiers for discriminator varieties
due to Burris (cf. [Bur92]) to the variety SHn, and obtained a method of
generating most general unifiers in this variety. We also showed that, given
a discriminator variety)V, Lowenheim’s theorem on finding the reproductive
solutions for systems of Boolean equations can be extended to a theorem that

309

310 10 Conclusions and Plans of Future Work

shows how “most general solutions” can be found for systems of equations in
V.

We showed next that the Priestley representation can be used in order to
give a procedure for automated theorem proving for some classes of logics.

We noticed that the dual spaces associated to S Hn algebras are in particular
special SHn-frames (as defined in [I096]), where the relation is a partial order.

We showed that the propositional SHn-logic is sound and complete with
respect to the Kripke model with 2(n — 1) elements D(S,,2).

We gave a transformation procedure to clause form and a refutation proce-
dure based on negative hyperresolution.

Moreover, we extended the ideas illustrated for the case of SHn-logics to
more general classes of logics, namely those logics that are sound and complete
with respect to a class of algebras with a distributive lattice reduct such that
the variety is generated by a single finite algebra and such that the Priestley
duality for distributive lattices extends to a dual equivalence between the given
variety and a suitable category of Priestley spaces endowed with operations
and relations. The relationships between algebraic and relational models were
studied, and a possibility of defining frames and models (as done in [I096] for
the case of SHn-logics) was discussed. A natural way of deducing the defini-
tion of the satisfiability relation in such frames — starting from the well-known
satisfiability notion with respect to an algebra — was presented. Then an auto-
mated theorem proving procedure was given in this general case. For the sake
of simplicity, this procedure was first presented for the propositional case, then
it was extended to certain classes of first-order logics.

Note that analyzing the proofs in Chapter 5 we noticed that the condition
imposed on the logic £ (namely that it is sound and complete with respect to
a variety V of algebras with an underlying distributive lattice structure, such
that V is generated by one finite algebra A and the Priestley duality extends
to a dual equivalence between V and a category VSp of Priestley spaces with
operators) can be relaxed.

In all these proofs we only use the fact that the logic £ is sound and complete
with respect to a finite Kripke-style frame (finite set endowed e.g. with an order
relation and with additional relations associated to the operations in the logic).
A formal treatment of this fact will be subject of future work. In the thesis
we decided to impose the additional, more restrictive, condition concerning the
existence of the dual equivalence between the class of algebraic models of the
logic £ and a suitable category of Priestley spaces with operations because it
furnishes an intuitive description of how such a Kripke frame can be constructed.

We finished by giving some examples of logics where this procedure can be
applied (Ppp-logics and SH Kn-logics).

At the end of Chapter 5 we presented an implementation in Prolog of the
procedure and tested it on several examples. Then, a comparison with other
existing approaches was made.

311

10.1.1 Plans of Future Work

We conclude the description of our research in this area by sketching some
directions of future work.

Let us analyze the two representation theorems for S Hn-algebras described
in Section 5.1 more closely:

Sheaf Representation Theorem Priestley Duality Theorem

Index set: Maximal congruences Maximal congruences
w.r.t. the signature w.r.t. the signature
{va/\a_U:}aNasla"'aSnfl} {0,1,\/,/\}
(also V)
Subbasis
for topology E(a,b), X, = E(z,1),
D(a,b) X\X, = E(z,0) = D(z,1)
Order: discrete defined pointwise
Fibers: Subalgebras of S, {0,1}
(all simple S Hn-algebras) (all simple 0,1-distributive lattices)

and the one-point algebra

This suggests that other types of representations — “intermediate” between
the sheaf representation and the Priestley representation — might be possible.
The role of such a representation would be to “separate” different types of
operators, including some of them in the fibers (if they are easy to manipulate)
and expressing the other ones as relations on the base space (if they are harder
to manipulate).

It still has to be seen whether such representations would bring any ad-
vantages, for example in improving the efficiency or parallelizing automated
theorem proving procedures.

10.2 Modeling Cooperating Agents

The second direction of work presented in the thesis is the use of sheaf theory
for modeling systems that are obtained by interconnecting interacting agents.
Starting from a motivating example we proposed a definition of systems
as well as a definition of morphisms between systems. Two categories of sys-
tems, SYS and SYS),, were defined, both having as objects systems, with the
morphisms reflecting different types of relationships between systems: the mor-
phisms in SYS can be seen as “translations” from the language of one system to
the language of another system that preserve constraints and satisfy a compat-
ibility condition with respect to the models, whereas the morphisms in SYS,
additionally satisfy a certain “tightness” condition with respect to transitions.
We showed that two contravariant functors St and Act — expressing states and
parallel actions — from these categories of systems to Sets can be defined. In

312 10 Conclusions and Plans of Future Work

the category SYS, — considering St and Act as functors from SYS;,, to Sets —
we showed that transitions define a natural transformation Tr : Act — Q5% 5t
(morphism in the category of presheaves).

We then continued by considering a category SYS; having only inclusions
between systems as morphisms, and a category SYS;; having so-called transition-
connected inclusions as morphisms (this was necessary in order to express the
fact that there is a morphism from S; to S if S; is a subsystem of S5 and
transitions in So “restrict” to transitions in Si).

Notions of covering were defined in both SYS; and SYS; and it was shown
that these covering relations induce Grothendieck topologies on both these cat-
egories.

States, actions and transitions were also analyzed in this context. It turned
out that states and parallel actions define sheaves (with respect to the above
mentioned Grothendieck topologies) in both SYS; and SYS;;, and that the tran-
sitions define a natural transformation Tr : Act — Q55 in the category of
sheaves over SYS; (in some cases a certain finiteness condition was required)
with the corresponding Grothendieck topology.

Temporal behavior of systems in SYS;; was also analyzed — the starting point
is the approach of Goguen [Gog92]. We took into account both the state and
the action executed at a given moment of time, and showed that two types of
“gluing” conditions hold: one with respect to the basis of observation over time
and the other with respect to the structure of the system.

Also the possibility of modeling the behavior of a system by monoids and
languages was considered.

In concrete applications we usually are only interested in some subcategory
of SYS;;, having as objects those systems relevant for the given application.
Therefore, we continued by considering the category of those systems obtained
by interconnecting a given family InSys of interacting systems, all contained in a
given finite system Sy (to enforce compatibility of models as well as finiteness)
and which was assumed to be closed under all subsystems by means of which
communication can be done. A system obtained by interconnecting the elements
of the family InSys can be regarded either as a system on its own, or as the set of
all elements of InSys by whose interaction it arises (a downwards-closed subset
of InSys).

We showed that on both categories defined this way, Sys(InSys) resp. Q(InSys),
suitable Grothendieck topologies can be defined, expressing the way systems
arise from smaller subsystems. We showed that in both these approaches one
can define notions as states and parallel actions, and showed that these de-
fine sheaves St and Act, resp. St and Act, with respect to the corresponding
Grothendieck topologies. Moreover, transitions can be expressed in both cases
by natural transformations Tr : Act — Q55 resp. Tr : Act — Q55¢ (or
alternatively as a subsheaf of Act x St x St resp. Act x St x St). The link be-
tween the categories Sys(InSys) and Q(InSys) was also investigated: we showed
that an adjunction between these two categories exists; additionally, the right
adjoint preserves covers, which implies that a geometric morphism between the
category of sheaves over Sys(InSys) and the category of sheaves over Q(InSys)

313

(with the corresponding Grothendieck topologies) can be established.

Also in this case we studied the behavior in time of systems — we showed that
both gluing properties (with respect to time and with respect to the structure of
the systems) established for the case SYS; also hold for the categories Sys(InSys)
and Q(InSys).

ATl these results were used in the last chapter, where — by using classical
results in sheaf theory and geometric logic — we investigated the links between
the properties of the elements of InSys and the system obtained by interconnect-
ing them. The theoretical considerations were illustrated on three examples:
deadlock freedom, determinism, and fairness of execution.

10.2.1 Prospects of Future Work

There are many directions of future work in modeling cooperating agents. We
briefly refer to them, without entering into too much detail.

First of all, in the approach presented here we assumed that the execution
time for all actions is taking one unit of time. We would like to analyze the
more complex and realistic approach in which for every action a duration for its
accomplishment is given. The problem of representing different durations for
the actions is not trivial. The representation of the behavior in time by monoids
and languages turns out to be more difficult if we consider different durations for
the actions. One possible solution could be to use results from timed automata
theory [AD94]. This might also have applications in scheduling.

Another direction of future work is towards generalizing the notion of “ob-
“path category” as done in [Win96,
CW96] instead of the basis for observation in time used here.

servation in time”, in the sense of using a

We would like to obtain a better understanding of the links between Priestley
duality, Kripke models and the approach to the study of concurrency described
in the thesis. The main observation that suggests that there is such a relation-
ship is the following: Let S be a system with a set X of variables that can only
take the values 0 (false) and 1 (true). Assume that the relationships between
these variables can be described by a set I' of Boolean equations in variables
from X. Then a state of the system S is an assignment s : X — {0,1} that
satisfies the set I' of Boolean equations. Note however that there is a bijection
between the set

{s: X = {0,1} | s =T}

and the set
{s: Fg(X) — {0,1} | s Boolean algebra homomorphism and s = I'},
i.e. with the set
{s|s:Fp(X)/ =r— {0,1} Boolean algebra homomorphism},

where Fg(X) is the free Boolean algebra generated by X and =r is the con-
gruence relation on Fg(X) generated by the set I' of Boolean equations.

314 10 Conclusions and Plans of Future Work

Note that the set {s | s : Fg(X)/ =r— {0,1} Boolean algebra homomorphism}
is the Stone space of the Boolean algebra Fp(X)/ =r.

In [JNW94, CW96] a parallel is drawn between so-called P-open maps (with
respect to a path category) and bounded morphisms of Kripke models. In the
same line of research, we would like to investigate whether the set of states
can define (in a certain way) a Kripke model for a suitable logic expressing the
properties of the actions.

In this thesis we defined a general notion of morphisms, but when consider-
ing interconnections of systems we only considered inclusions between systems
as morphisms. We would like to continue this research in two directions:

(1) Consider categories that have even more special types of inclusions as
morphisms (e.g. conservative extensions, definitional extensions).

(2) Study the possibility of defining a Grothendieck topology on the category
of systems SYS or on SYS,, (i.e. with arbitrary morphisms).

Finally, we point out one more direction for future research. In this thesis
we showed that transitions define natural transformations between sheaves, T'r :
Act — Q515 In this way, a “generic transition system” can be associated to a
given category of systems, where both states and actions are sheaves, and such
that the transitions can be expressed by natural transformations. We would like
to apply the results of Addmek and Trnkova [AT90] on defining automata in
a category to the concrete category of sheaves over a category of systems with
a suitable Grothendieck topology (this category has the properties required in
order to apply the theory from [AT90]), and see how general constructions as
for instance minimal realization can be carried out.

Bibliography

[AB70]

[AD94]

[AHS90]

[AK48]

[AN93]

[ANS94]

[ANSK94]

[AP94]

[AT0]

[Baa92]

[Bar74]

[Betb5]

R. Anderson and W. Bledsoe. A linear format for resolution with
merging and a new technique for establishing completeness. Journal
of the ACM, 17:525-534, 1970.

R. Alur and D.L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183-235, 1994.

J. Addmek, H. Herrlich, and G. Strecker. Abstract and Concrete
Categories. John Wiley & Sons, Inc., 1990.

R.F. Ahrens and I. Kaplanski. Topological representation of alge-
bras. Trans. AMS, 63:457-481, 1948.

H. Andréka and I. Németi. General algebraic logic: A perspective
on “what is logic”. Lecture Notes for the TEMPUS Summer School,
July 11-17, Budapest, November 1993.

H. Andréka, I. Németi, and I. Sain. Universal algebraic basics for
algebraic logics. Lecture Notes for the TEMPUS Summer School,
July 11-17, Budapest, 1994.

H. Andréka, I. Németi, I. Sain, and A. Kurucz. Applying algebraic
logic: A general methodology. Lecture Notes for the TEMPUS Sum-
mer School, July 11-17, Budapest, July 1994.

M.E. Adams and H.A. Priestley. Equational bases for varieties of
Ockham algebras. Algebra Universalis, 32(3):368-397, 1994.

J. Addmek and V. Trnkova. Automata and Algebras in Categories.
Kluwer Academic Publishers, 1990.

M. Baaz. Automatisches Beweisen fur endlichwertige Logiken. Mitt.
Math. Ges. Hamburg, 12:1141-1155, 1992.

J. Barwise. Axioms for abstract model theory. Ann. Math. Logic,
7:221-265, 1974.

E.W. Beth. Semantic entailment and formal derivability. Medelin-
gen der Koninklijke Nederlandse Akademie van Wetenschappen,
18(13):309-342, 1955.

315

316

[Bet59]

[Bet86]

[BF85]

IBF92]

[BF95]

[BHK90]

[BPYO]

[BP94]

[BS81]

[Buc65]

[Buc83]

[Buc85]

[Bur92]

[BW79)

Bibliography

E.W. Beth. The Foundations of Mathematics. North-Holland, Am-
sterdam, 1959.

E.W. Beth. Semantic entailment and formal derivability. In K. Berka
and Kreiser L., editors, Logik-Texte. Kommentierte Auswahl zur
Geschichte der modernen Logik, pages 262-266. Akademie Verlag,
Berlin, 1986.

J. Barwise and S. Feferman, editors. Model-Theoretic Logics.
Springer-Verlag, 1985.

M. Baaz and C.G. Fermiiller. Resolution for many-valued logics.
In A. Voronkov, editor, Proc. Logic Programming and Automated
Reasoning LPAR’92, LNAI 624, 1992.

M. Baaz and C.G. Fermiiller. Resolution-based theorem proving for
many-valued logics. Journal of Symbolic Computation, 19:353—-391,
1995.

J. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of
the ACM, 37(2):335-372, 1990.

G. Bordalo and H.A. Priestley. Relative Ockham lattices: Their or-
der theoretic and algebraic characterisation. Glasgow Math. Journal,
32:47-66, 1990.

G. Bordalo and H.A. Priestley. Series-parallel posets and relative
Ockham lattices. Order, 11:281-305, 1994.

S. Burris and H.P. Sankappanavar. A Course in Universal Algebra.
Graduate Texts in Mathematics. Springer Verlag, 1981.

B. Buchberger. FEin Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomaideal.
PhD thesis, Universitat Innsbruck, 1965.

B. Buchberger. A critical-pair/completion algorithm for finitely gen-
erated ideals in rings. In Proc. Symposium Rekursive Kombinatorik,
Minster, May 23-28,, LNCS 171, pages 137-161, 1983.

B. Buchberger. Basic features and development of the critical-
pair/completion procedure. In Jean-Pierre Jouannaud, editor, Proc.
First Int. Conf. RTA, LNCS 202, pages 1-45, Dijon, 1985. Springer
Verlag.

S. Burris. Discriminator varieties and symbolic computation. Jour-
nal of Symbolic Computation, 13:175-207, 1992.

S. Burris and H. Werner. Sheaf constructions and their elementary
properties. Transactions of the AMS, 248(2):269-309, March 1979.

Bibliography 317

[Car50]

[Car87]

[Car91]

[Cas91]

[CDH93]

[CF69]

[CF77]

[CHZ91]

[Cig70]

[CigT72]

[Cig82]

[CigI1]

[Cir95]

[CL73]

[CLP91]

[CM85]

H. Cartan. Idéaux et modules de fonctions analytiques de variables
complexes. Bulletin de la Société Mathématique de France, 78:29—
64, 1950.

W.A. Carnielli. Systematization of finite many-valued logics through
the method of tableaux. Journal of Symbolic Logic, 52(2):473-493,
1987.

W.A. Carnielli. On sequents and tableaux for many-valued logics.
Journal of Non-Classical Logics, 8(1):59-76, 1991.

R. Casley. On the Specification of Concurrent Systems. PhD thesis,
Stanford University, January 1991.

R. Caferra, S. Demri, and M. Herment. A framework for the transfer
of proofs, lemmas and strategies from classical to non classical logics.
Studia Logica, 52:197-232, 1993.

P. Cartier and D. Foata. Probléemes combinatoires de commutation
et réarangements. LNM 85. Springer Verlag, 1969.

W.H. Cornish and P.R. Fowler. Coproducts of De Morgan algebras.
Bull. Australian Math. Soc., 16:1-12, 1977.

R. Caferra, M. Herment, and N. Zabel. User-oriented theorem prov-
ing with the ATINF graphic proof editor. In P. Jorrand and J. Kele-
men, editors, Proceedings of Fundamentals of Artificial Inteligence
Research, LNAI 535. Springer Verlag, 1991.

R. Cignoli. Moisil algebras. Notas de Ldgica Matemdtica, 27, 1970.
Univ. Nac del Sur, Bahia.

R. Cignoli. Representation of Lukasiewicz and Post algebras by
continuous functions. Algebra Universalis, XXIV:127-138, 1972.

R. Cignoli. Proper n-valued Lukasiewicz algebras as s-algebras of
Lukasiewicz n-valued propositional calculi. Studia Logica, 41:3-16,
1982.

R. Cignoli. Quantifiers on distributive lattices. Discrete Mathemat-
ics, 96:183-197, 1991.

C. Cirstea. A distributed semantics for FOOPS, PRG-TR-20-95.
Technical report, Oxford University Computing Laboratory, 1995.

C. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, 1973.

R. Cignoli, S. Lafalce, and A. Petrovich. Remarks on Priestley
duality for distributive lattices. Order, 8:299-315, 1991.

R. Cori and Y. Métivier. Recognizable subsets of some partially
abelian monoids. Theoretical Computer Science, 35:241-254, 1985.

318

[ComT71]

[Cos90]

[CRABY1]

[Cre91]

[CW96]

[CZ90a]

[CZ90b]

[CZ92]

[Cze82]

[DavT72]
[DavT73|

IDGS91]

[DH66]

[Dia96]

[Die90]

[DPYO]

Bibliography

S.D. Comer. Representations by algebras of sections over Boolean
spaces. Pacific J. Math., 38:29-38, 1971.

M. M. do C. Costa. Characterization of Modal [Action] Logic. PhD
thesis, Imperial College, London, 1990.

J. Chazarain, A. Riscos, J. A. Alonso, and E. Briales. Multi-valued
logic and Grobner bases with applications to modal logic. Journal
of Symbolic Computation, 11-12:181-191, 1991.

R. Crew. Metric Process Models. PhD thesis, Stanford University,
December 1991.

G.L. Cattani and G. Winskel. Presheaf models for concurrency.
Proceedings of CSL’96, to appear, 1996.

R. Caferra and N. Zabel. An application to many-valued logic
to decide propositional S5 formulae: a strategy designed for a
parametrized tableaux-based prover. In Proceedings AIMSA’90, Ar-
tificial Inteligence — Methodology Systems Applications, pages 23-32,
1990.

R. Caferra and N. Zabel. Extending resolution for model construc-
tion. In J. van Eick, editor, Proceedings of Logics in AI - JELIA’90,
LNAT 478, pages 153-169. Springer Verlag, 1990.

R. Caferra and N. Zabel. A method for simultaneous search for
refutations and models by equational constraint solving. Journal of
Symbolic Computation, 13:613-641, 1992.

J. Czelakowski. Logical matrices and the amalgamation property.
Studia Logica, XLI(4):329-342, 1982.

B.A. Davey. m-Stone lattices. Can. J. Math., 24:1027-1032, 1972.

B.A. Davey. Sheaf spaces and sheaves of universal algebras. Math.
Zeitschrift, 134:275-290, 1973.

R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for
modularity. In Proceedings of the Workshop on Logical Frameworks,
Edinburgh, May 1991.

J. Dauns and K.H. Hofmann. The representation of biregular rings
by sheaves. Math. Zeitschrift, 91:103-123, 1966.

R. Diaconescu. Category-based moodulerization for equational logic
programming. Acta Informatica, 33(5):477-510, 1996.

V. Diekert. Combinatorics on Traces. In LNCS /5/. Springer Verlag,
1990.

B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

Bibliography 319

[DPSS91]

[Ebb85]

[Ede92]

[Fia96]

[Fil80]

[Fis86]

[Fosb3al

[Fosb3b]

[FS79]

[Gab92]

[Gab94]

[Gab96]

[GB85]

[Gis88]

F. Dargam, J. Pfalzgraf, K. Stokkermans, and V. Stahl. Towards
a toolkit for benckmark scenarios in robot multi-tasking. Techni-
cal Report 91-45, RISC-Linz, J. Kepler University, Linz, Austria,
December 1991.

H.D. Ebbinghaus. Extended logics: The general framework. In
J. Barwise and S. Feferman, editors, Model-Theoretic Logics, pages
25-76. Springer-Verlag, 1985.

E. Eder. Relative Complexities of First Order Calculi. Wiesbaden:
Vieweg, Brauschweig, 1992.

J.L. Fiadeiro. On the emergence of properties in component-
based systems. In M. Wirsing and M. Nivat, editors, Proceedings
AMAST’96, LNCS 1101, pages 421-443. Springer-Verlag, 1996.

A. Filipoiu. Representation of Lukasiewicz algebras by means of
ordered Stone spaces. Discrete Mathematics, 30:111-116, 1980.

W. Fischer. Uber erkennbare und rationale Mengen in freien par-
tiell kommutativen Monoiden. Technical Report FBI-HH-B-121/86,
Fachbereich Informatik der Universitdt Hamburg, 1986. (Diplomar-
beit 1985).

A L. Foster. Generalized Boolean theory of universal algebras I.
Math. Z., 58:306-336, 1953.

A L. Foster. Generalized Boolean theory of universal algebras II.
Math. Z.,59:191-199, 1953.

M.P. Fourman and D.S. Scott. Sheaves and Logic. In M. Fourman,
editor, Durham Proceedings (1977). Applications of Sheaves, LNM
753, pages 302-401. Springer Verlag, 1979.

D.M. Gabbay. Fibred semantics and the weaving of logics. MED-
LAR IT Workshop, Garmisch-Partenkirchen, January, 24-26, 1992.

D. Gabbay. LDS - Labelled Deductive Systems. Vol 1 - Foundations.
Technical Report MPI-1-94-223; (Part I: Oxford University Press
1995), 1994.

D. Gabbay. An overview of fibered semantics and the combination of
logics. In F. Baader and K.U. Schulz, editors, Frontiers of Combin-
ing Systems, Applied Logics Series 3, pages 1-56. Kluwer Academic
Publishers, 1996.

J.A. Goguen and R.M. Burstall. Institutions: Abstact model theory
for computer science. Technical Report CSLI-85-30, Center for the
Study of Language and Information, August 1985.

J.L. Gischer. The equational theory of pomsets. Theoretical Com-
puter Science, 61:199-224, 1988.

320

[God58]

[GogT75]

[Gog92]

[Gog96]

[Gol81]

[Gol84]

[Gol89]

[Gou95]

[Gra79]

[Gup94]

[Hh90]

[H&h91]

[Hah93]

[H&h94]

Bibliography

R. Godement. Topologie Algébrique et Théorie des Faisceauz. Her-
mann, Paris, 1958.

J.A. Goguen. Objects. International Journal of General Systems,
1:237-243, 1975.

J.A. Goguen. Sheaf semantics for concurrent interacting objects.
Mathematical Structures in Computer Science, 11:159-191, 1992.

J. Goguen. Theorem Proving and Algebra. Preliminary
version available via the world wide web at http://www-
cse.ucsd.edu/users/goguen/pubs/books.html, 1996.

M. Goldberg. Distributive Ockham algebras: Free algebras and
injectivity. Bull. Austral. Math. Soc., 24:161-203, 1981.

R. Goldblatt. Topoi. The Categorial Analysis of Logic, volume 98
of Studies in Logic and the Foundations of Mathematics. North-

Holland, Elsevier Publishers, Amsterdam, 2nd, revised edition,
1984.

R. Goldblatt. Varieties of complex algebras. Annals of Pure and
Applied Logic, 44(3):153-301, 1989.

E. Goubault. Schedulers as abstract interpretations of higher-
dimensional automata. Available via the world wide web at
http://Boole.Stanford. EDU:80/pub/, 1995.

J.W. Gray. Fragments of the history of sheaf theory. In M. Fourman,
editor, Durham Proceedings (1977). Applications of Sheaves, LNM
753, pages 1-79. Springer Verlag, 1979.

V. Gupta. Chu Spaces: A Model of Concurrency. PhD thesis,
Stanford University, August 1994.

R. Hahnle. Towards and efficient tableau proving procedure for
multiple-valued logics. In Proceedings of Workshop on Computer
Science Logic, Heidelberg, LNCS 533, pages 248-260. Springer Ver-
lag, Berlin, 1990.

R. Hahnle. Uniform notation of tableaux rules for multiple-valued
logics. In Proceedings of International Symposium of Multiple-valued
Logics, Victoria, pages 238-245, Los Alamitos. CA., 1991. ITEEE
Press.

R. Hahnle. Awutomated Theorem Proving in Multiple- Valued Log-
tcs, volume 10 of International Series of Monographs on Computer
Science. Oxford University Press, 1993.

R. Hahnle. Short conjunctive normal forms in finitely valued logics.
Journal of Logic and Computation, 4(6):905-927, 1994.

Bibliography 321

[Hah96a)]

[H&h96b]

[Har84]

[HD83]

[Hin55]

[Hir56]

[HKLR92]

[Hof72]

[HS79]

[Hsi87]

[Hue80]

[1096]

[Tor84]

[Ttu82]

R. Hahnle. Commodious axiomatization of quantifiers in many-
valued logics. Proc. International Symposium on Multiple-Valued
Logics, ISMVL’96, Santiago de Compostela, Spain, 1996.

R. Hahnle. Exploiting data dependencies in many-valued logics.
Journal of Applied Non-Classical Logics, 6(1):49-69, 1996.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume II: Extensions of Classical
Logic, chapter I1.10, pages 497-604. D. Reidel Publ. Comp., 1984.

J. Hsiang and N. Dershowitz. Rewrite methods for clausal and non-
clausal theorem proving. In J. Diaz, editor, Proc. Int. Conf. on
Automata, Language and Programming, LNCS 154, pages 331-346,
Barcelona, 1983. Springer Verlag.

K.J.J. Hintikka. Form and content in quantification theory. Acta
Philosophica Fennica, 8:7-55, 1955.

F. Hirzebruch. Topological Methods in Algebraic Geometry. Springer
Verlag, 3rd edition, 1956.

J. Hsiang, H. Kirchner, P. Lescanne, and M. Rusinowitch. The term
rewriting approach to automated theorem proving. Journal of Logic
Programmang, 14:71-99, 1992.

K.H. Hofmann. Representations of algebras by continuous sections.
Bulletin of the AMS, 78:291-373, 1972.

H. Herrlich and G.E. Strecker. Category Theory: An Introduction.
Heldermann Verlag Berlin, 1979.

J. Hsiang. Rewrite method for theorem proving in first order logic
with equality. Journal of Symbolic Computation, 3:133-151, 1987.

G. Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems. Journal of the ACM, 27(4):797-821,
1980.

L. Iturrioz and E. Orlowska. A Kripke-style and relational semantics
for logics based on Lukasiewicz algebras. Conference in honour of
J. Lukasiewicz, Dublin, 1996.

A. Torgulescu. (1+ 6)-valued Lukasiewicz-Moisil algebras with nega-
tion (Romanian). PhD thesis, University of Bucharest, Romania,
1984.

L. Tturrioz. Modal operators on symmetrical Heyting algebras. In
T. Traczyk, editor, Universal Algebra and Applications, volume 9 of
Banach Center Publications, pages 289-303. PWN-Polish Scientific
Publishers, 1982.

322

[Itu83]

[JKS6]

[INWO4]

[Joh82]

[JT51]

[JT52]

[KB67]

[KC79]

[Kei70]

[KeiT1]

[KN85]

[Kri63]

[Kro87]

[Lem66a)

[Lem66b]

Bibliography

L. Tturrioz. Symmetrical Heyting algebras with operators.
Zeitschrift f. math. Logik und Grundlagen d. Mathematik, 29:33-70,
1983.

J.P. Jouannaud and H. Kirchner. Completion of a set of rules mod-
ulo a set of equations. SIAM Journal of Computing, 15:1155-1194,
1986.

A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open
maps. Technical Report BRICS RS-94-7, BRICS, Department of
Computer Science, University of Aarhus, May, 1994.

P. Johnstone. Stone Spaces. Cambridge Studies in Advanced Math-
ematics 3. Cambridge University Press, 1982.

B. Jénsson and A. Tarski. Boolean algebras with operators, Part 1.
American Journal of Mathematics, 73:891-939, 1951.

B. Jénsson and A. Tarski. Boolean algebras with operators, Part II.
Americal Journal of Mathematics, 74:127-162, 1952.

D. E. Knuth and P. B. Bendix. Simple word problems in universal
algebras. In J. Leech, editor, Computational Problems in Abstract
Algebra, pages 263-298, Oxford, 1967. Pergamon Press. Appeared
1970.

P.H. Krauss and D.M. Clark. Global subdirect products. Memoirs
of the AMS, 17(210):1-109, January 1979.

K. Keimel. Darstellungen von Halbgruppen und universellen Al-
gebren durch Schnitte in Garben, biregulare Halbgruppen. Math.
Nachr., 45:81-96, 1970.

K. Keimel. The representation of lattice-ordered groups and rings
by sections in sheaves. LNM 248, 248, 1971.

D. Kapur and P. Narendran. An equational approach to theorem
proving in first order predicate calculus. In Proceedings of the Int.
Joint Conf. on Artificial Intelligence, Los Anngeles, 1985.

S. A. Kripke. Semantical analysis of modal logic I. Normal modal
propositional calculi. Zeitschrift fur mathematische Logik und
Grundlagen der Mathematik, 9:67-96, 1963.

F. Kroger. Temporal Logic of Programs, volume 8 of EATCS Mono-
graphs on Theoretical Computer Science. Springer Verlag, 1987.

E.J. Lemmon. Algebraic semantics for modal logics I. The Journal
of Symbolic Logic, 31(1):46-65, 1966.

E.J. Lemmon. Algebraic semantics for modal logics II. The Journal
of Symbolic Logic, 31(2):191-218, 1966.

Bibliography 323

[Ler45]

[Lil93]

[Mal94]

[Mar90]

[Mas64]

[Maz77]

[Mes89]

[Mil80]

[Mil89)]

[Min90]

IML71]

[MLM92]

[MMT87]

[Moi63]

[Moi65]

J. Leray. Sur la forme des espaces topologiques et sur les points fixes
des représentations. J. Math. Pures Appl., 9:95-248, 1945.

J. Lilius. A sheaf semantics for Petri nets. Technical Report A23,
Dept. of Computer Science, Helsinki University of Technology, 1993.

G. Malcolm. Interconnections of object specifications. In
R. Wieringa and R. Feenstra, editors, Working Papers of the In-
ternational Workshop on Information Systems — Correctness and
Reusability, 1994. Appeared as internal report IR-357 of the Vrije
Universiteit Amsterdam.

N.G. Martinez. The Priestley duality for Wajsberg algebras. Studia
Logica, 49:31-46, 1990.

S.Ju. Maslov. An inverse method of establishing deducability in
the classical predicate calculus (translated). Soviet Math.-Doklady,
5:1420-1424, 1964.

A. Mazurkiewicz. Concurrent program schemes and their interpre-
tations. Technical Report DAIMI Rep. PB 78, Aarhus University,
1977.

J. Meseguer. General logics. In Proc. Logic Coll.’87 (North-Holland,
Amsterdam), 1989.

R. Milner. A Calculus of Communicating Systems, volume 92 of
LNCS. Springer Verlag, 1980.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

G. Mints. Gentzen-type systems and resolution rules, part i: Propo-
sitional logic. In Proceedings of COLOG-88, Tallin, LNCS 417,
pages 198-231. Springer, Berlin, 1990.

S. Mac Lane. Categories for the Working Mathematician, volume 5
of Graduate Texts in Mathematics. Springer Verlag, 1971.

S. Mac Lane and 1. Moerdijk. Sheaves in Geometry and Logic. Uni-
versitext. Springer Verlag, 1992.

R.N. McKenzie, G.F. McNulty, and W.F. Taylor. Algebras, Lattices,
Varieties. Vol. I. The Wadsworth & Brooks/Cole Advanced Books
and Software, 1987.

Gr.C. Moisil. Le algebra di Lukasiewicz. Analele Universitatii Bu-
curegti, Seria Acta Logica, 6:97-135, 1963.

Gr.C. Moisil. Algebre Lukasiewicziene. In: Incercari vechi gi noi de
logica neclasica, Ed. Stiintificd, Bucuresti, 1965.

324

Bibliography

[MOM91] N. Marti-Oliet and J. Meseguer. From Petri nets to linear logic

[MonT76]

[Mor76]

[Mos48]

[MP86]

[Ném94]

[Oh193]

[Or178]

[Or179]

[Orl80]

[Pet62a)]

[Pet62b]

[Pfa91]

[P£a93]

[P£a96]

through categories: A survey. International Journal of Foundations
of Computer Science, 2(4):297-399, 1991.

J.D. Monk. Mathematical Logic. Graduate Texts in Mathematics.
Springer Verlag, 1976.

C.G. Morgan. A resolution principle for a class of many-valued
logics. Logique et Analyse, 19(74-76):311-339, 1976.

A. Mostowski. Proofs of non-deducibility in intuitionistic functional
calculus. The Journal of Symbolic Logic, 13, 1948.

L. Monteiro and F. Pereira. A sheaf theoretic model for concurrency.
Proc. Logic in Computer Science (LICS’86), 1986.

I. Németi. Algebraizations of quantifier logics, an introductory
overview. Lecture Notes for the TEMPUS Summer School, July
11-17, Budapest, June 1994.

H.J. Ohlbach. Translation methods for non-classical logics - an
overview. Bulletin of the IGPL, 1(1):69-89, 1993.

E. Orlowska. The resolution principle for w™-valued logic. Funda-
menta Informaticae, 11:1-15, 1978.

E. Orlowska. Resolution systems and their applications I. Funda-
menta Informaticae, 3:235-268, 1979.

E. Orlowska. Resolution systems and their applications II. Funda-
menta Informaticae, 3:333-362, 1980.

C.A. Petri. Fundamentals of a theory of asynchronous information
flow. In Proc. IFIP Congress 62, pages 368—390. North-Holland,
Amsterdam, 1962.

C.A. Petri. Kommunication mit Automaten. PhD thesis, Scriften
des Institutes fur Instrumentelle Mathematik, 1962.

J. Pfalzgraf. Logical fiberings and polycontextural systems. In
P. Jorrand and J. Kelemen, editors, Proc. Fundamentals of Arti-
ficial Intelligence Research, volume 535 of LNCS (subseries LNAI),
pages 170-184. Springer Verlag, 1991.

J. Pfalzgraf. On mathematical modeling in robotics. In J. Calmet
and J.A. Campbell, editors, AI and Symbolic Mathematical Com-
puting. Proceedings AISMC-1, volume 737 of LNCS, pages 116-132.
Springer Verlag, 1993.

J. Pfalzgraf. On geometric and topological reasoning in robotics.
Annals of Mathematics and AlI, special issue on AI and Symbolic
Mathematical Computing, to appear, 1996.

Bibliography 325

[Pie91]

[P1093]

[Pra82]

[Pra86]

[Pra91]

[Pra93]

[Pra94]

[Pri70]

[Pri72]

[PS81]

[PS92]

[PS95]

[PSS95]

B.C. Pierce. Basic Category Theory for Computer Scientists. The
MIT Press Cambridge, Massachusetts and London, England, 1991.

G.D. Plotkin. Notes on event structures and Chu. Draft Re-
port, available at http://Boole.Stanford. EDU:80/pub/gdp2.ps.gz,
August 1993.

V. Pratt. On the composition of processes. In Proceedings of the
Ninth Annual ACM Symposium on Principles of Programming Lan-
guages, January 1982.

V.R. Pratt. Modeling concurrency with partial orders. Int. J. of
Parallel Programming, 15(1):33-71, February 1986.

V.R. Pratt. Modeling concurrency with geometry. In Proc. 18th
Ann. ACM Symposium on Principles of Programming Languages,
pages 311-322; January 1991.

V.R. Pratt. The second calculus of binary relations. In MF(CS’93,
Gdansk, pages 142-155, Poland, 1993.

V.R. Pratt. Chu spaces: Complementarity and uncertainty in ratio-
nal mechanics. Course notes, TEMPUS summer school, Budapest,
35pp, 1994.

H.A. Priestley. Representation of distributive lattices by means of
ordered Stone spaces. Bull. London Math Soc., 2:186-190, 1970.

H.A. Priestley. Ordered topological spaces and the representation
of distributive lattices. Proc. London Math. Soc., 3:507-530, 1972.

G.E. Peterson and M.E. Stickel. Complete sets of reductions for
some equational theories. Journal of the ACM, 28(2):233-264, 1981.

J. Pfalzgraf and K. Stokkermans. Scenario construction continued
and extended with a view to test and enhancement of reasoning
methods. Technical Report 92-27, RISC-Linz, J. Kepler University,
Linz, Austria, May 1992.

J. Pfalzgraf and K. Stokkermans. On robotics scenarios and mod-
eling with fibered structures. In J. Pfalzgraf and D. Wang, editors,
Springer Series Texts and Monographs in Symbolic Computation,
Automated Practical Reasoning: Algebraic Approaches, pages 53—
80. Springer Verlag, 1995.

J. Pfalzgraf, U. Sigmund, and K. Stokkermans. Modeling cooper-
ative agents scenarios by deductive planning methods and logical
fiberings. In J. Calmet and J.A. Campbell, editors, 2nd Work-
shop on Artificial Intelligence and Symbolic Mathematical Comput-
ing, volume 958 of LNCS, pages 167-190. Springer-Verlag, 1995.

326

[PSS96a]

[PSS96b]

[PSS96¢]

[PSSS95]

[Ras74]

[Rei85]
[Rob65]

[Rob79]

[Rud74]

[Sai88]

[Sco73]

[Sic67]

[Smu68]
[Sof88]

Bibliography

J. Pfalzgraf, U. Sigmund, and K. Stokkermans. Towards a general
approach for modeling actions and change in cooperating agents
scenarios. IGPL (Journal of the Interest Group in Pure and Applied
Logics), 4(3):445-472, 1996.

J. Pfalzgraf, V. Sofronie, and K. Stokkermans. A fibered approach
to modeling space-time dependent cooperating agents scenarios.
FAPR’96 (Workshop “Reasoning about Actions and Planning in
Complex Environments”), 1996.

J. Pfalzgraf, V. Sofronie, and K. Stokkermans. On a semantics
for cooperative agents scenarios. In R. Trappl, editor, Cybernetics
and Systems ’96, Volume 1, Proceedings of the Thirteenth Euro-
pean Meeting on Cybernetics and Systems Research, pages 201-206.
Austrian Society for Cybernetic Studies, 1996.

J. Pfalzgraf, U.C. Sigmund, V. Sofronie, and K. Stokkermans. MED-
LAR II: Third Year Deliverable Task V.2: Towards a Cooperating
Robots Demonstrator. Technical Report 95-49.0, RISC-Linz, J. Ke-
pler University, Linz, Austria, Europe, September 1995.

H. Rasiowa. Am Algebraic Approach to Non-classical Logics. North-
Holland Publishing Company, Amsterdam, 1974.

W. Reisig. Petri Nets: An Introduction. Springer Verlag, 1985.

J.A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23-41, 1965.

J.A. Robinson. Logic: Form and Function. The Mechanization of
Deductive Reasoning. Edinburgh University Press, 1979.

S. Rudeanu. Boolean Functions and Equations. North-Holland Publ.
Comp., 1974.

I. Sain. Beth’s and Craig’s properties via epimorphisms and amalga-
mation in algebraic logic. In C.H. Bergman, R.D. Maddux, and D.L.
Pigozzi, editors, Algebraic Logic and Univeral Algebra in Computer
Science, Proc. Conf. Ames, USA, LNCS 425, 1988.

D.S. Scott. Background to formalization. In Hugues Leblanc, editor,
Truth, Syntaz and Modality. Proceedings of the Temple University
Conference on Alternative Semantics, volume 68 of Studies in Logic
and the Foundations of Mathematics, pages 244-273, 1973.

C. Sicoe. Nota asupra algebrelor Lukasievicziene polivalente. Studii
st Cercetari Matematice, 19:1203-1207, 1967.

R. Smullyan. First-Order Logic. Springer Verlag, New York, 1968.

V. Sofronie. Modal algebras and rewriting algorithms. Specialization
Thesis, University of Bucharest (in romanian), 1988.

Bibliography 327

[Sof89]

[Sof96]

[Sti93]

[Sto95]

[Suc74]

[Sur84]

[Tak75]

[Tar56]

[Tra77]

[Urq79]

[Wer75]

[Wing4]

V. Sofronie. Formula-handling computer solution of boolean equa-
tions. I. Ring equations. Bull. of the EATCS, 37:181-186, 1989.

V. Sofronie. Towards a sheaf theoretic approach to cooperating
agents scenarios. In J. Calmet, J.A. Campbell, and J. Pfalzgraf,
editors, Proceedings of Artificial Intelligence and Symbolic Mathe-
matical Computation, International Conference, AISMC-3, Steyr,
LNCS 1138, pages 289-304. Springer-Verlag, 1996.

S. Stifter. Grobner bases in non-associative reduction structures.
Technical Report 93-70, RISC-Linz, Johannes Kepler University,
Linz, Austria, 1993.

K. Stokkermans. A Categorical Framework and Calculus for
C'ritical-Pair Completion. PhD thesis, Research Institute for Sym-
bolic Computation, Johannes Kepler University, Linz, 1995.

W. Suchon. La méthode de Smullyan de construire le calcul n-
valent de Lukasiewicz avec implication and négation. Reports on
Mathematical Logic, Universities Cracow and Katowicze, pages 37—
42, 1974.

S.J. Surma. An algorithm for axiomatizing every finite logic. In
E. Lusk and R. Overbeek, editors, Computer Science and Multiple-
Valued Logics, pages 143-149. North-Holland, Amsterdam, 1984.

G. Takeuti. Proof Theory. North-Holland Publishing Company -
Amsterdam, 1975.

A. Tarski. On some fundamental concepts in metamathematics.
in Logic, Semantics, Metamathematics, pages 30-37, Oxford U.P.,
1956.

T. Traczyk. Representation theorems for Post algebras. Acta Poly-
technica, Prace CVUT v PRAZE, 13:57-63, 1977.

A. Urquhart. Distributive lattices with a dual homomorphic opera-
tion. Studia Logica, 38(2):201-209, 1979.

H. Werner. Algebraic Representation and Model Theoretic Proper-
ties of Algebras with the Ternary Discriminator. Preprint Nr. 237
Technische Hochschule Darmstadt; Habilitationsschrift, November
1975.

F. Winkler. The Church-Rosser Property in Computer Alge-
bra and Special Theorem Proving: An Investigation of Critical-
Pair/Completion Algorithms. PhD thesis, Institut fiir Mathematik
der Technisch-Naturwissenschaftlichen Fakultat der Johannes Ke-
pler Universitat Linz, 1984.

328 Bibliography

[Win96] G. Winskel. A presheaf semantics of value-passing proceses. In Mon-
tanari and Sassone, editors, Concurrency Theory: 7th International
Conference, CONCUR ’96 Proceedings, LNCS 1119, pages 98-114,
1996.

[WN93] G. Winskel and M. Nielsen. Models for Concurrency. TEMPUS
Summer School 1993, Algebraic and Categorical Methods in Com-
puter Science, Brno, June 28 - July 3 1993.

[Zar56] O. Zariski. Scientific report of the second summer institute; III,
Algebraic Sheaf Theory. Bulletin of the AMS, 62:117-141, 1956.

Index

algebra 30
Boolean 25
congruence on an 31
De Morgan 26
direct product of 32
freely generated 35
generated subuniverse 30
generates 31
homomorphic image 31
Lukasiewicz-Moisil 26
maximal congruence on an 32
morphism, homomorphism of 31
Post 27
simple 32
subalgebra 30
subdirect product of 32
subdirectly irreducible 32
term 34
abstract fibering 103
morphism of 104
adjoint
left, right 62
unit, counit 63
admissible parallel actions in a sys-
tem 223
algebraic functions 35
amalgamation of a matching family
69
arity 40
assignment 173
associated sheaf functor 66, 70
asynchronous transition system 94
morphism of 94
category of 94
atom 28
axioms 45

Boolean algebra 25

329

behavior of a system 249
binary resolvent 56, 174
bundle 65

morphism of 65

Chu space 101
Chu map 101
category of 102
Craig Interpolation Theorem 44
cartesian-closed category 71
category 58
locally small 59, 62
small 59
dual 59
characteristic morphism 70
clausal form 55
clause 55
ground 55
mixed 58
negative 58
positive 58
signed 90, 134, 156, 172
co-cone 59
coequalizer 60
coherent axioms 75
coherent formulae 75
colimit 60
complement 25
complement w.r.t. V 25
complete assignment 173
in a Kripke frame 173
in an algebra 173
composition 58
cone 60
congruence relation 31
maximal 32
consequence operation 40
extensivity 40

330

finite character 41

idempotence 41

monotonicity 40
covering

in SYS; 244

in Sys(InSys) 260

in SYS}; x T 251
covering lifting property 73

De Morgan algebra 26
decomposition 116
decreasing relation 148
deductive system 41
S-theory 41
dependence alphabet 97
dependence alphabet of a sys-
tem 255
diagram 59
direct image functor 73
direct product 32
discriminator function 36
discriminator variety 37

electrons 57, 174

elementary topos 71
epimorphism 59

equalizer 60

equational class 34
equivalence of morphisms 67
event structure 96
exponentiation 64

extension 45

conservative 45
definitional 46

Foata normal form 98
factor 56, 174
fiberings, morphism 104
filter 29

prime 29

principal 29

proper 29
finest cover 261
first element 24
first-order language 43

Index

formula 49
atomic 49
frame
for a language and a set of truth
values 164
domain 164
L-frame 152
SHn-frame 114
free generators 35
free partially commutative monoids
97
synchronization of 99
functor 61
contravariant 61
covariant 61

(Gluing) 223
graph 98
graph morphism 98
the category of undirected graphs
98
Grothendieck topology 68
basis of a 68
geometric axioms 75
geometric automata 101
geometric formulae 75
geometric morphism 73, 279
global family of elements 81
global invariance 288
global section 65, 104
global section functor 283
preservation properties 283
ground instance 173

Herbrand universe 90
Herbrand universe of a set of
clauses 173
Herbrand base 173
Herbrand interpretation 165
H-interpretation 173
H-unsatisfiability 173
Heyting algebra 25
complete 25
Hom-functors 62
hemimorphisms
join hemimorphism 147

Index

meet hemimorphism 147
higher dimensional automata 100
homomorphic image of an algebra

31
homomorphism of algebras 31
hyperresolution

negative 58

positive 58

(Independence) 224
ideal 29

prime 29

principal 29

proper 29
identity 34
increasing relation 148
indexed system 65
initial object 60
instance 55
interconnection of systems 259
interpolant 44
interpretation 49, 164
inverse image functor 73
inverse 49
isomorphism 59

Lindenbaum-Tarski algebra 47
Lukasiewicz-Moisil algebras 26
the n element Lukasiewicz-Moisil
algebra 26
language
of zero order 40,
first-order 43,
frame for a language and set of
truth valuse 164
lattice 23, 24
last element 24
first element 24
complete 24
distributive 24
modular 24
pseudocomplement 25
relative pseudocomplement 25
pseudo-complemented lattice 25
relatively pseudo-complemented
25

331

homomorphism 27
isomorphism 27
antimorphism 147
join irreducible element 28
meet irreducible element 28
limit 60
literal 55
labelled, negative 134, 156, 172
labelled, positive 134. 156, 172
signed 90
liveness (eventuality) properties 288
local morphism of systems 225
local section 104
locally trivial fiberings 104
logical fibering 104

many-valued negative hyperresolu-
tion 91
matching family 69
meaning function 115
model 45
L-model 153
SHn-model 115
morphism
in a category 58
epimorphism 59
monomorphism 59
morphism of algebras 31
morphism of lattices 27
morphism of signatures 52, 225
morphism of sites 73
morphism of systems 225

natural transformation 61
components of 61
natural isomorphism 61

nucleus 57, 174

Ockham algebra 176
objects 58

P1I-resolution 57
PI-clash 57
PI-deduction 57
PI-resolvent 57

332

Py, -algebra 177
partial correctness 288
partially commutative monoid of a
system 255
partially ordered multisets 100
partially-ordered set
order-isomorphism 29
Petri nets 95
idling event 95
independence of events 95
transitions in 95
morphisms of 95
category of 95
Post algebra 27
the n element Post algebra 27
Priestley duality
for distributive lattices 120
for Heyting algebras 121
for SHn-algebras 122
Priestley space 86
polynomial functions 35, 36
precedence properties 288
preservation of covers 73
presheaf 65
on a category 69
projection function 35
pseudo-Boolean algebra 25
pseudo-complemented lattice 25
pseudocomplement 25
pullback 60
pushout 60

quasi-boolean algebra 26

regular logics 91
relative pseudocomplement 25
renaming 55
representation theorems
Stone representation theorem for
finite Boolean algebras 28
Stone’s representation theorem
for Boolean algebras 30
Birkhoff representation for finite
distributive lattices 28
Priestley representation theorem
v. Priestley

Index

resolution 56

resolvent 56, 174
many-valued 90

restriction, to subsignature 50

SHKn-algebra 181
S H Kn-space 181
S Hn-algebra 112
deductive system 118
maximal deductive system 118
SHn-frame 114
S Hn-logics, Hilbert style axiomati-
zation 112
S Hn-model 115
S Hn-spaces 126
Sp2 113
Spec(A) 118
subdirect product 32
subdirectly irreducible 32
S-topology 80
safety (invariance) properties 288
satisfaction 34
satisfiability 49
section
global 65, 104
partial 65, 104
semantic resolution 57
semantic clash 57
sentence 43
sheaf 65
on a site 69
of algebras 79
subsheaf of a 67
sheafification functor 66
sieve 68
closed 69
signature 48
subsignature 50
signature morphism 52
signed conjunctive normal form 134
site 68
stalk 66
stalk functor 280

stalk functors, preservation prop-

erties 277
standard sheaf

Index

associated with an algebra in a
discriminator variety 82
associated with a SHn-algebra
119
standard sheaf representation of
an algebra 81
states of a system 216, 223
structure
Y-structure 48
morphism of Y-structures 49
structure-preserving translation 133
subobject 67
subobject classifier 67, 70
substitution 55
subsystem, inclusion of systems 233
subuniverse 30
switching function 36
system 221

term algebra 34
term 49

n-ary 34

ground 164
terminal object 60
theorem 41
theory 43, 45

restriction 44

union 44
total correctness and termination 288
totally order disconnected space 86
transition system 92

idle transition 93

morphism of 93

category of 93
transition-connected subsystem 240
transjunction 105
translation to definitional form 133

undirected graphs 98
morphism of 98
category of 98
unifier 55
most general 55
V-unifier 82
universal mapping property 35
universe 44

333

valid 165
variable assignment 164
variables
bound, free 43
variant 55
variety of algebras 33
semisimple 37

Yoneda
Yoneda embedding 62
Yoneda lemma 62

rc

= 145

r

= 115, 154

