Seminar Decision Procedures and Applications

Background Information

Viorica Sofronie-Stokkermans
University Koblenz-Landau

29 May 2018

Topics for the talks

- Tobias Justinger: Difference Logic and UTVPI Constraints
- Christoph Noll: Automata approach to Presburger arithmetic
- Sebastian Beck: Quantifier elimination for linear arithmetic over the integers
- Florian Kähne: Reasoning about uninterpreted function symbols
- Johannes Thielen: Instantiation-based decision procedures for theories of arrays.
- Christopher Biehl: Decision procedures for recursive data structures with integer constraints
- Jan Savelsberg: Data Structure Specifications via Local Equality Axioms.
- Thomas Senkowski: Decision procedures for sets of cardinalities
- Alexander Scheid-Rehder: Invariant checking; Bounded model checking
- Isabelle Kuhlmann: Interpolation
- Jan Krämer: Verification by abstraction/refinement.

Overview

We give a survey of decidability results in various theories.

- Reasoning in standard theories
- Reasoning in complex theories

Reasoning about standard datatypes

- Numbers
- Data structures
- natural numbers, integers, reals, rationals
- theories of lists
- theory of acyclic lists
- theory of arrays
- theories of sets, multisets

Reasoning in theory extensions

- Numbers
- integers, reals, rationals
- Data structures
- theories of lists
of integers, reals,
- theory of acyclic lists
of integers, reals, ...
- theory of arrays
of integers, reals, ...
- theories of sets of integers, reals, ...
+ functions (free, rec. def.) e.g : length, card

Modularity

Modular (i.e. black-box) composition of decision procedures is highly desirable - for saving time and resources.

Can we use provers for $\mathcal{T}_{1}, \mathcal{T}_{2}$ as blackboxes to prove theorems in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$? Which information needs to be exchanged between the provers?

Structure

Reasoning in standard theories
Presburger arithmetic: Christoph Noll, Sebastian Beck
Simpler fragments: UTVPI Tobias Justinger

Theory of uninterpreted function symbols
Graph theoretic approach: Florian Kähne

Theories of constructors and selectors: Christopher Biehl:
Theories of sets: Thomas Senkowski

Structure

Reasoning in complex theories

Modular reasoning in combinations of theories Disjoint signature: The Nelson-Oppen method

- Applications: complex data types

Fragment of theory of arrays: Johannes Thielen

Recursive data types with length constraints: Christopher Biehl

Fragment of theory of pointers: Jan Savelsberg

Sets with cardinalities: Thomas Senkowski

Structure

Applications: verification, interpolation

Invariant checking, BMC: Alexander Scheid-Rehder:
Interpolation: Isabelle Kuhlmann
Abstraction/Refinement: Jan Krämer

Conventions

In what follows we will use the following conventions:
constants (0-ary function symbols) are denoted with a, b, c, d, \ldots
function symbols with arity ≥ 1 are denoted

- f, g, h, \ldots if the formulae are interpreted into arbitrary algebras
$\bullet+,-, s, \ldots$ if the intended interpretation is into numerical domains
predicate symbols with arity 0 are denoted p, q, r, s, \ldots
predicate symbols with arity ≥ 1 are denoted
- P, Q, R, \ldots if the formulae are interpreted into arbitrary algebras
- $\leq, \geq,<,>$ if the intended interpretation is into numerical domains
variables are denoted x, y, z, \ldots

Logical theories

Syntactic view

Axiomatized by a set \mathcal{F} of (closed) first-order Σ-formulae.
the models of $\mathcal{F}: \quad \operatorname{Mod}(\mathcal{F})=\{\mathcal{A} \in \Sigma$-alg $\mid \mathcal{A} \models G$, for all G in $\mathcal{F}\}$

Semantic view
given a class \mathcal{M} of Σ-structures the first-order theory of $\mathcal{M}: \operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.$ closed $\left.\mid \mathcal{M} \vDash G\right\}$

Logical theories

```
Syntactic view
    Axiomatized by a set \mathcal{F}}\mathrm{ of (closed) first-order }\Sigma\mathrm{ -formulae.
    the models of \mathcal{F: }}\operatorname{Mod}(\mathcal{F})={\mathcal{A}\in\Sigma\mathrm{ -alg | A }\modelsG, for all G in \mathcal{F}
\[
\begin{array}{ll}
\mathcal{F} \subseteq \operatorname{Th}(\operatorname{Mod}(\mathcal{F})) & \text { (typically strict) } \\
\mathcal{M} \subseteq \operatorname{Mod}(\operatorname{Th}(\mathcal{M})) & \text { (typically strict) }
\end{array}
\]
```


Semantic view

```
given a class \(\mathcal{M}\) of \(\Sigma\)-structures the first-order theory of \(\mathcal{M}: \operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.\) closed \(\left.\mid \mathcal{M} \vDash G\right\}\)
```

$\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ the set of formulae true in all models of \mathcal{F} represents exactly the set of consequences of \mathcal{F}

Examples

1. Linear integer arithmetic. $\Sigma=(\{0 / 0, s / 1,+/ 2\},\{\leq / 2\})$
$\mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+, \leq)$ the standard interpretation of integers.
$\left\{\mathbb{Z}_{+}\right\} \subset \operatorname{Mod}\left(\operatorname{Th}\left(\mathbb{Z}_{+}\right)\right)$
2. Uninterpreted function symbols. $\Sigma=(\Omega$, Pred $)$
$\mathcal{M}=\Sigma$-alg: the class of all Σ-structures
The theory of uninterpreted function symbols is $\operatorname{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-structures.

Examples

3. Lists. $\Sigma=(\{c a r / 1, c d r / 1$, cons $/ 2\}, \emptyset)$
$\mathcal{F}=\left\{\begin{aligned} \operatorname{car}(\operatorname{cons}(x, y)) & \approx x \\ \operatorname{cdr}(\operatorname{cons}(x, y)) & \approx y \\ \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) & \approx x\end{aligned}\right.$
$\operatorname{Mod}(\mathcal{F})$: the class of all models of \mathcal{F}
$\mathrm{Th}_{\text {Lists }}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ theory of lists (axiomatized by $\left.\mathcal{F}\right)$

Decidable theories

$$
\Sigma=(\Omega, \text { Pred }) \text { be a signature. }
$$

\mathcal{M} : class of Σ-structures. $\quad \mathcal{T}=\operatorname{Th}(\mathcal{M})$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.
\mathcal{F} : class of (closed) first-order formulae.
The theory $\mathcal{T}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Examples

Undecidable theories

- Peano arithmetic

Axiomatized by: $\quad \forall x \neg(x+1 \approx 0)$
(zero)

$$
\begin{array}{lr}
\forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y & \text { (successor) } \tag{successor}\\
F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) & \text { (induction) } \\
\forall x(x+0 \approx x) & \text { (plus zero) } \\
\forall x, y(x+(y+1) \approx(x+y)+1) & \text { (plus successor) } \\
\forall x, y(x * 0 \approx 0) & \text { (times zero) } \\
\forall x, y(x *(y+1) \approx x * y+x) & \text { (times successor) }
\end{array}
$$

$3 * y+5>2 * y$ expressed as $\exists z(z \neq 0 \wedge 3 * y+5 \approx 2 * y+z)$
Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{\approx, \leq\})$
(does not capture true arithmetic by Gödel's incompleteness theorem)

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
-Th(Σ-alg $)$

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29] Signature: $(\{0,1,+\},\{\approx, \leq\})($ no $*)$

Axioms \{ (zero), (successor), (induction), (plus zero), (plus successor) \}
A decision procedure will be presented by Christoph Noll
A quantifier-elimination method with be presented by Sebastian Beck
A simple fragment (UTVPI) with be presented by Tobias Justinger

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments $\mathcal{L} \subseteq \operatorname{Fma}(\Sigma)$
"Simpler" task: Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?
Common restrictions on \mathcal{L}

$$
\text { Pred }=\emptyset \quad\{\phi \in \mathcal{L} \mid \mathcal{T} \models \phi\}
$$

$\mathcal{L}=\{\forall x A(x) \mid A$ atomic $\} \quad$ word problem
$\mathcal{L}=\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$ uniform word problem $T_{\forall \text { Horn }}$
$\mathcal{L}=\{\forall x C(x) \mid C(x)$ clause $\}$
$\mathcal{L}=\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$
clausal validity problem $\mathrm{Th}_{\forall, \mathrm{cl}}$ universal validity problem $T^{T} h{ }^{\prime}$

Validity of \forall formulae vs. ground satisfiability

The following are equivalent:
(1) $\mathcal{T} \models \forall x\left(L_{1}(x) \vee \cdots \vee L_{n}(x)\right)$
(2) There is no model of \mathcal{T} which satisfies $\exists x\left(\neg L_{1}(x) \wedge \cdots \wedge \neg L_{n}(x)\right)$
(3) There is no model of \mathcal{T} and no valuation for the constants c for which $\left(\neg L_{1}(c) \wedge \cdots \wedge \neg L_{n}(c)\right)$ becomes true (notation: $\left(\neg L_{1}(c) \wedge \cdots \wedge \neg L_{n}(c)\right) \models_{\mathcal{T}} \perp$)

Can reduce any validity problem to a ground satisfiability problem

Useful theories

Many example of theories in which ground satisfiability is decidable:

- The empty theory (no axioms) $\operatorname{UIF}(\Sigma)$
- linear (rational or integer) arithmetic
- theories axiomatizing common datatypes (lists, arrays)

The theory of uninterpreted function symbols

Let $\Sigma=(\Omega, \Pi)$ be arbitrary
Let $\mathcal{M}=\Sigma$-alg be the class of all Σ-structures
The theory of uninterpreted function symbols is $\operatorname{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-algebras.

- in general undecidable
- Satisfiability of conjunctions of ground literals is decidable (in PTIME)

The theory of uninterpreted function symbols

$\Sigma=(\Omega, \Pi)$ be arbitrary; $\mathcal{M}=\Sigma$-alg the class of all Σ-structures
The theory of uninterpreted function symbols is $\operatorname{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-algebras.

- in general undecidable
- Satisfiability of conjunctions of ground literals is decidable (in PTIME)

Method 1: DAG encoding [Downey-Sethi, Tarjan'76; Nelson-Oppen'80]

$$
f(a, b)=a \models f(f(a, b), b)=a \mapsto
$$

$v_{1}: \quad f(f(a, b), b)$
$v_{2}: \quad f(a, b)$
v_{3} : a
$v_{4}: b$
$R: \quad\left\{\left(v_{2}, v_{3}\right)\right\}$
Compute the "congruence closure" R^{c} of $R /$ check whether $\left(v_{1}, v_{3}\right) \in R^{c}$ Florian Kähne

Reasoning in combinations of theories

We are interested in testing satisfiability of ground formulae

Combination of theories

Combinations of theories and models

Forgetting symbols
Let $\Sigma=(\Omega, \Pi)$ and $\Sigma^{\prime}=\left(\Omega^{\prime}, \Pi^{\prime}\right)$ s.t. $\Sigma \subseteq \Sigma^{\prime}$, i.e., $\Omega \subseteq \Omega^{\prime}$ and $\Pi \subseteq \Pi^{\prime}$
For $\mathcal{A} \in \Sigma^{\prime}$-alg, we denote by $\mathcal{A}_{\mid \Sigma}$ the Σ-structure for which:

$$
U_{\mathcal{A}_{\mid \Sigma}}=U_{\mathcal{A}}, \quad f_{\mathcal{A}_{\mid \Sigma}}=f_{\mathcal{A}} \quad \text { for } f \in \Omega ;
$$

(ignore functions and predicates associated with symbols in $\Sigma^{\prime} \backslash \Sigma$)
$\mathcal{A}_{\mid \Sigma}$ is called the restriction (or the reduct) of \mathcal{A} to Σ.

$$
\begin{gathered}
\text { Example: } \quad \Sigma^{\prime}=(\{+/ 2, * / 2,1 / 0\},\{\leq / 2 \text {, even } / 1, \text { odd } / 1\}) \\
\Sigma=(\{+/ 2,1 / 0\},\{\leq / 2\}) \subseteq \Sigma^{\prime} \\
\mathcal{N}=(\mathbb{N},+, *, 1, \leq, \text { even, odd }) \quad \mathcal{N}_{\mid \Sigma}=(\mathbb{N},+, 1, \leq)
\end{gathered}
$$

One possibility of combining theories

Syntactic view: $\mathcal{T}_{1}+\mathcal{T}_{2}=\mathcal{T}_{1} \cup \mathcal{T}_{2} \subseteq F_{\Sigma_{1} \cup \Sigma_{2}}(X)$
$\operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A} \models G$, for all G in $\left.\mathcal{T}_{1} \cup \mathcal{T}_{2}\right\}$
where $\Sigma_{1} \cup \Sigma_{2}=\left(\Omega_{1}, \Pi_{1}\right) \cup\left(\Omega_{2}, \Pi_{2}\right)=\left(\Omega_{1} \cup \Omega_{2}, \Pi_{1} \cup \Pi_{2}\right)$

One possibility of combining theories

Syntactic view: $\mathcal{T}_{1}+\mathcal{T}_{2}=\mathcal{T}_{1} \cup \mathcal{T}_{2} \subseteq F_{\Sigma_{1} \cup \Sigma_{2}}(X)$
$\operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A} \models G$, for all G in $\left.\mathcal{T}_{1} \cup \mathcal{T}_{2}\right\}$

Semantic view: Let $\mathcal{M}_{i}=\operatorname{Mod}\left(\mathcal{T}_{i}\right), i=1,2$
$\mathcal{M}_{1}+\mathcal{M}_{2}=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A}_{\mid \Sigma_{i}} \in \mathcal{M}_{i}$ for $\left.i=1,2\right\}$

One possibility of combining theories

Syntactic view: $\mathcal{T}_{1}+\mathcal{T}_{2}=\mathcal{T}_{1} \cup \mathcal{T}_{2} \subseteq F_{\Sigma_{1} \cup \Sigma_{2}}(X)$
$\operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A} \models G$, for all G in $\left.\mathcal{T}_{1} \cup \mathcal{T}_{2}\right\}$

Semantic view: Let $\mathcal{M}_{i}=\operatorname{Mod}\left(\mathcal{T}_{i}\right), i=1,2$
$\mathcal{M}_{1}+\mathcal{M}_{2}=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A}_{\mid \Sigma_{i}} \in \mathcal{M}_{i}$ for $\left.i=1,2\right\}$
$\mathcal{A} \in \operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right) \quad$ iff $\quad \mathcal{A} \models G$, for all G in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ iff $\mathcal{A}_{\mid \Sigma_{i}} \models G$, for all G in $\mathcal{T}_{i}, i=1,2$
iff $\quad \mathcal{A}_{\mid \Sigma_{i}} \in \mathcal{M}_{i}, i=1,2$
iff $\mathcal{A} \in \mathcal{M}_{1}+\mathcal{M}_{2}$

One possibility of combining theories

Syntactic view: $\mathcal{T}_{1}+\mathcal{T}_{2}=\mathcal{T}_{1} \cup \mathcal{T}_{2} \subseteq F_{\Sigma_{1} \cup \Sigma_{2}}(X)$
$\operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A} \models G$, for all G in $\left.\mathcal{T}_{1} \cup \mathcal{T}_{2}\right\}$

Semantic view: Let $\mathcal{M}_{i}=\operatorname{Mod}\left(\mathcal{T}_{i}\right), i=1,2$
$\mathcal{M}_{1}+\mathcal{M}_{2}=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A}_{\mid \Sigma_{i}} \in \mathcal{M}_{i}$ for $\left.i=1,2\right\}$

Remark: $\mathcal{A} \in \operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)$ iff $\left(\mathcal{A}_{\mid \Sigma_{1}} \in \operatorname{Mod}\left(\mathcal{T}_{1}\right)\right.$ and $\mathcal{A}_{\left.\mid \Sigma_{2} \in \operatorname{Mod}\left(\mathcal{T}_{2}\right)\right)}$

Consequence: $\operatorname{Th}\left(\operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)\right)=\operatorname{Th}\left(\mathcal{M}_{1}+\mathcal{M}_{2}\right)$

Example

1. Presburger arithmetic + UIF
$\operatorname{Th}\left(\mathbb{Z}_{+}\right) \cup$ UIF $\quad \Sigma=(\Omega, \Pi)$
Models: $\left(A, 0, s,+,\left\{f_{A}\right\}_{f \in \Omega}, \leq,\left\{P_{A}\right\}_{P \in \Pi}\right)$
where $(A, 0, s,+, \leq) \in \operatorname{Mod}\left(\operatorname{Th}\left(\mathbb{Z}_{+}\right)\right)$.
2. The theory of reals + the theory of a monotone function f
$\operatorname{Th}(\mathbb{R}) \cup \operatorname{Mon}(f) \quad \operatorname{Mon}(f): \forall x, y(x \leq y \rightarrow f(x) \leq f(y))$
Models: $\left(A,+, *, f_{A},\{\leq\}\right)$, where
where $(A,+, *, \leq) \in \operatorname{Mod}(\operatorname{Th}(\mathbb{R}))$.

$$
\left(A, f_{A}, \leq\right) \models \operatorname{Mon}(f) \text {, i.e. } f_{A}: A \rightarrow A \text { monotone. }
$$

Note: The signatures of the two theories share the \leq predicate symbol

Combinations of theories

Definition. A theory is consistent if it has at least one model.

Question: Is the union of two consistent theories always consistent?
Answer: No. (Not even when the two theories have disjoint signatures)

$$
\begin{array}{ll}
\text { Example: } & \Sigma_{1}=\left(\Omega_{1}, \emptyset\right), \quad \Sigma_{2}=(\{c / 0, d / 0\}, \emptyset), \quad c, d \notin \Omega_{1} \\
& \mathcal{T}_{1}=\{\exists x, y, z(x \not \approx y \wedge x \not \approx z \wedge y \not \approx z)\} \\
& \mathcal{T}_{2}=\{\forall x(x \approx c \vee x \approx d)\} \\
& \mathcal{A} \in \operatorname{Mod}\left(\mathcal{T}_{1}\right) \quad \text { iff } \quad\left|U_{\mathcal{A}}\right| \geq 3 \\
\mathcal{B} \in \operatorname{Mod}\left(\mathcal{T}_{2}\right) \quad \text { iff } \quad\left|U_{\mathcal{B}}\right| \leq 2
\end{array}
$$

Combinations of theories

The combined decidability problem

For $i=1,2 \quad \bullet$ let \mathcal{T}_{i} be a first-order theory in signature Σ_{i}

- assume the \mathcal{T}_{i} ground satisfiability problem
is decidable

Let $\mathcal{T}_{1} \bigoplus \mathcal{T}_{2}$ be a combination of \mathcal{T}_{1} and \mathcal{T}_{2}
Question:
Is the $\mathcal{T}_{1} \bigoplus \mathcal{T}_{2}$ ground satisfiability problem decidable?

Goal: Modularity

Modular Reasoning

$\mathcal{T}_{0}: \Sigma_{0}$-theory.
Example:
$\operatorname{lists}(\mathbb{R}) \cup \operatorname{arrays}(\mathbb{R})$
$\mathcal{T}_{i}: \Sigma_{i}$-theory; $\quad \mathcal{T}_{0} \subseteq \mathcal{T}_{i} \quad \Sigma_{0} \subseteq \Sigma_{i}$.

Can use provers for $\mathcal{T}_{1}, \mathcal{T}_{2}$ as blackboxes to prove theorems in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$? Which information needs to be exchanged between the provers?

Combination of theories over disjoint signatures

The Nelson/Oppen procedure
Given: $\mathcal{T}_{1}, \mathcal{T}_{2}$ stably infinite first-order theories with signatures Σ_{1}, Σ_{2}
Assume that $\Sigma_{1} \cap \Sigma_{2}=\emptyset($ share only $\approx)$
P_{i} decision procedures for satisfiability of ground formulae w.r.t. \mathcal{T}_{i} ϕ quantifier-free formula over $\Sigma_{1} \cup \Sigma_{2}$

Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$

Note: Restrict to conjunctive quantifier-free formulae

$$
\phi \mapsto \operatorname{DNF}(\phi)
$$

$\operatorname{DNF}(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}

Example

[Nelson \& Oppen, 1979]
Theories

\mathcal{R}	theory of rationals	$\Sigma_{\mathcal{R}}=\{\leq,+,-, 0,1\}$	\approx
\mathcal{L}	theory of lists	$\Sigma_{\mathcal{L}}=\{$ car, cdr, cons $\}$	\approx
\mathcal{E}	theory of equality (UIF)	$\Sigma:$ free function and predicate symbols	\approx

Example

[Nelson \& Oppen, 1979]
Theories
\mathcal{R} theory of rationals $\quad \Sigma_{\mathcal{R}}=\{\leq,+,-, 0,1\} \quad \approx$
\mathcal{L} theory of lists $\quad \Sigma_{\mathcal{L}}=\{$ car, cdr, cons $\} \quad \approx$
\mathcal{E} theory of equality (UIF) Σ : free function and predicate symbols \approx

Problems:

1. $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \models \forall x, y(x \leq y \wedge y \leq x+\operatorname{car}(\operatorname{cons}(0, x)) \wedge P(h(x)-h(y)) \rightarrow P(0))$
2. Is the following conjunction:

$$
c \leq d \wedge d \leq c+\operatorname{car}(\operatorname{cons}(0, c)) \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} ?$

An Example

	\mathcal{R}	\mathcal{L}	\mathcal{E}
Σ	$\{\leq,+,-, 0,1\}$	$\{\operatorname{car}, \operatorname{cdr}, \operatorname{cons}\}$	$F \cup P$
Axioms	$x+0 \approx x$	$\operatorname{car}(\operatorname{cons}(x, y)) \approx x$	
(univ.	$x-x \approx 0$	$\operatorname{cdr}(\operatorname{cons}(x, y)) \approx y$	
quantif.)	\leq is A, C	$\operatorname{at}(x) \vee \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) \approx x$	
	$x \leq y \vee y \leq x$		
	$x \leq y \rightarrow x+z \leq y+z$		

Is the following conjunction:

$$
c \leq d \wedge d \leq c+\operatorname{car}(\operatorname{cons}(0, c)) \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

Step 1: Purification

Given: ϕ conjunctive quantifier-free formula over $\Sigma_{1} \cup \Sigma_{2}$
Task: Find ϕ_{1}, ϕ_{2} s.t. ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ equivalent with ϕ

$$
\begin{array}{lll}
f\left(s_{1}, \ldots, s_{n}\right) \approx g\left(t_{1}, \ldots, t_{m}\right) & \mapsto & u \approx f\left(s_{1}, \ldots, s_{n}\right) \wedge u \approx g\left(t_{1}, \ldots, t_{m}\right) \\
f\left(s_{1}, \ldots, s_{n}\right) \not \approx g\left(t_{1}, \ldots, t_{m}\right) & \mapsto & u \approx f\left(s_{1}, \ldots, s_{n}\right) \wedge v \approx g\left(t_{1}, \ldots, t_{m}\right) \wedge u \not \approx v \\
(\neg) P\left(\ldots, s_{i}, \ldots\right) & \mapsto & (\neg) P(\ldots, u, \ldots) \wedge u \approx s_{i} \\
(\neg) P\left(\ldots, s_{i}[t], \ldots\right) & \mapsto & (\neg) P\left(\ldots, s_{i}[t \mapsto u], \ldots\right) \wedge u \approx t \\
\quad \text { where } t \approx f\left(t_{1}, \ldots, t_{n}\right) & &
\end{array}
$$

Termination: Obvious
Correctness: $\phi_{1} \wedge \phi_{2}$ and ϕ equisatisfiable.

Step 1: Purification

$$
c \leq d \wedge d \leq c+\operatorname{car}(\operatorname{cons}(0, c)) \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

Step 1: Purification

$$
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

Step 1: Purification

$$
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)-h(d)}_{c_{2}}) \wedge \neg P(0)
$$

Step 1: Purification

Step 1: Purification

\mathcal{R}	\mathcal{L}	\mathcal{E}
$c \leq d$	$c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right)$	$P\left(c_{2}\right)$
$d \leq c+c_{1}$		$\neg P\left(c_{5}\right)$
$c_{2} \approx c_{3}-c_{4}$		$c_{3} \approx h(c)$
$c_{5} \approx 0$	$c_{4} \approx h(d)$	

Step 1: Purification

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{4}}-\underbrace{h(d)}_{c_{4}})}_{c_{3}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
\text { satisfiable } & c_{4} \approx h(d) \\
& \text { satisfiable }
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{2}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{E} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
& c_{4} \approx h(d)
\end{array}
$$

deduce and propagate equalities between constants entailed by components

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{2}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{E} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
& c_{4} \approx h(d)
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}}) \\
c_{2}
\end{array} \underbrace{P(\underbrace{0})}_{c_{5}} \begin{array}{ll}
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d & c_{1} \approx c_{5}
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{c(c)}_{c_{4}}-\underbrace{h(d)}_{c_{4}})}_{c_{3}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d & c \approx d \\
& c_{1} \approx c_{5}
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{c(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{3}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d & c \approx d \\
c_{2} \approx c_{5} & c_{3} \approx c_{5} \\
& \\
&
\end{array}
$$

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$: where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.

Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$:
where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.
not problematic; requires linear time
Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature
i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.
not problematic; termination guaranteed
Sound: if inconsistency detected input unsatisfiable
Complete: under additional assumptions

Implementation

ϕ conjunction of literals
Step 1. Purification: $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$, where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.

Step 2. Propagation: The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.
How to implement Propagation?
Guessing: guess a maximal set of literals containing the shared variables; check it for $\mathcal{T}_{i} \cup \phi_{i}$ consistency.
Backtracking: identify disjunction of equalities between shared variables entailed by $\mathcal{T}_{i} \cup \phi_{i}$; make case split by adding some of these equalities to ϕ_{1}, ϕ_{2}. Repeat as long as possible.

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness:
Completeness: Under additional hypotheses

Completeness

Example:

E_{1}	E_{2}
$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
$f(g(x), h(y)) \approx y$	
non-trivial	non-trivial

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"

Completeness

Example:

E_{1}	E_{2}
$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
$f(g(x), h(y)) \approx y$	
non-trivial	non-trivial

$g(c) \approx h(c) \wedge k(c) \not \approx c$

$$
\begin{array}{cc}
g(c) \approx h(c) & k(c) \not \approx c \\
\text { satisfiable in } E_{1} & \text { satisfiable in } E_{2}
\end{array}
$$

no equations between shared variables; Nelson-Oppen answers "satisfiable"
A model of E_{1} satisfies $g(c) \approx h(c) \quad$ iff $\quad \exists e \in A$ s.t. $g(e)=h(e)$.
Then, for all $a \in A: \quad a=f_{A}(g(a), g(e))=f_{A}(g(a), h(e))=e$
$g(c) \approx h(c) \wedge k(c) \not \approx c \quad$ unsatisfiable

Completeness

Another example

\mathcal{T}_{1} theory admitting models of cardinality at most 2
\mathcal{T}_{2} theory admitting models of any cardinality

$$
\begin{aligned}
& f_{1} \in \Sigma_{1}, f_{2} \in \Sigma_{2} \quad \text { such that } \quad \mathcal{T}_{i} \notin \forall x, y \quad f_{i}(x)=f_{i}(y) . \\
& \phi=f_{1}\left(c_{1}\right) \not \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right) \\
& \phi_{1}=f_{1}\left(c_{1}\right) \not \not \approx f_{1}\left(c_{2}\right) \quad \phi_{2}=f_{2}\left(c_{1}\right) \not \not \not f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right)
\end{aligned}
$$

The Nelson-Oppen procedure returns "satisfiable"

$$
\begin{gathered}
\mathcal{T}_{1} \cup \mathcal{T}_{2} \models \forall x, y, z\left(f_{1}(x) \not \approx f_{1}(y) \wedge f_{2}(x) \not \approx f_{2}(z) \wedge f_{2}(y) \not \approx f_{2}(z)\right. \\
\rightarrow(x \not \approx y \wedge x \not \approx z \wedge y \not \approx z))
\end{gathered}
$$

$f_{1}\left(c_{1}\right) \not \approx f_{1}\left(c_{2}\right) \wedge f_{2}\left(c_{1}\right) \not \approx f_{2}\left(c_{3}\right) \wedge f_{2}\left(c_{2}\right) \not \approx f_{2}\left(c_{3}\right) \quad$ unsatisfiable

Completeness

Cause of incompleteness
There exist formulae satisfiable in finite models of bounded cardinality
Solution: Consider stably infinite theories.
\mathcal{T} is stably infinite iff for every quantifier-free formula ϕ ϕ satisfiable in \mathcal{T} iff ϕ satisfiable in an infinite model of \mathcal{T}.

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

Completeness

Guessing version: C set of constants shared by ϕ_{1}, ϕ_{2}
R equiv. relation assoc. with partition of $C \mapsto \operatorname{ar}(C, R)=\bigwedge_{R(c, d)} c \approx d \wedge \bigwedge_{\neg R(c, d)} c \not \approx d$
Lemma. Assume that there exists a partition of C s.t. $\phi_{i} \wedge \operatorname{ar}(C, R)$ is \mathcal{T}_{i}-satisfiable. Then $\phi_{1} \wedge \phi_{2}$ is $\mathcal{T}_{1} \cup \mathcal{T}_{2}$-satisfiable.

Idea of proof: Let $\mathcal{A}_{i} \in \operatorname{Mod}\left(\mathcal{T}_{i}\right)$ s.t. $\mathcal{A}_{i} \models \phi_{i} \wedge \operatorname{ar}(C, R)$. Then $c_{A_{1}}=d_{A_{1}}$ iff $c_{A_{2}}=d_{A_{2}}$. Let $i:\left\{c_{A_{1}} \mid c \in C\right\} \rightarrow\left\{c_{A_{2}} \mid c \in C\right\}, i\left(c_{A_{1}}\right)=c_{A_{2}}$ well-defined; bijection. Stable infinity: can assume w.l.o.g. that $\mathcal{A}_{1}, \mathcal{A}_{2}$ have the same cardinality
Let $h: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ bijection s.t. $h\left(c_{A_{1}}\right)=c_{A_{2}}$
Use h to transfer the Σ_{1}-structure on \mathcal{A}_{2}.

Theorem. If $\mathcal{T}_{1}, \mathcal{T}_{2}$ are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating. Thus, it transfers decidability of ground satisfiability from $\mathcal{T}_{1}, \mathcal{T}_{2}$ to $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.

Applications

1. Decision Procedures for data types

Theories of arrays

We consider the theory of arrays in a many-sorted setting.
Theory of arrays $\mathcal{T}_{\text {arrays }}$:

- \mathcal{T}_{i} (theory of indices): Presburger arithmetic
- \mathcal{T}_{e} (theory of elements): arbitrary
- Axioms for read, write

$$
\begin{aligned}
\operatorname{read}(w r i t e(a, i, e), i) & \approx e \\
j \not \approx i \vee \operatorname{read}(\operatorname{write}(a, i, e), j) & =\operatorname{read}(a, j) .
\end{aligned}
$$

Theories of arrays

We consider the theory of arrays in a many-sorted setting.
Theory of arrays $\mathcal{T}_{\text {arrays }}$:

- \mathcal{T}_{i} (theory of indices): Presburger arithmetic
- \mathcal{T}_{e} (theory of elements): arbitrary
- Axioms for read, write

$$
\begin{aligned}
\operatorname{read}(w r i t e(a, i, e), i) & \approx e \\
j \not \approx i \vee \operatorname{read}(\operatorname{write}(a, i, e), j) & =\operatorname{read}(a, j) .
\end{aligned}
$$

Fact: Undecidable in general.
Goal: Identify a fragment of the theory of arrays which is decidable.

A decidable fragment

- Index guard a positive Boolean combination of atoms of the form $t \leq u$ or $t=u$ where t and u are either a variable or a ground term of sort Index
Example: $(x \leq 3 \vee x \approx y) \wedge y \leq z$ is an index guard
Example: $x+1 \leq c, \quad x+3 \leq y, \quad x+x \leq 2$ are not index guards.
- Array property formula [Bradley,Manna,Sipma'06] $(\forall i)\left(\varphi_{I}(i) \rightarrow \varphi_{V}(i)\right)$, where:
φ_{I} : index guard
φ_{V} : formula in which any universally quantified i occurs in a direct array read; no nestings
Example: $c \leq x \leq y \leq d \rightarrow a(x) \leq a(y)$ is an array property formula Example: $x<y \rightarrow a(x)<a(y)$ is not an array property formula

Johannes Thielen: Decision procedure for the array property fragment

Theories of recursive data structures with size

Theories of constructors/selectors
Lists (cons/car/cdr)
Binary trees (tree/left/right)

Size functions:
Lists:

$$
\operatorname{size}(\text { nil })=0
$$

$\operatorname{size}(\operatorname{cons}(a, I))=1+\operatorname{size}(I)$
Trees
$\operatorname{size}($ nil $)=0$
$\operatorname{size}\left(\operatorname{tree}\left(t_{1}, t_{2}\right)\right)=1+\operatorname{size}\left(t_{1}\right)+\operatorname{size}\left(t_{2}\right)$
Christopher Biehl: Decision procedures

Pointer Structures

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields $(p \rightarrow s)$;
- axioms: $\forall p \mathcal{E} \vee \mathcal{C} ; \quad \mathcal{E}$ contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_{1}\left(f_{2}\left(\ldots f_{n}(p)\right)\right)$ occurs in axiom, the axiom also contains:

$$
\left.p=\operatorname{null} \vee f_{n}(p)=\text { null } \vee \cdots \vee f_{2}\left(\ldots f_{n}(p)\right)\right)=\text { null }
$$

Example: doubly-linked lists; ordered elements

$$
\begin{aligned}
& \forall p(p \neq \text { null } \wedge p . \text { next } \neq \text { null } \rightarrow p . \text { next. prev }=p) \\
& \forall p(p \neq \text { null } \wedge p . \text { prev } \neq \text { null } \rightarrow p . \text { prev.next }=p) \\
& \forall p(p \neq \text { null } \wedge p . \text { next } \neq \text { null } \rightarrow p . \text { info } \leq p . \text { next.info })
\end{aligned}
$$

Jan Savelsberg: decision procedure for a fragment of the theory of pointers

Applications

2. Program Verification

Program	$\mapsto \quad T=\left(\Sigma\right.$, Init, Update $\left.\left(\Sigma, \Sigma^{\prime}\right)\right)$
Safety Property	$\mapsto \quad$ Formula Safe

Task: Prove that the safety property always holds (in general difficult)

Invariant checking
Init \vDash Safe
Safe \wedge Update $\left(\Sigma, \Sigma^{\prime}\right) \models$ Safe ${ }^{\prime}$

Bounded model checking: given $k \in \mathbb{N}$. Prove that for all $n \leq k$:
$\operatorname{Init}\left(\Sigma^{0}\right) \wedge \operatorname{Update} \mid\left(\Sigma^{0}, \Sigma^{1}\right) \wedge \cdots \wedge$ Update $\mid\left(\Sigma^{\mathrm{n}-1}, \Sigma^{\mathrm{n}}\right) \models \operatorname{Safe}\left(\Sigma^{\mathrm{n}}\right)$
Alexander Scheid-Rehder

Applications

2. Program Verification

Abstraction/Refinement

- Approximate system with a finite state system
- Unsafe state reachable from initial state in finite state system?

No: System safe
Yes: Check whether path corresponds to a real path in concrete system
Yes: Concrete system unsafe
No: Refine abstraction/ use e.g. interpolants

Isabelle Kuhlmann: Interpolation
Jan Krämer: Verification by abstraction/refinement

Overview

- Reasoning in standard theories

A crash course: Decidable logical theories and theory fragments

- Reasoning in complex theories

Modular reasoning in combinations of theories disjoint signature

- Applications

