Seminar Decision Procedures and Applications

Background Information

Viorica Sofronie-Stokkermans University Koblenz-Landau

29 May 2018

Topics for the talks

- Tobias Justinger: Difference Logic and UTVPI Constraints
- Christoph Noll: Automata approach to Presburger arithmetic
- Sebastian Beck: Quantifier elimination for linear arithmetic over the integers
- Florian Kähne: Reasoning about uninterpreted function symbols
- Johannes Thielen: Instantiation-based decision procedures for theories of arrays.
- Christopher Biehl: Decision procedures for recursive data structures with integer constraints
- Jan Savelsberg: Data Structure Specifications via Local Equality Axioms.
- Thomas Senkowski: Decision procedures for sets of cardinalities
- Alexander Scheid-Rehder: Invariant checking; Bounded model checking
- Isabelle Kuhlmann: Interpolation
- Jan Krämer: Verification by abstraction/refinement.

Overview

We give a survey of decidability results in various theories.

- Reasoning in standard theories
- Reasoning in complex theories

Reasoning about standard datatypes

- Numbers natural numbers, integers, reals, rationals
- Data structures theories of lists
 - theory of acyclic lists
 - theory of arrays
 - theories of sets, multisets

Reasoning in theory extensions

- Numbers - integers, reals, rationals
- Data structures - theories of lists
 - theory of acyclic lists
 - theory of arrays

- of integers, reals, ...
- of integers, reals, ...
- of integers, reals, ...
- theories of sets of integers, reals, ...
- + functions (free, rec. def.) e.g : length, card

Modularity

Modular (i.e. black-box) composition of decision procedures is highly desirable – for saving time and resources.

Structure

Reasoning in standard theories

Presburger arithmetic: Christoph Noll, Sebastian Beck

Simpler fragments: UTVPI Tobias Justinger

Theory of uninterpreted function symbols

Graph theoretic approach: Florian Kähne

Theories of constructors and selectors: Christopher Biehl: Theories of sets: Thomas Senkowski

Structure

Reasoning in complex theories

Modular reasoning in combinations of theories Disjoint signature: The Nelson-Oppen method

• Applications: complex data types

Fragment of theory of arrays: Johannes Thielen

Recursive data types with length constraints: Christopher Biehl

Fragment of theory of pointers: Jan Savelsberg

Sets with cardinalities: Thomas Senkowski

Structure

Applications: verification, interpolation

Invariant checking, BMC: Alexander Scheid-Rehder: Interpolation: Isabelle Kuhlmann Abstraction/Refinement: Jan Krämer

Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with *a*, *b*, *c*, *d*, ...

function symbols with arity ≥ 1 are denoted

- f, g, h, \dots if the formulae are interpreted into arbitrary algebras
- +, -, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted p, q, r, s, ...

predicate symbols with arity ≥ 1 are denoted

- P, Q, R, \dots if the formulae are interpreted into arbitrary algebras
- \leq , \geq , <, > if the intended interpretation is into numerical domains

variables are denoted x, y, z, ...

Logical theories

Syntactic view Axiomatized by a set \mathcal{F} of (closed) first-order Σ -formulae. the models of \mathcal{F} : $Mod(\mathcal{F}) = \{\mathcal{A} \in \Sigma\text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{F}\}$

Semantic view

given a class \mathcal{M} of Σ -structures the first-order theory of \mathcal{M} : Th $(\mathcal{M}) = \{G \in F_{\Sigma}(X) \text{ closed } | \mathcal{M} \models G\}$

Logical theories

 $\mathsf{Th}(\mathsf{Mod}(\mathcal{F}))$ the set of formulae true in all models of \mathcal{F} represents exactly the set of consequences of \mathcal{F}

1. Linear integer arithmetic. $\Sigma = (\{0/0, s/1, +/2\}, \{\le /2\})$

 $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers. $\{\mathbb{Z}_+\} \subset \mathsf{Mod}(\mathsf{Th}(\mathbb{Z}_+))$

2. Uninterpreted function symbols. $\Sigma = (\Omega, Pred)$

 $\mathcal{M} = \Sigma\text{-}\mathsf{alg:}$ the class of all $\Sigma\text{-}\mathsf{structures}$

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -structures.

3. Lists. $\Sigma = (\{\operatorname{car}/1, \operatorname{cdr}/1, \operatorname{cons}/2\}, \emptyset)$

$$\mathcal{F} = \begin{cases} \operatorname{car}(\operatorname{cons}(x, y)) \approx x \\ \operatorname{cdr}(\operatorname{cons}(x, y)) \approx y \end{cases}$$

 $\left\{\begin{array}{c} \operatorname{cons}(\operatorname{cons}(x,y)) \sim y\\ \operatorname{cons}(\operatorname{car}(x),\operatorname{cdr}(x)) \approx x\end{array}\right.$

 $Mod(\mathcal{F})$: the class of all models of \mathcal{F} $Th_{Lists} = Th(Mod(\mathcal{F}))$ theory of lists (axiomatized by \mathcal{F})

Decidable theories

 $\Sigma = (\Omega, \mathsf{Pred})$ be a signature.

 \mathcal{M} : class of Σ -structures. $\mathcal{T} = \mathsf{Th}(\mathcal{M})$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.

Undecidable theories

 Peano arithmet 	ic	
Axiomatized by:	$\forall x \neg (x+1 pprox 0)$	(zero)
	orall x orall y (x+1 pprox y+1 ightarrow x pprox y	(successor)
	$F[0] \land (\forall x (F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x])$	(induction)
	$\forall x (x + 0 \approx x)$	(plus zero)
	$orall x$, $y\left(x+(y+1)pprox(x+y)+1 ight)$	(plus successor)
	$\forall x, y (x * 0 pprox 0)$	(times zero)
	$orall x$, $y \left(x st \left(y + 1 ight) pprox x st y + x ight)$	(times successor)

3 * y + 5 > 2 * y expressed as $\exists z (z \neq 0 \land 3 * y + 5 \approx 2 * y + z)$

Intended interpretation: (\mathbb{N} , {0, 1, +, *}, { \approx, \leq })

(does not capture true arithmetic by Gödel's incompleteness theorem)

•Th((
$$\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}$$
))
•Th(Σ -alg)

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

Presburger arithmetic decidable in 3EXPTIME [Presburger'29]
 Signature: ({0, 1, +}, {≈, ≤}) (no *)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

- A decision procedure will be presented by Christoph Noll
- A quantifier-elimination method with be presented by Sebastian Beck
- A simple fragment (UTVPI) with be presented by Tobias Justinger

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments $\mathcal{L} \subseteq \mathsf{Fma}(\Sigma)$

"Simpler" task: Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Common restrictions on $\ensuremath{\mathcal{L}}$

	$Pred = \emptyset$	$\{\phi\in\mathcal{L}$	$\mid \mathcal{T} \models \phi \}$
$\mathcal{L} = \{ \forall x A(x) \mid A \text{ atomic} \}$	word problem		
$\mathcal{L} = \{ \forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic} \}$	uniform word pro	blem	Th_{VHorn}
$\mathcal{L} = \{ \forall x C(x) \mid C(x) \text{ clause} \}$	clausal validity p	roblem	$Th_{m{V},cl}$
$\mathcal{L}{=}\{\forall x \phi(x) \mid \phi(x) \text{ unquantified}\}$	universal validity	problem	Th∀

Validity of ∀ formulae vs. ground satisfiability

The following are equivalent:

(1)
$$\mathcal{T} \models \forall x (L_1(x) \lor \cdots \lor L_n(x))$$

(2) There is no model of \mathcal{T} which satisfies $\exists x(\neg L_1(x) \land \cdots \land \neg L_n(x))$

(3) There is no model of \mathcal{T} and no valuation for the constants cfor which $(\neg L_1(c) \land \cdots \land \neg L_n(c))$ becomes true (notation: $(\neg L_1(c) \land \cdots \land \neg L_n(c)) \models_{\mathcal{T}} \bot$)

Can reduce any validity problem to a ground satisfiability problem

Many example of theories in which ground satisfiability is decidable:

- The empty theory (no axioms) $UIF(\Sigma)$
- linear (rational or integer) arithmetic
- theories axiomatizing common datatypes (lists, arrays)

The theory of uninterpreted function symbols

- Let $\Sigma = (\Omega, \Pi)$ be arbitrary
- Let $\mathcal{M} = \Sigma\text{-alg}$ be the class of all $\Sigma\text{-structures}$

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

- in general undecidable
- Satisfiability of conjunctions of ground literals is decidable (in PTIME)

The theory of uninterpreted function symbols

 $\Sigma = (\Omega, \Pi)$ be arbitrary; $\mathcal{M} = \Sigma$ -alg the class of all Σ -structures

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -algebras.

- in general undecidable
- Satisfiability of conjunctions of ground literals is decidable (in PTIME)

Reasoning in combinations of theories

We are interested in testing satisfiability of ground formulae

Combination of theories

Combinations of theories and models

Forgetting symbols

Let $\Sigma = (\Omega, \Pi)$ and $\Sigma' = (\Omega', \Pi')$ s.t. $\Sigma \subseteq \Sigma'$, i.e., $\Omega \subseteq \Omega'$ and $\Pi \subseteq \Pi'$ For $\mathcal{A} \in \Sigma'$ -alg, we denote by $\mathcal{A}_{|\Sigma}$ the Σ -structure for which:

$$egin{aligned} & U_{\mathcal{A}_{\mid \Sigma}} = U_{\mathcal{A}}, & f_{\mathcal{A}_{\mid \Sigma}} = f_{\mathcal{A}} & ext{ for } f \in \Omega; \ & P_{\mathcal{A}_{\mid \Sigma}} = P_{\mathcal{A}} & ext{ for } P \in \Pi \end{aligned}$$

(ignore functions and predicates associated with symbols in $\Sigma' \backslash \Sigma)$

 $\mathcal{A}_{|\Sigma}$ is called the restriction (or the reduct) of \mathcal{A} to Σ .

$$\begin{array}{ll} \mbox{Example:} & \Sigma' = (\{+/2, */2, 1/0\}, \{\leq/2, \mbox{even}/1, \mbox{odd}/1\}) \\ & \Sigma = (\{+/2, 1/0\}, \{\leq/2\}) \subseteq \Sigma' \\ & \mathcal{N} = (\mathbb{N}, +, *, 1, \leq, \mbox{even}, \mbox{odd}) & \mathcal{N}_{|\Sigma} = (\mathbb{N}, +, 1, \leq) \end{array}$$

where $\Sigma_1 \cup \Sigma_2 = (\Omega_1, \Pi_1) \cup (\Omega_2, \Pi_2) = (\Omega_1 \cup \Omega_2, \Pi_1 \cup \Pi_2)$

Semantic view: Let $M_i = Mod(T_i)$, i = 1, 2

 $\mathcal{M}_1 + \mathcal{M}_2 = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2) \text{-} \mathsf{alg} \mid \mathcal{A}_{\mid \Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2 \}$

Semantic view: Let $\mathcal{M}_i = Mod(\mathcal{T}_i)$, i = 1, 2 $\mathcal{M}_1 + \mathcal{M}_2 = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2) \text{-alg} \mid \mathcal{A}_{\mid \Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2 \}$

 $\mathcal{A} \in \mathsf{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2)$ iff $\mathcal{A} \models G$, for all G in $\mathcal{T}_1 \cup \mathcal{T}_2$ iff $\mathcal{A}_{|\Sigma_i} \models G$, for all G in $\mathcal{T}_i, i = 1, 2$ iff $\mathcal{A}_{|\Sigma_i} \in \mathcal{M}_i, i = 1, 2$ iff $\mathcal{A} \in \mathcal{M}_1 + \mathcal{M}_2$

Semantic view: Let $\mathcal{M}_i = Mod(\mathcal{T}_i)$, i = 1, 2 $\mathcal{M}_1 + \mathcal{M}_2 = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2) \text{-alg} \mid \mathcal{A}_{\mid \Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2 \}$

Remark: $\mathcal{A} \in \mathsf{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2)$ iff $(\mathcal{A}_{|\Sigma_1} \in \mathsf{Mod}(\mathcal{T}_1) \text{ and } \mathcal{A}_{|\Sigma_2} \in \mathsf{Mod}(\mathcal{T}_2))$

Consequence: $Th(Mod(\mathcal{T}_1 \cup \mathcal{T}_2)) = Th(\mathcal{M}_1 + \mathcal{M}_2)$

1. Presburger arithmetic + UIF

 $\begin{aligned} \mathsf{Th}(\mathbb{Z}_+) \cup UIF & \Sigma = (\Omega, \Pi) \\ \text{Models:} \ (A, 0, s, +, \{f_A\}_{f \in \Omega}, \leq, \{P_A\}_{P \in \Pi}) \\ \text{where} \ (A, 0, s, +, \leq) \in \mathsf{Mod}(\mathsf{Th}(\mathbb{Z}_+)). \end{aligned}$

2. The theory of reals + the theory of a monotone function fTh(\mathbb{R}) \cup Mon(f) Mon(f): $\forall x, y(x \leq y \rightarrow f(x) \leq f(y)$) Models: $(A, +, *, f_A, \{\leq\})$, where where $(A, +, *, \leq) \in Mod(Th(\mathbb{R}))$. $(A, f_A, \leq) \models Mon(f)$, i.e. $f_A : A \rightarrow A$ monotone.

Note: The signatures of the two theories share the \leq predicate symbol

Combinations of theories

Definition. A theory is consistent if it has at least one model.

Question: Is the union of two consistent theories always consistent? **Answer:** No. (Not even when the two theories have disjoint signatures)

Combinations of theories

Goal: Modularity

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: $\mathcal{T}_1, \mathcal{T}_2$ stably infinite first-order theories with signatures Σ_1, Σ_2 Assume that $\Sigma_1 \cap \Sigma_2 = \emptyset$ (share only \approx) P_i decision procedures for satisfiability of ground formulae w.r.t. \mathcal{T}_i ϕ quantifier-free formula over $\Sigma_1 \cup \Sigma_2$

Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$

Note: Restrict to conjunctive quantifier-free formulae $\phi \mapsto DNF(\phi)$ $DNF(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}

[Nelson & Oppen, 1979]

Theories

${\cal R}$	theory of rationals	$\Sigma_{\mathcal{R}} = \{\leq$, +, -, 0, 1 $\}$	\approx
\mathcal{L}	theory of lists	$\Sigma_{\mathcal{L}} = \{ car, cdr, cons \}$	\approx
${\cal E}$	theory of equality (UIF)	Σ : free function and predicate symbols	\approx

[Nelson & Oppen, 1979]

Theories

${\cal R}$	theory of rationals	$\Sigma_{\mathcal{R}} = \{\leq$, +, -, 0, 1 $\}$	\approx
\mathcal{L}	theory of lists	$\Sigma_{\mathcal{L}} = \{ car, cdr, cons \}$	\approx
${\cal E}$	theory of equality (UIF)	Σ : free function and predicate symbols	\approx

Problems:

- 1. $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \models \forall x, y(x \leq y \land y \leq x + car(cons(0, x)) \land P(h(x) h(y)) \rightarrow P(0))$
- 2. Is the following conjunction:

$$c \leq d \land d \leq c + \operatorname{car}(\operatorname{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

An Example

	\mathcal{R}	\mathcal{L}	ε
Σ	$\{\leq, +, -, 0, 1\}$	$\{car, cdr, cons\}$	$F \cup P$
Axioms	$x + 0 \approx x$	$car(cons(x, y)) \approx x$	
	$x - x \approx 0$	$cdr(cons(x, y)) \approx y$	
(univ.	+ is <i>A</i> , <i>C</i>	$\operatorname{at}(x) \lor \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) \approx x$	
quantif.)	\leq is R, T, A	$\neg at(cons(x, y))$	
	$x \leq y \lor y \leq x$		
	$x \leq y \rightarrow x + z \leq y + z$		

Is the following conjunction:

$$c \leq d \ \land \ d \leq c + ext{car(cons(0, c))} \ \land \ P(h(c) - h(d)) \ \land \
eg P(0)$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

Given: ϕ conjunctive quantifier-free formula over $\Sigma_1 \cup \Sigma_2$

Task: Find ϕ_1, ϕ_2 s.t. ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ equivalent with ϕ

$$\begin{aligned} f(s_1, \ldots, s_n) &\approx g(t_1, \ldots, t_m) &\mapsto u \approx f(s_1, \ldots, s_n) \wedge u \approx g(t_1, \ldots, t_m) \\ f(s_1, \ldots, s_n) &\not\approx g(t_1, \ldots, t_m) &\mapsto u \approx f(s_1, \ldots, s_n) \wedge v \approx g(t_1, \ldots, t_m) \wedge u \not\approx v \\ (\neg) P(\ldots, s_i, \ldots) &\mapsto (\neg) P(\ldots, u, \ldots) \wedge u \approx s_i \\ (\neg) P(\ldots, s_i[t], \ldots) &\mapsto (\neg) P(\ldots, s_i[t \mapsto u], \ldots) \wedge u \approx t \\ &\text{where } t \approx f(t_1, \ldots, t_n) \end{aligned}$$

Termination: Obvious

Correctness: $\phi_1 \wedge \phi_2$ and ϕ equisatisfiable.

 $c \leq d \land d \leq c + \operatorname{car}(\operatorname{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(h(c) - h(d)) \land \neg P(0)$$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c) - h(d)}_{c_2}) \land \neg P(0)$$

\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$c_1 pprox ext{car(cons(c_5, c))}$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$

\mathcal{R}	\mathcal{L}	E
$c \leq d$	$\textit{c}_{1}pprox ext{car(cons(\textit{c}_{5}, c))}$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
satisfiable	satisfiable	satisfiable

deduce and propagate equalities between constants entailed by components

\mathcal{L}	Е
$c_1 pprox ext{car(cons(c_5, c))}$	P(<mark>c</mark> 2)
	$\neg P(c_5)$
	$c_3 \approx h(c)$
	$c_4 \approx h(d)$
	\mathcal{L} $c_1 \approx \operatorname{car}(\operatorname{cons}(c_5, c))$

 $c_1 pprox c_5$

\mathcal{R}	\mathcal{L}	E
$c \leq d$	$c_1 pprox car(cons(frac{c_5}, c))$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
$C_1 \approx C_5$	$C_1 \approx C_5$	
	-15	

c pprox d

37

\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$c_1 pprox ext{car(cons(c_5, c))}$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
$c_1 pprox c_5$	$c_1 \approx c_5$	cpprox d
$c \approx d$	1 5	$c_3 \approx c_4$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \land \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	E
$c \leq d$	$c_1 pprox ext{car(cons(c_5, c))}$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 \approx 0$		$c_4 \approx h(d)$
$c_1 pprox c_5$	$c_1 pprox c_5$	c pprox d
c pprox d		$c_3 pprox c_4$
$c_2 pprox c_5$		\perp

The Nelson-Oppen algorithm

 ϕ conjunction of literals

Step 1. Purification $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$: where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

Step 2. Propagation.

The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

The Nelson-Oppen algorithm

 ϕ conjunction of literals

Step 1. Purification $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$:

where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

not problematic; requires linear time

Step 2. Propagation.

The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; termination guaranteed Sound: if inconsistency detected input unsatisfiable Complete: under additional assumptions

Implementation

 ϕ conjunction of literals

Step 1. Purification: $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$, where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

Step 2. Propagation: The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared variables; check it for $\mathcal{T}_i \cup \phi_i$ consistency.

Backtracking: identify disjunction of equalities between shared variables entailed by $\mathcal{T}_i \cup \phi_i$; make case split by adding some of these equalities to ϕ_1, ϕ_2 . Repeat as long as possible.

The Nelson-Oppen algorithm

Termination:	only finitely many shared variables to be identified
Soundness:	If procedure answers "unsatisfiable" then ϕ is unsatisfiable
Completeness:	Under additional hypotheses

Completeness

Example:	E_1	E_2	
	$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$	
	$f(g(x), h(y)) \approx y$		
	non-trivial	non-trivial	
$g(c) \approx h(c) \wedge k(c) \not\approx c$			
	$g(c) \approx h(c)$	k(c)≉c	
	satisfiable in E_1	satisfiable in E_2	

no equations between shared variables; Nelson-Oppen answers "satisfiable"

Completeness

Example:	E_1	E_2
	$f(g(x), g(y)) \approx x$	$k(x) \approx k(x)$
	$f(g(x), h(y)) \approx y$	
	non-trivial	non-trivial
$g(c)\approx h(c)\wedge k(c) \approx$	C	
	$g(c) \approx h(c)$	k(c)≉c
:	satisfiable in E_1	satisfiable in E_2
and the second second second		

no equations between shared variables; Nelson-Oppen answers "satisfiable"

 $A \mod f E_1 \text{ satisfies } g(c) \approx h(c) \quad \text{iff} \quad \exists e \in A \text{ s.t. } g(e) = h(e).$ Then, for all $a \in A$: $a = f_A(g(a), g(e)) = f_A(g(a), h(e)) = e$

 $g(c) \approx h(c) \wedge k(c) \not\approx c$ unsatisfiable

Another example

 \mathcal{T}_1 theory admitting models of cardinality at most 2

 \mathcal{T}_2 theory admitting models of any cardinality

 $f_1 \in \Sigma_1, f_2 \in \Sigma_2$ such that $\mathcal{T}_i \not\models \forall x, y \quad f_i(x) = f_i(y).$

$$\phi = f_1(c_1) \not\approx f_1(c_2) \wedge f_2(c_1) \not\approx f_2(c_3) \wedge f_2(c_2) \not\approx f_2(c_3)$$

$$\phi_1 = f_1(c_1) \not\approx f_1(c_2) \quad \phi_2 = f_2(c_1) \not\approx f_2(c_3) \wedge f_2(c_2) \not\approx f_2(c_3)$$

The Nelson-Oppen procedure returns "satisfiable"

$$\mathcal{T}_1 \cup \mathcal{T}_2 \models orall x, y, z(f_1(x)
ot \approx f_1(y) \land f_2(x)
ot \approx f_2(z) \land f_2(y)
ot \approx f_2(z) \
ightarrow (x
ot lpha y \land x
ot lpha z \land y
ot lpha z))$$

 $f_1(c_1) \not\approx f_1(c_2) \wedge f_2(c_1) \not\approx f_2(c_3) \wedge f_2(c_2) \not\approx f_2(c_3)$ unsatisfiable

Completeness

Cause of incompleteness

There exist formulae satisfiable in finite models of bounded cardinality Solution: Consider stably infinite theories.

 \mathcal{T} is stably infinite iff for every quantifier-free formula ϕ ϕ satisfiable in \mathcal{T} iff ϕ satisfiable in an infinite model of \mathcal{T} .

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

Completeness

Guessing version: C set of constants shared by ϕ_1 , ϕ_2

R equiv. relation assoc. with partition of $C \mapsto ar(C, R) = \bigwedge_{R(c,d)} c \approx d \land \bigwedge_{\neg R(c,d)} c \not\approx d$

Lemma. Assume that there exists a partition of C s.t. $\phi_i \wedge ar(C, R)$ is \mathcal{T}_i -satisfiable. Then $\phi_1 \wedge \phi_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiable.

Idea of proof: Let $\mathcal{A}_i \in Mod(\mathcal{T}_i)$ s.t. $\mathcal{A}_i \models \phi_i \wedge ar(C, R)$. Then $c_{\mathcal{A}_1} = d_{\mathcal{A}_1}$ iff $c_{\mathcal{A}_2} = d_{\mathcal{A}_2}$. Let $i : \{c_{\mathcal{A}_1} \mid c \in C\} \rightarrow \{c_{\mathcal{A}_2} \mid c \in C\}, i(c_{\mathcal{A}_1}) = c_{\mathcal{A}_2}$ well-defined; bijection. Stable infinity: can assume w.l.o.g. that $\mathcal{A}_1, \mathcal{A}_2$ have the same cardinality Let $h : \mathcal{A}_1 \rightarrow \mathcal{A}_2$ bijection s.t. $h(c_{\mathcal{A}_1}) = c_{\mathcal{A}_2}$ Use h to transfer the Σ_1 -structure on \mathcal{A}_2 .

Theorem. If \mathcal{T}_1 , \mathcal{T}_2 are both stably infinite and the shared signature is empty then the Nelson-Oppen procedure is sound, complete and terminating. Thus, it transfers decidability of ground satisfiability from \mathcal{T}_1 , \mathcal{T}_2 to $\mathcal{T}_1 \cup \mathcal{T}_2$.

Applications

1. Decision Procedures for data types

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays T_{arrays} :

- \mathcal{T}_i (theory of indices): Presburger arithmetic
- \mathcal{T}_e (theory of elements): arbitrary
- Axioms for read, write

 $read(write(a, i, e), i) \approx e$ $j \not\approx i \lor read(write(a, i, e), j) = read(a, j).$

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays T_{arrays} :

- \mathcal{T}_i (theory of indices): Presburger arithmetic
- \mathcal{T}_e (theory of elements): arbitrary
- Axioms for read, write

$$read(write(a, i, e), i) \approx e$$

 $j \not\approx i \lor read(write(a, i, e), j) = read(a, j).$

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

A decidable fragment

Index guard a positive Boolean combination of atoms of the form
 t ≤ u or t = u where t and u are either a variable or a ground term of sort Index

Example: $(x \le 3 \lor x \approx y) \land y \le z$ is an index guard

Example: $x + 1 \le c$, $x + 3 \le y$, $x + x \le 2$ are not index guards.

• Array property formula [Bradley, Manna, Sipma'06]

 $(\forall i)(\varphi_I(i) \rightarrow \varphi_V(i))$, where:

 φ_I : index guard

 φ_V : formula in which any universally quantified *i* occurs in a direct array read; no nestings

Example: $c \le x \le y \le d \rightarrow a(x) \le a(y)$ is an array property formula

Example: $x < y \rightarrow a(x) < a(y)$ is not an array property formula

Johannes Thielen: Decision procedure for the array property fragment

Theories of recursive data structures with size

Theories of constructors/selectors

Lists (cons/car/cdr)

```
Binary trees (tree/left/right)
```

Size functions:

```
Lists:

size(nil) = 0

size(cons(a, l)) = 1 + size(l)

Trees

size(nil) = 0

size(tree(t_1, t_2)) = 1 + size(t_1) + size(t_2)
```

Christopher Biehl: Decision procedures

Pointer Structures

[McPeak, Necula 2005]

- pointer sort p, scalar sort s; pointer fields $(p \rightarrow p)$; scalar fields $(p \rightarrow s)$;
- axioms: $\forall p \ \mathcal{E} \lor \mathcal{C}$; \mathcal{E} contains disjunctions of pointer equalities \mathcal{C} contains scalar constraints

Assumption: If $f_1(f_2(...f_n(p)))$ occurs in axiom, the axiom also contains: p=null $\lor f_n(p)=$ null $\lor \cdots \lor f_2(...f_n(p)))=$ null

Example: doubly-linked lists; ordered elements

 $\begin{array}{l} \forall p \ (p \neq \text{null} \land p.\text{next} \neq \text{null} \rightarrow p.\text{next.prev} = p) \\ \forall p \ (p \neq \text{null} \land p.\text{prev} \neq \text{null} \rightarrow p.\text{prev.next} = p) \\ \forall p \ (p \neq \text{null} \land p.\text{next} \neq \text{null} \rightarrow p.\text{info} \leq p.\text{next.info}) \end{array}$

Jan Savelsberg: decision procedure for a fragment of the theory of pointers

Applications

2. Program Verification

Task: Prove that the safety property always holds (in general difficult)

Invariant checking

 $Init \models Safe$

 $\mathsf{Safe} \land \mathsf{Update}(\Sigma, \Sigma') \models \mathsf{Safe'}$

Bounded model checking: given $k \in \mathbb{N}$. Prove that for all $n \leq k$: Init $(\Sigma^0) \wedge \text{Update}|(\Sigma^0, \Sigma^1) \wedge \cdots \wedge \text{Update}|(\Sigma^{n-1}, \Sigma^n) \models \text{Safe}(\Sigma^n)$

Alexander Scheid-Rehder

Applications

2. Program Verification

Abstraction/Refinement

- Approximate system with a finite state system
- Unsafe state reachable from initial state in finite state system?
 - No: System safe
 - Yes: Check whether path corresponds to a real path in concrete system

Yes: Concrete system unsafe

No: Refine abstraction/ use e.g. interpolants

Isabelle Kuhlmann: Interpolation

Jan Krämer: Verification by abstraction/refinement

Overview

• Reasoning in standard theories

A crash course: Decidable logical theories and theory fragments

• Reasoning in complex theories

Modular reasoning in combinations of theories disjoint signature

• Applications