
Seminar Decision Procedures and
Applications

Background Information

Viorica Sofronie-Stokkermans

University Koblenz-Landau

29 May 2018

1

Topics for the talks

• Tobias Justinger: Difference Logic and UTVPI Constraints

• Christoph Noll: Automata approach to Presburger arithmetic

• Sebastian Beck: Quantifier elimination for linear arithmetic over the integers

• Florian Kähne: Reasoning about uninterpreted function symbols

• Johannes Thielen: Instantiation-based decision procedures for theories of arrays.

• Christopher Biehl: Decision procedures for recursive data structures with integer

constraints

• Jan Savelsberg: Data Structure Specifications via Local Equality Axioms.

• Thomas Senkowski: Decision procedures for sets of cardinalities

• Alexander Scheid-Rehder: Invariant checking; Bounded model checking

• Isabelle Kuhlmann: Interpolation

• Jan Krämer: Verification by abstraction/refinement.

2

Overview

We give a survey of decidability results in various theories.

• Reasoning in standard theories

• Reasoning in complex theories

3

Reasoning about standard datatypes

• Numbers - natural numbers, integers, reals, rationals

• Data structures - theories of lists

- theory of acyclic lists

- theory of arrays

- theories of sets, multisets

4

Reasoning in theory extensions

• Numbers - integers, reals, rationals

• Data structures - theories of lists of integers, reals, . . .

- theory of acyclic lists of integers, reals, . . .

- theory of arrays of integers, reals, . . .

- theories of sets of integers, reals, . . .

+ functions (free, rec. def.) e.g : length, card

5

Modularity

Modular (i.e. black-box) composition of decision procedures is highly

desirable – for saving time and resources.

Modular Reasoning Example:

T1 T0 T2
T0: Σ0-theory. lists(R) ∪ arrays(R)

Ti : Σi -theory; T0 ⊆ Ti Σ0 ⊆ Σi .

Can we use provers for T1, T2 as blackboxes to prove theorems in T1 ∪ T2?

Which information needs to be exchanged between the provers?

6

Structure

•Reasoning in standard theories

Presburger arithmetic: Christoph Noll, Sebastian Beck

Simpler fragments: UTVPI Tobias Justinger

Theory of uninterpreted function symbols

Graph theoretic approach: Florian Kähne

Theories of constructors and selectors: Christopher Biehl:

Theories of sets: Thomas Senkowski

7

Structure

•Reasoning in complex theories

Modular reasoning in combinations of theories

Disjoint signature: The Nelson-Oppen method

• Applications: complex data types

Fragment of theory of arrays: Johannes Thielen

Recursive data types with length constraints: Christopher Biehl

Fragment of theory of pointers: Jan Savelsberg

Sets with cardinalities: Thomas Senkowski

8

Structure

•Applications: verification, interpolation

Invariant checking, BMC: Alexander Scheid-Rehder:

Interpolation: Isabelle Kuhlmann

Abstraction/Refinement: Jan Krämer

9

Conventions

In what follows we will use the following conventions:

constants (0-ary function symbols) are denoted with a, b, c, d , ...

function symbols with arity ≥ 1 are denoted

• f , g , h, ... if the formulae are interpreted into arbitrary algebras

• +,−, s, ... if the intended interpretation is into numerical domains

predicate symbols with arity 0 are denoted p, q, r , s, ...

predicate symbols with arity ≥ 1 are denoted

• P,Q,R, ... if the formulae are interpreted into arbitrary algebras

• ≤,≥,<,> if the intended interpretation is into numerical domains

variables are denoted x , y , z, ...

10

Logical theories

Syntactic view

Axiomatized by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-structures

the first-order theory of M: Th(M) = {G ∈ FΣ(X) closed | M |= G}

11

Logical theories

Syntactic view

Axiomatized by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-structures

the first-order theory of M: Th(M) = {G ∈ FΣ(X) closed | M |= G}

Th(Mod(F)) the set of formulae true in all models of F

represents exactly the set of consequences of F

F ⊆ Th(Mod(F)) (typically strict)

M ⊆ Mod(Th(M)) (typically strict)

12

Examples

1. Linear integer arithmetic. Σ = ({0/0, s/1,+/2}, {≤ /2})

Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.

{Z+} ⊂ Mod(Th(Z+))

2. Uninterpreted function symbols. Σ = (Ω, Pred)

M = Σ-alg: the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg)

the family of all first-order formulae which are true in all Σ-structures.

13

Examples

3. Lists. Σ = ({car/1, cdr/1, cons/2}, ∅)

F =







car(cons(x , y)) ≈ x

cdr(cons(x , y)) ≈ y

cons(car(x), cdr(x)) ≈ x

Mod(F): the class of all models of F

ThLists = Th(Mod(F)) theory of lists (axiomatized by F)

14

Decidable theories

Σ = (Ω, Pred) be a signature.

M: class of Σ-structures. T = Th(M) is decidable

iff

there is an algorithm which, for every closed first-order formula φ, can

decide (after a finite number of steps) whether φ is in T or not.

F : class of (closed) first-order formulae.

The theory T = Th(Mod(F)) is decidable

iff

there is an algorithm which, for every closed first-order formula φ, can

decide (in finite time) whether F |= φ or not.

15

Examples

Undecidable theories

• Peano arithmetic
Axiomatized by:

A

x ¬(x + 1 ≈ 0) (zero)

A

x

A

y (x + 1 ≈ y + 1 → x ≈ y (successor)

F [0] ∧ (

A

x (F [x] → F [x + 1]) →

A

xF [x]) (induction)

A

x (x + 0 ≈ x) (plus zero)

A
x , y (x + (y + 1) ≈ (x + y) + 1) (plus successor)

A

x , y (x ∗ 0 ≈ 0) (times zero)

A

x , y (x ∗ (y + 1) ≈ x ∗ y + x) (times successor)

3 ∗ y + 5 > 2 ∗ y expressed as

E

z(z 6= 0 ∧ 3 ∗ y + 5 ≈ 2 ∗ y + z)

Intended interpretation: (N, {0, 1,+, ∗}, {≈,≤})

(does not capture true arithmetic by Gödel’s incompleteness theorem)

•Th((Z, {0, 1,+, ∗}, {≤}))

•Th(Σ-alg)

16

Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

17

Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• Presburger arithmetic decidable in 3EXPTIME [Presburger’29]

Signature: ({0, 1,+}, {≈,≤}) (no ∗)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

A decision procedure will be presented by Christoph Noll

A quantifier-elimination method with be presented by Sebastian Beck

A simple fragment (UTVPI) with be presented by Tobias Justinger

18

Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication)

is decidable in 2EXPTIME [Tarski’30]

19

Examples

In order to obtain decidability results:

• Restrict the signature

• Enrich axioms

• Look at certain fragments L ⊆ Fma(Σ)

“Simpler” task: Given φ in L, is it the case that T |= φ?

Common restrictions on L

Pred = ∅ {φ ∈ L | T |= φ}

L={

A

xA(x) | A atomic} word problem

L={

A

x(A1∧ . . .∧An→B) | Ai ,B atomic} uniform word problem Th A

Horn

L={

A

xC(x) | C(x) clause} clausal validity problem Th A

,cl

L={

A

xφ(x) | φ(x) unquantified} universal validity problemTh A

20

Validity of

A

formulae vs. ground satisfiability

The following are equivalent:

(1) T |=

A

x(L1(x) ∨ · · · ∨ Ln(x))

(2) There is no model of T which satisfies

E

x(¬L1(x) ∧ · · · ∧ ¬Ln(x))

(3) There is no model of T and no valuation for the constants c

for which (¬L1(c) ∧ · · · ∧ ¬Ln(c)) becomes true

(notation: (¬L1(c) ∧ · · · ∧ ¬Ln(c)) |=T ⊥)

Can reduce any validity problem to a ground satisfiability problem

21

Useful theories

Many example of theories in which ground satisfiability is

decidable:

• The empty theory (no axioms) UIF (Σ)

• linear (rational or integer) arithmetic

• theories axiomatizing common datatypes (lists, arrays)

22

The theory of uninterpreted function symbols

Let Σ = (Ω,Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family of all

first-order formulae which are true in all Σ-algebras.

- in general undecidable

- Satisfiability of conjunctions of ground literals is decidable (in PTIME)

23

The theory of uninterpreted function symbols

Σ = (Ω,Π) be arbitrary; M = Σ-alg the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family of all

first-order formulae which are true in all Σ-algebras.

- in general undecidable

- Satisfiability of conjunctions of ground literals is decidable (in PTIME)

Method 1: DAG encoding [Downey-Sethi, Tarjan’76; Nelson-Oppen’80]

f (a, b) = a |= f (f (a, b), b) = a 7→
2v

f

f

ba

v
1

3v 4v

v1 : f (f (a, b), b)
v2 : f (a, b)
v3 : a

v4 : b

R : {(v2, v3)}

Compute the “congruence closure” Rc of R / check whether (v1, v3) ∈ Rc

Florian Kähne

24

Reasoning in combinations of theories

We are interested in testing satisfiability of ground formulae

25

Combination of theories

26-1

Combinations of theories and models

Forgetting symbols

Let Σ = (Ω,Π) and Σ′ = (Ω′, Π′) s.t. Σ ⊆ Σ′, i.e., Ω ⊆ Ω′ and Π ⊆ Π′

For A ∈ Σ′-alg, we denote by A|Σ the Σ-structure for which:

UA|Σ
= UA, fA|Σ

= fA for f ∈ Ω;

PA|Σ
= PA for P ∈ Π

(ignore functions and predicates associated with symbols in Σ′\Σ)

A|Σ is called the restriction (or the reduct) of A to Σ.

Example: Σ′ = ({+/2, ∗/2, 1/0}, {≤ /2, even/1, odd/1})

Σ = ({+/2, 1/0}, {≤ /2}) ⊆ Σ′

N = (N, +, ∗, 1,≤, even, odd) N|Σ = (N, +, 1,≤)

27

One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X)

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

where Σ1 ∪ Σ2 = (Ω1, Π1) ∪ (Ω2, Π2) = (Ω1 ∪ Ω2, Π1 ∪ Π2)

28

One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X)

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}

29

One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X)

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}

A ∈ Mod(T1 ∪ T2) iff A |= G , for all G in T1 ∪ T2

iff A|Σi
|= G , for all G in Ti , i = 1, 2

iff A|Σi
∈ Mi , i = 1, 2

iff A ∈ M1 +M2

30

One possibility of combining theories

Syntactic view: T1 + T2 = T1 ∪ T2 ⊆ FΣ1∪Σ2(X)

Mod(T1 ∪ T2) = {A ∈ (Σ1 ∪ Σ2)-alg | A |= G , for all G in T1 ∪ T2}

Semantic view: Let Mi = Mod(Ti), i = 1, 2

M1 +M2 = {A ∈ (Σ1 ∪ Σ2)-alg | A|Σi
∈ Mi for i = 1, 2}

Remark: A∈Mod(T1 ∪ T2) iff (A|Σ1
∈Mod(T1) and A|Σ2

∈Mod(T2))

Consequence: Th(Mod(T1 ∪ T2)) = Th(M1 +M2)

31

Example

1. Presburger arithmetic + UIF

Th(Z+) ∪ UIF Σ = (Ω,Π)

Models: (A, 0, s, +, {fA}f∈Ω,≤, {PA}P∈Π)

where (A, 0, s, +,≤) ∈ Mod(Th(Z+)).

2. The theory of reals + the theory of a monotone function f

Th(R) ∪Mon(f) Mon(f) :

A

x , y(x ≤ y → f (x) ≤ f (y))

Models: (A, +, ∗, fA, {≤}), where

where (A, +, ∗,≤) ∈ Mod(Th(R)).

(A, fA,≤) |= Mon(f), i.e. fA : A → A monotone.

Note: The signatures of the two theories share the ≤ predicate symbol

32

Combinations of theories

Definition. A theory is consistent if it has at least one model.

Question: Is the union of two consistent theories always consistent?

Answer: No. (Not even when the two theories have disjoint signatures)

Example: Σ1 = (Ω1, ∅), Σ2 = ({c/0, d/0}, ∅), c, d 6∈ Ω1

T1 = {

E

x , y , z(x 6≈ y ∧ x 6≈ z ∧ y 6≈ z)}

T2 = {

A

x(x ≈ c ∨ x ≈ d)}

A ∈ Mod(T1) iff |UA| ≥ 3.

B ∈ Mod(T2) iff |UB| ≤ 2.

33

Combinations of theories

The combined decidability problem

For i = 1, 2 • let Ti be a first-order theory in signature Σi

• assume the Ti ground satisfiability problem
is decidable

Let T1
⊕

T2 be a combination of T1 and T2

Question:

Is the T1
⊕

T2 ground satisfiability problem decidable?

34

Goal: Modularity

Modular Reasoning Example:

T1 T0 T2
T0: Σ0-theory. lists(R) ∪ arrays(R)

Ti : Σi -theory; T0 ⊆ Ti Σ0 ⊆ Σi .

Can use provers for T1, T2 as blackboxes to prove theorems in T1 ∪ T2?

Which information needs to be exchanged between the provers?

35

Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: T1, T2 stably infinite first-order theories with signatures Σ1, Σ2

Assume that Σ1 ∩ Σ2 = ∅ (share only ≈)

Pi decision procedures for satisfiability of ground formulae w.r.t. Ti

φ quantifier-free formula over Σ1 ∪ Σ2

Task: Check whether φ is satisfiable w.r.t. T1 ∪ T2

Note: Restrict to conjunctive quantifier-free formulae

φ 7→ DNF (φ)

DNF (φ) satisfiable in T iff one of the disjuncts satisfiable in T

36

Example

[Nelson & Oppen, 1979]

Theories

R theory of rationals ΣR = {≤, +,−, 0, 1} ≈

L theory of lists ΣL = {car, cdr, cons} ≈

E theory of equality (UIF) Σ: free function and predicate symbols ≈

37

Example

[Nelson & Oppen, 1979]

Theories

R theory of rationals ΣR = {≤, +,−, 0, 1} ≈

L theory of lists ΣL = {car, cdr, cons} ≈

E theory of equality (UIF) Σ: free function and predicate symbols ≈

Problems:

1. R∪L∪E |=

A

x , y(x≤y ∧ y≤x+car(cons(0, x)) ∧ P(h(x)−h(y)) → P(0))

2. Is the following conjunction:

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

satisfiable in R∪ L ∪ E?

38

An Example

R L E

Σ {≤, +,−, 0, 1} {car, cdr, cons} F ∪ P

Axioms x + 0 ≈ x car(cons(x , y))≈x

x − x ≈ 0 cdr(cons(x , y))≈y

(univ. + is A,C at(x)∨cons(car(x), cdr(x))≈x

quantif.) ≤ is R,T ,A ¬at(cons(x , y))

x ≤ y ∨ y ≤ x

x≤y→x+z≤y+z

Is the following conjunction:

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

satisfiable in R∪ L ∪ E ?

39

Step 1: Purification

Given: φ conjunctive quantifier-free formula over Σ1 ∪ Σ2

Task: Find φ1,φ2 s.t. φi is a pure Σi -formula and φ1 ∧ φ2 equivalent with φ

f (s1, . . . , sn) ≈ g(t1, . . . , tm) 7→ u≈f (s1, . . . , sn) ∧ u≈g(t1, . . . , tm)

f (s1, . . . , sn) 6≈ g(t1, . . . , tm) 7→ u≈f (s1, . . . , sn) ∧ v≈g(t1, . . . , tm) ∧ u 6≈ v

(¬)P(. . . , si , . . .) 7→ (¬)P(. . . , u, . . .) ∧ u≈si

(¬)P(. . . , si [t], . . .) 7→ (¬)P(. . . , si [t 7→ u], . . .) ∧ u≈t

where t ≈ f (t1, . . . , tn)

Termination: Obvious

Correctness: φ1 ∧ φ2 and φ equisatisfiable.

40

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c)) ∧ P(h(c)− h(d)) ∧ ¬P(0)

41

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)− h(d)) ∧ ¬P(0)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)− h(d)
︸ ︷︷ ︸

c2

) ∧ ¬P(0)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

36

Step 1: Purification

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

satisfiable satisfiable satisfiable

36

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

deduce and propagate equalities between constants entailed by components

37

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5

37

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5

c ≈ d

37

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5 c ≈ d

c ≈ d c3 ≈ c4

37

Step 2: Propagation

c ≤ d ∧ d ≤ c + car(cons(0, c))
︸ ︷︷ ︸

c1

∧ P(h(c)
︸︷︷︸

c3

− h(d)
︸︷︷︸

c4
︸ ︷︷ ︸

c2

) ∧ ¬P(0
︸︷︷︸

c5

)

R L E

c ≤ d c1 ≈ car(cons(c5, c)) P(c2)

d ≤ c + c1 ¬P(c5)

c2 ≈ c3 − c4 c3 ≈ h(c)

c5 ≈ 0 c4 ≈ h(d)

c1 ≈ c5 c1 ≈ c5 c ≈ d

c ≈ d c3 ≈ c4

c2 ≈ c5 ⊥

37

The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

38

The Nelson-Oppen algorithm

φ conjunction of literals

Step 1. Purification T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2):

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation.

The decision procedure for ground satisfiability for T1 and T2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; requires linear time

not problematic; termination guaranteed

Sound: if inconsistency detected input unsatisfiable

Complete: under additional assumptions

39

Implementation

φ conjunction of literals

Step 1. Purification: T1 ∪ T2 ∪ φ 7→ (T1 ∪ φ1) ∪ (T2 ∪ φ2),

where φi is a pure Σi -formula and φ1 ∧ φ2 is equisatisfiable with φ.

Step 2. Propagation: The decision procedure for ground satisfiability

for T1 and T2 fairly exchange information concerning entailed

unsatisfiability of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

How to implement Propagation?

Guessing: guess a maximal set of literals containing the shared

variables; check it for Ti ∪ φi consistency.

Backtracking: identify disjunction of equalities between shared variables

entailed by Ti ∪ φi ; make case split by adding some of these

equalities to φ1,φ2. Repeat as long as possible.

40

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified

Soundness: If procedure answers “unsatisfiable” then φ is unsatisfiable

Completeness: Under additional hypotheses

41

Completeness

Example:
E1 E2

f (g(x), g(y)) ≈ x k(x) ≈ k(x)

f (g(x), h(y)) ≈ y

non-trivial non-trivial

g(c)≈h(c) ∧ k(c)6≈c

g(c)≈h(c) k(c)6≈c

satisfiable in E1 satisfiable in E2

no equations between shared variables; Nelson-Oppen answers “satisfiable”

42

Completeness

Example: E1 E2

f (g(x), g(y)) ≈ x k(x) ≈ k(x)

f (g(x), h(y)) ≈ y

non-trivial non-trivial

g(c)≈h(c) ∧ k(c)6≈c

g(c)≈h(c) k(c)6≈c

satisfiable in E1 satisfiable in E2

no equations between shared variables; Nelson-Oppen answers “satisfiable”

A model of E1 satisfies g(c) ≈ h(c) iff

E

e ∈ A s.t. g(e) = h(e).

Then, for all a ∈ A: a = fA(g(a), g(e)) = fA(g(a), h(e)) = e

g(c)≈h(c) ∧ k(c)6≈c unsatisfiable

43

Completeness

Another example

T1 theory admitting models of cardinality at most 2

T2 theory admitting models of any cardinality

f1 ∈ Σ1, f2 ∈ Σ2 such that Ti 6|=

A

x , y fi (x) = fi (y).

φ = f1(c1)6≈f1(c2) ∧ f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3)

φ1 = f1(c1)6≈f1(c2) φ2 = f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3)

The Nelson-Oppen procedure returns “satisfiable”

T1 ∪ T2 |=

A

x , y , z(f1(x)6≈f1(y) ∧ f2(x)6≈f2(z) ∧ f2(y)6≈f2(z)

→ (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z))

f1(c1)6≈f1(c2) ∧ f2(c1)6≈f2(c3) ∧ f2(c2)6≈f2(c3) unsatisfiable

44

Completeness

Cause of incompleteness

There exist formulae satisfiable in finite models of bounded cardinality

Solution: Consider stably infinite theories.

T is stably infinite iff for every quantifier-free formula φ

φ satisfiable in T iff φ satisfiable in an infinite model of T .

Note: This restriction is not mentioned in [Nelson Oppen 1979];

introduced by Oppen in 1980.

45

Completeness

Guessing version: C set of constants shared by φ1,φ2

R equiv. relation assoc. with partition of C 7→ar(C ,R) =
∧

R(c ,d)

c ≈ d ∧
∧

¬R(c ,d)

c 6≈ d

Lemma. Assume that there exists a partition of C s.t. φi ∧ ar(C ,R) is

Ti -satisfiable. Then φ1 ∧ φ2 is T1 ∪ T2-satisfiable.

Idea of proof: Let Ai ∈ Mod(Ti) s.t. Ai |=φi∧ar(C ,R). Then cA1=dA1 iff cA2=dA2 .

Let i : {cA1 | c ∈ C} → {cA2 | c ∈ C}, i(cA1) = cA2 well-defined; bijection.

Stable infinity: can assume w.l.o.g. that A1,A2 have the same cardinality

Let h : A1 → A2 bijection s.t. h(cA1) = cA2

Use h to transfer the Σ1-structure on A2.

Theorem. If T1, T2 are both stably infinite and the shared signature is empty

then the Nelson-Oppen procedure is sound, complete and terminating.

Thus, it transfers decidability of ground satisfiability from T1, T2 to T1 ∪ T2.

46

Applications

1. Decision Procedures for data types

47

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

48

Theories of arrays

We consider the theory of arrays in a many-sorted setting.

Theory of arrays Tarrays :

• Ti (theory of indices): Presburger arithmetic

• Te (theory of elements): arbitrary

• Axioms for read, write

read(write(a, i , e), i) ≈ e

j 6≈ i ∨ read(write(a, i , e), j) = read(a, j).

Fact: Undecidable in general.

Goal: Identify a fragment of the theory of arrays which is decidable.

49

A decidable fragment

• Index guard a positive Boolean combination of atoms of the form

t ≤ u or t = u where t and u are either a variable or a ground term of

sort Index

Example: (x ≤ 3 ∨ x ≈ y) ∧ y ≤ z is an index guard

Example: x + 1 ≤ c, x + 3 ≤ y , x + x ≤ 2 are not index guards.

• Array property formula [Bradley,Manna,Sipma’06]

(

A

i)(ϕI (i) → ϕV (i)), where:

ϕI : index guard

ϕV : formula in which any universally quantified i occurs in a direct

array read; no nestings

Example: c ≤ x ≤ y ≤ d → a(x) ≤ a(y) is an array property formula

Example: x < y → a(x) < a(y) is not an array property formula

Johannes Thielen: Decision procedure for the array property fragment

50

Theories of recursive data structures with size

Theories of constructors/selectors

Lists (cons/car/cdr)

Binary trees (tree/left/right)

Size functions:

Lists:

size(nil) = 0

size(cons(a, l)) = 1 + size(l)

Trees

size(nil) = 0

size(tree(t1, t2)) = 1 + size(t1) + size(t2)

Christopher Biehl: Decision procedures

51

Pointer Structures

[McPeak, Necula 2005]

• pointer sort p, scalar sort s; pointer fields (p → p); scalar fields (p → s);

• axioms:

A

p E ∨ C; E contains disjunctions of pointer equalities
C contains scalar constraints

Assumption: If f1(f2(. . . fn(p))) occurs in axiom, the axiom also contains:
p=null ∨ fn(p)=null ∨ · · · ∨ f2(. . . fn(p)))=null

Example: doubly-linked lists; ordered elements

A

p (p 6= null ∧ p.next 6= null → p.next.prev = p)

A

p (p 6= null ∧ p.prev 6= null → p.prev.next = p)

A

p (p 6= null ∧ p.next 6= null → p.info ≤ p.next.info)

Jan Savelsberg: decision procedure for a fragment of the theory of pointers

52

Applications

2. Program Verification

Program 7→ T = (Σ, Init, Update(Σ,Σ′))

Safety Property 7→ Formula Safe

Task: Prove that the safety property always holds (in general difficult)

Invariant checking

Init |= Safe

Safe ∧ Update(Σ,Σ′) |= Safe′

Bounded model checking: given k ∈ N. Prove that for all n ≤ k:

Init(Σ0) ∧ Update|(Σ0, Σ1) ∧ · · · ∧ Update|(Σn−1, Σn) |= Safe(Σn)

Alexander Scheid-Rehder

53

Applications

2. Program Verification

Abstraction/Refinement

• Approximate system with a finite state system

• Unsafe state reachable from initial state in finite state system?

No: System safe

Yes: Check whether path corresponds to a real path in concrete system

Yes: Concrete system unsafe

No: Refine abstraction/ use e.g. interpolants

Isabelle Kuhlmann: Interpolation

Jan Krämer: Verification by abstraction/refinement

54

Overview

• Reasoning in standard theories

A crash course: Decidable logical theories and theory fragments

• Reasoning in complex theories

Modular reasoning in combinations of theories

disjoint signature

• Applications

55

