
Seminar Decision Procedures and
Applications

Background Information: Part II

Viorica Sofronie-Stokkermans

University Koblenz-Landau

25 June 2019

1

Brief Introduction to Term Rewriting

Equality is the most important relation in mathematics and functional

programming.

In principle, problems in first-order logic with equality can be handled by,

e.g., resolution theorem provers.

Handling Equality Naively

F 7→ F̃ (≈7→∼). Encode properties of equality 7→ Eq(Σ)

A

x (x ∼ x)

A

x , y (x ∼ y → y ∼ x)

A

x , y , z (x ∼ y ∧ y ∼ z → x ∼ z)

A

~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f (x1, . . . , xn) ∼ f (y1, . . . , yn))A

~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ∧ p(x1, . . . , xn)→ p(y1, . . . , yn))

F is satisfiable if and only if Eq(Σ) ∪ {F̃} is satisfiable.

2

Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with equality

can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient

(mainly due to the transitivity and congruence axioms).

3

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus

4

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus

5

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus

6

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus

7

Abstract Reduction Systems

Abstract reduction system: (A,→), where

A is a set,

→ ⊆ A× A is a binary relation on A.

8

Abstract Reduction Systems

→0 = { (x , x) | x ∈ A } identity

→i+1 = →i ◦→ i + 1-fold composition

→+ =
⋃

i>0→
i transitive closure

→∗ =
⋃

i≥0→
i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure

→−1 = ← = { (x , y) | y → x } inverse

↔ = →∪← symmetric closure

↔+ = (↔)+ transitive symmetric closure

↔∗ = (↔)∗ refl. trans. symmetric closure

9

Abstract Reduction Systems

x ∈ A is reducible, if there is a y such that x → y .

x is in normal form (irreducible), if it is not reducible.

y is a normal form of x , if x →∗ y and y is in normal form.

Notation: y = x↓ (if the normal form of x is unique).

x and y are joinable, if there is a z such that x →∗ z ←∗ y .

Notation: x ↓ y .

10

Abstract Reduction Systems

A relation → is called

Church-Rosser, if x ↔∗ y implies x ↓ y .

confluent, if x ←∗ z →∗ y implies x ↓ y .

locally confluent, if x ← z → y implies x ↓ y .

terminating, if there is no infinite decreasing chain

x0 → x1 → x2 →

normalizing, if every x ∈ A has a normal form.

convergent, if it is confluent and terminating.

11

Abstract Reduction Systems

Lemma 2: If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.

12

Abstract Reduction Systems

Theorem 3: The following properties are equivalent:

(i) → has the Church-Rosser property (x ↔∗ y implies x ↓ y)

(ii) → is confluent (x ←∗ z →∗ y implies x ↓ y)

Proof:

(i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in

the derivation x ↔∗ y .

13

Abstract Reduction Systems

Lemma 4:

If → is confluent, then every element has at most one normal form.

Corollary 5:

If → is normalizing and confluent, then every element x has a unique

normal form.

Proposition 6:

If → is normalizing and confluent, then x ↔∗ y if and only if x↓ = y↓.

14

Well-Founded Orderings

Lemma 7:

If → is a terminating binary relation over A,

then →+ is a well-founded partial ordering.

Lemma 8:

If > is a well-founded partial ordering and → ⊆ >,

then → is terminating.

15

Proving Confluence

Theorem 9 (“Newman’s Lemma”):

If a terminating relation → is locally confluent (x ← z → y implies x ↓ y),

then it is confluent (x ←∗ z →∗ y implies x ↓ y).

Proof:

Let → be a terminating and locally confluent relation.

Then →+ is a well-founded ordering.

Define P(z) ⇔
(A

x , y : x ←∗ z →∗ y ⇒ x ↓ y
)

.

Prove P(z) for all z ∈ A by well-founded induction over →+:

Case 1: x ←0 z →∗ y : trivial.

Case 2: x ←∗ z →0 y : trivial.

Case 3: x ←∗ x′ ← z → y ′ →∗ y : use local confluence, then use the

induction hypothesis.

16

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus

17

Rewrite Systems

Notation:

Positions of a term s:

Pos(x) = {ε},

Pos(f (s1, . . . , sn)) = {ε} ∪
⋃n

i=1{ ip | p ∈ Pos(si) }.

Size of a term s: |s| = cardinality of Pos(s).

Subterm of s at a position p ∈ Pos(s):

s/ε = s,

f (s1, . . . , sn)/ip = si/p.

Replacement of the subterm at position p ∈ Pos(s) by t:

s[t]ε = t,

f (s1, . . . , sn)[t]ip = f (s1, . . . , si [t]p , . . . , sn).

18

Rewrite Relations

Let E be a set of equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s →E t iff there exist (l ≈ r) ∈ E , p ∈ Pos(s),

and σ : X → TΣ(X),

such that s/p = lσ and t = s[rσ]p .

An equation l ≈ r is also called a rewrite rule, if l is not a variable and

Var(l) ⊇ Var(r).

Notation: l → r .

A set of rewrite rules is called a term rewrite system (TRS).

19

Rewrite Relations

We say that a set of equations E or a TRS R is terminating,

if the rewrite relation →E or →R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

20

Rewrite Relations

Corollary 10:

If E is convergent (i.e., terminating and confluent),

then s ≈E t if and only if s ↔∗
E
t if and only if s↓E = t↓E .

Corollary 11:

If E is finite and convergent, then ≈E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally confluent.

21

Rewrite Relations

Problems:

Show local confluence of E .

Show termination of E .

Transform E into an equivalent set of equations that is

locally confluent and terminating.

Order ≻ on terms l ≈ r , l ≻ r 7→ l → r

talk in this seminar: ground TRS (left and right hand side are ground terms)

Simple form: f (c1, . . . , cn)→ c or c → d

22

Critical Pairs

Showing local confluence (Sketch for ground TRS):

Question:

Are there rewrite rules l1 → r1 and l2 → r2 such that some subterm l1/p

and l2 are equal?

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R

Let p ∈ Pos(l1) be a position such that l1/p = l2.

Then r1 ← l1 → (l1)[r2]p .

〈r1, (l1)[r2]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1 ↓R (l1)[r2]p .

23

Critical Pairs

Theorem 12 (“Critical Pair Theorem”):

A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof (Here only for the case of ground TRS):

“only if”: obvious, since joinability of a critical pair is a special case of local

confluence.

“if”: Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at

positions pi ∈ Pos(s), where i = 1, 2.

Then s/pi = li and ti = s[ri]pi .

We distinguish between two cases: Either p1 and p2 are in disjoint subtrees

(p1 || p2), or one is a prefix of the other (w.o.l.o.g., p1 ≤ p2).

24

Critical Pairs

Case 1: p1 || p2.

Then s = s[l1]p1 [l2]p2 ,

and therefore t1 = s[r1]p1 [l2]p2 and t2 = s[l1]p1 [r2]p2 .

Let t0 = s[r1]p1 [r2]p2 .

Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using l1 → r1.

Case 2: p1 ≤ p2.

Then s/p2 = l2 and s/p2 = (s/p1)/p = l1/p; hence l2 = l1/p; and

〈r1, (l1)[r2]p〉 is a critical pair.

By assumption, it is joinable, so r1 →
∗
R
v ←∗

R
(l1)[r2]p .

Consequently, t1 = s[r1]p1 = s[r1]p1 →
∗
R
s[v]p1 and

t2 = s[r2]p2 = s[(l1)[r2]p]p1 = s[(l1)[r2]p]p1 = s[((l1)[r2]p)]p1 →
∗
R
s[v]p1 .

This completes the proof of the Critical Pair Theorem.

25

Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of) itself must

be considered – except if the overlap is at the root (i.e., p = ε).

26

Critical Pairs

Corollary 13:

A terminating TRS R is confluent if and only if all its critical pairs are

joinable.

Proof:

By Newman’s Lemma and the Critical Pair Theorem.

27

Critical Pairs

Corollary 14:

For a finite terminating TRS, confluence is decidable.

Proof:

For every pair of rules and every non-variable position in the first rule there

is at most one critical pair 〈u1, u2〉.

Reduce every ui to some normal form u′i . If u′1 = u′2 for every critical

pair, then R is confluent, otherwise there is some non-confluent situation

u′1 ←
∗
R
u1 ←R s →R u2 →

∗
R
u′2.

28

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus “ordered resolution with built-in

rewriting”

29

The resolution calculus

Resolution

C ∨ L D ∨ ¬L′

(C ∨ D)σ

σ = mgu(L, L′)

Factoring

C ∨ L ∨ L′

(C ∨ L)σ

σ = mgu(L, L′)

30

The ordered resolution calculus

Ordered Resolution ≻ order on ground literals

C ∨ A D ∨ ¬A′

(C ∨ D)σ

σ = mgu(L, L′), Aσ ≻ Cσ,¬Aσ � Dσ

Ordered Factoring

C ∨ A ∨ A′

(C ∨ L)σ

σ = mgu(A,A′), Aσ � Cσ

31

The superposition calculus

Handling equality: Ordered resolution with “built-in” term rewriting

≻ ordering on terms 7→ ordering on atoms of the form l ≈ r

32

The superposition calculus

Handling equality: Ordered resolution with “built-in” term rewriting

≻ ordering on terms 7→ ordering on atoms of the form l ≈ r

Superposition left

C ∨ l[u′] ≈ r D ∨ u ≈ v

(C ∨ D ∨ l[v] ≈ r)σ

Paramodulation
C ∨ ¬l[u′] ≈ r D ∨ u ≈ v

(C ∨ D ∨ ¬l[v] ≈ r)σ

σ = mgu(u, u′),

(i) σ(u) ≻ σ(v), (iii) σ(l) ≻ σ(r)

(ii) σ(u ≈ v) ≻ σ(D) (iv) σ(l ≈ r) ≻ σ(C)

33

The superposition calculus

Reflection
C ∨ ¬u′ ≈ u

Cσ

σ = mgu(u, u′), σ(u ≈ u′) � σ(C)

Factoring

C ∨ u ≈ v ∨ u′ ≈ v ′

(¬v ≈ v ′ ∨ C ∨ u ≈ v ′)σ

σ = mgu(u, u′),

(i) σ(u) ≻ σ(v),

(ii) σ(u ≈ v) � σ(positive(C) ∪ {u′ ≈ v ′})

(iii) σ(u) ≻ σ(negative(C))

34

The superposition calculus

Subsumption 7→ subsumed clauses are deleted

Simplification 7→ in the presence of a unit clause l ≈ r with l ≻ r ,

the rule is used as a “rewriting rule” for simplification

Deletion 7→ Clauses containing t ≈ t are always true and are deleted

35

The superposition calculus

Theorem The superposition calculus is sound and refutationally complete:

A set N of clauses in FOL with equality is unsatisfiable iff N ⊢Superposition⊥.

Stefan Strüder: Situations in which the superposition calculus terminates.

36

Overview

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus “ordered resolution with built-in

rewriting”

37

