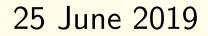
Seminar Decision Procedures and Applications

Background Information: Part II

Viorica Sofronie-Stokkermans University Koblenz-Landau



Brief Introduction to Term Rewriting

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e.g., resolution theorem provers.

Handling Equality Naively

 $F\mapsto \widetilde{F}~(pprox\mapsto\sim).$ Encode properties of equality $\mapsto Eq(\Sigma)$

$$\begin{array}{c} \forall x \, (x \sim x) \\ \forall x, y \, (x \sim y \rightarrow y \sim x) \\ \forall x, y, z \, (x \sim y \wedge y \sim z \rightarrow x \sim z) \\ \forall \vec{x}, \vec{y} \, (x_1 \sim y_1 \wedge \dots \wedge x_n \sim y_n \rightarrow f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n)) \\ \forall \vec{x}, \vec{y} \, (x_1 \sim y_1 \wedge \dots \wedge x_n \sim y_n \wedge p(x_1, \dots, x_n) \rightarrow p(y_1, \dots, y_n)) \end{array}$$

F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable.

Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence axioms).

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):
 - Term rewrite systems.
 - Expressing semantic consequence syntactically.
 - Entailment for equations.
- Equational clauses:
 - The superposition calculus

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):
 - Term rewrite systems.
 - Expressing semantic consequence syntactically.
 - Entailment for equations.
- Equational clauses:
 - The superposition calculus

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):
 - Term rewrite systems.
 - Expressing semantic consequence syntactically.
 - Entailment for equations.
- Equational clauses:
 - The superposition calculus

Abstract reduction system: (A, \rightarrow) , where

A is a set,

 $\rightarrow \subseteq A \times A$ is a binary relation on A.

$$\begin{array}{l} \rightarrow^{0} = \{(x, x) \mid x \in A\} \\ \rightarrow^{i+1} = \rightarrow^{i} \circ \rightarrow \\ \rightarrow^{+} = \bigcup_{i \geq 0} \rightarrow^{i} \\ \rightarrow^{*} = \bigcup_{i \geq 0} \rightarrow^{i} = \rightarrow^{+} \cup \rightarrow^{0} \\ \rightarrow^{=} = \rightarrow \cup \rightarrow^{0} \\ \rightarrow^{-1} = \leftarrow = \{(x, y) \mid y \rightarrow x\} \\ \leftrightarrow \qquad = \rightarrow \cup \leftarrow \\ \leftrightarrow^{+} = (\leftrightarrow)^{+} \\ \leftrightarrow^{*} = (\leftrightarrow)^{*} \end{array}$$

identity *i* + 1-fold composition
transitive closure
reflexive transitive closure
reflexive closure
inverse
symmetric closure
transitive symmetric closure
refl. trans. symmetric closure

- $x \in A$ is reducible, if there is a y such that $x \to y$.
- x is in normal form (irreducible), if it is not reducible.

y is a normal form of x, if $x \to^* y$ and y is in normal form. Notation: $y = x \downarrow$ (if the normal form of x is unique).

x and y are joinable, if there is a z such that $x \rightarrow^* z \leftarrow^* y$. Notation: $x \downarrow y$.

A relation \rightarrow is called

- Church-Rosser, if $x \leftrightarrow^* y$ implies $x \downarrow y$.
- confluent, if $x \leftarrow^* z \rightarrow^* y$ implies $x \downarrow y$.
- locally confluent, if $x \leftarrow z \rightarrow y$ implies $x \downarrow y$.
- terminating, if there is no infinite decreasing chain $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$
- normalizing, if every $x \in A$ has a normal form.

convergent, if it is confluent and terminating.

Lemma 2: If \rightarrow is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Theorem 3: The following properties are equivalent:

(i) \rightarrow has the Church-Rosser property ($x \leftrightarrow^* y$ implies $x \downarrow y$)

(ii)
$$\rightarrow$$
 is confluent $(x \leftarrow^* z \rightarrow^* y \text{ implies } x \downarrow y)$

Proof:

 $(i) \Rightarrow (ii)$: trivial.

(ii) \Rightarrow (i): by induction on the number of peaks in the derivation $x \leftrightarrow^* y$.

Lemma 4:

If \rightarrow is confluent, then every element has at most one normal form.

Corollary 5:

If \rightarrow is normalizing and confluent, then every element x has a unique normal form.

Proposition 6:

If \rightarrow is normalizing and confluent, then $x \leftrightarrow^* y$ if and only if $x \downarrow = y \downarrow$.

Well-Founded Orderings

Lemma 7:

If \rightarrow is a terminating binary relation over A, then \rightarrow^+ is a well-founded partial ordering.

Lemma 8:

If > is a well-founded partial ordering and $\rightarrow \subseteq >$, then \rightarrow is terminating.

Proving Confluence

Theorem 9 ("Newman's Lemma"): If a terminating relation \rightarrow is locally confluent ($x \leftarrow z \rightarrow y$ implies $x \downarrow y$), then it is confluent ($x \leftarrow^* z \rightarrow^* y$ implies $x \downarrow y$).

Proof:

Let \rightarrow be a terminating and locally confluent relation. Then \rightarrow^+ is a well-founded ordering. Define $P(z) \Leftrightarrow (\forall x, y : x \leftarrow^* z \rightarrow^* y \Rightarrow x \downarrow y)$. Prove P(z) for all $z \in A$ by well-founded induction over \rightarrow^+ : Case 1: $x \leftarrow^0 z \rightarrow^* y$: trivial. Case 2: $x \leftarrow^* z \rightarrow^0 y$: trivial. Case 3: $x \leftarrow^* x' \leftarrow z \rightarrow y' \rightarrow^* y$: use local confluence, then use the induction hypothesis.

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):

Term rewrite systems.

Expressing semantic consequence syntactically.

Entailment for equations.

• Equational clauses:

The superposition calculus

Rewrite Systems

Notation:

Positions of a term s:

$$Pos(x) = \{\varepsilon\},$$

$$Pos(f(s_1, ..., s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in Pos(s_i)\}.$$

Size of a term s: |s| = cardinality of Pos(s).

Subterm of s at a position $p \in Pos(s)$:

$$s/arepsilon=s,\ f(s_1,\ldots,s_n)/ip=s_i/p.$$

Replacement of the subterm at position $p \in Pos(s)$ by t:

$$s[t]_{arepsilon} = t,$$

 $f(s_1, \ldots, s_n)[t]_{ip} = f(s_1, \ldots, s_i[t]_p, \ldots, s_n).$

Let E be a set of equations.

The rewrite relation $\rightarrow_E \subseteq \mathsf{T}_{\Sigma}(X) \times \mathsf{T}_{\Sigma}(X)$ is defined by

$$s \rightarrow_E t$$
 iff there exist $(l \approx r) \in E$, $p \in Pos(s)$,
and $\sigma : X \rightarrow T_{\Sigma}(X)$,
such that $s/p = l\sigma$ and $t = s[r\sigma]_p$.

An equation $l \approx r$ is also called a rewrite rule, if l is not a variable and $Var(l) \supseteq Var(r)$.

Notation: $I \rightarrow r$.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

Corollary 10: If *E* is convergent (i.e., terminating and confluent), then $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary 11: If *E* is finite and convergent, then \approx_E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

```
Show local confluence of E.
```

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and terminating.

Order \succ on terms $l \approx r, l \succ r \mapsto l \rightarrow r$

talk in this seminar: ground TRS (left and right hand side are ground terms)

Simple form: $f(c_1, \ldots, c_n) \rightarrow c \text{ or } c \rightarrow d$

Showing local confluence (Sketch for ground TRS):

Question:

Are there rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ such that some subterm l_1/p and l_2 are equal?

Let $l_i \rightarrow r_i$ (i = 1, 2) be two rewrite rules in a TRS RLet $p \in Pos(l_1)$ be a position such that $l_1/p = l_2$.

Then $r_1 \leftarrow l_1 \rightarrow (l_1)[r_2]_p$.

 $\langle r_1, (l_1)[r_2]_p \rangle$ is called a critical pair of *R*.

The critical pair is joinable (or: converges), if $r_1 \downarrow_R (l_1)[r_2]_p$.

Theorem 12 ("Critical Pair Theorem"):

A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof (Here only for the case of ground TRS): "only if": obvious, since joinability of a critical pair is a special case of local confluence.

"if": Suppose *s* rewrites to t_1 and t_2 using rewrite rules $l_i \rightarrow r_i \in R$ at positions $p_i \in Pos(s)$, where i = 1, 2. Then $s/p_i = l_i$ and $t_i = s[r_i]_{p_i}$.

We distinguish between two cases: Either p_1 and p_2 are in disjoint subtrees $(p_1 || p_2)$, or one is a prefix of the other (w.o.l.o.g., $p_1 \leq p_2$).

Case 1: $p_1 || p_2$. Then $s = s[l_1]_{p_1}[l_2]_{p_2}$, and therefore $t_1 = s[r_1]_{p_1}[l_2]_{p_2}$ and $t_2 = s[l_1]_{p_1}[r_2]_{p_2}$. Let $t_0 = s[r_1]_{p_1}[r_2]_{p_2}$. Then clearly $t_1 \rightarrow_R t_0$ using $l_2 \rightarrow r_2$ and $t_2 \rightarrow_R t_0$ using $l_1 \rightarrow r_1$. **Case 2:** $p_1 \le p_2$. Then $s/p_2 = l_2$ and $s/p_2 = (s/p_1)/p = l_1/p$; hence $l_2 = l_1/p$; and $\langle r_1, (l_1)[r_2]_p \rangle$ is a critical pair. By assumption, it is joinable, so $r_1 \rightarrow^*_R v \leftarrow^*_R (I_1)[r_2]_p$. Consequently, $t_1 = s[r_1]_{p_1} = s[r_1]_{p_1} \rightarrow^*_R s[v]_{p_1}$ and $t_2 = s[r_2]_{p_2} = s[(l_1)[r_2]_p]_{p_1} = s[(l_1)[r_2]_p]_{p_1} = s[((l_1)[r_2]_p)]_{p_1} \rightarrow^*_R s[v]_{p_1}.$

This completes the proof of the Critical Pair Theorem.

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered – except if the overlap is at the root (i.e., $p = \varepsilon$).

Corollary 13: A terminating TRS *R* is confluent if and only if all its critical pairs are joinable.

Proof:

By Newman's Lemma and the Critical Pair Theorem.

Corollary 14: For a finite terminating TRS, confluence is decidable.

Proof:

For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\langle u_1, u_2 \rangle$.

Reduce every u_i to some normal form u'_i . If $u'_1 = u'_2$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u'_1 \leftarrow_R^* u_1 \leftarrow_R s \rightarrow_R u_2 \rightarrow_R^* u'_2$.

How to proceed:

- Arbitrary binary relations.
- Equations (unit clauses with equality):
 - Term rewrite systems.
 - Expressing semantic consequence syntactically.
 - Entailment for equations.
- Equational clauses:
 - The superposition calculus "ordered resolution with built-in rewriting"

The resolution calculus

Resolution

$$\frac{C \lor L \quad D \lor \neg L'}{(C \lor D)\sigma}$$

 $\sigma = \mathsf{mgu}(L, L')$

Factoring

 $\frac{C \lor L \lor L'}{(C \lor L)\sigma}$

 $\sigma = \mathsf{mgu}(L, L')$

The ordered resolution calculus

Ordered Resolution >> order on ground literals

$$\frac{C \lor A \quad D \lor \neg A'}{(C \lor D)\sigma}$$

 $\sigma = \mathsf{mgu}(L, L'), \ A\sigma \succ C\sigma, \neg A\sigma \succeq D\sigma$

Ordered Factoring

 $\frac{C \lor A \lor A'}{(C \lor L)\sigma}$

 $\sigma = \mathsf{mgu}(A, A'), \ A\sigma \succeq C\sigma$

Handling equality: Ordered resolution with "built-in" term rewriting

 \succ ordering on terms \mapsto ordering on atoms of the form $\mathit{I}\approx \mathit{r}$

Handling equality: Ordered resolution with "built-in" term rewriting

 \succ ordering on terms \mapsto ordering on atoms of the form $I \approx r$

Superposition left

$$\frac{C \lor I[\mathbf{u'}] \approx r \quad D \lor \mathbf{u} \approx \mathbf{v}}{(C \lor D \lor I[\mathbf{v}] \approx r)\sigma}$$

Paramodulation

$$\frac{C \vee \neg I[u'] \approx r \quad D \vee u \approx v}{(C \vee D \vee \neg I[v] \approx r)\sigma}$$

 $\sigma = mgu(u, u'),$ (i) $\sigma(u) \succ \sigma(v),$ (ii) $\sigma(l) \succ \sigma(r)$ (ii) $\sigma(u \approx v) \succ \sigma(D)$ (iv) $\sigma(l \approx r) \succ \sigma(C)$

Reflection

$$\frac{C \vee \neg u' \approx u}{C\sigma}$$

 $\sigma = mgu(u, u'), \ \sigma(u \approx u') \succeq \sigma(C)$

Factoring

$$\frac{C \lor u \approx v \lor u' \approx v'}{(\neg v \approx v' \lor C \lor u \approx v')\sigma}$$

 $\sigma = \mathrm{mgu}(u, u'),$

(i)
$$\sigma(u) \succ \sigma(v)$$
,

(ii)
$$\sigma(u \approx v) \succeq \sigma(\text{positive}(C) \cup \{u' \approx v'\})$$

(iii) $\sigma(u) \succ \sigma(\text{negative}(C))$

- $\begin{array}{ccc} \textbf{Subsumption} & \mapsto & \textbf{subsumed clauses are deleted} \end{array}$
- Simplification \mapsto in the presence of a unit clause $I \approx r$ with $I \succ r$,the rule is used as a "rewriting rule" for simplification
 - **Deletion** \mapsto Clauses containing $t \approx t$ are always true and are deleted

Theorem The superposition calculus is sound and refutationally complete:

A set N of clauses in FOL with equality is unsatisfiable iff $N \vdash_{\text{Superposition}} \bot$.

Stefan Strüder: Situations in which the superposition calculus terminates.

Overview

- Arbitrary binary relations.
- Equations (unit clauses with equality):
 - Term rewrite systems.
 - Expressing semantic consequence syntactically.
 - Entailment for equations.
- Equational clauses:

The superposition calculus "ordered resolution with built-in rewriting"