Seminar Decision Procedures and Applications

Background Information: Part I

Viorica Sofronie-Stokkermans University Koblenz-Landau

25 June 2019

Topics for the talks

- Matthias Becker: Decision Procedures for UTVPI Constraints
- Delzar Habash: Automata approach to Presburger arithmetic
- **Denis Oldenburg:** Quantifier elimination for linear arithmetic over the integers
- Dominik Kohns: Reasoning about uninterpreted function symbols
- Nico Bartmann: DPLL(T)
- Stefan Strüder: Decision procedures for classical datatypes based on the superposition calculus
- Tim Taubitz: Instantiation-based decision procedures for theories of arrays.
- Jouliet Mesto: Data Structure Specifications via Local Equality Axioms.

Structure

Reasoning in standard theories

Presburger arithmetic: Delzar Habash, Denis Oldenburg Simpler fragments: UTVPI Matthias Becker

Theory of uninterpreted function symbols: Dominik Kohns

Conjunctive fragment \mapsto **clauses**: Nico Bartmann

Classical data types: Stefan Strüder: Superposition

Structure

Reasoning in complex theories

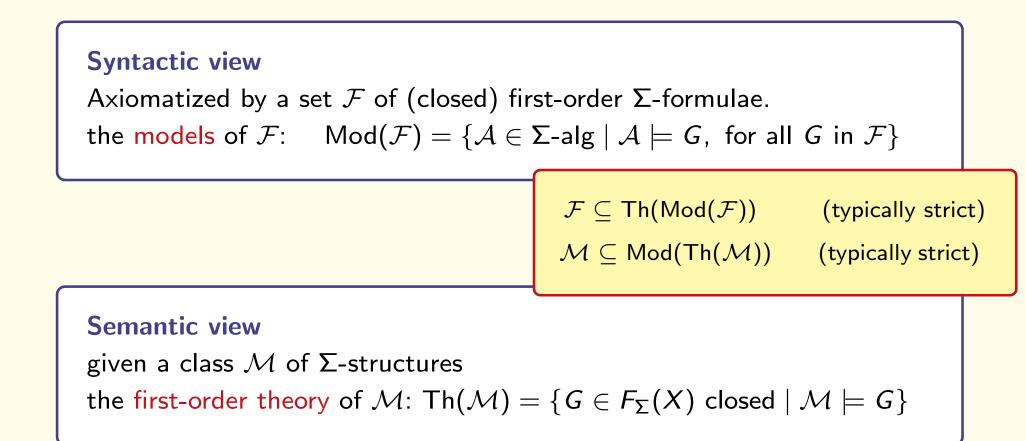
Modular reasoning in combinations of theories Disjoint signature: The Nelson-Oppen method

• Applications: complex data types

Fragment of theory of arrays: Tim Taubitz

Fragment of theory of pointers: Jouliet Mesto

Logical theories



Th(Mod(\mathcal{F})) the set of formulae true in all models of \mathcal{F} represents exactly the set of consequences of \mathcal{F}

1. Linear integer arithmetic. $\Sigma = (\{0/0, s/1, +/2\}, \{\le /2\})$

 $\mathbb{Z}_+ = (\mathbb{Z}, 0, s, +, \leq)$ the standard interpretation of integers. $\{\mathbb{Z}_+\} \subset \mathsf{Mod}(\mathsf{Th}(\mathbb{Z}_+))$

2. Uninterpreted function symbols. $\Sigma = (\Omega, Pred)$

 $\mathcal{M} = \Sigma\text{-}\mathsf{alg:}$ the class of all $\Sigma\text{-}\mathsf{structures}$

The theory of uninterpreted function symbols is $Th(\Sigma-alg)$ the family of all first-order formulae which are true in all Σ -structures.

3. Lists. $\Sigma = (\{\operatorname{car}/1, \operatorname{cdr}/1, \operatorname{cons}/2\}, \emptyset)$

$$\mathcal{F} = \begin{cases} \operatorname{car}(\operatorname{cons}(x, y)) \approx x \\ \operatorname{cdr}(\operatorname{cons}(x, y)) \approx y \end{cases}$$

 $\begin{pmatrix} & - \\ &$

 $Mod(\mathcal{F})$: the class of all models of \mathcal{F} $Th_{Lists} = Th(Mod(\mathcal{F}))$ theory of lists (axiomatized by \mathcal{F})

Decidable theories

 $\Sigma = (\Omega, \mathsf{Pred})$ be a signature.

 \mathcal{M} : class of Σ -structures. $\mathcal{T} = \mathsf{Th}(\mathcal{M})$ is decidable iff

there is an algorithm which, for every closed first-order formula ϕ , can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.

```
 \mathcal{F}: \text{class of (closed) first-order formulae.} \\ The theory \ \mathcal{T} = Th(Mod(\mathcal{F})) \text{ is decidable} \\ iff \\ \text{there is an algorithm which, for every closed first-order formula } \phi, \text{ can} \\ \text{decide (in finite time) whether } \mathcal{F} \models \phi \text{ or not.} \\ \end{tabular}
```

Undecidable theories

 Peano arithmet 	ic	
Axiomatized by:	$\forall x \neg (x + 1 pprox 0)$	(zero)
	orall x orall y (x+1 pprox y+1 ightarrow x pprox y	(successor)
	$F[0] \land (\forall x (F[x] ightarrow F[x+1]) ightarrow \forall x F[x])$	(induction)
	$\forall x (x + 0 \approx x)$	(plus zero)
	$orall x$, $y\left(x+(y+1)pprox(x+y)+1 ight)$	(plus successor)
	$\forall x$, y ($x * 0 pprox 0$)	(times zero)
	$orall x$, $y \left(x st \left(y + 1 ight) pprox x st y + x ight)$	(times successor)

3 * y + 5 > 2 * y expressed as $\exists z (z \neq 0 \land 3 * y + 5 \approx 2 * y + z)$

Intended interpretation: (\mathbb{N} , {0, 1, +, *}, { \approx, \leq })

(does not capture true arithmetic by Gödel's incompleteness theorem)

•Th((
$$\mathbb{Z}, \{0, 1, +, *\}, \{\leq\}$$
))
•Th(Σ -alg)

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

Presburger arithmetic decidable in 3EXPTIME [Presburger'29]
 Signature: ({0, 1, +}, {≈, ≤}) (no *)

Axioms { (zero), (successor), (induction), (plus zero), (plus successor) }

- A decision procedure will be presented by Delzar Habash
- A quantifier-elimination method with be presented by Denis Oldenburg
- A simple fragment (UTVPI) with be presented by Matthias Becker

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

• The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments $\mathcal{L} \subseteq \mathsf{Fma}(\Sigma)$

"Simpler" task: Given ϕ in \mathcal{L} , is it the case that $\mathcal{T} \models \phi$?

Common restrictions on $\ensuremath{\mathcal{L}}$

	$Pred = \emptyset$	$\{\phi\in\mathcal{L}$	$\mid \mathcal{T} \models \phi \}$
$\mathcal{L} = \{ \forall x A(x) \mid A \text{ atomic} \}$	word problem		
$\mathcal{L} = \{ \forall x (A_1 \land \ldots \land A_n \rightarrow B) \mid A_i, B \text{ atomic} \}$	uniform word pro	blem	$Th_{igodot Horn}$
$\mathcal{L} = \{ \forall x C(x) \mid C(x) \text{ clause} \}$	clausal validity p	roblem	$Th_{m{ abla},cl}$
$\mathcal{L} = \{ \forall x \phi(x) \mid \phi(x) \text{ unquantified} \}$	universal validity	problem	⊤h∀

Validity of ∀ formulae vs. ground satisfiability

The following are equivalent:

(1)
$$\mathcal{T} \models \forall x (L_1(x) \lor \cdots \lor L_n(x))$$

(2) There is no model of \mathcal{T} which satisfies $\exists x(\neg L_1(x) \land \cdots \land \neg L_n(x))$

(3) There is no model of \mathcal{T} and no valuation for the constants cfor which $(\neg L_1(c) \land \cdots \land \neg L_n(c))$ becomes true (notation: $(\neg L_1(c) \land \cdots \land \neg L_n(c)) \models_{\mathcal{T}} \bot$)

Can reduce any validity problem to a ground satisfiability problem

Useful theories

Many example of theories in which ground satisfiability is decidable:

- The empty theory (no axioms) $UIF(\Sigma)$: Dominik Kohns
- theories axiomatizing common datatypes: Stefan Strüder

Combination of theories

Combinations of theories and models

Forgetting symbols

Let $\Sigma = (\Omega, \Pi)$ and $\Sigma' = (\Omega', \Pi')$ s.t. $\Sigma \subseteq \Sigma'$, i.e., $\Omega \subseteq \Omega'$ and $\Pi \subseteq \Pi'$ For $\mathcal{A} \in \Sigma'$ -alg, we denote by $\mathcal{A}_{|\Sigma}$ the Σ -structure for which:

$$U_{\mathcal{A}_{|\Sigma}} = U_{\mathcal{A}}, \quad f_{\mathcal{A}_{|\Sigma}} = f_{\mathcal{A}} \text{ for } f \in \Omega; \quad P_{\mathcal{A}_{|\Sigma}} = P_{\mathcal{A}} \text{ for } P \in \Pi$$

(ignore functions and predicates associated with symbols in $\Sigma' \setminus \Sigma$)

 $\mathcal{A}_{|\Sigma}$ is called the restriction (or the reduct) of \mathcal{A} to Σ .

$$\begin{array}{ll} \mbox{Example:} & \Sigma' = (\{+/2, */2, 1/0\}, \{\leq/2, \mbox{even}/1, \mbox{odd}/1\}) \\ & \Sigma = (\{+/2, 1/0\}, \{\leq/2\}) \subseteq \Sigma' \\ & \mathcal{N} = (\mathbb{N}, +, *, 1, \leq, \mbox{even}, \mbox{odd}) & \mathcal{N}_{|\Sigma} = (\mathbb{N}, +, 1, \leq) \end{array}$$

Combining theories

Syntactic view: $\mathcal{T}_1 + \mathcal{T}_2 = \mathcal{T}_1 \cup \mathcal{T}_2 \subseteq F_{\Sigma_1 \cup \Sigma_2}(X)$ $Mod(\mathcal{T}_1 \cup \mathcal{T}_2) = \{ \mathcal{A} \in (\Sigma_1 \cup \Sigma_2) \text{-alg} \mid \mathcal{A} \models G, \text{ for all } G \text{ in } \mathcal{T}_1 \cup \mathcal{T}_2 \}$

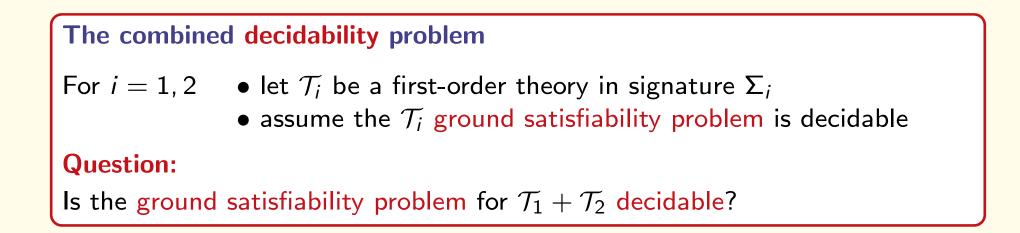
Semantic view: Let
$$\mathcal{M}_i = Mod(\mathcal{T}_i)$$
, $i = 1, 2$
 $\mathcal{M}_1 + \mathcal{M}_2 = \{\mathcal{A} \in (\Sigma_1 \cup \Sigma_2)\text{-alg} \mid \mathcal{A}_{\mid \Sigma_i} \in \mathcal{M}_i \text{ for } i = 1, 2\}$

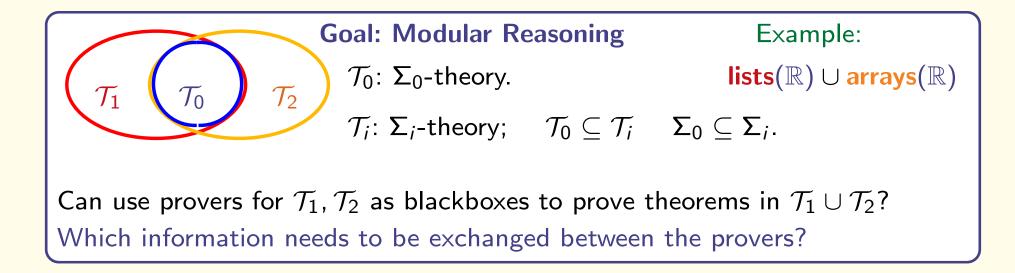
 $\mathcal{A} \in \mathsf{Mod}(\mathcal{T}_1 \cup \mathcal{T}_2)$ iff $\mathcal{A} \models G$, for all G in $\mathcal{T}_1 \cup \mathcal{T}_2$ iff $\mathcal{A}_{|\Sigma_i} \models G$, for all G in $\mathcal{T}_i, i = 1, 2$ iff $\mathcal{A}_{|\Sigma_i} \in \mathcal{M}_i, i = 1, 2$ iff $\mathcal{A} \in \mathcal{M}_1 + \mathcal{M}_2$

1. Presburger arithmetic + UIF

 $\begin{aligned} \mathsf{Th}(\mathbb{Z}_+) \cup UIF & \Sigma = (\Omega, \Pi) \\ \text{Models:} \ (A, 0, s, +, \{f_A\}_{f \in \Omega}, \leq, \{P_A\}_{P \in \Pi}) \\ \text{where} \ (A, 0, s, +, \leq) \in \mathsf{Mod}(\mathsf{Th}(\mathbb{Z}_+)). \end{aligned}$

Combinations of theories





Combination of theories over disjoint signatures

The Nelson/Oppen procedure

Given: \mathcal{T}_1 , \mathcal{T}_2 first-order theories with signatures Σ_1 , Σ_2

Assume that $\Sigma_1 \cap \Sigma_2 = \emptyset$ (share only \approx)

 P_i decision procedures for satisfiability of ground formulae w.r.t. T_i

 ϕ quantifier-free formula over $\Sigma_1\cup\Sigma_2$

Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_1 \cup \mathcal{T}_2$

Note: Restrict to conjunctive quantifier-free formulae $\phi \mapsto DNF(\phi)$ $DNF(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}

[Nelson & Oppen, 1979]

Theories

\mathcal{R}	theory of rationals	$\Sigma_{\mathcal{R}} = \{\leq,+,-,0,1\}$	\approx
\mathcal{L}	theory of lists	$\Sigma_{\mathcal{L}} = \{ car, cdr, cons \}$	\approx
${\cal E}$	theory of equality (UIF)	Σ : free function and predicate symbols	\approx

Problems:

- 1. $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \models \forall x, y(x \leq y \land y \leq x + car(cons(0, x)) \land P(h(x) h(y)) \rightarrow P(0))$
- 2. Is the following conjunction:

$$c \leq d \land d \leq c + \operatorname{car}(\operatorname{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

An Example

	${\cal R}$	\mathcal{L}	Е
Σ	$\{\leq, +, -, 0, 1\}$	$\{car, cdr, cons\}$	$F \cup P$
Axioms	$x + 0 \approx x$	$car(cons(x, y)) \approx x$	
	$x - x \approx 0$	$cdr(cons(x, y)) \approx y$	
(univ.	+ is <i>A</i> , <i>C</i>	$\operatorname{at}(x) \lor \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) \approx x$	
quantif.)	\leq is R, T, A	$\neg at(cons(x, y))$	
	$x \leq y \lor y \leq x$		
	$x \le y \rightarrow x + z \le y + z$		

Is the following conjunction:

$$c \leq d ~\wedge~ d \leq c + ext{car(cons(0, c))} ~\wedge~ P(h(c) - h(d)) ~\wedge~
eg P(0)$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

Given: ϕ conjunctive quantifier-free formula over $\Sigma_1 \cup \Sigma_2$

Task: Find ϕ_1, ϕ_2 s.t. ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ equivalent with ϕ

$$\begin{aligned} f(s_1, \ldots, s_n) &\approx g(t_1, \ldots, t_m) &\mapsto u \approx f(s_1, \ldots, s_n) \wedge u \approx g(t_1, \ldots, t_m) \\ f(s_1, \ldots, s_n) &\not\approx g(t_1, \ldots, t_m) &\mapsto u \approx f(s_1, \ldots, s_n) \wedge v \approx g(t_1, \ldots, t_m) \wedge u \not\approx v \\ (\neg) P(\ldots, s_i, \ldots) &\mapsto (\neg) P(\ldots, u, \ldots) \wedge u \approx s_i \\ (\neg) P(\ldots, s_i[t], \ldots) &\mapsto (\neg) P(\ldots, s_i[t \mapsto u], \ldots) \wedge u \approx t \\ &\text{where } t \approx f(t_1, \ldots, t_n) \end{aligned}$$

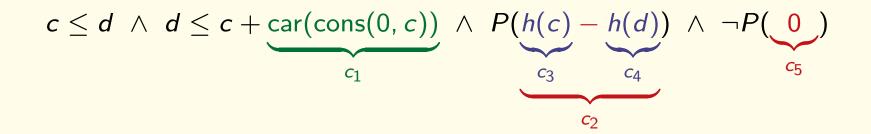
Termination: Obvious

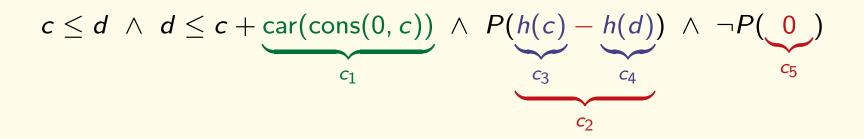
Correctness: $\phi_1 \wedge \phi_2$ and ϕ equisatisfiable.

 $c \leq d \land d \leq c + \operatorname{car}(\operatorname{cons}(0, c)) \land P(h(c) - h(d)) \land \neg P(0)$

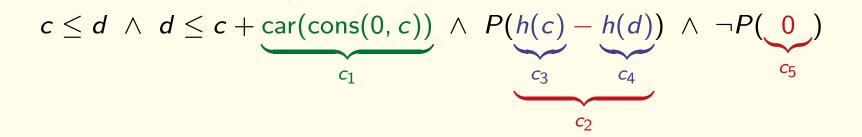
$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(h(c) - h(d)) \land \neg P(0)$$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c) - h(d)}_{c_2}) \land \neg P(0)$$

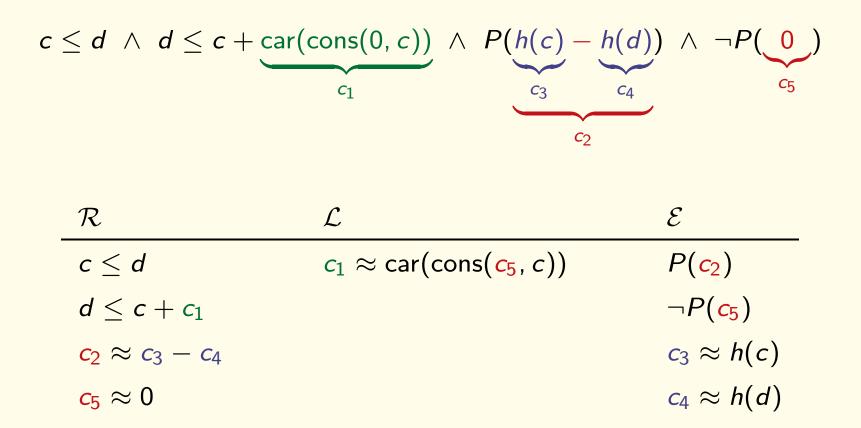




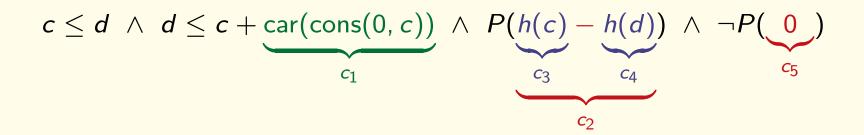
\mathcal{R}	\mathcal{L}	E
$c \leq d$	$c_1 pprox {\sf car}({\sf cons}({\it c_5}, c))$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$



\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$c_1 pprox ext{car(cons(c_5, c))}$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
satisfiable	satisfiable	satisfiable

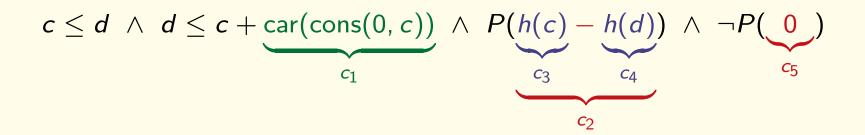


deduce and propagate equalities between constants entailed by components



\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$c_1 pprox ext{car(cons(c_5, c))}$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$

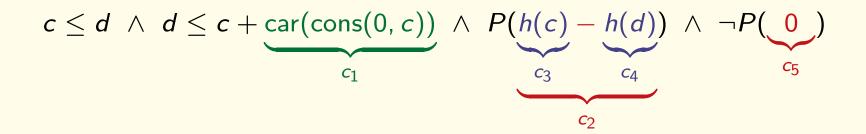
 $c_1 pprox c_5$



\mathcal{R}	\mathcal{L}	${\cal E}$
$c \leq d$	$c_1 pprox ext{car(cons(c_5, c))}$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
$c_1pprox c_5$	$c_1pprox c_5$	

c pprox d

37



\mathcal{R}	\mathcal{L}	Е
$c \leq d$	$c_1 pprox ext{car(cons(c_5, c))}$	$P(c_2)$
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
$c_1pprox c_5$	$c_1pprox c_5$	cpprox d
$c \approx d$	1 0	$c_3 pprox c_4$

$$c \leq d \land d \leq c + \underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_1} \land P(\underbrace{h(c)}_{c_3} - \underbrace{h(d)}_{c_4}) \land \neg P(\underbrace{0}_{c_5})$$

\mathcal{R}	\mathcal{L}	ε
$c \leq d$	$c_1 pprox car(cons(c_5, c))$	P(c ₂)
$d \leq c + c_1$		$\neg P(c_5)$
$c_2 \approx c_3 - c_4$		$c_3 pprox h(c)$
$c_5 pprox 0$		$c_4 pprox h(d)$
$c_1pprox c_5$	$c_1 pprox c_5$	c pprox d
c pprox d		$c_3 \approx c_4$
$c_2pprox c_5$		\perp

The Nelson-Oppen algorithm

 ϕ conjunction of literals

Step 1. Purification $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$: where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

Step 2. Propagation.

The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

The Nelson-Oppen algorithm

 ϕ conjunction of literals

Step 1. Purification $\mathcal{T}_1 \cup \mathcal{T}_2 \cup \phi \mapsto (\mathcal{T}_1 \cup \phi_1) \cup (\mathcal{T}_2 \cup \phi_2)$:

where ϕ_i is a pure Σ_i -formula and $\phi_1 \wedge \phi_2$ is equisatisfiable with ϕ .

not problematic; requires linear time

Step 2. Propagation.

The decision procedure for ground satisfiability for \mathcal{T}_1 and \mathcal{T}_2 fairly

exchange information concerning entailed unsatisfiability

of constraints in the shared signature

i.e. clauses over the shared variables.

until an inconsistency is detected or a saturation state is reached.

not problematic; termination guaranteed Sound: if inconsistency detected input unsatisfiable Complete: under additional assumptions

The Nelson-Oppen algorithm

Termination:only finitely many shared variables to be identifiedSoundness:If procedure answers "unsatisfiable" then ϕ is unsatisfiableCompleteness:Under additional hypotheses

Consider stably infinite theories.

 \mathcal{T} is stably infinite iff for every quantifier-free formula ϕ ϕ satisfiable in \mathcal{T} iff ϕ satisfiable in an infinite model of \mathcal{T} .

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

With this additional condition completeness can be proved.

Applications

- 1. Decision Procedures for data types
 - A decidable fragment of the theory of arrays

 \mapsto reduction to reasoning in the combination of Presburger arithmetic and uninterpreted function symbols

Tim Taubitz

A decidable fragment of the theory of pointer structures

 → reduction to reasoning in the combination of the theory
 uninterpreted function symbols and the ßcalartheories.

Jouliet Mesto

Applications

2. Program Verification

Task: Prove that the safety property always holds (in general difficult)

Invariant checking

 $Init \models Safe$

 $\mathsf{Safe} \land \mathsf{Update}(\Sigma, \Sigma') \models \mathsf{Safe'}$

Bounded model checking: given $k \in \mathbb{N}$. Prove that for all $n \leq k$: Init $(\Sigma^0) \wedge \text{Update}|(\Sigma^0, \Sigma^1) \wedge \cdots \wedge \text{Update}|(\Sigma^{n-1}, \Sigma^n) \models \text{Safe}(\Sigma^n)$

Summary

- Logical Theories
- Decidability/Undecidability
- Combination of Logical Theories

The Nelson/Oppen Method for reasoning in

combinations of theories with disjoint signatures

• Applications