Seminar Decision Procedures and Applications

Background Information: Part I

Viorica Sofronie-Stokkermans
University Koblenz-Landau

25 June 2019

Topics for the talks

- Matthias Becker: Decision Procedures for UTVPI Constraints
- Delzar Habash: Automata approach to Presburger arithmetic
- Denis Oldenburg: Quantifier elimination for linear arithmetic over the integers
- Dominik Kohns: Reasoning about uninterpreted function symbols
- Nico Bartmann: DPLL(T)
- Stefan Strüder: Decision procedures for classical datatypes based on the superposition calculus
- Tim Taubitz: Instantiation-based decision procedures for theories of arrays.
- Jouliet Mesto: Data Structure Specifications via Local Equality Axioms.

Structure

Reasoning in standard theories
Presburger arithmetic: Delzar Habash, Denis Oldenburg Simpler fragments: UTVPI Matthias Becker

Theory of uninterpreted function symbols: Dominik Kohns

Conjunctive fragment \mapsto clauses: Nico Bartmann

Classical data types: Stefan Strüder: Superposition

Structure

Reasoning in complex theories

Modular reasoning in combinations of theories
Disjoint signature: The Nelson-Oppen method

- Applications: complex data types

Fragment of theory of arrays: Tim Taubitz

Fragment of theory of pointers: Jouliet Mesto

Logical theories

```
Syntactic view
    Axiomatized by a set \mathcal{F}}\mathrm{ of (closed) first-order }\Sigma\mathrm{ -formulae.
    the models of \mathcal{F: }}\operatorname{Mod}(\mathcal{F})={\mathcal{A}\in\Sigma\mathrm{ -alg | A }\modelsG, for all G in \mathcal{F}
\[
\begin{array}{ll}
\mathcal{F} \subseteq \operatorname{Th}(\operatorname{Mod}(\mathcal{F})) & \text { (typically strict) } \\
\mathcal{M} \subseteq \operatorname{Mod}(\operatorname{Th}(\mathcal{M})) & \text { (typically strict) }
\end{array}
\]
```


Semantic view

```
given a class \(\mathcal{M}\) of \(\Sigma\)-structures the first-order theory of \(\mathcal{M}: \operatorname{Th}(\mathcal{M})=\left\{G \in F_{\Sigma}(X)\right.\) closed \(\left.\mid \mathcal{M} \vDash G\right\}\)
```

$\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ the set of formulae true in all models of \mathcal{F} represents exactly the set of consequences of \mathcal{F}

Examples

1. Linear integer arithmetic. $\Sigma=(\{0 / 0, s / 1,+/ 2\},\{\leq / 2\})$
$\mathbb{Z}_{+}=(\mathbb{Z}, 0, s,+, \leq)$ the standard interpretation of integers.
$\left\{\mathbb{Z}_{+}\right\} \subset \operatorname{Mod}\left(\operatorname{Th}\left(\mathbb{Z}_{+}\right)\right)$
2. Uninterpreted function symbols. $\Sigma=(\Omega$, Pred $)$
$\mathcal{M}=\Sigma$-alg: the class of all Σ-structures
The theory of uninterpreted function symbols is $\operatorname{Th}(\Sigma$-alg $)$ the family of all first-order formulae which are true in all Σ-structures.

Examples

3. Lists. $\Sigma=(\{c a r / 1, c d r / 1$, cons $/ 2\}, \emptyset)$
$\mathcal{F}=\left\{\begin{aligned} \operatorname{car}(\operatorname{cons}(x, y)) & \approx x \\ \operatorname{cdr}(\operatorname{cons}(x, y)) & \approx y \\ \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) & \approx x\end{aligned}\right.$
$\operatorname{Mod}(\mathcal{F})$: the class of all models of \mathcal{F}
$\mathrm{Th}_{\text {Lists }}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ theory of lists (axiomatized by $\left.\mathcal{F}\right)$

Decidable theories

$$
\Sigma=(\Omega, \text { Pred }) \text { be a signature. }
$$

\mathcal{M} : class of Σ-structures. $\quad \mathcal{T}=\operatorname{Th}(\mathcal{M})$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (after a finite number of steps) whether ϕ is in \mathcal{T} or not.
\mathcal{F} : class of (closed) first-order formulae.
The theory $\mathcal{T}=\operatorname{Th}(\operatorname{Mod}(\mathcal{F}))$ is decidable iff
there is an algorithm which, for every closed first-order formula ϕ, can decide (in finite time) whether $\mathcal{F} \models \phi$ or not.

Examples

Undecidable theories

- Peano arithmetic

Axiomatized by: $\quad \forall x \neg(x+1 \approx 0)$

$$
\begin{array}{lr}
\forall x \forall y(x+1 \approx y+1 \rightarrow x \approx y & \text { (successor) } \tag{zero}\\
F[0] \wedge(\forall x(F[x] \rightarrow F[x+1]) \rightarrow \forall x F[x]) & \text { (induction) } \\
\forall x(x+0 \approx x) & \text { (plus zero) } \\
\forall x, y(x+(y+1) \approx(x+y)+1) & \text { (plus successor) } \\
\forall x, y(x * 0 \approx 0) & \text { (times zero) } \\
\forall x, y(x *(y+1) \approx x * y+x) & \text { (times successor) }
\end{array}
$$

$3 * y+5>2 * y$ expressed as $\exists z(z \neq 0 \wedge 3 * y+5 \approx 2 * y+z)$
Intended interpretation: $(\mathbb{N},\{0,1,+, *\},\{\approx, \leq\})$
(does not capture true arithmetic by Gödel's incompleteness theorem)

- $\operatorname{Th}((\mathbb{Z},\{0,1,+, *\},\{\leq\}))$
-Th(Σ-alg)

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- Presburger arithmetic decidable in 3EXPTIME [Presburger'29] Signature: $(\{0,1,+\},\{\approx, \leq\})($ no $*)$

Axioms \{ (zero), (successor), (induction), (plus zero), (plus successor) \}
A decision procedure will be presented by Delzar Habash
A quantifier-elimination method with be presented by Denis Oldenburg
A simple fragment (UTVPI) with be presented by Matthias Becker

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments

Decidable theories

- The theory of real numbers (with addition and multiplication) is decidable in 2EXPTIME [Tarski'30]

Examples

In order to obtain decidability results:

- Restrict the signature
- Enrich axioms
- Look at certain fragments $\mathcal{L} \subseteq \operatorname{Fma}(\Sigma)$
"Simpler" task: Given ϕ in \mathcal{L}, is it the case that $\mathcal{T} \models \phi$?
Common restrictions on \mathcal{L}

$$
\text { Pred }=\emptyset \quad\{\phi \in \mathcal{L} \mid \mathcal{T} \models \phi\}
$$

$\mathcal{L}=\{\forall x A(x) \mid A$ atomic $\} \quad$ word problem
$\mathcal{L}=\left\{\forall x\left(A_{1} \wedge \ldots \wedge A_{n} \rightarrow B\right) \mid A_{i}, B\right.$ atomic $\}$ uniform word problem $T_{\forall \text { Horn }}$
$\mathcal{L}=\{\forall x C(x) \mid C(x)$ clause $\}$
$\mathcal{L}=\{\forall x \phi(x) \mid \phi(x)$ unquantified $\}$
clausal validity problem $\mathrm{Th}_{\forall, \mathrm{cl}}$ universal validity problem $T^{T} h{ }^{\prime}$

Validity of \forall formulae vs. ground satisfiability

The following are equivalent:
(1) $\mathcal{T} \models \forall x\left(L_{1}(x) \vee \cdots \vee L_{n}(x)\right)$
(2) There is no model of \mathcal{T} which satisfies $\exists x\left(\neg L_{1}(x) \wedge \cdots \wedge \neg L_{n}(x)\right)$
(3) There is no model of \mathcal{T} and no valuation for the constants c for which $\left(\neg L_{1}(c) \wedge \cdots \wedge \neg L_{n}(c)\right)$ becomes true (notation: $\left(\neg L_{1}(c) \wedge \cdots \wedge \neg L_{n}(c)\right) \models_{\mathcal{T}} \perp$)

Can reduce any validity problem to a ground satisfiability problem

Useful theories

Many example of theories in which ground satisfiability is decidable:

- The empty theory (no axioms) UIF (Σ) : Dominik Kohns
- theories axiomatizing common datatypes: Stefan Strüder

Combination of theories

Combinations of theories and models

Forgetting symbols
Let $\Sigma=(\Omega, \Pi)$ and $\Sigma^{\prime}=\left(\Omega^{\prime}, \Pi^{\prime}\right)$ s.t. $\Sigma \subseteq \Sigma^{\prime}$, i.e., $\Omega \subseteq \Omega^{\prime}$ and $\Pi \subseteq \Pi^{\prime}$
For $\mathcal{A} \in \Sigma^{\prime}$-alg, we denote by $\mathcal{A}_{\mid \Sigma}$ the Σ-structure for which:

$$
U_{\mathcal{A}_{\mid \Sigma}}=U_{\mathcal{A}}, \quad f_{\mathcal{A}_{\mid \Sigma}}=f_{\mathcal{A}} \text { for } f \in \Omega ; \quad P_{\mathcal{A}_{\mid \Sigma}}=P_{\mathcal{A}} \text { for } P \in \Pi
$$

(ignore functions and predicates associated with symbols in $\Sigma^{\prime} \backslash \Sigma$)
$\mathcal{A}_{\mid \Sigma}$ is called the restriction (or the reduct) of \mathcal{A} to Σ.

$$
\begin{aligned}
& \text { Example: } \quad \Sigma^{\prime}=(\{+/ 2, * / 2,1 / 0\},\{\leq / 2 \text {, even } / 1, \text { odd } / 1\}) \\
& \Sigma=(\{+/ 2,1 / 0\},\{\leq / 2\}) \subseteq \Sigma^{\prime} \\
& \mathcal{N}=(\mathbb{N},+, *, 1, \leq, \text { even, odd }) \quad \mathcal{N}_{\mid \Sigma}=(\mathbb{N},+, 1, \leq)
\end{aligned}
$$

Combining theories

Syntactic view: $\mathcal{T}_{1}+\mathcal{T}_{2}=\mathcal{T}_{1} \cup \mathcal{T}_{2} \subseteq F_{\Sigma_{1} \cup \Sigma_{2}}(X)$
$\operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A} \models G$, for all G in $\left.\mathcal{T}_{1} \cup \mathcal{T}_{2}\right\}$

Semantic view: Let $\mathcal{M}_{i}=\operatorname{Mod}\left(\mathcal{T}_{i}\right), i=1,2$
$\mathcal{M}_{1}+\mathcal{M}_{2}=\left\{\mathcal{A} \in\left(\Sigma_{1} \cup \Sigma_{2}\right)\right.$-alg $\mid \mathcal{A}_{\mid \Sigma_{i}} \in \mathcal{M}_{i}$ for $\left.i=1,2\right\}$
$\mathcal{A} \in \operatorname{Mod}\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right) \quad$ iff $\quad \mathcal{A} \models G$, for all G in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$
iff $\mathcal{A}_{\mid \Sigma_{i}} \models G$, for all G in $\mathcal{T}_{i}, i=1,2$
iff $\mathcal{A}_{\mid \Sigma_{i}} \in \mathcal{M}_{i}, i=1,2$
iff $\mathcal{A} \in \mathcal{M}_{1}+\mathcal{M}_{2}$

Example

1. Presburger arithmetic + UIF
$\operatorname{Th}\left(\mathbb{Z}_{+}\right) \cup$ UIF $\quad \Sigma=(\Omega, \Pi)$
Models: $\left(A, 0, s,+,\left\{f_{A}\right\}_{f \in \Omega}, \leq,\left\{P_{A}\right\}_{P \in \Pi}\right)$
where $(A, 0, s,+, \leq) \in \operatorname{Mod}\left(\operatorname{Th}\left(\mathbb{Z}_{+}\right)\right)$.

Combinations of theories

The combined decidability problem
For $i=1,2 \quad \bullet$ let \mathcal{T}_{i} be a first-order theory in signature Σ_{i}

- assume the \mathcal{T}_{i} ground satisfiability problem is decidable

Question:
Is the ground satisfiability problem for $\mathcal{T}_{1}+\mathcal{T}_{2}$ decidable?

Can use provers for $\mathcal{T}_{1}, \mathcal{T}_{2}$ as blackboxes to prove theorems in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$? Which information needs to be exchanged between the provers?

Combination of theories over disjoint signatures

The Nelson/Oppen procedure
Given: $\mathcal{T}_{1}, \mathcal{T}_{2}$ first-order theories with signatures Σ_{1}, Σ_{2}
Assume that $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ (share only \approx)
P_{i} decision procedures for satisfiability of ground formulae w.r.t. \mathcal{T}_{i}
ϕ quantifier-free formula over $\Sigma_{1} \cup \Sigma_{2}$
Task: Check whether ϕ is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$

Note: Restrict to conjunctive quantifier-free formulae

$$
\phi \mapsto \operatorname{DNF}(\phi)
$$

$\operatorname{DNF}(\phi)$ satisfiable in \mathcal{T} iff one of the disjuncts satisfiable in \mathcal{T}

Example

[Nelson \& Oppen, 1979]
Theories
\mathcal{R} theory of rationals $\quad \Sigma_{\mathcal{R}}=\{\leq,+,-, 0,1\} \quad \approx$
\mathcal{L} theory of lists $\quad \Sigma_{\mathcal{L}}=\{$ car, cdr, cons $\} \quad \approx$
\mathcal{E} theory of equality (UIF) Σ : free function and predicate symbols \approx

Problems:

1. $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} \models \forall x, y(x \leq y \wedge y \leq x+\operatorname{car}(\operatorname{cons}(0, x)) \wedge P(h(x)-h(y)) \rightarrow P(0))$
2. Is the following conjunction:

$$
c \leq d \wedge d \leq c+\operatorname{car}(\operatorname{cons}(0, c)) \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E} ?$

An Example

	\mathcal{R}	\mathcal{L}	\mathcal{E}
Σ	$\{\leq,+,-, 0,1\}$	$\{\operatorname{car}, \operatorname{cdr}, \operatorname{cons}\}$	$F \cup P$
Axioms	$x+0 \approx x$	$\operatorname{car}(\operatorname{cons}(x, y)) \approx x$	
(univ.	$x-x \approx 0$	$\operatorname{cdr}(\operatorname{cons}(x, y)) \approx y$	
quantif.)	\leq is A, C	$\operatorname{at}(x) \vee \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) \approx x$	
	$x \leq y \vee y \leq x$	$\neg a t(\operatorname{cons}(x, y))$	
	$x \leq y \rightarrow x+z \leq y+z$		

Is the following conjunction:

$$
c \leq d \wedge d \leq c+\operatorname{car}(\operatorname{cons}(0, c)) \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

satisfiable in $\mathcal{R} \cup \mathcal{L} \cup \mathcal{E}$?

Step 1: Purification

Given: ϕ conjunctive quantifier-free formula over $\Sigma_{1} \cup \Sigma_{2}$
Task: Find ϕ_{1}, ϕ_{2} s.t. ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ equivalent with ϕ

$$
\begin{array}{lll}
f\left(s_{1}, \ldots, s_{n}\right) \approx g\left(t_{1}, \ldots, t_{m}\right) & \mapsto & u \approx f\left(s_{1}, \ldots, s_{n}\right) \wedge u \approx g\left(t_{1}, \ldots, t_{m}\right) \\
f\left(s_{1}, \ldots, s_{n}\right) \not \approx g\left(t_{1}, \ldots, t_{m}\right) & \mapsto & u \approx f\left(s_{1}, \ldots, s_{n}\right) \wedge v \approx g\left(t_{1}, \ldots, t_{m}\right) \wedge u \not \approx v \\
(\neg) P\left(\ldots, s_{i}, \ldots\right) & \mapsto & (\neg) P(\ldots, u, \ldots) \wedge u \approx s_{i} \\
(\neg) P\left(\ldots, s_{i}[t], \ldots\right) & \mapsto & (\neg) P\left(\ldots, s_{i}[t \mapsto u], \ldots\right) \wedge u \approx t \\
\quad \text { where } t \approx f\left(t_{1}, \ldots, t_{n}\right) & &
\end{array}
$$

Termination: Obvious
Correctness: $\phi_{1} \wedge \phi_{2}$ and ϕ equisatisfiable.

Step 1: Purification

$$
c \leq d \wedge d \leq c+\operatorname{car}(\operatorname{cons}(0, c)) \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

Step 1: Purification

$$
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(h(c)-h(d)) \wedge \neg P(0)
$$

Step 1: Purification

$$
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)-h(d)}_{c_{2}}) \wedge \neg P(0)
$$

Step 1: Purification

Step 1: Purification

\mathcal{R}	\mathcal{L}	\mathcal{E}
$c \leq d$	$c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right)$	$P\left(c_{2}\right)$
$d \leq c+c_{1}$		$\neg P\left(c_{5}\right)$
$c_{2} \approx c_{3}-c_{4}$		$c_{3} \approx h(c)$
$c_{5} \approx 0$	$c_{4} \approx h(d)$	

Step 1: Purification

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{4}}-\underbrace{h(d)}_{c_{4}})}_{c_{3}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
\text { satisfiable } & c_{4} \approx h(d) \\
& \text { satisfiable }
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{2}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{E} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
& c_{4} \approx h(d)
\end{array}
$$

deduce and propagate equalities between constants entailed by components

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{2}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{E} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
& c_{4} \approx h(d)
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{h(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}}) \\
c_{2}
\end{array} \underbrace{P(\underbrace{0})}_{c_{5}} \begin{array}{ll}
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d & c_{1} \approx c_{5}
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{c(c)}_{c_{4}}-\underbrace{h(d)}_{c_{4}})}_{c_{3}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d & c \approx d \\
& c_{1} \approx c_{5}
\end{array}
$$

Step 2: Propagation

$$
\begin{array}{ll}
c \leq d \wedge d \leq c+\underbrace{\operatorname{car}(\operatorname{cons}(0, c))}_{c_{1}} \wedge P(\underbrace{(\underbrace{c(c)}_{c_{3}}-\underbrace{h(d)}_{c_{4}})}_{c_{3}} \wedge \neg P(\underbrace{0}_{c_{5}}) \\
\mathcal{R} & \mathcal{L} \\
\hline c \leq d & c_{1} \approx \operatorname{car}\left(\operatorname{cons}\left(c_{5}, c\right)\right) \\
d \leq c+c_{1} & P\left(c_{2}\right) \\
c_{2} \approx c_{3}-c_{4} & \neg P\left(c_{5}\right) \\
c_{5} \approx 0 & c_{3} \approx h(c) \\
c_{1} \approx c_{5} & c_{4} \approx h(d) \\
c \approx d & c \approx d \\
c_{2} \approx c_{5} & c_{3} \approx c_{5} \\
& \\
&
\end{array}
$$

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$: where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.

Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.

The Nelson-Oppen algorithm

ϕ conjunction of literals
Step 1. Purification $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \phi \mapsto\left(\mathcal{T}_{1} \cup \phi_{1}\right) \cup\left(\mathcal{T}_{2} \cup \phi_{2}\right)$:
where ϕ_{i} is a pure Σ_{i}-formula and $\phi_{1} \wedge \phi_{2}$ is equisatisfiable with ϕ.
not problematic; requires linear time
Step 2. Propagation.
The decision procedure for ground satisfiability for \mathcal{T}_{1} and \mathcal{T}_{2} fairly exchange information concerning entailed unsatisfiability of constraints in the shared signature
i.e. clauses over the shared variables.
until an inconsistency is detected or a saturation state is reached.
not problematic; termination guaranteed
Sound: if inconsistency detected input unsatisfiable
Complete: under additional assumptions

The Nelson-Oppen algorithm

Termination: only finitely many shared variables to be identified
Soundness: If procedure answers "unsatisfiable" then ϕ is unsatisfiable
Completeness: Under additional hypotheses
Consider stably infinite theories.
\mathcal{T} is stably infinite iff for every quantifier-free formula ϕ
ϕ satisfiable in \mathcal{T} iff ϕ satisfiable in an infinite model of \mathcal{T}.

Note: This restriction is not mentioned in [Nelson Oppen 1979]; introduced by Oppen in 1980.

With this additional condition completeness can be proved.

Applications

1. Decision Procedures for data types

- A decidable fragment of the theory of arrays
\mapsto reduction to reasoning in the combination of Presburger arithmetic and uninterpreted function symbols

Tim Taubitz

- A decidable fragment of the theory of pointer structures
\mapsto reduction to reasoning in the combination of the theory uninterpreted function symbols and the Bcalartheories.

Jouliet Mesto

Applications

2. Program Verification

Program	$\mapsto \quad T=\left(\Sigma\right.$, Init, Update $\left.\left(\Sigma, \Sigma^{\prime}\right)\right)$
Safety Property	$\mapsto \quad$ Formula Safe

Task: Prove that the safety property always holds (in general difficult)

Invariant checking
Init \vDash Safe
Safe \wedge Update $\left(\Sigma, \Sigma^{\prime}\right) \models$ Safe $^{\prime}$

Bounded model checking: given $k \in \mathbb{N}$. Prove that for all $n \leq k$:
$\operatorname{Init}\left(\Sigma^{0}\right) \wedge \operatorname{Update} \mid\left(\Sigma^{0}, \Sigma^{1}\right) \wedge \cdots \wedge$ Update $\mid\left(\Sigma^{n-1}, \Sigma^{n}\right) \models \operatorname{Safe}\left(\Sigma^{n}\right)$

Summary

- Logical Theories
- Decidability/Undecidability
- Combination of Logical Theories

The Nelson/Oppen Method for reasoning in combinations of theories with disjoint signatures

- Applications

