Universität Koblenz-Landau
 FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans * ${ }^{1}$
Dipl.-Inform. Markus Bender * ${ }^{2}$
17.10.2012

Exercises for

Advances in Theoretical Computer Science

Exercise Sheet 1

Due at 22.10.12, 09:00 s.t.

Exercise 1.1

Get acquainted with the following definitions of Turing Machines and related concepts:
A Turing Machine (TM) \mathcal{M} is a tuple $\mathcal{M}=(K, \Sigma, \delta, s)$ with

- K a finite set of states, $h \notin K$,
- Σ an alphabet, $L, R \notin \Sigma$ and $\# \in \Sigma$,
- $\delta: K \times \Sigma \rightarrow(K \cup\{h\}) \times(\Sigma \cup\{L, R\})$ a transition function, and
- $s \in K$ an initial state.

The transition $\delta(q, a)=\left(q^{\prime}, x\right)$ describes that if a TM is in state $q \in K$ and the symbol $a \in \Sigma$ is read, the TM changes its state to $q^{\prime} \in K \cup\{h\}$ and

- moves the head one step to the left, iff $x=L$
- moves the head one step to the right, iff $x=R$
- does not move the head but prints the symbol $b \in \Sigma$ on the tape, iff $x=b \in \Sigma$

A configuration C of a $\operatorname{TM} \mathcal{M}=(K, \Sigma, \delta, s)$ is a string $C=q$, wau , with

- $q \in K \cup\{h\}$, the current state,
- $w \in \Sigma^{*}$, the tape contents left of the head,
- $a \in \Sigma$, the tape content under the head (the current symbol),
- $u \in \Sigma^{*}(\Sigma-\{\#\}) \cup\{\varepsilon\}$, the tape contents right of the head,

The initial configuration C_{0} of \mathcal{M} is defined as $C_{0}=s, \# w \#$ with input $w \in \Sigma^{*}$. $C_{2}=w_{2} a_{2} u_{2}$ is a successor configuration of $C_{1}=w_{1} a_{1} u_{1}$, written as $C_{1} \vdash_{\mathcal{M}} C_{2}$, iff there is a transition $\delta\left(q_{1}, a_{1}\right)=\left(q_{2}, b\right)$ and:
Case 1: $b \in \Sigma$. Then $w_{1}=w_{2}, u_{1}=u_{2}, a_{2}=b$.
Case 2: $b=L$. Then for w_{2} and $a_{2}: w_{1}=w_{2} a_{2}$. For $u_{2}:$ If $a_{1}=\#$ and $u_{1}=\varepsilon$, then $u_{2}=\varepsilon$, otherwise $u_{2}=a_{1} u_{1}$.

Case 3: $b=R$. Then for $w_{2}=w_{1} a_{1}$. For a_{2} and $u_{2}:$ If $u_{1}=\varepsilon$, then $u_{2}=\varepsilon$ and $a_{2}=\#$, otherwise $u_{1}=a_{2} u_{2}$.
$C_{0} \vdash^{*}{ }_{\mathcal{M}} C_{n}$ is called computation, iff for all C_{i} with $0 \leq i<n, C_{i+1}$ is a successor configuration of C_{i}.

Exercise 1.2

a) Define a Turing Machine \mathcal{M}_{a} that accepts all words $w \in\{\mid\}^{*}$ with an even length, i.e. \mathcal{M}_{a} holds, iff w has even length, otherwise \mathcal{M}_{a} does not terminate.
b) Define a Turing Machine \mathcal{M}_{d} that decides if a word $w \in\{\mid\}^{*}$ has an even length.
$s, \# w \# \vdash_{\mathcal{M}_{d}}^{*} h, \# Y \#$, iff w has even length,
$s, \# w \# \vdash_{\mathcal{M}_{d}}^{*} h, \# N \#$, iff w has odd length.
c) Define a Turing Machine \mathcal{M}_{i} that adds one \mid to an input word $w \in\{\mid\}^{*}$. $s, \# w \# \vdash_{\mathcal{M}_{i}}^{*} h, \# w \mid \#$.

You can decide to give the formal definition of the Turing Machines or to draw it in the flow chart notation.

[^0]The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until 22.10 .12 , 09:00 s.t.. Joint solutions prepared by up to two persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz. de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222 (if you prefer to submit the written exercise like this please tell me such that I can prepare such a box).

[^0]: $*^{1} \quad$ B 225 sofronie@uni-koblenz.de www.uni-koblenz.de/~sofronie

 * 2 B 224 mbender@uni-koblenz.de www.uni-koblenz.de/~mbender

