Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender
November 29, 2012

Exercises for
"Advances in Theoretical Computer Science"
Exercise sheet 7
Due on 4.12.12, 09:00 s.t.

Exercise 7.1:

Prove that the following functions are primitive recursive:
(1) max $: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $\max (x, y)= \begin{cases}x & \text { if } x \geq y \\ y & \text { otherwise }\end{cases}$
(2) div $: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $\operatorname{div}(x, y)= \begin{cases}x+1 & \text { if } y=0 \\ \left\lfloor\frac{x}{y}\right\rfloor & \text { otherwise }\end{cases}$
(3) mod : $\mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $\bmod (x, y)= \begin{cases}x & \text { if } y=0 \\ x \bmod y & \text { otherwise }\end{cases}$

Here $\lfloor x\rfloor$ is the largest integer which is smaller than or equal to x ("floor x ").
Remark: You are allowed to use all functions that were proved to be primitive recursive in the lecture or in a previous exercise.

Exercise 7.2:

Let $d: \mathbb{N} \rightarrow \mathbb{N}$ be defined by:

$$
d(n)= \begin{cases}\text { number of divisors of } n & \text { if } n \neq 0 \\ 0 & \text { if } n=0\end{cases}
$$

For instance, $d(0)=0, d(1)=1, d(2)=2, d(3)=2, d(4)=3, d(12)=6$.
(1) Let $d_{2}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be such that $d_{2}(n, m)$ is the number of divisors of n which are smaller than or equal to m (we assume that $d_{2}(0,0)=0$). Prove that d_{2} is primitive recursive.
(2) Use (1) to show that d is primitive recursive.

Hint: (1) You can e.g. give a definition by primitive recursion for d_{2}.
Remark: You are allowed to use all functions that were proved to be primitive recursive in the lecture or in a previous exercise.

Exercise 7.3:

Let $D: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be defined by:

$$
\begin{aligned}
& D(n, i)=k \quad \text { if and only if } \quad k \text { is the power of the } i \text {-th prime number } \\
& \text { in the prime number decomposition of } n
\end{aligned}
$$

which can also be seen as the smallest natural number k such that $p(i)^{k+1}$ does not divide n (where $p(i)$ is the i-th prime number). By definition we set $D(0, i)=0$ for every $i \in \mathbb{N}$, and $D(n, 0)=0$ for every $n \in \mathbb{N}$.

Show that D is primitive recursive.
Remark: You are allowed to use all functions that were proved to be primitive recursive in the lecture or in a previous exercise.

Exercise 7.4:

Let $K^{r}: \mathbb{N}^{r} \rightarrow \mathbb{N}$ be the Gödelisation function defined by:

$$
K^{r}\left(n_{1}, \ldots, n_{r}\right)=\prod_{i=1}^{r} p(i)^{n_{i}} \quad \text { where } p(i) \text { is the } i \text {-th prime number }
$$

and let $D_{1}, \ldots, D_{r}: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $D_{i}(n)=D(n, i)$, where D is as in Exercise 7.3.
(1) Show that K^{r} is primitive recursive.
(2) Show that D_{i} is primitive recursive for every $i \in\{1, \ldots, r\}$.

Remark: You are allowed to use all functions that were proved to be primitive recursive in the lecture or in a previous exercise.

Exercise 7.5:

Let fib: $\mathbb{N} \rightarrow \mathbb{N}$ be defined as follows:

$$
\begin{aligned}
& \operatorname{fib}(0)=1 \\
& \mathrm{fib}(1)=1 \\
& \mathrm{fib}(n)=\mathrm{fib}(n-1)+\mathrm{fib}(n-2) \quad \text { for all } n>1
\end{aligned}
$$

Let $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ be defined for every $n \in \mathbb{N}$ by $f(n)=(\operatorname{fib}(n)$, fib $(n+1))$.
(1) Let $f_{p}: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f_{p}(n)=K^{2}(f(n))=K^{2}(\mathrm{fib}(n)$, $\mathrm{fib}(n+1))$, where $K^{2}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is the Gödelisation function as defined in Exercise 7.4.

Show that f_{p} is primitive recursive.
(2) Use (1) and the results in Exercise 7.4 to prove that fib is primitive recursive.

Remark: You are allowed to use all functions that were proved to be primitive recursive in the lecture or in a previous exercise.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until 4.12 .12 , 09:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222.

