Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender

Exercises for
"Advances in Theoretical Computer Science"
Exercise sheet 9
Due on 18.12.12, 09:00 s.t.

Exercise 9.1:

Prove that function $\log : \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $\log (n, m)=\left\lfloor\log _{n}(m)\right\rfloor$ is μ-recursive.
Remark: You are allowed to use all functions that were proved to be primitive and/or μ-recursive in the lecture or in a previous exercise.

Exercise 9.2:

Which functions are computed by:
(1) $f_{1}=\mu c_{1}^{2}$
(2) $f_{2}=\mu g$, where $g(n, i)= \begin{cases}n+1 & \text { if } i=0 \\ \mu j(j+1+n=0) & \text { if } i=1 \\ 0 & \text { if } i \geq 2\end{cases}$
(3) $f_{3}=\mu g$, where $g(n, i)= \begin{cases}n+1 & \text { if } i=0 \\ \mu j(j+1-n=0) & \text { if } i=1 \\ 0 & \text { if } i \geq 2\end{cases}$

Exercise 9.3:

Recall the proof of the fact that $L O O P \subseteq \mathcal{P}$ for the case when P is loop x_{i} do P_{1} end. We assumed that $f_{P_{1}}$ be a primitive recursive function which computes what P_{1} computes.

We used the following functions:

- $f_{1}(n)=\left\langle(n)_{1}, \ldots,(n)_{l},(n)_{l+1}, \ldots(n)_{l+j-1},(n)_{i},(n)_{l+j+1}, \ldots\right\rangle$
- $f_{2}(n)= \begin{cases}n & \text { if }(n)_{l+j}=0 \\ f_{P_{1}}\left(f_{2}\left(\left\langle\ldots,(n)_{l+j}-1, \ldots\right\rangle\right)\right) & \text { otherwise }\end{cases}$

Prove that f_{2} is primitive recursive.
Hint: Fill in the details left open in the proof given on the slides of the lecture from 13.12.2012.

Exercise 9.4:

Consider the definition of the Ackermann function given in the lecture:

$$
\begin{aligned}
A_{0}(x) & = \begin{cases}1 & \text { is } x=0 \\
2 & \text { is } x=1 \\
x+2 & \text { otherwise }\end{cases} \\
A_{n+1}(0) & =A_{n}(1) \\
A_{n+1}(x+1) & =A_{n}\left(A_{n+1}(x)\right) \\
A(x) & =A_{x}(x)
\end{aligned}
$$

Prove:
(1) $A_{1}(n)>2 n$ for every $n \in \mathbb{N}$
(2) $A_{2}(n)>2^{n+1}$ for every $n \in \mathbb{N}$
(3) $m<A_{n}(m)$ for all $n, m \in \mathbb{N}$
(4) $A_{n}(m)<A_{n}(m+1)$ for all $n, m \in \mathbb{N}$
(5) $A_{n+1}(m) \geq A_{n}(m+1)$ for all $n, m \in \mathbb{N}$
(6) $A_{n}(m) \leq A_{n+1}(m)$ for all $n, m \in \mathbb{N}$.

Prove (possibly using some of the inequalities above) that:
(7) $0<A_{0}(0)$ for all $n \in \mathbb{N}$
(8) $\pi_{i}^{r}\left(n_{1}, \ldots, n_{r}\right)<A_{0}\left(\sum_{i=1}^{r} n_{i}\right)$
(9) $n+1<A_{1}(n)$

Remark: The results (1)-(9) are the easy part in the proof of the fact that the Ackermann function is not primitive recursive. The proof of the following facts is a bit more difficult (and it is not part of this exercise).

For every $m \in \mathbb{N}$, let $B_{m}=\left\{f \mid f\right.$ primitive recursive and for all $n_{1}, \ldots, n_{r} \in \mathbb{N}$ where r is the arity of $f, f\left(n_{1}, \ldots, n_{r}\right)<A_{m}\left(\sum_{i=1}^{r} n_{i}\right)$

- If $f, g_{1}, \ldots, g_{r} \in B_{m}$ and $h=f \circ\left(g_{1}, \ldots, g_{m}\right)$ then there exists a natural number m^{\prime} (depending on m and r) such that $h \in B_{m^{\prime}}$.
- If $g, h \in B_{m}$ and f is defined by primitive recursion from g and h then $f \in B_{m+4}$.

Prove:
(10) For every primitive recursive function f there exists $m \in \mathbb{N}$ with $f \in B_{m}$.
(11) The Ackermann function A defined by $A(n)=A_{n}(n)$ is not primitive recursive.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until 18.12 .12 , 09:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222 .

