Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans Dipl. Inf. Markus Bender

December 13, 2012

Exercises for "Advances in Theoretical Computer Science" Exercise sheet 9 Due on 18.12.12, 09:00 s.t.

Exercise 9.1:

Prove that function $\log : \mathbb{N}^2 \to \mathbb{N}$ defined by $\log(n, m) = \lfloor \log_n(m) \rfloor$ is μ -recursive.

Remark: You are allowed to use all functions that were proved to be primitive and/or μ -recursive in the lecture or in a previous exercise.

Exercise 9.2:

Which functions are computed by:

ი

$$\begin{array}{ll} (1) \ f_1 = \mu c_1^2 \\ (2) \ f_2 = \mu g, \text{ where } g(n,i) = \begin{cases} n+1 & \text{ if } i=0 \\ \mu j(j+1+n=0) & \text{ if } i=1 \\ 0 & \text{ if } i \geq 2 \end{cases} \\ (3) \ f_3 = \mu g, \text{ where } g(n,i) = \begin{cases} n+1 & \text{ if } i=0 \\ \mu j(j+1-n=0) & \text{ if } i=1 \\ 0 & \text{ if } i \geq 2 \end{cases} \end{array}$$

Exercise 9.3:

Recall the proof of the fact that $LOOP \subseteq \mathcal{P}$ for the case when P is loop x_i do P_1 end. We assumed that f_{P_1} be a primitive recursive function which computes what P_1 computes.

We used the following functions:

•
$$f_1(n) = \langle (n)_1, \dots, (n)_l, (n)_{l+1}, \dots, (n)_{l+j-1}, (n)_i, (n)_{l+j+1}, \dots \rangle$$

• $f_2(n) = \begin{cases} n & \text{if } (n)_{l+j} = 0\\ f_{P_1}(f_2(\langle \dots, (n)_{l+j} - 1, \dots \rangle)) & \text{otherwise} \end{cases}$

Prove that f_2 is primitive recursive.

Hint: Fill in the details left open in the proof given on the slides of the lecture from 13.12.2012.

Exercise 9.4:

Consider the definition of the Ackermann function given in the lecture:

$$A_{0}(x) = \begin{cases} 1 & \text{is } x = 0\\ 2 & \text{is } x = 1\\ x + 2 & \text{otherwise} \end{cases}$$
$$A_{n+1}(0) = A_{n}(1)$$
$$A_{n+1}(x+1) = A_{n}(A_{n+1}(x))$$
$$A(x) = A_{x}(x)$$

Prove:

- (1) $A_1(n) > 2n$ for every $n \in \mathbb{N}$
- (2) $A_2(n) > 2^{n+1}$ for every $n \in \mathbb{N}$
- (3) $m < A_n(m)$ for all $n, m \in \mathbb{N}$
- (4) $A_n(m) < A_n(m+1)$ for all $n, m \in \mathbb{N}$
- (5) $A_{n+1}(m) \ge A_n(m+1)$ for all $n, m \in \mathbb{N}$
- (6) $A_n(m) \leq A_{n+1}(m)$ for all $n, m \in \mathbb{N}$.

Prove (possibly using some of the inequalities above) that:

- (7) $0 < A_0(0)$ for all $n \in \mathbb{N}$
- (8) $\pi_i^r(n_1, \ldots, n_r) < A_0(\sum_{i=1}^r n_i)$
- (9) $n+1 < A_1(n)$

Remark: The results (1)-(9) are the easy part in the proof of the fact that the Ackermann function is not primitive recursive. The proof of the following facts is a bit more difficult (and it is not part of this exercise).

For every $m \in \mathbb{N}$, let $B_m = \{f \mid f \text{ primitive recursive and for all } n_1, \ldots, n_r \in \mathbb{N} \text{ where } r \text{ is the arity of } f, f(n_1, \ldots, n_r) < A_m(\sum_{i=1}^r n_i)$

- If $f, g_1, \ldots, g_r \in B_m$ and $h = f \circ (g_1, \ldots, g_m)$ then there exists a natural number m' (depending on m and r) such that $h \in B_{m'}$.
- If $g, h \in B_m$ and f is defined by primitive recursion from g and h then $f \in B_{m+4}$.

Prove:

- (10) For every primitive recursive function f there exists $m \in \mathbb{N}$ with $f \in B_m$.
- (11) The Ackermann function A defined by $A(n) = A_n(n)$ is not primitive recursive.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until 18.12.12, 09:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222.