Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender

Exercises for
"Advances in Theoretical Computer Science"
Exercise sheet 10
Due on 8.1.13, 09:00 s.t.

Exercise 10.1:

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be the function defined by:

$$
f(n)= \begin{cases}m & \text { if } n=3^{m}, \quad m \in \mathbb{N} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

(1) Prove that f is μ-recursive.
(2) Is f primitive recursive?

Exercise 10.2:

Let $h: \mathbb{N} \rightarrow \mathbb{N}$ be a primitive recursive function, and let $k \geq 2$ be a natural number.
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined by:

$$
\begin{array}{ll}
f(i)=h(i) & \text { for all } i \leq k \\
f(i)=f(i-k) * f(i-k-1) & \\
\text { for all } i>k
\end{array}
$$

Show that f is primitive recursive.

Exercise 10.3:

Let $k \geq 0$ be a natural number. Let $g_{0}, g_{1}, \ldots, g_{k}: \mathbb{N}^{p} \rightarrow \mathbb{N}$, and $h: \mathbb{N}^{p+2} \rightarrow \mathbb{N}$ be primitive recursive functions.

Let $f: \mathbb{N}^{p+1} \rightarrow \mathbb{N}$ be defined by:

$$
\begin{aligned}
f(\mathbf{n}, m) & =g_{m}(\mathbf{n}) & & \text { for all } m \leq k \\
f(\mathbf{n}, m+1) & =h(\mathbf{n}, m, f(\mathbf{n}, m-k)) & & \text { for all } m \geq k
\end{aligned}
$$

Show that f is primitive recursive.

Exercise 10.4:

A k-ary predicate over \mathbb{N} can be also regarded as a subset of $\mathbb{N}^{k}: P \subseteq \mathbb{N}^{k}$. We write $P\left(n_{1}, \ldots, n_{k}\right)$ if $\left(n_{1}, \ldots, n_{k}\right) \in P$.

The characteristic function of P is the map $\chi_{P}: \mathbb{N}^{k} \rightarrow\{0,1\}$ with:

$$
\chi_{P}\left(n_{1}, \ldots, n_{k}\right)= \begin{cases}1 & \text { if } P\left(n_{1}, \ldots, n_{k}\right) \\ 0 & \text { otherwise }\end{cases}
$$

The predicate P is primitive recursive iff its characteristic function χ_{P} is primitive recursive. Prove:
(1) If P, R are k-ary primitive recursive predicates then also the predicates P_{1}, P_{2}, P_{3} and P_{4} are primitive recursive, where:

- $P_{1}\left(n_{1}, \ldots, n_{k}\right)$ iff $\left(P\left(n_{1}, \ldots, n_{k}\right)\right.$ and $\left.R\left(n_{1}, \ldots, n_{k}\right)\right)$
- $P_{2}\left(n_{1}, \ldots, n_{k}\right)$ iff $\left(P\left(n_{1}, \ldots, n_{k}\right)\right.$ or $\left.R\left(n_{1}, \ldots, n_{k}\right)\right)$
- $P_{3}\left(n_{1}, \ldots, n_{k}\right)$ iff $\left(\exists i \leq n_{k}\right.$ s.t. $\left.P\left(n_{1}, \ldots, n_{k-1}, i\right)\right)$
- $P_{4}\left(n_{1}, \ldots, n_{k}\right)$ iff $\left(\forall i \leq n_{k} \quad P\left(n_{1}, \ldots, n_{k-1}, i\right)\right)$
(2) The predicates B, S are primitive recursive, where:
- $B\left(n_{1}, n_{2}, n_{3}\right)$ iff (n_{2} is between n_{1} and n_{3} w.r.t. the usual order on \mathbb{N})
- $B\left(n_{1}, n_{2}, n_{3}\right)$ iff (n_{3} is the sum of the squares of n_{1} and n_{2})

Exercise 10.5:

Let P be a GOTO program which computes the function $f: \mathbb{N} \rightarrow \mathbb{N}$.
Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be such that $g(n)$ is the number of instructions P needs to compute $f(n)$.
Prove that if g is LOOP computable then f is LOOP computable as well.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until 8.1.13, 09:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222 .

