Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans Dipl. Inf. Markus Bender

December 19, 2012

Exercises for "Advances in Theoretical Computer Science" Exercise sheet 10 Due on 8.1.13, 09:00 s.t.

Exercise 10.1:

Let $f : \mathbb{N} \to \mathbb{N}$ be the function defined by:

$$f(n) = \begin{cases} m & \text{if } n = 3^m, \ m \in \mathbb{N} \\ \text{undefined} & \text{otherwise} \end{cases}$$

- (1) Prove that f is μ -recursive.
- (2) Is f primitive recursive?

Exercise 10.2:

Let $h : \mathbb{N} \to \mathbb{N}$ be a primitive recursive function, and let $k \ge 2$ be a natural number.

Let $f : \mathbb{N} \to \mathbb{N}$ be defined by:

$$\begin{array}{rcl} f(i) &=& h(i) & \text{for all } i \leq k \\ f(i) &=& f(i-k) * f(i-k-1) & \text{for all } i > k \end{array}$$

Show that f is primitive recursive.

Exercise 10.3:

Let $k \geq 0$ be a natural number. Let $g_0, g_1, \ldots, g_k : \mathbb{N}^p \to \mathbb{N}$, and $h : \mathbb{N}^{p+2} \to \mathbb{N}$ be primitive recursive functions.

Let $f : \mathbb{N}^{p+1} \to \mathbb{N}$ be defined by:

$$f(\mathbf{n}, m) = g_m(\mathbf{n}) \quad \text{for all } m \le k$$

$$f(\mathbf{n}, m+1) = h(\mathbf{n}, m, f(\mathbf{n}, m-k)) \quad \text{for all } m \ge k$$

Show that f is primitive recursive.

Exercise 10.4:

A k-ary predicate over \mathbb{N} can be also regarded as a subset of \mathbb{N}^k : $P \subseteq \mathbb{N}^k$. We write $P(n_1, \ldots, n_k)$ if $(n_1, \ldots, n_k) \in P$.

The characteristic function of P is the map $\chi_P : \mathbb{N}^k \to \{0, 1\}$ with:

$$\chi_P(n_1,\ldots,n_k) = \begin{cases} 1 & \text{if } P(n_1,\ldots,n_k) \\ 0 & \text{otherwise} \end{cases}$$

The predicate P is primitive recursive iff its characteristic function χ_P is primitive recursive. Prove:

- (1) If P, R are k-ary primitive recursive predicates then also the predicates P_1, P_2, P_3 and P_4 are primitive recursive, where:
 - $P_1(n_1, \dots, n_k) \text{ iff } (P(n_1, \dots, n_k) \text{ and } R(n_1, \dots, n_k)) \\
 P_2(n_1, \dots, n_k) \text{ iff } (P(n_1, \dots, n_k) \text{ or } R(n_1, \dots, n_k)) \\
 P_3(n_1, \dots, n_k) \text{ iff } (\exists i \le n_k \text{ s.t. } P(n_1, \dots, n_{k-1}, i)) \\
 P_4(n_1, \dots, n_k) \text{ iff } (\forall i < n_k P(n_1, \dots, n_{k-1}, i))$
- (2) The predicates B, S are primitive recursive, where:
 - $-B(n_1, n_2, n_3)$ iff $(n_2$ is between n_1 and n_3 w.r.t. the usual order on \mathbb{N})
 - $-B(n_1, n_2, n_3)$ iff $(n_3$ is the sum of the squares of n_1 and n_2)

Exercise 10.5:

Let P be a GOTO program which computes the function $f : \mathbb{N} \to \mathbb{N}$. Let $g : \mathbb{N} \to \mathbb{N}$ be such that g(n) is the number of instructions P needs to compute f(n). Prove that if g is LOOP computable then f is LOOP computable as well.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until 8.1.13, 09:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222.