Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender
January 10, 2013

Exercises for
"Advances in Theoretical Computer Science"
Exercise sheet 11
Due on 15.1.13, 09:00 s.t.

In the lecture from 13.12 .2012 we sketched a possibility of associating with every Turing Machine M a unique Gödel number $\langle M\rangle \in \mathbb{N}$ such that the coding function and the decoding function are primitive recursive. Similarly, we could associate with every configuration of a given TM a unique Gödel number for the configuration such that coding and decoding are primitive recursive.
The construction uses the following encoding of words as natural numbers: If $\Sigma=\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}$ and $w=a_{i_{1}} \ldots a_{i_{n}}$ is a word over Σ then $\langle w\rangle_{l}=\left\langle i_{1}, \ldots, i_{n}\right\rangle=\prod_{j=1}^{n} p(j)^{i_{j}}$.
Therefore, we can represent w.l.o.g. words as natural numbers and languages as sets of natural numbers.

Notation: In what follows we will denote by M_{n} the Turing machine with Gödel number n and with $L(M)$ the language accepted by the Turing machine M.

Exercise 11.1:

Let $K=\left\{n \mid M_{n}\right.$ halts on $\left.n\right\}$.

- Prove that K is undecidable.
- Prove that K is acceptable.
- Prove that the complement of K is not acceptable.

Exercise 11.2:

Let L_{1}, L_{2} be two languages (regarded here as sets of natural numbers). We say that L_{1} can be reduced to L_{2} (denoted by writing $L_{1} \leq L_{2}$) if there exists a TM computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ with the property that:

$$
\forall n \in \mathbb{N} \quad n \in L_{1} \quad \text { if and only if } f(n) \in L_{2}
$$

Prove that the relation \leq is transitive, i.e. that if L_{1}, L_{2} and L_{3} are languages (regarded here as sets of natural numbers) such that $L_{1} \leq L_{2}$ and $L_{2} \leq L_{3}$ then $L_{1} \leq L_{3}$.

Exercise 11.3:

Prove that the following problems are undecidable using a reduction to an undecidable problem.

- $P_{1}=\left\{n \mid L\left(M_{n}\right)=\emptyset\right\}$
- $P_{2}=\left\{n \mid L\left(M_{n}\right)\right.$ is finite $\}$
- $P_{3}=\left\{\langle n, m\rangle \mid L\left(M_{n}\right) \cap L\left(M_{m}\right)=\emptyset\right\}$

You are allowed to use the undecidability of the following problems: $H A L T=\{\langle n, m\rangle \mid$ M_{n} halts on input $\left.m\right\}, K=\left\{n \mid M_{n}\right.$ halts on input $\left.n\right\}$ or $H_{0}=\left\{n \mid M_{n}\right.$ halts on input 0$\}$ or their complements. If you have proven the (un-)decidability of P_{i} then you may use this result for the following tasks.

Exercise 11.4:

Prove that it is undecidable whether a WHILE program which computes a partial function $f: \mathbb{N} \rightarrow \mathbb{N}$ terminates on input n.
Hint: One can give e.g. a proof by contradiction using the fact that the class of WHILEcomputable functions coincides with the class of $T M$-computable functions.

Exercise 11.5:

Prove that the following problems are undecidable using the theorem of Rice.

- $L_{1}=\left\{n \mid M_{n}\right.$ accepts an infinite language $\}$
- $L_{2}=\left\{n \mid M_{n}\right.$ accepts a finite language $\}$
- $L_{3}=\left\{n \mid M_{n}\right.$ accepts a decidable language $\}$
- Let $k \in \mathbb{N}$ and $L_{4}=\left\{n \mid M_{n}\right.$ accepts only words which have length greater than $\left.k\right\}$
- $L_{5}=\left\{n \mid L\left(M_{n}\right)\right.$ is context sensitive $\}$
- $L_{6}=\left\{n \mid\right.$ the language accepted by M_{n} is regular $\}$
- $L_{7}=\left\{n \mid M_{n}\right.$ halts on all inputs $\left.w \in \Sigma^{*}\right\}$

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until 15.1.13, 09:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222.

