Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inf. Markus Bender
January 31, 2013

Exercises for
"Advances in Theoretical Computer Science"
Exercise sheet 14
Due on 5.02.13, 09:00 s.t.

Exercise 14.1:

Consider the following propositional logic formula:

$$
F: \quad(P \vee \neg Q \vee \neg(R \vee \neg S)) \wedge(Q \vee \neg R \vee S)
$$

Apply Steps $1-4$ on page 28 of the slides from 31.01 .2013 to this formula for computing the formula in 3-CNF associated to F (formula which is satisfiable iff F is satisfiable (see supplementary exercise 14.6)).

Exercise 14.2:

(1) Draw the complete graphs with 3,4 and 5 vertices.
(2) Consider the undirected graph $G=(V, E)$, where $V=\{a, b, c, d, e, f\}$ and

$$
E=\{(a, b),(a, c),(a, e),(a, f),(b, c),(b, d),(b, e),(c, e),(c, f)\}
$$

(Note that in an undirected graph the edge (x, y) is identical to the edge (y, x), i.e. they are not ordered pairs but sets (or 2-multisets) of vertices.)
(a) Draw the graph G.
(b) Does G have a clique of size 3? Does G have a clique of size 4? Does G have a clique of size 5 ?

Exercise 14.3:

Consider the following formula in 3-CNF:

$$
F: \quad\left(\neg P_{1} \vee P_{2} \vee P_{3}\right) \wedge\left(P_{1} \vee \neg P_{2} \vee P_{4}\right) \wedge\left(P_{2} \vee \neg P_{3} \vee \neg P_{4}\right)
$$

(1) Is the formula satisfiable? If yes then give a satisfying assignment.
(2) Starting from F construct the pair $\left(G_{F}, k_{F}\right)$ as explained on pages 38-39 of the slides from 31.01.2012.
(3) Has the graph G_{F} a clique of size k_{F} ? If so indicate such a clique and reconstruct from it an assignment which makes F true.

Exercise 14.4:

Consider the formula in 3 -CNF from the previous exercise.

$$
F: \quad\left(\neg P_{1} \vee P_{2} \vee P_{3}\right) \wedge\left(P_{1} \vee \neg P_{2} \vee P_{4}\right) \wedge\left(P_{2} \vee \neg P_{3} \vee \neg P_{4}\right)
$$

(1) Starting from F construct the tuple $\left(b, a_{1}, \ldots, a_{n}\right)$ as explained on pages 42-44 of the slides from 31.01.2012.
(2) Is there a subset I of $\left\{a_{1}, \ldots, a_{n}\right\}$ which adds up to b ? If such a subset exists use it to construct an assignment which makes F true (as explained on page 44).

Exercise 14.5:

The SET PACKING problem is defined as follows:
Given: $-C=\left\{S_{1}, \ldots, S_{n}\right\}$ where every S_{i} is a finite set - $l \geq 1$

Task: Is there a subset D of C with l elements such that the elements of D are pairwise disjoint?

SET PACKING $=\left\{(C, l) \mid C=\left\{S_{1}, \ldots, S_{n}\right\}\right.$, every S_{i} is a finite set and there exists $D \subseteq C$ with l elements such that the elements of D are pairwise disjoint $\}$
(1) Prove that SET PACKING \in NP.

For every pair (G, k), where $G=(V, E)$ is an undirected graph with vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ and edges in E we associate the pair (C, l), where $l=k$ and $C=\left\{S_{1}, \ldots, S_{m}\right\}$, with $S_{i}=$ $\left\{\left(v_{i}, v_{j}\right),\left(v_{j}, v_{i}\right) \mid\left(v_{i}, v_{j}\right) \notin E\right\}$.
(2) Estimate the time needed for constructing (C, l) from (G, k).

Prove:

(3) $S_{i} \cap S_{j} \neq \emptyset$ if and only if there is no edge between v_{i} and v_{j} in G.
(4) If G^{\prime} is a clique of G with size k, with vertices $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ then the sets in $D=\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\}$ are pairwise disjoint.
(5) G hat a clique of size k iff there exists a subset D of C with l elements such that the elements of D are pairwise disjoint.
(6) Infer that Clique (the problem whether a graph has a clique of size k) can be polynomially reduced to SET PACKING.
(7) Is SET PACKING NP-complete? Justify your answer.

Supplementary exercise

Exercise 14.6:

Let F be a propositional formula $(F \neq \perp, F \neq \top), P$ a propositional variable not occurring in F, and F^{\prime} a subformula of F.

We will write F also as $F\left[F^{\prime}\right]$ in order to emphasize that F^{\prime} occurs in F. Let $F[P]$ be the formula obtained from F by replacing the subformula F^{\prime} with the propositional variable P.

Prove:
The formula $F[P] \wedge\left(P \leftrightarrow F^{\prime}\right)$ is satisfiable if and only if $F\left[F^{\prime}\right]$ is satisfiable.

Hint: Use structural induction (see below). We check first that the result holds if F is a propositional variable (induction basis). Then we consider a formula F which is not a propositional variable. We assume that the result holds for all proper subformulae of F (induction hypothesis) and show that then the result also holds for F (induction step). For proving this, one has to make a case distinction ($F^{\prime}=F$ or F^{\prime} is a proper formula of F ?) In the last case, the various ways in which F is built need to be considered $\left(F=\neg F_{1}\right.$, or $\left.F=F_{1} \circ F_{2}, \circ \in\{\vee, \wedge, \rightarrow, \leftrightarrow\}\right)$.

The structural induction principle (for propositional logic).

Let \mathcal{B} be a property of formulae in propositional logic. Assume that the following hold:

- every propositional variable P has property \mathcal{B};
- \perp and T have property \mathcal{B};
- if $F=F_{1}$ op F_{2} for op $\in\{\vee, \wedge, \rightarrow, \leftrightarrow\}$ and if both F_{1} and F_{2} have property \mathcal{B} then F has property \mathcal{B};
- if $F=\neg F_{1}$ and F_{1} has property \mathcal{B} then F has property \mathcal{B}.

Then property \mathcal{B} holds for all Π-formulae.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until $5.2 .13,09: 00 \mathrm{~s} . \mathrm{t}$. . Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222.

