Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans Dipl. Inf. Markus Bender

January 31, 2013

Exercises for "Advances in Theoretical Computer Science" Exercise sheet 14 Due on 5.02.13, 09:00 s.t.

Exercise 14.1:

Consider the following propositional logic formula:

 $F: \quad (P \lor \neg Q \lor \neg (R \lor \neg S)) \land (Q \lor \neg R \lor S)$

Apply Steps 1-4 on page 28 of the slides from 31.01.2013 to this formula for computing the formula in 3-CNF associated to F (formula which is satisfiable iff F is satisfiable (see supplementary exercise 14.6)).

Exercise 14.2:

- (1) Draw the complete graphs with 3, 4 and 5 vertices.
- (2) Consider the undirected graph G = (V, E), where $V = \{a, b, c, d, e, f\}$ and

 $E = \{(a, b), (a, c), (a, e), (a, f), (b, c), (b, d), (b, e), (c, e), (c, f)\}.$

(Note that in an undirected graph the edge (x, y) is identical to the edge (y, x), i.e. they are not ordered pairs but sets (or 2-multisets) of vertices.)

- (a) Draw the graph G.
- (b) Does G have a clique of size 3? Does G have a clique of size 4? Does G have a clique of size 5?

Exercise 14.3:

Consider the following formula in 3-CNF:

 $F: \quad (\neg P_1 \lor P_2 \lor P_3) \land (P_1 \lor \neg P_2 \lor P_4) \land (P_2 \lor \neg P_3 \lor \neg P_4)$

- (1) Is the formula satisfiable? If yes then give a satisfying assignment.
- (2) Starting from F construct the pair (G_F, k_F) as explained on pages 38-39 of the slides from 31.01.2012.

(3) Has the graph G_F a clique of size k_F ? If so indicate such a clique and reconstruct from it an assignment which makes F true.

Exercise 14.4:

Consider the formula in 3-CNF from the previous exercise.

 $F: (\neg P_1 \lor P_2 \lor P_3) \land (P_1 \lor \neg P_2 \lor P_4) \land (P_2 \lor \neg P_3 \lor \neg P_4)$

- (1) Starting from F construct the tuple (b, a_1, \ldots, a_n) as explained on pages 42-44 of the slides from 31.01.2012.
- (2) Is there a subset I of $\{a_1, \ldots, a_n\}$ which adds up to b? If such a subset exists use it to construct an assignment which makes F true (as explained on page 44).

Exercise 14.5:

The SET PACKING problem is defined as follows:

- Given: $C = \{S_1, \dots, S_n\}$ where every S_i is a finite set • $l \ge 1$
- **Task:** Is there a subset D of C with l elements such that the elements of D are pairwise disjoint?

SET PACKING = $\{(C, l) \mid C = \{S_1, \dots, S_n\}$, every S_i is a finite set and there exists $D \subseteq C$ with l elements such that the elements of D are pairwise disjoint $\}$

(1) Prove that SET PACKING \in NP.

For every pair (G, k), where G = (V, E) is an undirected graph with vertices $\{v_1, \ldots, v_m\}$ and edges in E we associate the pair (C, l), where l = k and $C = \{S_1, \ldots, S_m\}$, with $S_i = \{(v_i, v_j), (v_j, v_i) \mid (v_i, v_j) \notin E\}$.

(2) Estimate the time needed for constructing (C, l) from (G, k).

Prove:

- (3) $S_i \cap S_j \neq \emptyset$ if and only if there is no edge between v_i and v_j in G.
- (4) If G' is a clique of G with size k, with vertices $\{v_{i_1}, \ldots, v_{i_k}\}$ then the sets in $D = \{S_{i_1}, \ldots, S_{i_k}\}$ are pairwise disjoint.
- (5) G hat a clique of size k iff there exists a subset D of C with l elements such that the elements of D are pairwise disjoint.
- (6) Infer that Clique (the problem whether a graph has a clique of size k) can be polynomially reduced to SET PACKING.
- (7) Is SET PACKING NP-complete? Justify your answer.

Supplementary exercise

Exercise 14.6:

Let F be a propositional formula $(F \neq \bot, F \neq \top)$, P a propositional variable not occurring in F, and F' a subformula of F.

We will write F also as F[F'] in order to emphasize that F' occurs in F. Let F[P] be the formula obtained from F by replacing the subformula F' with the propositional variable P.

Prove:

The formula $F[P] \land (P \leftrightarrow F')$ is satisfiable if and only if F[F'] is satisfiable.

Hint: Use structural induction (see below). We check first that the result holds if F is a propositional variable (induction basis). Then we consider a formula F which is not a propositional variable. We assume that the result holds for all proper subformulae of F (induction hypothesis) and show that then the result also holds for F (induction step). For proving this, one has to make a case distinction (F' = F or F' is a proper formula of F?) In the last case, the various ways in which F is built need to be considered $(F = \neg F_1, \text{ or } F = F_1 \circ F_2, \circ \in \{\lor, \land, \rightarrow, \leftrightarrow\})$.

The structural induction principle (for propositional logic).

Let \mathcal{B} be a property of formulae in propositional logic. Assume that the following hold:

- every propositional variable P has property \mathcal{B} ;
- \perp and \top have property \mathcal{B} ;
- if $F = F_1$ op F_2 for $op \in \{ \lor, \land, \rightarrow, \leftrightarrow \}$ and if both F_1 and F_2 have property \mathcal{B} then F has property \mathcal{B} ;
- if $F = \neg F_1$ and F_1 has property \mathcal{B} then F has property \mathcal{B} .

Then property \mathcal{B} holds for all Π -formulae.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until 5.2.13, 09:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222.