Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 2)

31.01.2013

Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de

Until now

- Big O notation
- Types of complexity: space complexity and time complexity
 - DTIME and NTIME
 - DSPACE and NSPACE
- P, NP, PSPACE, Relationships
- Complete problems; hard problems; reductions
- Closure of complexity classes
- Examples

Until now: DTIME and NTIME

Basic model: *k*-DTM or *k*-NTM *M* (one tape for the input)

If M makes for every input word of length n at most T(n) steps, then M is T(n)-time bounded.

In this case, the language accepted by M has time complexity T(n); (more precisely max(n + 1, T(n))).

Definition (NTIME(T(n)), DTIME(T(n)))

- DTIME(T(n)) class of all languages accepted by T(n)-time bounded DTMs.
- NTIME(T(n)) class of all languages accepted by T(n)-time bounded NTMs.

Basic model: *k*-DTM or *k*-NTM *M* with special tape for the input (is read-only) + *k* storage tapes (offline DTM) \mapsto needed if *S*(*n*) sublinear

If M needs, for every input word of length n, at most

S(n) cells on the storage tapes then M is S(n)-space bounded.

The language accepted by M has space complexity S(n); (more precisely max(1, S(n))).

Definition (NSPACE(T(n)), DSPACE(T(n)))

- DSPACE(S(n)) class of all languages accepted by S(n)-space bounded DTMs.
- NSPACE(S(n)) class of all languages accepted by S(n)-space bounded NTMs.

NTM vs. DTM:

- $DTIME(f(n)) \subseteq NTIME(f(n))$
- $DSPACE(f(n)) \subseteq NSPACE(f(n))$
- NTIME(f(n)) ⊆ DTIME(2^{h(n)}) where h ∈ O(f).
 Idea: If we try to simulate an NTM with a DTM we may need exponentially more time.
- NSPACE(f(n)) ⊆ DSPACE(f²(n)) This is Savitch's theorem, proved by Walter Savitch in 1970. (The proof is a bit involved and is not given in this lecture.)

Time vs. Space:

- $DTIME(f(n)) \subseteq DSPACE(f(n))$
- $NTIME(f(n)) \subseteq NSPACE(f(n))$

(DSPACE(f(n)), NSPACE(f(n)) are much larger)

Until now: Facts

Theorem.

For every $c \in \mathbb{R}^+$ and every storage function S(n) the following hold:

• DSPACE(S(n)) = DSPACE(cS(n))

•
$$NSPACE(S(n)) = NSPACE(cS(n))$$

Theorem For every $c \in \mathbb{R}^+$ and every time function T(n) with $\lim_{n\to\infty} \frac{T(n)}{n} = \infty$ the following hold:

• DTIME(T(n)) = DTIME(cT(n))

•
$$NTIME(T(n)) = NTIME(cT(n))$$

Theorem: Let T be a time function with $\lim_{n\to\infty} \frac{T(n)}{n} = \infty$ and S a storage function.

(a) If
$$f(n) \in O(T(n))$$
 then $DTIME(f(n)) \subseteq DTIME(T(n))$.

(b) If $g(n) \in O(S(n))$ then $DSPACE(g(n)) \subseteq DSPACE(S(n))$.

Lemma
$$NP \subseteq \bigcup_{i \ge 1} DTIME(2^{O(n^d)})$$

$\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}$

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem

Until now: Reduction

Definition (Polynomial time reducibility) Let L_1 , L_2 be languages. L_2 is polynomial time reducible to L_1 (notation: $L_2 \leq_{pol} L_1$) if there exists a polynomial time bounded DTM, which for every input w computes an output f(w) such that

 $w \in L_2$ if and only if $f(w) \in L_1$

Lemma (Polynomial time reduction)

• Let L_2 be polynomial time reducible to L_1 ($L_2 \leq_{pol} L_1$). Then:

```
If L_1 \in NP then L_2 \in NP.
```

- If $L_1 \in P$ then $L_2 \in P$.
- The composition of two polynomial time reductions is again a polynomial time reduction.

Until now: NP

Theorem (Characterisation of NP)

A language *L* is in NP if and only if there exists a language *L'* in P and a $k \ge 0$ such that for all $w \in \Sigma^*$:

 $w \in L$ iff there exists $c : \langle w, c \rangle \in L'$ and $|c| < |w|^k$

c is also called witness or certificate for w in L. A DTM which accepts the language L' is called verifier.

Important

A decision procedure is in NP iff every "Yes" instance has a short witness

(i.e. its length is polynomial in the length of the input)

which can be verified in polynomial time.

Until now: Complete and hard problems

Definition (NP-complete, NP-hard)

A language L is NP-hard (NP-difficult) if every language L' in NP is reducible in polynomial time to L.

A language *L* is NP-complete if: $-L \in NP$ - *L* is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

A language L is PSPACE-hard (PSPACE-difficult) if every language L' in PSPACE is reducible in polynomial time to L.

A language *L* is PSPACE-complete if: $-L \in PSPACE$

- *L* is PSPACE-hard

Until now: Complete and hard problems

Remarks:

- If we can prove that at least one NP-hard problem is in P then P = NP
- If $P \neq NP$ then no NP complete problem can be solved in polynomial time

Open problem: Is P = NP? (Millenium Problem)

Until now: Complete and hard problems

How to show that a language *L* is NP-complete?

- 1. Prove that $L \in NP$
- 2. Find a language L' known to be NP-complete and reduce it to L

Is this sufficient?

Yes.

If $L' \in NP$ then every language in NP is reducible to L' and therefore also to L.

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

 $L' = L_{sat} = \{w \mid w \text{ is a satisfiable formula of propositional logic}\}$

Theorem $SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic} \}$ is NP-complete.

Today

- Big O notation
- Types of complexity: space complexity and time complexity
 - DTIME and NTIME
 - DSPACE and NSPACE
- P, NP, PSPACE, Relationships
- Complete problems; hard problems; reductions
- Closure of complexity classes
- Examples

P, PSPACE are closed under complement

All complexity classes which are defined in terms of deterministic Turing machines are closed under complement.

Proof: If a language L is in such a class then also its complement is (run the machine for L and revert the output)

Is NP closed under complement?

Is NP closed under complement?

Nobody knows!

Is NP closed under complement?

Nobody knows!

Definition

co-NP is the class of all laguages for which the complement is in NP

 $co-NP = \{L \mid \overline{L} \in NP\}$

Relationships between complexity classes

It is not yet known whether the following relationships hold:

$$P \stackrel{?}{=} NP$$

 $NP \stackrel{?}{=} co-NP$
 $P \stackrel{?}{=} PSPACE$
 $NP \stackrel{?}{=} PSPACE$

Today

- Big O notation
- Types of complexity: space complexity and time complexity
 - DTIME and NTIME
 - DSPACE and NSPACE
- P, NP, PSPACE, Relationships
- Complete problems; hard problems; reductions
- Closure of complexity classes
- Examples

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Is a (un)directed graph hamiltonian?
- 5. Can a graph be colored with three colors?
- 6. Multiprocessor scheduling

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Is a (un)directed graph hamiltonian?
- 5. Can a graph be colored with three colors?
- 6. Has a set of integers a subset with sum x?
- 7. Multiprocessor scheduling

Definition (DNF, CNF, *k***-CNF,** *k***-DNF)** A formula is in DNF if it has the form DNF: $(L_1^1 \wedge \cdots \wedge L_{n_1}^1) \vee \cdots \vee (L_1^m \wedge \cdots \wedge L_{n_m}^m)$ A formula is in CNF if it has the form CNF: $(L_1^1 \vee \cdots \vee L_{n_1}^1) \wedge \cdots \wedge (L_1^m \vee \cdots \vee L_{n_m}^m)$ k-DNF: A formula is in k-DNF if it is in DNF and all its conjunctions have k literals k-CNF: A formula is in k-CNF if it is in CNF and all its disjunctions have k literals

SAT = { $w \mid w$ is a satisfiable formula of propositional logic}

 $CNF-SAT = \{w \mid w \text{ is a satisfiable formula of propositional logic in CNF}\}$

k-CNF-SAT = { $w \mid w$ is a satisfiable formula of propositional logic in k-CNF}

Theorem

The following problems are in NP and are NP-complete:

(1) SAT

(2) CNF-SAT (3) k-CNF-SAT for $k \ge 3$

Theorem The following problems are in NP and are NP-complete: (1) SAT (2) CNF-SAT (3) k-CNF-SAT for $k \ge 3$

Proof: (1) SAT is NP-complete by Cook's theorem.

CNF and *k*-CNF are clearly in NP.

(3) We show that 3-CNF is NP-hard. For this, we construct a polynomial reduction of SAT to 3-CNF.

Proof: (ctd.) Polynomial reduction of SAT to 3-CNF.

Let F be a propositional formula of length n

Step 1 Move negation inwards (compute the negation normal form) $\mapsto O(n)$

- **Step 2** Fully bracket the formula $P \land Q \land R \mapsto (P \land Q) \land R$
- Step 3 Starting from inside out replace subformula QopR with a
new propositional variable P_{QopR} and add the formula
 $P_{QopR} \rightarrow (QopR)$ and $(QopR) \rightarrow P_{QopR}$ $\mapsto O(p(n))$

Step 4 Write all formulae above as clauses \mapsto Rename(F)

Let
$$f : \Sigma^* \to \Sigma^*$$
 be defined by:
 $f(F) = P_F \land \text{Rename}(F)$ if F is a well-formed formula
and $f(w) = \bot$ otherwise. Then:

 $F \in SAT$ iff F is a satisfiable formula in prop. logic iff $P_F \wedge Rename(F)$ is satisfiable iff $f(F) \in 3$ -CNF-SAT

 $\mapsto O(n)$

 $\mapsto O(n)$

Let F be the following formula:

$$[(Q \land \neg P \land \neg (\neg (\neg Q \lor \neg R))) \lor (Q \land \neg P \land \neg (Q \land \neg P))] \land (P \lor R).$$

Step 1: After moving negations inwards we obtain the formula:

$$F_1 = [(Q \land \neg P \land (\neg Q \lor \neg R)) \lor (Q \land \neg P \land (\neg Q \lor P))] \land (P \lor R)$$

Step 2: After fully bracketing the formula we obtain:

$$F_2 = [((Q \land \neg P) \land (\neg Q \lor \neg R)) \lor (Q \land (\neg Q \lor P) \land \neg P)] \land (P \lor R)$$

Step 3: Replace subformulae with new propositional variables (starting inside).

Step 3: Replace subformulae with new propositional variables (starting inside).

F is satisfiable iff the following formula is satisfiable:

$$\begin{array}{cccc} P_F & \wedge & (P_F \leftrightarrow (P_8 \wedge P_5) & \wedge & (P_1 \leftrightarrow (Q \wedge \neg P)) \\ & \wedge & (P_8 \leftrightarrow (P_6 \vee P_7)) & \wedge & (P_2 \leftrightarrow (\neg Q \vee \neg R)) \\ & \wedge & (P_6 \leftrightarrow (P_1 \wedge P_2)) & \wedge & (P_4 \leftrightarrow (\neg Q \vee P)) \\ & \wedge & (P_7 \leftrightarrow (P_1 \wedge P_4)) & \wedge & (P_5 \leftrightarrow (P \vee R)) \end{array}$$

can further exploit polarity

Step 3: Replace subformulae with new propositional variables (starting inside).

F is satisfiable iff the following formula is satisfiable:

$$\begin{array}{cccc} P_F & \wedge & (P_F \rightarrow (P_8 \wedge P_5) & \wedge & (P_1 \rightarrow (Q \wedge \neg P)) \\ & \wedge & (P_8 \rightarrow (P_6 \vee P_7)) & \wedge & (P_2 \rightarrow (\neg Q \vee \neg R)) \\ & \wedge & (P_6 \rightarrow (P_1 \wedge P_2)) & \wedge & (P_4 \rightarrow (\neg Q \vee P)) \\ & \wedge & (P_7 \rightarrow (P_1 \wedge P_4)) & \wedge & (P_5 \rightarrow (P \vee R)) \end{array}$$

F is satisfiable iff the following formula is satisfiable:

$$\begin{array}{cccc} P_F & \wedge & (P_F \rightarrow (P_8 \wedge P_5) & \wedge & (P_1 \rightarrow (Q \wedge \neg P)) \\ & \wedge & (P_8 \rightarrow (P_6 \vee P_7)) & \wedge & (P_2 \rightarrow (\neg Q \vee \neg R)) \\ & \wedge & (P_6 \rightarrow (P_1 \wedge P_2)) & \wedge & (P_4 \rightarrow (\neg Q \vee P)) \\ & \wedge & (P_7 \rightarrow (P_1 \wedge P_4)) & \wedge & (P_5 \rightarrow (P \vee R)) \end{array}$$

Step 4: Compute the CNF (at most 3 literals per clause)

$$P_F \land (\neg P_F \lor P_8) \land (\neg P_F \lor P_5) \land (\neg P_1 \lor Q) \land (\neg P_1 \lor \neg P)$$

$$\land (\neg P_8 \lor P_6 \lor P_7) \land (\neg P_2 \lor \neg Q \lor \neg R)$$

$$\land (\neg P_6 \lor P_1) \land (\neg P_6 \lor P_2) \land (\neg P_4 \lor \neg Q \lor P)$$

$$\land (\neg P_7 \lor P_1) \land (\neg P_7 \lor P_4) \land (\neg P_5 \lor P \lor R)$$

Proof: (ctd.) It immediately follows that CNF and *k*-CNF are *NP*-complete Polynomial reduction from 3-CNF-SAT to CNF:

f(F) = F for every formula in 3-CNF-SAT and \perp otherwise.

 $F \in 3$ -CNF-SAT iff $f(F) = F \in CNF$ -SAT.

Polynomial reduction from 3-CNF-SAT to k-CNF, k > 3

For every formula in 3-CNF-SAT: f(F) = F' (where F' is obtained from F by replacing a literal L with $\underbrace{L \lor \cdots \lor L}_{k-2 \text{ times}}$).

 $f(w) = \perp$ otherwise.

 $F \in 3$ -CNF-SAT iff $f(F) = F \in k$ -CNF-SAT.

Examples of problems in P

Theorem
The following problems are in P:
(1) DNF
(2) *k*-DNF for all *k*

(3) 2-CNF

(1) Let $F = (L_1^1 \land \cdots \land L_{n_1}^1) \lor \cdots \lor (L_1^m \land \cdots \land L_{n_m}^m)$ be a formula in DNF.

F is satisfiable iff for some *i*: $(L_1^i \wedge \cdots \wedge L_{n_1}^i)$ is satisfiable. A conjunction of literals is satisfiable iff it does not contain complementary literals.

(2) follows from (1)

(3) Finite set of 2-CNF formulae over a finite set of propositional variables. Resolution \mapsto at most quadratically many inferences needed.

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Is a (un)directed graph hamiltonian?
- 5. Can a graph be colored with three colors?
- 6. Multiprocessor scheduling

Definition

A clique in a graph G is a complete subgraph of G.

Clique = {(G, k) | G is an undirected graph which has a clique of size k}

Theorem Clique is NP-complete.

Proof: (1) We show that Clique is in *NP*:

We can construct for instance an NTM which accepts Clique.

- M builds a set V' of nodes (subset of the nodes of G) by choosing k nodes of G (we say that M "guesses" V').
- M checks for all nodes in V' if there are nodes to all other nodes. (this can be done in polynomial time)

Theorem Clique is NP-complete.

Proof: (2) We show that Clique is *NP*-hard by showing that 3-CNF-SAT \prec_{pol} Clique.

Let \mathcal{G} be the set of all undirected graphs. We want to construct a map f(DTM computable in polynomial time) which associates with every formula F a pair $(G_F, k_F) \in \mathcal{G} \times \mathbb{N}$ such that

 $F \in 3$ -CNF-SAT iff G_F has a clique of size k_F .

 $F \in 3\text{-}\mathsf{CNF} \Rightarrow F = (L_1^1 \lor L_2^1 \lor L_3^1) \land \cdots \land (L_1^m \lor L_2^m \lor L_3^m)$

F satisfiable iff there exists an assignment A such that in every clause in *F* at least one literal is true and it is impossible that *P* and $\neg P$ are true at the same time.

Theorem Clique is NP-complete.

Proof: (ctd.) Let $k_F := m$ (the number of clauses). We construct G_F as follows:

- Vertices: all literals in *F*.
- Edges: We have an edge between two literals if they (i) can become true in the same assignment and (ii) belong to different clauses.

Then:

- (1) f(F) is computable in polynomial time.
- (2) The following are equivalent:
 - (a) G_F has a clique of size k_F .
- (b) There exists a set of nodes $\{L_{i_1}^1, \ldots, L_{i_m}^m\}$ in G_F which does not contain complementary literals.
- (c) There exists an assignment which makes F true.
- (d) F is satisfiable.

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Is a (un)directed graph hamiltonian?
- 5. Can a graph be colored with three colors?
- 6. Multiprocessor scheduling

Definition (Rucksack problem)

A rucksack problem consists of:

- *n* objects with weights a_1, \ldots, a_n
- a maximum weight *b*

The rucksack problem is solvable if there exists a subset of the given objects with total weight b.

Rucksack = { $(b, a_1, ..., a_n) \in \mathbb{N}^{n+1} | \exists I \subseteq \{1, ..., n\} s.t. \sum_{i \in I} a_i = b$ }

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess *I* and check whether $\sum_{i \in I} a_i = b$

(2) Rucksack is NP-hard: We show that 3-CNF-SAT \prec_{pol} Rucksack.

Construct f : 3-CNF $\rightarrow \mathbb{N}^*$ as follows.

Consider a 3-CNF formula $F = (L_1^1 \vee L_2^1 \vee L_3^1) \wedge \cdots \wedge (L_1^m \vee L_2^m \vee L_3^m)$

 $f(F) = (b, a_1, ..., a_n)$ where:

- (i) a_i encodes which atom occurs in which clause as follows: p_i positive occurrences; n_i negative occurrences (numbers with n + m positions)
 - first *m* digits of p_i : p_{i_i} how often *i*-th atom of *j*-th clause occurs positively
 - first m digits of n_i : n_{i_i} how often i-th atom of j-th clause occurs negatively
 - last *n* digits of p_i , n_i : p_{i_j} , n_{i_j} which atom is referred by p_i p_i , n_i contain 1 at position m + i and 0 otherwise.

Let the set Prop of propositional variables consist of $\{x_1.x_2.x_3\}$.

- $F: (x_1 \vee \neg x_2 \vee x_4) \wedge (x_2 \vee x_2 \vee \neg x_5) \wedge (\neg x_3 \vee \neg x_1 \vee x_4)$

Satisfying assignment: $\mathcal{A}(x_1) = \mathcal{A}(x_2) = \mathcal{A}(x_5)$ and $\mathcal{A}(x_3) = \mathcal{A}(x_4) = 0$. $p_1 + p_2 + p_5 + n_3 + n_4 = \underbrace{121}_{\substack{\text{all digits } \leq 3\\ \text{because } 3 \text{ lit./clause}}} \underbrace{11111}_{\substack{\text{all atoms considered}}}$

Proof: (ctd.) If we have a satisfying assignment A, we take for every propositional variable x_i mapped to 0 the number n_i and for every propositional variable x_i mapped to 1 the number p_i .

The sum of these numbers is
$$b_1 \dots b_m \underbrace{1 \dots 1}_{n \text{ times}}$$
 with $b_i \leq 3$,
so $b_1 \dots b_m \underbrace{1 \dots 1}_{n} < \underbrace{4 \dots 4}_{m} \underbrace{1 \dots 1}_{n}$
Let $b := \underbrace{4 \dots 4}_{m} \underbrace{1 \dots 1}_{n}$. We choose $\{a_1, \dots, a_k\} = \{p_1, \dots, p_n\} \cup \{n_1, \dots, n_n\} \cup C$.

The role of the numbers in $C = \{c_1, \ldots, c_m, d_1, \ldots, d_m\}$ is to make the sum of the a_i s equal to b: $c_{i_j} = 1$ iff i = j; $d_{i_j} = 2$ iff i = j (they are zero otherwise).

$$f(F) \in \text{Rucksack iff a subset } I \text{ of } \{a_1, \ldots, a_k\} \text{ adds up to } b$$

iff a subset $I \text{ of } \{p_1, \ldots, p_n\} \cup \{n_1, \ldots, n_n\} \text{ adds up to } b_1 \ldots b_m 1 \ldots 1$
iff for a subset $I \text{ of } \{p_1, \ldots, p_n\} \cup \{n_1, \ldots, n_n\}$ there exists an assignment
iff \mathcal{A} with $\mathcal{A}(P_i) = 1(resp. 0)$ iff $p_i(resp. n_i)$ occurs in I iff F satisfiable

Summary

Examples of NP-complete problems:

- 1. Is a logical formula satisfiable? (SAT)
- 2. Does a graph contain a clique of size k?
- 3. Rucksack problem
- 4. Is a (un)directed graph hamiltonian?
- 5. Can a graph be colored with three colors?
- 6. Multiprocessor scheduling