
Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 2)

31.01.2013

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Until now

• Big O notation

• Types of complexity: space complexity and time complexity

– DTIME and NTIME

– DSPACE and NSPACE

• P, NP, PSPACE, Relationships

• Complete problems; hard problems; reductions

• Closure of complexity classes

• Examples

2

Until now: DTIME and NTIME

Basic model: k-DTM or k-NTM M (one tape for the input)

If M makes for every input word of length n at most T (n) steps,

then M is T (n)-time bounded.

In this case, the language accepted by M has time complexity T (n);

(more precisely max(n + 1,T (n)).

Definition (NTIME(T (n)),DTIME(T (n)))

• DTIME(T (n)) class of all languages accepted by

T (n)-time bounded DTMs.

• NTIME(T (n)) class of all languages accepted

by T (n)-time bounded NTMs.

3

Until now: DSPACE and NSPACE

Basic model: k-DTM or k-NTM M with special tape for the input (is

read-only) + k storage tapes (offline DTM) 7→ needed if S(n) sublinear

If M needs, for every input word of length n, at most

S(n) cells on the storage tapes then M is S(n)-space bounded.

The language accepted by M has space complexity S(n);

(more precisely max(1, S(n))).

Definition (NSPACE(T (n)),DSPACE(T (n)))

• DSPACE(S(n)) class of all languages accepted by

S(n)-space bounded DTMs.

• NSPACE(S(n)) class of all languages accepted by

S(n)-space bounded NTMs.

4

Until now: Facts

NTM vs. DTM:

• DTIME(f (n)) ⊆ NTIME(f (n))

• DSPACE(f (n)) ⊆ NSPACE(f (n))

• NTIME(f (n)) ⊆ DTIME(2h(n)) where h ∈ O(f).

Idea: If we try to simulate an NTM with a DTM we may

need exponentially more time.

• NSPACE(f (n)) ⊆ DSPACE(f 2(n))

This is Savitch’s theorem, proved by Walter Savitch in 1970.

(The proof is a bit involved and is not given in this lecture.)

Time vs. Space:

• DTIME(f (n)) ⊆ DSPACE(f (n))

• NTIME(f (n)) ⊆ NSPACE(f (n))

(DSPACE(f (n)),NSPACE(f (n)) are much larger)

5

Until now: Facts

Theorem.

For every c ∈ R
+ and every storage function S(n) the following hold:

• DSPACE(S(n)) = DSPACE(cS(n))

• NSPACE(S(n)) = NSPACE(cS(n))

Theorem For every c ∈ R
+ and every time function T (n) with limn→∞

T (n)
n

= ∞

the following hold:

• DTIME(T (n)) = DTIME(cT (n))

• NTIME(T (n)) = NTIME(cT (n))

Theorem: Let T be a time function with limn→∞
T (n)
n

= ∞ and S a storage

function.

(a) If f (n) ∈ O(T (n)) then DTIME(f (n)) ⊆ DTIME(T (n)).

(b) If g(n) ∈ O(S(n)) then DSPACE(g(n)) ⊆ DSPACE(S(n)).

6

Until now: P, NP, PSPACE

Definition

P =
⋃

i≥1 DTIME(ni)

NP =
⋃

i≥1 NTIME(ni)

PSPACE =
⋃

i≥1 DSPACE(ni)

Lemma NP ⊆
⋃

i≥1 DTIME(2O(nd))

P ⊆ NP ⊆ PSPACE

How do we show that a certain problem is in a certain complexity class?

Reduction to a known problem

7

Until now: Reduction

Definition (Polynomial time reducibility)

Let L1, L2 be languages.

L2 is polynomial time reducible to L1 (notation: L2 �pol L1)

if there exists a polynomial time bounded DTM, which for every input w computes

an output f (w) such that

w ∈ L2 if and only if f (w) ∈ L1

Lemma (Polynomial time reduction)

• Let L2 be polynomial time reducible to L1 (L2 �pol L1). Then:

If L1 ∈ NP then L2 ∈ NP.

If L1 ∈ P then L2 ∈ P.

• The composition of two polynomial time reductions is again a polynomial time

reduction.

8

Until now: NP

Theorem (Characterisation of NP)

A language L is in NP if and only if there exists a language L′ in P and

a k ≥ 0 such that for all w ∈ Σ∗:

w ∈ L iff there exists c : 〈w , c〉 ∈ L′ and |c| < |w |k

c is also called witness or certificate for w in L.

A DTM which accepts the language L′ is called verifier.

Important

A decision procedure is in NP iff every “Yes” instance has a short witness

(i.e. its length is polynomial in the length of the input)

which can be verified in polynomial time.

9

Until now: Complete and hard problems

Definition (NP-complete, NP-hard)

A language L is NP-hard (NP-difficult) if every language L′ in NP is reducible in

polynomial time to L.

A language L is NP-complete if: – L ∈ NP

– L is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

A language L is PSPACE-hard (PSPACE-difficult) if every language L′ in PSPACE

is reducible in polynomial time to L.

A language L is PSPACE-complete if: – L ∈ PSPACE

– L is PSPACE-hard

10

Until now: Complete and hard problems

Remarks:

• If we can prove that at least one NP-hard problem is in P then P = NP

• If P 6= NP then no NP complete problem can be solved in polynomial time

Open problem: Is P = NP? (Millenium Problem)

11

Until now: Complete and hard problems

How to show that a language L is NP-complete?

1. Prove that L ∈ NP

2. Find a language L′ known to be NP-complete and reduce it to L

Is this sufficient?

Yes.

If L′ ∈ NP then every language in NP is reducible to L′ and therefore also

to L.

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

L′ = Lsat = {w | w is a satisfiable formula of propositional logic}

12

Until now: Cook’s theorem

Theorem SAT = {w | w is a satisfiable formula of propositional logic}

is NP-complete.

13

Today

• Big O notation

• Types of complexity: space complexity and time complexity

– DTIME and NTIME

– DSPACE and NSPACE

• P, NP, PSPACE, Relationships

• Complete problems; hard problems; reductions

• Closure of complexity classes

• Examples

14

Closure of complexity classes

P, PSPACE are closed under complement

All complexity classes which are defined in terms of deterministic Turing

machines are closed under complement.

Proof: If a language L is in such a class then also its complement is

(run the machine for L and revert the output)

15

Closure of complexity classes

Is NP closed under complement?

16

Closure of complexity classes

Is NP closed under complement?

Nobody knows!

17

Closure of complexity classes

Is NP closed under complement?

Nobody knows!

Definition

co-NP is the class of all laguages for which the complement is in NP

co-NP = {L | L ∈ NP}

18

Relationships between complexity classes

It is not yet known whether the following relationships hold:

P
?
= NP

NP
?
= co-NP

P
?
= PSPACE

NP
?
= PSPACE

19

Today

• Big O notation

• Types of complexity: space complexity and time complexity

– DTIME and NTIME

– DSPACE and NSPACE

• P, NP, PSPACE, Relationships

• Complete problems; hard problems; reductions

• Closure of complexity classes

• Examples

20

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Multiprocessor scheduling

21

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Has a set of integers a subset with sum x?

7. Multiprocessor scheduling

22

Examples of NP-complete problems

Definition (SAT, k-CNF, k-DNF)

DNF: A formula is in DNF if it has the form

(L11 ∧ · · · ∧ L1n1) ∨ · · · ∨ (Lm1 ∧ · · · ∧ Lmnm)

CNF: A formula is in CNF if it has the form

(L11 ∨ · · · ∨ L1n1) ∧ · · · ∧ (Lm1 ∨ · · · ∨ Lmnm)

23

Examples of NP-complete problems

Definition (DNF, CNF, k-CNF, k-DNF)

DNF: A formula is in DNF if it has the form

(L11 ∧ · · · ∧ L1n1) ∨ · · · ∨ (Lm1 ∧ · · · ∧ Lmnm)

CNF: A formula is in CNF if it has the form

(L11 ∨ · · · ∨ L1n1) ∧ · · · ∧ (Lm1 ∨ · · · ∨ Lmnm)

k-DNF: A formula is in k-DNF if it is in DNF and

all its conjunctions have k literals

k-CNF: A formula is in k-CNF if it is in CNF and

all its disjunctions have k literals

24

Examples of NP-complete problems

SAT = {w | w is a satisfiable formula of propositional logic}

CNF-SAT = {w | w is a satisfiable formula of propositional logic in CNF}

k-CNF-SAT = {w | w is a satisfiable formula of propositional logic in k-CNF}

25

Examples of NP-complete problems

Theorem

The following problems are in NP and are NP-complete:

(1) SAT

(2) CNF-SAT

(3) k-CNF-SAT for k ≥ 3

26

Examples of NP-complete problems

Theorem

The following problems are in NP and are NP-complete:

(1) SAT

(2) CNF-SAT

(3) k-CNF-SAT for k ≥ 3

Proof: (1) SAT is NP-complete by Cook’s theorem.

CNF and k-CNF are clearly in NP.

(3) We show that 3-CNF is NP-hard. For this, we construct a polynomial

reduction of SAT to 3-CNF.

27

Examples of NP-complete problems

Proof: (ctd.) Polynomial reduction of SAT to 3-CNF.

Let F be a propositional formula of length n

Step 1 Move negation inwards (compute the negation normal form) 7→ O(n)

Step 2 Fully bracket the formula 7→ O(n)

P ∧ Q ∧ R 7→ (P ∧ Q) ∧ R

Step 3 Starting from inside out replace subformula QopR with a

new propositional variable PQopR and add the formula

PQopR → (QopR) and (QopR) → PQopR 7→ O(p(n))

Step 4 Write all formulae above as clauses 7→ Rename(F) 7→ O(n)

Let f : Σ∗ → Σ∗ be defined by:

f (F) = PF ∧ Rename(F) if F is a well-formed formula

and f (w) = ⊥ otherwise. Then:

F ∈ SAT iff F is a satisfiable formula in prop. logic iff PF ∧ Rename(F) is satisfiable

iff f (F) ∈ 3-CNF-SAT

28

Example

Let F be the following formula:

[(Q ∧ ¬P ∧ ¬(¬(¬Q ∨ ¬R))) ∨ (Q ∧ ¬P ∧ ¬(Q ∧ ¬P))] ∧ (P ∨ R).

Step 1: After moving negations inwards we obtain the formula:

F1 = [(Q ∧ ¬P ∧ (¬Q ∨ ¬R)) ∨ (Q ∧ ¬P ∧ (¬Q ∨ P))] ∧ (P ∨ R)

Step 2: After fully bracketing the formula we obtain:

F2 = [((Q ∧ ¬P) ∧ (¬Q ∨ ¬R)) ∨ (Q ∧ (¬Q ∨ P) ∧ ¬P)] ∧ (P ∨ R)

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.

29

Example

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF ↔ (P8 ∧ P5) ∧ (P1 ↔ (Q ∧ ¬P))

∧ (P8 ↔ (P6 ∨ P7)) ∧ (P2 ↔ (¬Q ∨ ¬R))

∧ (P6 ↔ (P1 ∧ P2)) ∧ (P4 ↔ (¬Q ∨ P))

∧ (P7 ↔ (P1 ∧ P4)) ∧ (P5 ↔ (P ∨ R))

can further exploit polarity

30

Example

Step 3: Replace subformulae with new propositional variables (starting inside).

[((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ ¬R)
︸ ︷︷ ︸

P2

)

︸ ︷︷ ︸

P6

∨ ((Q ∧ ¬P)
︸ ︷︷ ︸

P1

∧ (¬Q ∨ P)
︸ ︷︷ ︸

P4

)

︸ ︷︷ ︸

P7

]

︸ ︷︷ ︸

P8

∧ (P ∨ R)
︸ ︷︷ ︸

P5

︸ ︷︷ ︸

PF

.

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF → (P8 ∧ P5) ∧ (P1 → (Q ∧ ¬P))

∧ (P8 → (P6 ∨ P7)) ∧ (P2 → (¬Q ∨ ¬R))

∧ (P6 → (P1 ∧ P2)) ∧ (P4 → (¬Q ∨ P))

∧ (P7 → (P1 ∧ P4)) ∧ (P5 → (P ∨ R))

31

Example

F is satisfiable iff the following formula is satisfiable:

PF ∧ (PF → (P8 ∧ P5) ∧ (P1 → (Q ∧ ¬P))

∧ (P8 → (P6 ∨ P7)) ∧ (P2 → (¬Q ∨ ¬R))

∧ (P6 → (P1 ∧ P2)) ∧ (P4 → (¬Q ∨ P))

∧ (P7 → (P1 ∧ P4)) ∧ (P5 → (P ∨ R))

Step 4: Compute the CNF (at most 3 literals per clause)

PF ∧ (¬PF ∨ P8) ∧ (¬PF ∨ P5) ∧ (¬P1 ∨ Q) ∧ (¬P1 ∨ ¬P)

∧ (¬P8 ∨ P6 ∨ P7) ∧ (¬P2 ∨ ¬Q ∨ ¬R)

∧ (¬P6 ∨ P1) ∧ (¬P6 ∨ P2) ∧ (¬P4 ∨ ¬Q ∨ P)

∧ (¬P7 ∨ P1) ∧ (¬P7 ∨ P4) ∧ (¬P5 ∨ P ∨ R)

32

Examples of NP-complete problems

Proof: (ctd.) It immediately follows that CNF and k-CNF are NP-complete

Polynomial reduction from 3-CNF-SAT to CNF:

f (F) = F for every formula in 3-CNF-SAT and ⊥ otherwise.

F ∈ 3-CNF-SAT iff f (F) = F ∈ CNF-SAT.

Polynomial reduction from 3-CNF-SAT to k-CNF, k > 3

For every formula in 3-CNF-SAT:

f (F) = F ′ (where F ′ is obtained from F by replacing a literal L with L ∨ · · · ∨ L
︸ ︷︷ ︸

k−2 times

).

f (w) =⊥ otherwise.

F ∈ 3-CNF-SAT iff f (F) = F ∈ k-CNF-SAT.

33

Examples of problems in P

Theorem

The following problems are in P:

(1) DNF

(2) k-DNF for all k

(3) 2-CNF

(1) Let F = (L11 ∧ · · · ∧ L1n1) ∨ · · · ∨ (Lm1 ∧ · · · ∧ Lmnm) be a formula in DNF.

F is satisfiable iff for some i : (Li1 ∧ · · · ∧ Lin1) is satisfiable. A conjunction

of literals is satisfiable iff it does not contain complementary literals.

(2) follows from (1)

(3) Finite set of 2-CNF formulae over a finite set of propositional variables.

Resolution 7→ at most quadratically many inferences needed.

34

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Multiprocessor scheduling

35

Examples of NP-complete problems

Definition

A clique in a graph G is a complete subgraph of G .

Clique = {(G , k) | G is an undirected graph which has a clique of size k}

36

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (1) We show that Clique is in NP:

We can construct for instance an NTM which accepts Clique.

• M builds a set V ′ of nodes (subset of the nodes of G) by choosing k

nodes of G (we say that M “guesses” V ′).

• M checks for all nodes in V ′ if there are nodes to all other nodes.

(this can be done in polynomial time)

37

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (2) We show that Clique is NP-hard by showing that

3-CNF-SAT ≺pol Clique.

Let G be the set of all undirected graphs. We want to construct a map f

(DTM computable in polynomial time) which associates with every formula

F a pair (GF , kF) ∈ G × N such that

F ∈ 3-CNF-SAT iff GF has a clique of size kF .

F ∈ 3-CNF ⇒ F = (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3)

F satisfiable iff there exists an assignment A such that in every clause in F

at least one literal is true and it is impossible that P and ¬P are true at the

same time.

38

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (ctd.) Let kF := m (the number of clauses). We construct GF as follows:

• Vertices: all literals in F .

• Edges: We have an edge between two literals if they (i) can become true in the

same assignment and (ii) belong to different clauses.

Then:

(1) f (F) is computable in polynomial time.

(2) The following are equivalent:

(a) GF has a clique of size kF .

(b) There exists a set of nodes {L1
i1
, . . . , Lm

im
} in GF which does not contain

complementary literals.

(c) There exists an assignment which makes F true.

(d) F is satisfiable.

39

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Multiprocessor scheduling

40

Examples of NP-complete problems

Definition (Rucksack problem)

A rucksack problem consists of:

• n objects with weights a1, . . . , an

• a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects

with total weight b.

Rucksack = {(b, a1, . . . , an) ∈ Nn+1 |

E

I ⊆ {1, . . . , n} s.t.
∑

i∈I ai = b}

41

Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess I and check whether
∑

i∈I ai = b

(2) Rucksack is NP-hard: We show that 3-CNF-SAT ≺pol Rucksack.

Construct f : 3-CNF → N
∗ as follows.

Consider a 3-CNF formula F = (L1
1 ∨ L1

2 ∨ L1
3) ∧ · · · ∧ (Lm

1 ∨ Lm
2 ∨ Lm

3)

f (F) = (b, a1, . . . , an) where:

(i) ai encodes which atom occurs in which clause as follows:

pi positive occurrences; ni negative occurrences (numbers with n + m positions)

– first m digits of pi : pij how often i-th atom of j-th clause occurs positively

– first m digits of ni : nij how often i-th atom of j-th clause occurs negatively

– last n digits of pi , ni : pij , nij which atom is referred by pi

pi , ni contain 1 at position m + i and 0 otherwise.

42

Example

Let the set Prop of propositional variables consist of {x1.x2.x3}.

F : (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x2 ∨ ¬x5) ∧ (¬x3 ∨ ¬x1 ∨ x4)

p1 = 10010000 n1 = 00110000

p2 = 02001000 n2 = 10001000

p3 = 00000100 n3 = 00100100

p4 = 10100010 n4 = 00000010

p5 = 00000001 n5 = 01000001

Satisfying assignment: A(x1) = A(x2) = A(x5) and A(x3) = A(x4) = 0.

p1 + p2 + p5 + n3 + n4 = 121
︸︷︷︸

all digits ≤3
because 3 lit./clause

11111
︸ ︷︷ ︸

all 1
all atoms considered

43

Examples of NP-complete problems

Proof: (ctd.) If we have a satisfying assignment A, we take for every propositional

variable xi mapped to 0 the number ni and for every propositional variable xi mapped

to 1 the number pi .

The sum of these numbers is b1 . . . bm 1 . . . 1
︸ ︷︷ ︸

n times

with bi ≤ 3,

so b1 . . . bm 1 . . . 1
︸ ︷︷ ︸

n

< 4 . . . 4
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

Let b := 4 . . . 4
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

. We choose {a1, . . . , ak} = {p1, . . . , pn} ∪ {n1, . . . , nn} ∪ C .

The role of the numbers in C = {c1, . . . , cm, d1, . . . , dm} is to make the sum of the

ai s equal to b: cij = 1 iff i = j ; dij = 2 iff i = j (they are zero otherwise).

f (F) ∈ Rucksack iff a subset I of {a1, . . . , ak} adds up to b

iff a subset I of {p1, . . . , pn} ∪ {n1, . . . , nn} adds up to b1 . . . bm1 . . . 1

iff for a subset I of {p1, . . . , pn} ∪ {n1, . . . , nn} there exists an assignment

iff A with A(Pi) = 1(resp. 0) iff pi (resp. ni) occurs in I iff F satisfiable

44

Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Multiprocessor scheduling

45

