Advanced Topics in Theoretical Computer Science

> Part 5: Complexity (Part 2)
31.01.2013

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Until now

- Big O notation
- Types of complexity: space complexity and time complexity
- DTIME and NTIME
- DSPACE and NSPACE
- P, NP, PSPACE, Relationships
- Complete problems; hard problems; reductions
- Closure of complexity classes
- Examples

Until now: DTIME and NTIME

Basic model: k-DTM or k-NTM M (one tape for the input)
If M makes for every input word of length n at most $T(n)$ steps, then M is $T(n)$-time bounded.

In this case, the language accepted by M has time complexity $T(n)$; (more precisely $\max (n+1, T(n))$.

Definition (NTIME $(T(n)), D T I M E(T(n)))$

- DTIME $(T(n))$ class of all languages accepted by $T(n)$-time bounded DTMs.
- NTIME $(T(n))$ class of all languages accepted by $T(n)$-time bounded NTMs.

Until now: DSPACE and NSPACE

Basic model: k-DTM or k-NTM M with special tape for the input (is read-only) $+k$ storage tapes (offline DTM) $\quad \mapsto$ needed if $S(n)$ sublinear

If M needs, for every input word of length n, at most $S(n)$ cells on the storage tapes then M is $S(n)$-space bounded.

The language accepted by M has space complexity $S(n)$;
(more precisely $\max (1, S(n)$)).

Definition (NSPACE $(T(n)), \operatorname{DSPACE}(T(n)))$

- DSPACE $(S(n))$ class of all languages accepted by $S(n)$-space bounded DTMs.
- NSPACE $(S(n))$ class of all languages accepted by $S(n)$-space bounded NTMs.

Until now: Facts

NTM vs. DTM:

- $\operatorname{DTIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$
- $\operatorname{DSPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$
- $\operatorname{NTIME}(f(n)) \subseteq D \operatorname{TIME}\left(2^{h(n)}\right)$ where $h \in O(f)$.

Idea: If we try to simulate an NTM with a DTM we may
need exponentially more time.

- $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f^{2}(n)\right)$

This is Savitch's theorem, proved by Walter Savitch in 1970.
(The proof is a bit involved and is not given in this lecture.)
Time vs. Space:

- $\operatorname{DTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n))$
- $\operatorname{NTIME}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$
$(\operatorname{DSPACE}(f(n)), \operatorname{NSPACE}(f(n))$ are much larger)

Until now: Facts

Theorem.

For every $c \in \mathbb{R}^{+}$and every storage function $S(n)$ the following hold:

- $\operatorname{DSPACE}(S(n))=\operatorname{DSPACE}(c S(n))$
- $\operatorname{NSPACE}(S(n))=\operatorname{NSPACE}(c S(n))$

Theorem For every $c \in \mathbb{R}^{+}$and every time function $T(n)$ with $\lim _{n \rightarrow \infty} \frac{T(n)}{n}=\infty$ the following hold:

- $\operatorname{DTIME}(T(n))=\operatorname{DTME}(c T(n))$
- $\operatorname{NTIME}(T(n))=\operatorname{NTIME}(c T(n))$

Theorem: Let T be a time function with $\lim _{n \rightarrow \infty} \frac{T(n)}{n}=\infty$ and S a storage function.
(a) If $f(n) \in O(T(n))$ then $D T I M E(f(n)) \subseteq D T I M E(T(n))$.
(b) If $g(n) \in O(S(n))$ then $\operatorname{DSPACE}(g(n)) \subseteq \operatorname{DSPACE}(S(n))$.

Until now: P, NP, PSPACE

Definition

$$
\begin{array}{cl}
P & =\bigcup_{i \geq 1} \operatorname{DTIME}\left(n^{i}\right) \\
N P & =\bigcup_{i \geq 1} \operatorname{NTIME}\left(n^{i}\right) \\
\operatorname{PSPACE} & =\bigcup_{i \geq 1} \operatorname{DSPACE}\left(n^{i}\right)
\end{array}
$$

Lemma $N P \subseteq \bigcup_{i \geq 1} \operatorname{DTIME}\left(2^{O\left(n^{d}\right)}\right)$
$P \subseteq N P \subseteq P S P A C E$
How do we show that a certain problem is in a certain complexity class?
Reduction to a known problem

Until now: Reduction

Definition (Polynomial time reducibility)

Let L_{1}, L_{2} be languages.
L_{2} is polynomial time reducible to L_{1} (notation: $L_{2} \preceq_{\text {pol }} L_{1}$)
if there exists a polynomial time bounded DTM, which for every input w computes an output $f(w)$ such that

$$
w \in L_{2} \text { if and only if } f(w) \in L_{1}
$$

Lemma (Polynomial time reduction)

- Let L_{2} be polynomial time reducible to $L_{1}\left(L_{2} \preceq_{\text {pol }} L_{1}\right)$. Then:

If	$L_{1} \in N P$	then
If	$L_{2} \in N P$.	
$L_{1} \in P$	then	$L_{2} \in P$.

- The composition of two polynomial time reductions is again a polynomial time reduction.

Until now: NP

Theorem (Characterisation of NP)

A language L is in NP if and only if there exists a language L^{\prime} in P and a $k \geq 0$ such that for all $w \in \Sigma^{*}$:

$$
w \in L \text { iff } \quad \text { there exists } c:\langle w, c\rangle \in L^{\prime} \text { and }|c|<|w|^{k}
$$

c is also called witness or certificate for w in L.
A DTM which accepts the language L^{\prime} is called verifier.

Important

A decision procedure is in NP iff every "Yes" instance has a short witness
(i.e. its length is polynomial in the length of the input)
which can be verified in polynomial time.

Until now: Complete and hard problems

Definition (NP-complete, NP-hard)
A language L is NP-hard (NP-difficult) if every language L^{\prime} in NP is reducible in polynomial time to L.

$$
\begin{aligned}
\text { A language } L \text { is NP-complete if: } & -L \in N P \\
& -L \text { is NP-hard }
\end{aligned}
$$

Definition (PSPACE-complete, PSPACE-hard)
A language L is PSPACE-hard (PSPACE-difficult) if every language L^{\prime} in PSPACE is reducible in polynomial time to L.

A language L is PSPACE-complete if: $\quad-L \in P S P A C E$
$-L$ is PSPACE-hard

Until now: Complete and hard problems

Remarks:

- If we can prove that at least one NP-hard problem is in P then $P=N P$
- If $P \neq N P$ then no NP complete problem can be solved in polynomial time

Open problem: Is $\mathrm{P}=\mathrm{NP}$? (Millenium Problem)

Until now: Complete and hard problems

How to show that a language L is NP-complete?

1. Prove that $L \in N P$
2. Find a language L^{\prime} known to be NP-complete and reduce it to L

Is this sufficient?

Yes.

If $L^{\prime} \in N P$ then every language in NP is reducible to L^{\prime} and therefore also to L.

Often used: the SAT problem (Proved to be NP-complete by S. Cook)

$$
L^{\prime}=L_{\text {sat }}=\{w \mid w \text { is a satisfiable formula of propositional logic }\}
$$

Until now: Cook's theorem

Theorem SAT $=\{w \mid w$ is a satisfiable formula of propositional logic $\}$ is NP-complete.

Today

- Big O notation
- Types of complexity: space complexity and time complexity
- DTIME and NTIME
- DSPACE and NSPACE
- P, NP, PSPACE, Relationships
- Complete problems; hard problems; reductions
- Closure of complexity classes
- Examples

Closure of complexity classes

P, PSPACE are closed under complement

All complexity classes which are defined in terms of deterministic Turing machines are closed under complement.

Proof: If a language L is in such a class then also its complement is (run the machine for L and revert the output)

Closure of complexity classes

Is NP closed under complement?

Closure of complexity classes

Is NP closed under complement?
Nobody knows!

Closure of complexity classes

Is NP closed under complement?
Nobody knows!

Definition

co-NP is the class of all laguages for which the complement is in NP

$$
\mathrm{co}-\mathrm{NP}=\{L \mid \bar{L} \in N P\}
$$

Relationships between complexity classes

It is not yet known whether the following relationships hold:
$P \stackrel{?}{=} N P$
$N P \stackrel{?}{=}$ co-NP
$P \stackrel{?}{=}$ PSPACE
$N P \stackrel{?}{=}$ PSPACE

Today

- Big O notation
- Types of complexity: space complexity and time complexity
- DTIME and NTIME
- DSPACE and NSPACE
- P, NP, PSPACE, Relationships
- Complete problems; hard problems; reductions
- Closure of complexity classes
- Examples

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Has a set of integers a subset with sum x ?
7. Multiprocessor scheduling

Examples of NP-complete problems

Definition (SAT, k-CNF, k-DNF)

DNF: A formula is in DNF if it has the form

$$
\left(L_{1}^{1} \wedge \cdots \wedge L_{n_{1}}^{1}\right) \vee \cdots \vee\left(L_{1}^{m} \wedge \cdots \wedge L_{n_{m}}^{m}\right)
$$

CNF: A formula is in CNF if it has the form

$$
\left(L_{1}^{1} \vee \cdots \vee L_{n_{1}}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee \cdots \vee L_{n_{m}}^{m}\right)
$$

Examples of NP-complete problems

Definition (DNF, CNF, k-CNF, k-DNF)
DNF: A formula is in DNF if it has the form

$$
\left(L_{1}^{1} \wedge \cdots \wedge L_{n_{1}}^{1}\right) \vee \cdots \vee\left(L_{1}^{m} \wedge \cdots \wedge L_{n_{m}}^{m}\right)
$$

CNF: A formula is in CNF if it has the form

$$
\left(L_{1}^{1} \vee \cdots \vee L_{n_{1}}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee \cdots \vee L_{n_{m}}^{m}\right)
$$

k-DNF: A formula is in k-DNF if it is in DNF and all its conjunctions have k literals
k-CNF: A formula is in k-CNF if it is in CNF and all its disjunctions have k literals

Examples of NP-complete problems

SAT $=\{w \mid w$ is a satisfiable formula of propositional logic $\}$

CNF-SAT $=\{w \mid w$ is a satisfiable formula of propositional logic in CNF $\}$
k-CNF-SAT $=\{w \mid w$ is a satisfiable formula of propositional logic in k-CNF $\}$

Examples of NP-complete problems

Theorem
The following problems are in NP and are NP-complete:
(1) SAT
(2) CNF-SAT
(3) k-CNF-SAT for $k \geq 3$

Examples of NP-complete problems

```
Theorem
The following problems are in NP and are NP-complete:
(1) SAT
(2) CNF-SAT
(3) k-CNF-SAT for }k\geq
```

Proof: (1) SAT is NP-complete by Cook's theorem.
CNF and k-CNF are clearly in NP.
(3) We show that 3-CNF is NP-hard. For this, we construct a polynomial reduction of SAT to $3-C N F$.

Examples of NP-complete problems

Proof: (ctd.) Polynomial reduction of SAT to 3-CNF.
Let F be a propositional formula of length n
Step 1 Move negation inwards (compute the negation normal form) $\mapsto O(n)$
Step 2 Fully bracket the formula
$\mapsto O(n)$
$P \wedge Q \wedge R \mapsto(P \wedge Q) \wedge R$
Step 3 Starting from inside out replace subformula $Q o p R$ with a

$$
\text { new propositional variable } P_{Q \circ p R} \text { and add the formula }
$$

$$
P_{Q \mathrm{op} R} \rightarrow(Q \mathrm{op} R) \text { and }(Q \mathrm{op} R) \rightarrow P_{Q \mathrm{op} R} \quad \mapsto O(p(n))
$$

Step 4 Write all formulae above as clauses \mapsto Rename (F)
$\mapsto O(n)$
Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be defined by:
$f(F)=P_{F} \wedge \operatorname{Rename}(F)$ if F is a well-formed formula and $f(w)=\perp$ otherwise. Then:
$F \in$ SAT iff F is a satisfiable formula in prop. logic iff $P_{F} \wedge \operatorname{Rename}(F)$ is satisfiable iff $f(F) \in 3-C N F-S A T$

Example

Let F be the following formula:

$$
[(Q \wedge \neg P \wedge \neg(\neg(\neg Q \vee \neg R))) \vee(Q \wedge \neg P \wedge \neg(Q \wedge \neg P))] \wedge(P \vee R)
$$

Step 1: After moving negations inwards we obtain the formula:

$$
F_{1}=[(Q \wedge \neg P \wedge(\neg Q \vee \neg R)) \vee(Q \wedge \neg P \wedge(\neg Q \vee P))] \wedge(P \vee R)
$$

Step 2: After fully bracketing the formula we obtain:

$$
F_{2}=[((Q \wedge \neg P) \wedge(\neg Q \vee \neg R)) \vee(Q \wedge(\neg Q \vee P) \wedge \neg P)] \wedge(P \vee R)
$$

Step 3: Replace subformulae with new propositional variables (starting inside).

Example

Step 3: Replace subformulae with new propositional variables (starting inside).

F is satisfiable iff the following formula is satisfiable:

$$
\begin{array}{rlll}
P_{F} & \wedge & \left(P_{F} \leftrightarrow\left(P_{8} \wedge P_{5}\right)\right. & \wedge \\
& \wedge & \left(P_{1} \leftrightarrow(Q \wedge \neg P)\right) \\
& \wedge\left(P_{8} \leftrightarrow\left(P_{6} \vee P_{7}\right)\right) & \wedge & \left(P_{2} \leftrightarrow(\neg Q \vee \neg R)\right) \\
& \wedge\left(P_{6} \leftrightarrow\left(P_{1} \wedge P_{2}\right)\right) & \wedge & \left(P_{4} \leftrightarrow(\neg Q \vee P)\right) \\
& \wedge\left(P_{7} \leftrightarrow\left(P_{1} \wedge P_{4}\right)\right) & \wedge & \left(P_{5} \leftrightarrow(P \vee R)\right)
\end{array}
$$

can further exploit polarity

Example

Step 3: Replace subformulae with new propositional variables (starting inside).

F is satisfiable iff the following formula is satisfiable:

$$
\begin{array}{rlll}
P_{F} & \wedge & \left(P_{F} \rightarrow\left(P_{8} \wedge P_{5}\right)\right. & \wedge \\
& \wedge\left(P_{1} \rightarrow(Q \wedge \neg P)\right) \\
& \wedge\left(P_{8} \rightarrow\left(P_{6} \vee P_{7}\right)\right) & \wedge & \left(P_{2} \rightarrow(\neg Q \vee \neg R)\right) \\
& \wedge\left(P_{6} \rightarrow\left(P_{1} \wedge P_{2}\right)\right) & \wedge & \left(P_{4} \rightarrow(\neg Q \vee P)\right) \\
& \wedge\left(P_{7} \rightarrow\left(P_{1} \wedge P_{4}\right)\right) & \wedge & \left(P_{5} \rightarrow(P \vee R)\right)
\end{array}
$$

Example

F is satisfiable iff the following formula is satisfiable:

$$
\begin{array}{rlll}
P_{F} & \wedge & \left(P_{F} \rightarrow\left(P_{8} \wedge P_{5}\right)\right. & \wedge \\
& \wedge\left(P_{1} \rightarrow(Q \wedge \neg P)\right) \\
& \wedge\left(P_{8} \rightarrow\left(P_{6} \vee P_{7}\right)\right) & \wedge & \left(P_{2} \rightarrow(\neg Q \vee \neg R)\right) \\
& \wedge\left(P_{6} \rightarrow\left(P_{1} \wedge P_{2}\right)\right) & \wedge & \left(P_{4} \rightarrow(\neg Q \vee P)\right) \\
& \wedge\left(P_{7} \rightarrow\left(P_{1} \wedge P_{4}\right)\right) & \wedge & \left(P_{5} \rightarrow(P \vee R)\right)
\end{array}
$$

Step 4: Compute the CNF (at most 3 literals per clause)

$$
\begin{array}{rllll}
P_{F} & \wedge & \left(\neg P_{F} \vee P_{8}\right) \wedge\left(\neg P_{F} \vee P_{5}\right) & \wedge & \left(\neg P_{1} \vee Q\right) \wedge\left(\neg P_{1} \vee \neg P\right) \\
& \wedge\left(\neg P_{8} \vee P_{6} \vee P_{7}\right) & \wedge & \left(\neg P_{2} \vee \neg Q \vee \neg R\right) \\
& \wedge\left(\neg P_{6} \vee P_{1}\right) \wedge\left(\neg P_{6} \vee P_{2}\right) & \wedge & \left(\neg P_{4} \vee \neg Q \vee P\right) \\
& \wedge & \left(\neg P_{7} \vee P_{1}\right) \wedge\left(\neg P_{7} \vee P_{4}\right) & \wedge & \left(\neg P_{5} \vee P \vee R\right)
\end{array}
$$

Examples of NP-complete problems

Proof: (ctd.) It immediately follows that CNF and k-CNF are NP-complete
Polynomial reduction from 3-CNF-SAT to CNF:
$f(F)=F$ for every formula in 3-CNF-SAT and \perp otherwise.
$F \in$ 3-CNF-SAT iff $f(F)=F \in$ CNF-SAT.

Polynomial reduction from 3-CNF-SAT to $k-C N F, k>3$
For every formula in 3-CNF-SAT:
$f(F)=F^{\prime}$ (where F^{\prime} is obtained from F by replacing a literal L with $\underbrace{L \vee \cdots \vee L}_{k-2 \text { times }}$).
$f(w)=\perp$ otherwise.

$$
F \in \text { 3-CNF-SAT iff } f(F)=F \in k-C N F-S A T
$$

Examples of problems in P

Theorem

The following problems are in P :
(1) DNF
(2) k-DNF for all k
(3) $2-\mathrm{CNF}$
(1) Let $F=\left(L_{1}^{1} \wedge \cdots \wedge L_{n_{1}}^{1}\right) \vee \cdots \vee\left(L_{1}^{m} \wedge \cdots \wedge L_{n_{m}}^{m}\right)$ be a formula in DNF. F is satisfiable iff for some $i:\left(L_{1}^{i} \wedge \cdots \wedge L_{n_{1}}^{i}\right)$ is satisfiable. A conjunction of literals is satisfiable iff it does not contain complementary literals.
(2) follows from (1)
(3) Finite set of 2-CNF formulae over a finite set of propositional variables.

Resolution \mapsto at most quadratically many inferences needed.

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition

A clique in a graph G is a complete subgraph of G.

Clique $=\{(G, k) \mid G$ is an undirected graph which has a clique of size $k\}$

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (1) We show that Clique is in NP:
We can construct for instance an NTM which accepts Clique.

- M builds a set V^{\prime} of nodes (subset of the nodes of G) by choosing k nodes of G (we say that M "guesses" V^{\prime}).
- M checks for all nodes in V^{\prime} if there are nodes to all other nodes. (this can be done in polynomial time)

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (2) We show that Clique is NP-hard by showing that 3-CNF-SAT $\prec_{\text {pol }}$ Clique.

Let \mathcal{G} be the set of all undirected graphs. We want to construct a map f (DTM computable in polynomial time) which associates with every formula F a pair $\left(G_{F}, k_{F}\right) \in \mathcal{G} \times \mathbb{N}$ such that
$F \in 3-C N F-S A T \quad$ iff $\quad G_{F}$ has a clique of size k_{F}.
$F \in 3-C N F \Rightarrow F=\left(L_{1}^{1} \vee L_{2}^{1} \vee L_{3}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee L_{2}^{m} \vee L_{3}^{m}\right)$
F satisfiable iff there exists an assignment \mathcal{A} such that in every clause in F at least one literal is true and it is impossible that P and $\neg P$ are true at the same time.

Examples of NP-complete problems

Theorem Clique is NP-complete.

Proof: (ctd.) Let $k_{F}:=m$ (the number of clauses). We construct G_{F} as follows:

- Vertices: all literals in F.
- Edges: We have an edge between two literals if they (i) can become true in the same assignment and (ii) belong to different clauses.

Then:
(1) $f(F)$ is computable in polynomial time.
(2) The following are equivalent:
(a) G_{F} has a clique of size k_{F}.
(b) There exists a set of nodes $\left\{L_{i_{1}}^{1}, \ldots, L_{i_{m}}^{m}\right\}$ in G_{F} which does not contain complementary literals.
(c) There exists an assignment which makes F true.
(d) F is satisfiable.

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (Rucksack problem)

A rucksack problem consists of:

- n objects with weights a_{1}, \ldots, a_{n}
- a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects with total weight b.

$$
\text { Rucksack }=\left\{\left(b, a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n+1} \mid \exists I \subseteq\{1, \ldots, n\} \text { s.t. } \sum_{i \in I} a_{i}=b\right\}
$$

Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess I and check whether $\sum_{i \in I} a_{i}=b$
(2) Rucksack is NP-hard: We show that 3-CNF-SAT $\prec_{\text {pol }}$ Rucksack.

Construct $f: 3$-CNF $\rightarrow \mathbb{N}^{*}$ as follows.
Consider a 3-CNF formula $F=\left(L_{1}^{1} \vee L_{2}^{1} \vee L_{3}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee L_{2}^{m} \vee L_{3}^{m}\right)$
$f(F)=\left(b, a_{1}, \ldots, a_{n}\right)$ where:
(i) a_{i} encodes which atom occurs in which clause as follows:
p_{i} positive occurrences; n_{i} negative occurrences (numbers with $n+m$ positions)

- first m digits of p_{i} : $p_{i_{j}}$ how often i-th atom of j-th clause occurs positively
- first m digits of n_{i} : $n_{i j}$ how often i-th atom of j-th clause occurs negatively
- last n digits of $p_{i}, n_{i}: p_{i_{j}}, n_{i j}$ which atom is referred by p_{i} p_{i}, n_{i} contain 1 at position $m+i$ and 0 otherwise.

Example

Let the set Prop of propositional variables consist of $\left\{x_{1} \cdot x_{2} \cdot x_{3}\right\}$.
$F:\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{2} \vee \neg x_{5}\right) \wedge\left(\neg x_{3} \vee \neg x_{1} \vee x_{4}\right)$

$$
\begin{array}{ll}
p_{1}=10010000 & n_{1}=00110000 \\
p_{2}=02001000 & n_{2}=10001000 \\
p_{3}=00000100 & n_{3}=00100100 \\
p_{4}=10100010 & n_{4}=00000010 \\
p_{5}=00000001 & n_{5}=01000001
\end{array}
$$

Satisfying assignment: $\mathcal{A}\left(x_{1}\right)=\mathcal{A}\left(x_{2}\right)=\mathcal{A}\left(x_{5}\right)$ and $\mathcal{A}\left(x_{3}\right)=\mathcal{A}\left(x_{4}\right)=0$.

$$
p_{1}+p_{2}+p_{5}+n_{3}+n_{4}=\underbrace{121}_{\begin{array}{c}
\text { all digits } \\
\text { because } 3 \text { lit./clause }
\end{array}} \underbrace{11111}_{\begin{array}{c}
\text { all } 1 \\
\text { all atoms considered }
\end{array}}
$$

Examples of NP-complete problems

Proof: (ctd.) If we have a satisfying assignment \mathcal{A}, we take for every propositional variable x_{i} mapped to 0 the number n_{i} and for every propositional variable x_{i} mapped to 1 the number p_{i}.

The sum of these numbers is $b_{1} \ldots b_{m} \underbrace{1 \ldots 1}_{n \text { times }}$ with $b_{i} \leq 3$,
so $b_{1} \ldots b_{m} \underbrace{1 \ldots 1}_{n}<\underbrace{4 \ldots 4}_{m} \underbrace{1 \ldots 1}_{n}$
Let $b:=\underbrace{4 \ldots 4}_{m} \underbrace{1 \ldots 1}_{n}$. We choose $\left\{a_{1}, \ldots, a_{k}\right\}=\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\} \cup C$.
The role of the numbers in $C=\left\{c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{m}\right\}$ is to make the sum of the $a_{i} \mathrm{~s}$ equal to b : $c_{i_{j}}=1$ iff $i=j ; d_{i_{j}}=2$ iff $i=j$ (they are zero otherwise).
$f(F) \in$ Rucksack iff a subset I of $\left\{a_{1}, \ldots, a_{k}\right\}$ adds up to b
iff a subset I of $\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\}$ adds up to $b_{1} \ldots b_{m} 1 \ldots 1$
iff for a subset I of $\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\}$ there exists an assignment
iff \mathcal{A} with $\mathcal{A}\left(P_{i}\right)=1($ resp. 0$)$ iff $p_{i}\left(\right.$ resp. $\left.n_{i}\right)$ occurs in I iff F satisfiable

Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling
