Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 3)

07.01.2013

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Until now

- Space and time complexity
- DTIME and NTIME
- DSPACE and NSPACE
- P, NP, PSPACE, Relationships
- Complete problems; hard problems; reductions
- Closure of complexity classes
- Examples

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Has a set of integers a subset with sum x ?
7. Multiprocessor scheduling

Examples of NP-complete problems

SAT $=\{w \mid w$ is a satisfiable formula of propositional logic $\}$
CNF-SAT $=\{w \mid w$ is a satisfiable formula of propositional logic in CNF $\}$ k-CNF-SAT $=\{w \mid w$ is a satisfiable formula of propositional logic in k-CNF $\}$

Examples of NP-complete problems

```
Theorem
The following problems are in NP and are NP-complete:
(1) SAT
(2) CNF-SAT
(3) k-CNF-SAT for }k\geq
```

Theorem
The following problems are in P:
(1) DNF
(2) k-DNF for all k
(3) $2-\mathrm{CNF}$

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Theorem Clique is NP-complete.
Proof: (1) We showed that Clique is in NP:
(2) We prove that Clique is NP-hard by showing that

3-CNF-SAT $\prec_{\text {pol }}$ Clique.
Let $F=C_{1} \wedge \cdots \wedge C_{m}$. Let $k_{F}:=m$ (the number of clauses).
We construct G_{F} as follows:

- Vertices: all literals in F (with repetitions!).

$$
V=\left\{(L, j) \mid L \text { literal which occurs in clause } C_{j}\right\}
$$

- Edges: We have an edge between two literals if they
(i) can become true in the same assignment and
(ii) belong to different clauses.

$$
E=\left\{\left(\left(L_{1}, i\right),\left(L_{2}, j\right)\right) \mid i \neq j \text { and } L_{1} \not \equiv \neg L_{2}\right\}
$$

Examples of NP-complete problems

Theorem Clique is NP-complete.
Proof: (ctd.)
Then:
(1) $f(F)$ is computable in polynomial time.
(2) The following are equivalent:
(a) G_{F} has a clique of size k_{F}.
(b) There exists a set of nodes $\left\{L_{i_{1}}^{1}, \ldots, L_{i_{m}}^{m}\right\}$ in G_{F} which does not contain complementary literals.
(c) There exists an assignment which makes F true.
(d) F is satisfiable.

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (Rucksack problem)

A rucksack problem consists of:

- n objects with weights a_{1}, \ldots, a_{n}
- a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects with total weight b.

$$
\text { Rucksack }=\left\{\left(b, a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n+1} \mid \exists I \subseteq\{1, \ldots, n\} \text { s.t. } \sum_{i \in I} a_{i}=b\right\}
$$

Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (Hamiltonian-cycle)
Path along the edges of a graph which visits every node exactly once and is a cycle.

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once and is a cycle.
$L_{\text {Ham,undir }}$: the language consisting of all undirected graphs which contain a Hamiltonian cycle

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once.
$L_{\text {Ham,undir }}$: the language consisting of all undirected graphs which contain a Hamiltonian cycle
$L_{\text {Ham,dir }}$: the language consisting of all directed graphs which contain a Hamiltonian cycle

NP-completeness: again reduction from 3-CNF-SAT.

Examples of NP-complete problems

Theorem. The problem whether a directed graph contains a Hamiltonian cycle is NP-complete.

Proof. (1) The problem is in NP: Guess a permutation of the nodes; check that they form a Hamiltonian cycle (in polynomial time).
(2) The problem is NP-hard. Reduction from 3-CNF-SAT.
$F=\left(L_{1}^{1} \vee L_{2}^{1} \vee L_{3}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{k} \vee L_{2}^{k} \vee L_{3}^{k}\right)$
Construct $f(F)=G$ such that G contains a Hamiltonian cycle iff F satisfiable.

Examples of NP-complete problems

Theorem. The problem whether a directed graph contains a Hamiltonian cycle is NP-complete.

Proof (ctd.)
$G=(V, E)$ where:

- Vertices: atoms in F and subgraphs K_{i} with 6 nodes $\left\{a_{1}, a_{2}, a_{3}, A_{1}, A_{2}, A_{3}\right\}$ for each clause C_{i}.
- Edges: for every atom: two incoming (+/-); two outgoing (+/-) edges
- links between atoms and nodes of clauses: atom positive in clauses $C_{i_{1}}, \ldots, C_{i,}$ on position j : edge + goes to a_{j} in $K_{i_{1}}$, link A_{j} to $K_{i_{2}}$, etc. Last link: + in-edge of x_{i+1}. (similar for negative occurrences).
- if x_{i} does not occur pos (neg) in any clause: connect the $+(-)$ out-edge of x_{i} to the $+(-)$ in-edge of x_{i+1} (resp. to x_{1} if $i=n$).

Examples of NP-complete problems

Theorem. The problem whether a directed graph contains a Hamiltonian cycle is NP-complete.

Proof (ctd.) To prove: F satisfiable iff $f(F)$ has a Hamiltonian cycle.
$" \Rightarrow$ " F satisfiable \Rightarrow exists satisfying assignment \mathcal{A}.
Construct a Hamiltonian cycle in $f(F)$ as follows:
leave node x_{i} on outgoing + edge iff $\mathcal{A}\left(x_{i}\right)=1$
leave node x_{i} on outgoing - edge iff $\mathcal{A}\left(x_{i}\right)=0$
$" \Leftarrow " f(F)$ contains Hamiltonian cycle. Construct satisfying assignment
$\mathcal{A}\left(x_{i}\right)=1$ iff cycle leaves x_{i} through + edge
$\mathcal{A}\left(x_{i}\right)=0$ iff cycle leaves x_{i} through - edge

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with k colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (k-colorability) A undirected graph is k-colorable if every node can be colored with one of k colors such that nodes connected by an edge have different colors.
$L_{\text {Color }_{k}}: \quad$ the language consisting of all undirected graphs which are colorable with at most k colors.

Examples of NP-complete problems

The k-colorability is NP complete

Proof: Exercise. Hint:
(1) Prove that the problen is in NP.
(2) Let $F=C_{1} \wedge \cdots \wedge C_{k}$ in 3-CNF containing propositional variables $\left\{x_{1}, \ldots, x_{m}\right\}$.

Let $G=(V, E)$ be an undirected graph, that is defined as follows:

$$
\begin{aligned}
V & =\left\{C_{1}, \ldots, C_{k}\right\} \cup\left\{x_{1}, \ldots, x_{m}\right\} \cup\left\{\overline{x_{1}}, \ldots, \overline{x_{m}}\right\} \cup\left\{y_{1}, \ldots, y_{m}\right\} \\
E= & \left\{\left(x_{i}, \overline{x_{i}}\right),\left(\overline{x_{i}}, x_{i}\right) \mid i \in\{1, \ldots, m\}\right\} \cup\left\{\left(y_{i}, y_{j}\right) \mid i \neq j\right\} \cup \\
& \left\{\left(y_{i}, x_{j}\right),\left(x_{j}, y_{i}\right) \mid i \neq j\right\} \cup\left\{\left(y_{i}, \overline{x_{j}}\right),\left(\overline{x_{j}}, y_{i}\right) \mid i \neq j\right\} \cup \\
& \left\{\left(C_{i}, x_{j}\right),\left(x_{j}, C_{i}\right) \mid x_{j} \text { not in } C_{i}\right\} \cup\left\{\left(C_{i}, \overline{x_{j}}\right),\left(\overline{x_{j}}, C_{i}\right) \mid \overline{x_{j}} \text { not in } C_{i}\right\}
\end{aligned}
$$

Use G to prove 3 -CNF-SAT $\preceq_{\text {pol }} k$-colorability.

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (Multiprocessor scheduling problem)
A scheduling problem consists of:

- n processes with durations t_{1}, \ldots, t_{n}
- m processors
- a maximal duration (deadline) D

The scheduling problem has a solution if there exists an distribution of processes on the processors such that all processes end before the deadline D.
$L_{\text {schedule }}$: the language consisting of all solvable scheduling problems

Other complexity classes

Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

$L_{\text {tautologies }}=\{w \mid w$ is a tautology in propositional logic $\}$

Theorem. $L_{\text {tautologies }}$ is in co-NP.

Proof. The complement of $L_{\text {tautologies }}$ is the set of formulae whose negation is satisfiable, thus in NP.

PSPACE

Definition (PSPACE-complete, PSPACE-hard)

A language L is PSPACE-hard (PSPACE-difficult) if every language L^{\prime} in PSPACE is reducible in polynomial time to L.

A language L is PSPACE-complete if: $\quad-L \in P S P A C E$
$-L$ is PSPACE-hard

Quantified Boolean Formulae

Syntax: Extend the syntax of propositional logic by allowing quantification over propositional variables.

Semantics:
$(\forall P) F=F[P \mapsto 1] \wedge F[P \mapsto 0]$ $(\exists P) F=F[P \mapsto 1] \vee F[P \mapsto 0]$

PSPACE

A fundamental PSPACE problem was identified by Stockmeyer and Meyer in 1973.

Quantified Boolean Formulas (QBF)

Given: A well-formed quantified Boolean formula $F=\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) E\left(x_{1}, \ldots, x_{n}\right)$
where E is a Boolean expression containing the variables x_{1}, \ldots, x_{n} and Q_{i} is \exists or \forall.

Question: If F true?

PSPACE

Theorem QBF is PSPACE complete

Proof (Idea only)
(1) QBF is in PSPACE: we can try all possible assignments of truth values one at a time and reusing the space (2^{n} time but polynomial space).
(2) QBF is PSPACE complete. We can show that every language L^{\prime} in PSPACE can be polymomially reduced to QBF using an idea similar to that used in Cook's theorem (we simulate a polynomial space bounded computation and not a polynomial time bounded computation).

The structure of PSPACE

The structure of PSPACE

... Beyond NP

The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

- makes initial guess
- consult an oracle

Informally: NOTM for problem P : nondeterministic algorithm with a subroutine for P.

The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

- makes initial guess
- consult an oracle

Informally: NOTM for problem P : nondeterministic algorithm with a subroutine for P.
defines a so-called (polynomial time) nondeterministic Turing reduction

The structure of PSPACE

The polynomial hierarchy
$P^{Y}=\left\{L \mid\right.$ there exists a language $L^{\prime} \in Y$ such that $\left.L \preceq_{\text {pol }} L^{\prime}\right\}$
$N P^{Y}=\left\{L \mid\right.$ there exists a language $L^{\prime} \in Y$ such that there exists a nondeterministic Turing reduction from L to $\left.L^{\prime}\right\}$

$$
\begin{aligned}
& \Sigma_{0}^{p}=\Pi_{0}^{p}=\Delta_{0}^{p}=P . \\
& \Delta_{k+1}^{p}=P^{\Sigma_{k}^{p}} \\
& \Sigma_{k+1}^{p}=N P^{\Sigma_{k}^{p}} \\
& \Pi_{k+1}^{p}=\operatorname{co}-N P^{\Sigma_{k}^{p}}
\end{aligned}
$$

$$
\Pi_{1}^{p}=\mathrm{co}-N P^{P}=\operatorname{co}-N P ; \Sigma_{1}^{p}=N P^{P}=N P ; \Delta_{1}^{p}=P^{P}=P
$$

$$
\Delta_{2}^{p}=P^{N P} ; \Sigma_{2}^{p}=N P^{N P}
$$

The structure of PSPACE
PSPACE

The structure of PSPACE

A complete problem for Σ_{k}^{P} is satisfiability for quantified Boolean formulas with k alternations of quantifiers which start with an existential quantifier sequence (abbreviated $Q B F_{k}$ or $Q S A T_{k}$).
(The variant which starts with \forall is complete for Π_{k}^{P}).

Beyond PSPACE

EXPTIME, NEXPTIME
DEXPTIME, NDEXPTIME

EXPSPACE,

Discussion

- In practical applications, for having efficient algorithms polynomial solvability is very important; exponential complexity inacceptable.
- Better hardware is no solution for bad complexity

Question which have not been clarified yet:

- Does parallelism/non-determinism make problems tractable?
- Any relationship between space complexity and run time behaviour?

Other directions in complexity

Pseudopolynomial problems
Approximative and probabilistic algorithms

Motivation

Many important problems are difficult (undecidable; NP-complete; PSPACE complete)

- Undecidable: validity of formulae in FOL; termination, correctness of programs
- NP-complete: SAT, Scheduling
- PSPACE complete: games, market analyzers

Motivation

Possible approaches:

- Heuristic solutions:
- use knowledge about the structure of problems in a specific application area;
- renounce to general solution in favor of a good "average case" in the specific area of applications.
- Approximation: approximative solution
- Renounce to optimal solution in favor of shorter run times.
- Probabilistic approaches:
- Find correct solution with high probability.
- Renounce to sure correctness in favor of shorter run times.

Approximation

Many NP-hard problems have optimization variants

- Example: Clique: Find a possible greatest clique in a graph
... but not all NP-difficult problems can be solved approximatively in polynomial time:
- Example: Clique: Not possible to find a good polynomial approximation (unless $\mathrm{P}=\mathrm{NP}$)

Probabilistic algorithms

Idea

- Undeterministic, random computation
- Goal: false decision possible but not probable
- The probability of making a mistake reduced by repeating computations
- 2^{-100} below the probability of hardware errors.

Probabilistic algorithms

Example: probabilistic algorithm for 3-Clique
NB: 3-Clique is polynomially solvable (unlike Clique)

Given: Graph $G=(V, E)$
Repeat the following k times:

- Choose randomly $v_{1} \in V$ and $\left\{v_{2}, v_{3}\right\} \in E$
- Test if v_{1}, v_{2}, v_{3} build a clique.

Error probability:
$k=(|E| \cdot|V|) / 3:$ Error probability <0.5
$k=100(|E| \cdot|V|) / 3:$ Error probability $<2^{-100}$

Overview

- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models

Other computation models

- Variations of register machines (one register; two registers)
- Variations of TM; links with register machines
- Reversible computations: e.g. chemical reversibility or reversibility as in physics
- DNA Computing and Splicing

Computing machines consisting from enzymes and molecules

Other computation models

- Variations of register machines (one register; two registers)
- Variations of TM; links with register machines
- Reversible computations: chemical and psysichal reversibility
- DNA Computing and Splicing

Computing machines consisting from enzymes and molecules

Variants of automata

- Tree automata
- Automata over infinite words

Variants of automata

Tree automata
Like automata, but deal with tree structures, rather than the strings.
Tree automata are an important tool in computer science:

- compiler construction
- automatic verification of cryptographic protocols.
- processing of XML documents.

Variants of automata

Automata on infinite words (or more generally: infinite objects)
ω-Automata (Büchi automata, Rabin automata, Streett automata, parity automata and Muller automata)

- run on infinite, rather than finite, strings as input.
- Since ω-automata do not stop, they have a variety of acceptance conditions rather than simply a set of accepting states.

Applications: Verification, temporal logic

Look forward

Next semester:

- Seminar: Decision procedures and applications \mapsto emphasis on decidability and complexity results for various application areas.
- Lecture: Formal verification and specification
- Lecture: Advanced automata theory (tree automata, automata on infinite objects)

Various possibilities for $\mathrm{BSc} / \mathrm{MSc}$ thesis and Forschungspraktika.

