Advanced Topics in Theoretical Computer Science

Part 4: Computability and (Un-)Decidability (Part 2)

17.01.2013

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Brief outlook: other computation models, e.g. Büchi Automata

Computability and (Un-)decidability

Known undecidable problems (Theoretical Computer Science I)

- The halting problem for Turing machines
- The equivalence problem

Consequences:

- All problems about programs (TM) which are non-trivial (in a certain sense) are undecidable (Theorem of Rice)
- Identify undecidable problems outside the world of Turing machines
 - Validity/Satisfiability in First-Order Logic
 - The Post Correspondence Problem

Computability and (Un-)decidability

Known undecidable problems (Theoretical Computer Science I)

- The halting problem for Turing machines
- The equivalence problem

Consequences:

- All problems about programs (TM) which are non-trivial (in a certain sense) are undecidable (Theorem of Rice)
- Identify undecidable problems outside the world of Turing machines
 - Validity/Satisfiability in First-Order Logic
 - The Post Correspondence Problem

Decidability and Undecidability results

Formal languages

• The Post Correspondence Problem and its consequences

Idea: We consider non-empty strings over the alphabet $\{a, b\}$.

For example "aaabba".

Assume that we have n pairs of strings $(x_1, y_1), \ldots, (x_n, y_n)$.

Post correspondence problem:

Determine whether there is a set of indices i_1, \ldots, i_m such that

$$x_{i_1}x_{i_2}...x_{i_m}=y_{i_1}y_{i_2}...y_{i_m}.$$

This can contain repeated indices, miss certain indices, ...

Definition

A correspondence system (CS) P is a finite rule set over an alphabet Σ .

$$P = \{(p_1, q_1), \ldots, (p_n, q_n)\}$$
 with $p_i, q_i \in \Sigma^*$

An index sequence $I=i_1\ldots i_m$ of P is a sequence with $1\leq i_k\leq n$ for all k. For every index sequence I we denote $p_I=p_{i_1}\ldots p_{i_m}$ and $q_I=q_{i_1}\ldots q_{i_m}$.

A partial solution is an index set I such that

 p_I is a prefix of q_I or q_I is an prefix of p_I .

A solution is an index set I such that $p_I = q_I$.

A (partial) solution with given start is a (partial) solution in which the first index i_1 is given.

The Post correspondence problem (PCP) is the question whether a given correspondence system P has a solution.

Example:

Let
$$P = \{(a, ab), (b, ca), (ca, a), (abc, c)\}.$$

• I = 1, 2, 3, 1, 4 is a solution:

$$p_I=p_1p_2p_3p_1p_4=a\,b\,ca\,a\,bc=abcaaabc=ab\,ca\,a\,b\,c=q_1q_2q_3q_1q_4=q_I$$

• J = 1, 2, 3 is a partial solution:

$$p_J = p_1 p_2 p_3 = abca$$
 is a prefix of $q_J = abcaa$

• There are no solutions with given start 2, 3 or 4.

Plan

We will show that the Post correspondence problem is undecidable.

The proof consists of the following steps:

- We identify two types of "rewrite" systems
 Semi-Thue systems (STS) and Post Normal Systems (PNS).
- We show that the TM computable functions are also STS/PNS computable.
- We define $Trans_G = \{(v, w) \mid v \Rightarrow^* w, v, w \in \Sigma^+\}$ and show that there exist STS/PNS G such that $Trans_G$ is undecidable.
- We assume (to derive a contradiction) that a version of the Post correspondence problem is decidable and show that then also $Trans_G$ is decidable (which is clearly impossible).

STS and PNS

Set of rules. A set of rules over an alphabet Σ is a finite subset $R \subseteq \Sigma^* \times \Sigma^*$. We also write $u \to_R v$ for $(u, v) \in R$.

R is ϵ -free if for all $(u, v) \in R$ we have $u \neq \epsilon$ and $v \neq \epsilon$.

STS and PNS

Set of rules. A set of rules over an alphabet Σ is a finite subset $R \subseteq \Sigma^* \times \Sigma^*$. We also write $u \to_R v$ for $(u, v) \in R$.

R is ϵ -free if for all $(u, v) \in R$ we have $u \neq \epsilon$ and $v \neq \epsilon$.

Semi-Thue System. In a semi-Thue System, a word w is transformed in a word w' by applying one of the rules (u, v) in R.

Definition. A semi-Thue System (STS) is a pair $G = (\Sigma, R)$ consisting of an alphabet Σ and a set of rules R. G is ϵ -free if R is ϵ -free.

$$w \Rightarrow_G w'$$
 iff $\exists u \rightarrow_R v, \exists w_1, w_2 \in \Sigma^*(w = w_1 u w_2 \text{ and } w' = w_1 v w_2)$

Let *G* be the following semi-Thue system:

$$G = (\{a, b\}, \{ab \rightarrow bba, ba \rightarrow aba\})$$

 $\underline{ab}aba \Rightarrow bba\underline{ab}a \Rightarrow bbabbaa$

 $a\underline{ba}ba \Rightarrow aab\underline{ab}a \Rightarrow aabbbaa.$

The rule application in not deterministic.

STS and PNS

Definition. A Post Normal System (PNS) is a pair $G = (\Sigma, R)$ where Σ is an alphabet and a set of rules R. G is ϵ -free if R is ϵ -free.

It differs from a semi-Thue system in the way \Rightarrow_G is defined:

$$w \Rightarrow_G w'$$
 iff $\exists u \rightarrow_R v, \exists w_1 \in \Sigma^* (w = uw_1 \text{ and } w' = vw_1)$

Definition. A computation in a STS or a PNS G is a sequence w_1, \ldots, w_n with $w_i \Rightarrow_G w_{i+1}$ for all $i \in \{1, \ldots, n-1\}$.

The computation does not continue if there exists no w_{n+1} with $w_n \Rightarrow_G w_{n+1}$.

If there exists $n \geq 1$ with $w_1 \Rightarrow_G \cdots \Rightarrow_G w_n$ we write: $w_1 \Rightarrow_G^* w_n$.

Let *G* be the following Post Normal System:

$$G = (\{a, b\}, \{ab \rightarrow bba, ba \rightarrow aba, a \rightarrow ba\})$$

Then:

 $ababa \Rightarrow bbaaba$ (no rule can be applied)

 $\underline{a}baba \Rightarrow \underline{ba}baba \Rightarrow \underline{ba}abaaba \Rightarrow \underline{a}baabaaba \Rightarrow baabaababa \Rightarrow \dots$ (infinite computation)

Definition. A partial function $f: \Sigma_1^* \to \Sigma_2^*$ is STS computable (PNS-computable) iff there exists a STS (a PNS) G s.t. for all $w \in \Sigma_1^*$

- $\forall u \in \Sigma_2^*$, $[w] \Rightarrow_G^* [u]$ iff f(w) = u• $\not\exists v \in \Sigma_2^*$, $[w] \Rightarrow_G^* [v]$ iff f(w) undefined.

Note: [,], \rangle are special symbols

 F_{STS}^{part} : the family of all (partial) STS computable functions

 F_{PNS}^{part} : the family of all (partial) PNS computable functions

Theorem
$$TM^{part} \subseteq F_{STS}^{part}$$
; $TM^{part} \subseteq F_{PNS}^{part}$.

Proof:

Idea: show that we can simulate the way a TM works using a suitable STS. We then show that we can slightly change the STS and obtain a PNS which simulates the TM.

From the proof it can be seen that we can simulate any TM using a ϵ -free STS and ϵ -free PNS.

The full proof is rather long and is not presented here. It can be found on pages 309-311 in the book "Theoretische Informatik" (3. Auflage) by Erk and Priese.

$$Trans_G = \{(v, w) \mid v \Rightarrow_G^* w \land v, w \in \Sigma^+\}$$

Theorem.

There exists an ϵ -free STS G such that $Trans_G$ is undecidable.

There exists an ϵ -free PNS G such that $Trans_G$ is undecidable.

Proof.

We can reduce $K = \{n \mid M_n \text{ halts on input } n\}$ to $Trans_G$ for a certain STS (PNS) G.

Let G be an ϵ -free STS or PNS which computes the function of the TM

$$M = M_K M_{\text{delete}}$$

where M_K is the TM which accepts K and M_{delete} deletes the band after M_K halts (such a TM can easily be constructed because $M_K = M_{\text{prep}}U_0$; the halting configurations of the universal TM U_0 are of the form h_U , $\#|^n\#|^m$.

Input $v: M_K$ halts iff M_V halts on v. If M_K halts, M_{delete} deletes the tape.

Proof. (ctd.)

Assume $Trans_G$ decidable. We show how to use G and the decision procedure for $Trans_G$ to decide K:

```
For v = [\underbrace{|\dots|}] and w = [\epsilon] we have:  (v,w) \in \mathit{Trans}_G \quad \text{iff} \quad (v \Rightarrow_G^* w)  iff M = M_K M_{\text{delete}} halts for input |^n with \# iff M_K halts for input |^n iff n \in K.
```

Theorem For every ϵ -free semi-Thue System G and every pair of words w', $w'' \in \Sigma^+$ there exists a Post Correspondence System $P_{G,w',w''}$ such that

 $P_{G,w',w''}$ has a solution with given start iff $w' \Rightarrow_G^* w''$.

Proof: Assume that we are given

- G an ϵ -free STS $G = (\Sigma, R)$ with $|\Sigma| = m$ and $R = \{u_1 \to v_1, \ldots, u_n \to v_n\}$ with $u_i, v_i \in \Sigma^+$
- w', $w'' \in \Sigma^+$

We construct the correspondence system $P_{G,w',w''} = \{(p_i, q_i) \mid 1 \leq i \leq k\}$ with k = n + m + 3 over the alphabet $\Sigma_X = \Sigma \cup X$ with:

- the first *n* rules are the rules in *R*
- the rule n + 1 is (X, Xw'X); the rule n + 2 is (w''XX, X)
- the rules $n+2+1,\ldots,n+2+m$ are (a,a) for every $a \in \Sigma$
- the last rule is (X, X)
- the index for the given start is n + 1.

$$G = (\Sigma, R)$$
 with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$.

For the word pair w' = caaba, w'' = abc we have

$$w' = ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{ca}c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X), (a, a), (b, b), (c, c), (X, X) \}$$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w'\Rightarrow_G^*w''$

$$p_4$$
 X $= XcaabaX$ $= q_4$

$$G = (\Sigma, R)$$
 with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$.

For the word pair w' = caaba, w'' = abc we have

$$w' = ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{ca}c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X)$$

 $(a, a), (b, b), (c, c), (X, X) \}$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w'\Rightarrow_G^*w''$

$$p_{486} = Xca = XcaabaXca = q_{486}$$

$$G = (\Sigma, R)$$
 with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$.

For the word pair w' = caaba, w'' = abc we have

$$w' = ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{ca}c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X)$$

 $(a, a), (b, b), (c, c), (X, X) \}$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w'\Rightarrow_G^* w''$

$$p_{4862} = Xcaab = XcaabaXcac = q_{4862}$$

$$G=(\Sigma,R)$$
 with $\Sigma=\{a,b,c\}$ and $R=\{ca
ightarrow ab,ab
ightarrow c,ba
ightarrow a\}.$ For the word pair $w'=caaba,w''=abc$ we have
$$w'=ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{ca}c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''}=\{ \quad (ca,ab),(ab,c),(ba,a),(X,XcaabaX),(abcXX,X), \quad (a,a),(b,b),(c,c),(X,X)\}$$
 We can see that $P_{G,w',w''}$ has a solution with start $n+1$ iff $w'\Rightarrow_G^*w''$
$$p_{486269}=XcaabaX \qquad =XcaabaXcacaX \qquad =q_{486269}$$

$$G=(\Sigma,R)$$
 with $\Sigma=\{a,b,c\}$ and $R=\{ca
ightarrow ab,ab
ightarrow c,ba
ightarrow a\}.$ For the word pair $w'=caaba,w''=abc$ we have
$$w'=ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{cac} \Rightarrow_1 abc = w''$$

$$P_{G,w',w''}=\{ \quad (ca,ab),(ab,c),(ba,a),(X,XcaabaX),(abcXX,X) \quad (a,a),(b,b),(c,c),(X,X)\}$$
 We can see that $P_{G,w',w''}$ has a solution with start $n+1$ iff $w'\Rightarrow_G^* w''$
$$p_{48626986}=XcaabaXca \qquad =XcaabaXcacaXca \qquad =q_{48626986}$$

$$G=(\Sigma,R)$$
 with $\Sigma=\{a,b,c\}$ and $R=\{ca o ab,ab o c,ba o a\}.$ For the word pair $w'=caaba,w''=abc$ we have
$$w'=ca\underline{ab}a\Rightarrow_2 ca\underline{ca}\Rightarrow_1 ca\underline{ab}\Rightarrow_2 \underline{ca}c\Rightarrow_1 abc=w''$$

$$P_{G,w',w''}=\{\quad (ca,ab),(ab,c),(ba,a),(X,XcaabaX),(abcXX,X) \ (a,a),(b,b),(c,c),(X,X)\}$$
 We can see that $P_{G,w',w''}$ has a solution with start $n+1$ iff $w'\Rightarrow_G^*w''$
$$p_{4862698619}=XcaabaXcacaX \qquad =XcaabaXcacaXcaabX=q_{4862698619}$$

$$G = (\Sigma, R)$$
 with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$.

For the word pair w' = caaba, w'' = abc we have

$$w' = ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{ca}c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X)$$

 $(a, a), (b, b), (c, c), (X, X) \}$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w'\Rightarrow_G^* w''$

$$p_{4862698619} = X$$
caaba X caca $X = X$ caaba X caca X caab $X = q_{4862698619}$

The successive application of rules 2, 1, 2, 1 corresponds to the solution $I = \underline{4}$, 8, 6, $\underline{2}$, 6, 9, 8, 6, $\underline{1}$, 9, 8, 6, $\underline{2}$, 9, 1, 8, 9, $\underline{\underline{5}}$

4,4: begin/end; Underlines: rule applications. Remaining numbers: copy symbols such that rule applications at the desired position. X separates the words in G-derivations.

$$p_I = X caaba X caca X caab X cac X abc X X = q_I$$

Theorem For every ϵ -free semi-Thue System G and every pair of words w', $w'' \in \Sigma^+$ there exists a Post Correspondence System $P_{G,w',w''}$ such that

 $P_{G,w',w''}$ has a solution with given start iff $w' \Rightarrow_G^* w''$.

Proof: Assume that we are given

- G an ϵ -free STS $G = (\Sigma, R)$ with $|\Sigma| = m$ and $R = \{u_1 \to v_1, \ldots, u_n \to v_n\}$ with $u_i, v_i \in \Sigma^+$
- w', $w'' \in \Sigma^+$

We construct the correspondence system $P_{G,w',w''} = \{(p_i, q_i) \mid 1 \leq i \leq k\}$ with k = n + m + 3 over the alphabet $\Sigma_X = \Sigma \cup X$ with:

- the first *n* rules are the rules in *R*
- the rule n + 1 is (X, Xw'X); the rule n + 2 is (w''XX, X)
- the rules $n+2+1,\ldots,n+2+m$ are (a,a) for every $a \in \Sigma$
- the last rule is (X, X)
- the index for the given start is n + 1.

Proof (ctd.) We show that $P_{G,w',w''}$ has a solution iff $w \Rightarrow_G^* w''$.

Occurrences of $X \mapsto In$ the solution index n + 2 must occur.

Assume (n+1)I'(n+2)I'' is a solution in which I' does not contain n+1, nor n+2. By careful analysis of the equality $p_{(n+1)I'(n+2)I''}=q_{(n+1)I'(n+2)I''}$ we note the following:

- (1) no XX in $p_{(n+1)I'}$, $q_{(n+1)I'}$;
- (2) $p_{(n+1)I'(n+2)}$, and $q_{(n+1)I'(n+2)}$ end on XX
- (3) $p_{(n+1)l'(n+2)l''} = Xp_{l'}w''XXp_{l''} = Xw'Xq_{l'}Xq_{l''}$, so:
 - I' starts with I_1 , (n+m+3) with $p_{I_1(n+m+3)} = w'X$.
 - Then $q_{l_1,n+m+3} = w_2 X$ for some $w_2 \neq \epsilon$.
 - I_1 contains only indices in $\{1, \ldots, n\} \cup \{n+3, \ldots, n+2+m\}$.
 - Therefore, $w' \Rightarrow_G^* w_2$.

Proof (ctd.)

From (1) and (2) it follows that $p_{(n+1)l'(n+2)} = q_{(n+1)l'(n+2)}$.

Thus, if $P_{G,w',w''}$ has a solution then it has a solution of the form (n+1)I'(n+2), such that I' does not contain (n+1) or (n+2).

From (3), by induction, we can show that

$$I' = I_1, (n+m+3), I_2, (n+m+3), \ldots, I_k, (n+m+3),$$

where I_j contains only indices in $\{1, \ldots, n\} \cup \{n+3, \ldots, n+2+m\}$.

Then $p_{l'} = w'Xw_2X \dots Xw_{l-1}X$ and $q_{l'} = w_2X \dots Xw_lX$ for words w_2, \dots, w_l with

$$w' \Rightarrow_G^* w_2 \Rightarrow_G^* \cdots \Rightarrow_G^* w_I$$

Proof (ctd.)

Thus, for every solution I = (n+1)I'(n+2) we have:

$$p_1 = Xw'Xw_2...Xw_{l-1}Xw''XX = q_1$$

with $w' \Rightarrow_G^* w_2 \Rightarrow_G^* \cdots \Rightarrow_G^* w_l = w''$.

Conversely, one can prove by induction that if $w' = w_1 \Rightarrow_G^* w_2 \Rightarrow_G^* \cdots \Rightarrow_G^* w_l = w''$ is a computation in G then there exists a partial solution I of $P_{G,w',w''}$ with given start n+1 and

$$p_I = Xw'Xw_2...Xw_{l-1}X$$
 $q_I = Xw'Xw_2...Xw_{l-1}Xw_lX$

Then I, (n+2) is a solution if $w_I = w''$.

Theorem. Assume $|\Sigma| \ge 2$. The Post Correspondence Problem is undecidable.

Proof:

- 1. We first show that PCP with given start is undecidable.
 - Assume that the PCP with given start is decidable. By the previous result it would follow that $Trans_G$ is decidable for every ϵ -free STS G. We showed that there exists at least one ϵ -free STS G for which $Trans_G$ is undecidable. Contradiction. Thus, the PCP with given start is undecidable.
- 2. We prove that PCP is undecidable.

For this, we show that for every PCP $P = \{(p_i, q_i) \mid 1 \le i \le n\}$ with given start j_0 we can construct a PCP P' such that P has a solution iff P' has a solution.

Construction: New symbols X, Y; two types of encodings of words:

$$w = c_1 \dots c_n \mapsto \overline{w} = Xc_1 Xc_2 \dots Xc_n; \overline{\overline{w}} = c_1 Xc_2 \dots Xc_n X$$

 $P' = \{(\overline{p}_1, \overline{\overline{q_1}}), \dots, (\overline{p}_n, \overline{\overline{q_n}}), (\overline{p}_{i_0}, X\overline{\overline{q_{j_0}}}), (XY, Y)\}$

A solution of P' can only start with rule (n+1) (only rule where both sides start with same symbol). P has solution with start j_0 iff P' has a solution.

Undecidabile problems in formal languages

Theorem It is undecidable whether a context free grammar is ambiguous.

Proof. Assume that the problem is decidable. Construct algorithm for solving the PCP.

Let
$$T=\{(u_1,v_1),\ldots,(u_n,v_n)\}$$
 a CS over $\Sigma_1;$ $\Sigma'=\Sigma_1\cup\{a_1,\ldots,a_n\}.$ $L_{T,1}=\{a_{i_m}\ldots a_{i_1}u_{i_1}\ldots u_{i_m}|m\geq 1,1\leq i_j\leq n\}$ generated by c.f. grammar $G_{T,1}.$ $G_{T,1}=(\{S_1\},\Sigma',R_1,S_1),\ R_1=\{S_1\to a_iS_1u_i\mid 1\leq i\leq n\}\cup\{S_1\to a_iu_i\}$ $L_{T,2}=\{a_{i_m}\ldots a_{i_1}v_{i_1}\ldots v_{i_m}|m\geq 1,1\leq i_j\leq n\}$ generated by c.f. grammar $G_{T,2}.$ $G_{T,2}=(\{S_2\},\Sigma',R_2,S_2),\ R_2=\{S_2\to a_iS_2v_i\mid 1\leq i\leq n\}\cup\{S_2\to a_iv_i\}$ L_1,L_2 are unambigouus. Let $G_T=(\{S,S_1,S_2\},\Sigma',R_1\cup R_2\cup\{S\to S_1,S\to S_2\},S).$ T has a solution iff $\exists w\in L_{T,1}\cap L_{T,2}$ iff $\exists w\in L(G)$ with two different derivations iff G_T ambiguous.

Undecidable problems in formal languages

Theorem It is undecidable whether the intersection of two

- DCFL languages
- non-ambiguous context-free languages
- context-free languages

is empty.

Proof. Assume that one of the problems is decidable.

```
Let T = \{(u_1, v_1), \ldots, (u_n, v_n)\} a CS over \Sigma; \Sigma' = \Sigma \cup \{a_1, \ldots, a_n\}, c \notin \Sigma'. L_1 = \{wcw^R \mid w \in (\Sigma')^*\}: non-ambiguous, deterministic. L_2 = \{u_{i_1} \ldots u_{i_m} a_{i_m} \ldots a_{i_1} c a_{j_1} \ldots a_{j_l} v_{j_l}^R \ldots v_{j_1}^R \mid m, l \geq 1, i_k, j_p \in \{1, \ldots, n\}\} L_2 non-ambigous, deterministic (see proof in the book by Erk and Priese)
```

```
T has a solution iff \exists k \geq 1 \,\exists i_1, \ldots, i_k \colon u_{i_1} \ldots u_{i_k} = v_{i_1} \ldots v_{i_k} iff \exists k \geq 1 \,\exists i_1, \ldots, i_k \colon u_{i_1} \ldots u_{i_k} \, a_{i_k} \ldots a_{i_1} = (a_{i_1} \ldots a_{i_k} \, v_{i_1}^R \ldots v_{i_k}^R)^R iff \exists x \in L_2 such that x = wcw^R iff \exists x \in L_2 \cap L_1
```

If we can always decide whether $L_1 \cap L_2 = \emptyset$ then PCP decidable!

Undecidable problems in formal languages

Theorem It is undecidable whether for a context free language $L \subseteq \Sigma^*$ with $|\Sigma| > 1$ we have $L = \Sigma^*$.

Proof. Assume that is was decidable whether $L = \Sigma^*$. We show that then it would be decidable whether $L_1 \cap L_2 = \emptyset$ for DCFL.

Let L_1 , L_2 DCFL languages over Σ . Then $L_1 \cap L_2 = \emptyset$ iff $\overline{L_1 \cap L_2} = \Sigma^*$ iff $\overline{L_1} \cup \overline{L_2} = \Sigma^*$.

Note that DCFL's are closed under complement. Then $\overline{L_1}$, $\overline{L_2} \in \mathcal{L}_2$, so $\overline{L_1} \cup \overline{L_2} \in \mathcal{L}_2$.

Then we could use the decision procedure to check whether $\overline{L_1} \cup \overline{L_2} = \Sigma^*$, i.e. to check whether $L_1 \cap L_2 = \emptyset$. This is a contradiction, since we proved that it is undecidable whether the intersection of two DCFLs is empty.

Undecidable problems in formal languages

Theorem The following problems are undecidable for context-free languages L_1 , L_2 and regular languages R over every alphabet Σ with at least two elements.

- (1) $L_1 = L_2$
- (2) $L_2 \subseteq L_1$
- (3) $L_1 = R$
- (4) $R \subseteq L_1$

Proof: Let L_1 be an arbitrary context-free language. Choose $L_2 = \Sigma_2^*$. Then L_2 is regular and:

- $L_1 = L_2$ iff $L_1 = \Sigma^*$ (1 and 3)
- $L_2 \subseteq L_1$ iff $L_1 = \Sigma^*$ (2 and 3)

Undecidable problems for \mathcal{L}_2

decidable	undecidable	
$w \in L(G)$	G ambiguous	
$L(G) = \emptyset$	$D_1 \cap D_2 = \emptyset$	
L(G) finite	$L_1 \cap L_2 = \emptyset$	for non-ambiguous languages $L_1.L_2$
$D_1 = \Sigma^*$	$L_1 = \Sigma^*$	if $ \Sigma \geq 2$
$L_1 \subseteq R$	$L_1=L_2$	if $ \Sigma \geq 2$
	$L_1 \subseteq L_2$	if $ \Sigma \geq 2$
	$L_1=R$	if $ \Sigma \geq 2$
	$R\subseteq L_1$	if $ \Sigma \geq 2$

where L_1, L_2 are context-free languages; D_1, D_2 are DCFL languages R is a regular language; G is a context-free grammar, $w \in \Sigma^*$.