Advanced Topics in Theoretical Computer Science

Part 3: Recursive functions

22.11.2012

Viorica Sofronie-Stokkermans

Universitat Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Until now

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

Until now

We showed that:

7

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEP™ = GOTOPa"t C TMpart
e LOOP # TM

Still to show:
e TM C WHILE
e TMP2t C \WHILEP"

For proving this, another model of computation will be used:
recursive functions

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

3. Recursive functions

Introduction /Motivation
Primitive recursive functions
P = LOOP

p-recursive functions

F, = WHILE

Summary

|—>FM

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea
e Simple (“atomic”) functions are computable

e “Combinations” of computable functions are computable

(We consider functions f : N* — N, k > 0)

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea
e Simple (“atomic”) functions are computable

e “Combinations” of computable functions are computable

(We consider functions f : N* — N, k > 0)

Questions
e Which are the atomic functions?

e Which combinations are possible?

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:

The constant null
0:N° = Nwith 0() =0

10

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:

The constant null
0:N° = Nwith 0() =0

Successor function

+1:N! = Nwith +1(n)=n+1forall neN

11

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:
The constant null

0:N° = Nwith 0() =0
Successor function

+1:N! = Nwith +1(n)=n+1forall neN

Projection function

W;(ZNk — N with w;‘(nl,...,nk):n;

12

Recursive functions: Atomic functions

The following functions are primitive recursive and p-recursive:
The constant null

0:N° = Nwith 0() =0
Successor function

+1:N! = Nwith +1(n)=n+1forall neN

Projection function

W;(ZNk — N with w;‘(nl,...,nk):n;

13

Recursive functions

Notation:

We will write n for the tuple (ny,..., ng), k > 0.

14

Recursive functions: Composition

(
Composition:

If the functions: g :N" — N r>1

hi :NK = N,... h : Nk 5 N k>0
are primitive recursive resp. u-recursive, then

f:N“ >N
defined for every n € N¥ by:

f(n) =g(hi(n), ..., hr(n))

Is also primitive recursive resp. u-recursive.

.

Notation without arguments: f = go (hy,..., h/)

15

3. Recursive functions

Introduction /Motivation
Primitive recursive functions
P = LOOP

p-recursive functions

F, = WHILE

Summary

|—>FM

16

Primitive recursive functions

-

\

Primitive recursion

If the functions
g :NfF = N (k > 0)
h:Nf2 5 N

are primitive recursive,

then the function

f: Nkl - Nwith £(n,0) = g(n)

f(n,m+1) = h(n,m, f(n, m))

Is also primitive recursive.

17

Primitive recursive functions

-

Primitive recursion

If the functions
g :NfF = N (k > 0)
h:Nf2 5 N

are primitive recursive,

then the function

f: Nkl - Nwith £(n,0) = g(n)
f(n,m+1) = h(n,m, f(n, m))

Is also primitive recursive.

\

Notation without arguments: f = PR|[g, h]

18

Primitive recursive functions

Definition (Primitive recursive functions)

e Atomic functions: The functions
— Null 0
— Successor +1
— Projection wk (1 <i<k)

are primitive recursive.

19

Primitive recursive functions

Definition (Primitive recursive functions)

e Atomic functions: The functions
— Null O
— Successor +1
— Projection wk (1 <i<k)
are primitive recursive.

e Composition: The functions obtained by composition from primitive
recursive functions are primitive recursive.

20

Primitive recursive functions

Definition (Primitive recursive functions)
e Atomic functions: The functions
— Null O
— Successor +1
— Projection wk (1 <i<k)
are primitive recursive.

e Composition: The functions obtained by composition from primitive
recursive functions are primitive recursive.

e Primitive recursion: The functions obtained by primitive recursion

from primitive recursive functions are primitive recursive.

& J

21

Primitive recursive functions

&

Definition (Primitive recursive functions)
e Atomic functions: The functions
— Null O
— Successor +1
— Projection wk (1 <i<k)
are primitive recursive.

e Composition: The functions obtained by composition from primitive
recursive functions are primitive recursive.

e Primitive recursion: The functions obtained by primitive recursion

from primitive recursive functions are primitive recursive.

J

Notation: P = The set of all primitive recursive functions

Arithmetical functions: definitions

f(n)=n+c
f(n)=n
f(n,m)=n+m
f(n,m)=n-—1
f(n,m)=n—m

f(n,m)=nxm

23

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

24

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0
f(n) = (+1)(-..((+1)(n)))

c times

25

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f=(+1)o- -0o(4+1)

N

c times

26

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:£—|—1)o---o(—|—lz

Ve

c times

Identity
f:N—N, with f(n) =n

27

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:£+1)o---o(—|—lz

Ve

c times

Identity
f = 7'('%

28

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:£+1)o---o(—|—lz

Ve

c times

Identity
f = 7'('%

f(n,m)=n+m

29

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:£+1)o---o(—|—lz

Ve

c times

Identity
f = 7T%

f(n,m)=n+m
f(n,0) =n
f(n,m+1) = (+1)(f(n, m))

30

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:£—|—1)o---o(—|—12

Ve

c times

Identity
f =i
f(n,m)=n+m
f(n,0) =n g(n)=n g =7y

f(n,m+1) = (+1)(f(n, m)) h(n, m, k) = +1(k) h=(+1)om3

31

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:S—I—l)o---O(—FlZ

Ve

c times

Identity
f =i
f(n,m)=n+m
f(n,0) =n g(n)=n g =7y

f(n,m+1) = (+1)(f(n, m)) h(n, m, k) = +1(k) h=(+1)om3

f = PRIxd, (+1) o 7]

32

Arithmetical functions: definitions

f(n) =n+c, forcecN,c>0

f:£—|—1)o---o(—|—lz

Ve

c times

Identity
f = 7T%
f(n,m)=n+m
f = PR[ri, (41) o 3]

33

Arithmetical functions: definitions

f(n)=n-—1

34

Arithmetical functions: definitions

f(n) =n-—1

f(0) =0
f(n+1)=n

35

Arithmetical functions: definitions

f(n) =n-—1
f(0) =0 g() = g=0
f(n+1)=n h(n, k) =n h=mn?

36

Arithmetical functions: definitions

f(n) =n-—1
f = PR[0, w7

f(n,m)=n—m

37

Arithmetical functions: definitions

f(n) =n-—1
f = PR[0, w7
f(n,m)=n—m
f(n,0) =n g(n)=n g =mj
f(nm+1)=1f(n,m)—1 h(n,m, k) =k —1 h=(-1)om3

f = PR[ni, (—1) o m3]

38

Arithmetical functions: definitions

f(n) =n-—1
f = PR[0, w7

f(n,m)=n—m

f = PR[T('%, (—1)o 773]

f(n,m)=nxm

39

Arithmetical functions: definitions

f(n) =n-—1
f = PR[0, w7

f(n,m)=n—m

f = PR[n},(—1) o m3]

f(n,m)=n*xm

f(n,0) =0 g(n)=20
f(nnm+1)=1~f(n,m)+n h(n,m, k) = k+n

f = PR[0,+ o (73, 73)]

h=+o(m3, m3)

40

Arithmetical functions: definitions

f(n) =n-—1
f = PR[O, 7{]
f(n,m)=n—m
f = PR[n},(—1) o m3]
f(n,m)=n*xm

f =PRI[0,+ o (7T§’, 7T:1)’)]

41

Re-ordering /Omitting/Repeating Arguments

e

.

Lemma The set of primitive recursive functions is closed under:
e Re-ordering
e Omitting
e Repeating

of arguments when composing functions.

42

Re-ordering /Omitting/Repeating Arguments

e

.

Lemma The set of primitive recursive functions is closed under:
e Re-ordering
e Omitting
e Repeating

of arguments when composing functions.

Proof: (Idea)

A tuple of arguments n” = (n;, ..., n;) obtained from n = (ny, ..., ny) by

re-ordering, omitting or repeating components can be represented as:

n = (w,’i (n),..., ﬂff{(n))

43

Case distinction

-

.

Lemma (Case distinction is primitive recursive)
If @ g;, h; (1 < i < r) are primitive recursive functions, and

e for every n there exists a unique i with h;(n) =0

then the function f defined by:

[gi(n) if hi(n) =0
f(n) =«

\ gr(n) if hy(n) =0

Is primitive recursive.

44

Case distinction

-

\

Lemma (Case distinction is primitive recursive)
If @ g;, h; (1 < i < r) are primitive recursive functions, and

e for every n there exists a unique i with h;(n) =0

then the function f defined by:

[gi(n) if hi(n) =0
f(n) =«

\ gr(n) if hy(n) =0

Is primitive recursive.

Proof: f(n) = g1(n) * (1L — hi(n)) + - -+ gr(n) x (1 — h(n))

45

