
Advanced Topics in Theoretical Computer Science

Part 3: Recursive functions

22.11.2012

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Until now

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

2

Until now

We showed that:

• LOOP ⊆ WHILE = GOTO ⊆ TM

• WHILE = GOTO (WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

Still to show:

• TM ⊆ WHILE

• TMpart ⊆ WHILEpart

For proving this, another model of computation will be used:

recursive functions

3

Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

4

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

5

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

6

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea

• Simple (“atomic”) functions are computable

• “Combinations” of computable functions are computable

(We consider functions f : Nk → N, k ≥ 0)

7

Recursive functions

Motivation

Functions as model of computation (without an underlying machine model)

Idea

• Simple (“atomic”) functions are computable

• “Combinations” of computable functions are computable

(We consider functions f : Nk → N, k ≥ 0)

Questions

• Which are the atomic functions?

• Which combinations are possible?

8

Recursive functions: Atomic functions

The following functions are primitive recursive and µ-recursive:

9

Recursive functions: Atomic functions

The following functions are primitive recursive and µ-recursive:

The constant null

0 : N0 → N with 0() = 0

10

Recursive functions: Atomic functions

The following functions are primitive recursive and µ-recursive:

The constant null

0 : N0 → N with 0() = 0

Successor function

+1 : N1 → N with + 1(n) = n + 1 for all n ∈ N

11

Recursive functions: Atomic functions

The following functions are primitive recursive and µ-recursive:

The constant null

0 : N0 → N with 0() = 0

Successor function

+1 : N1 → N with + 1(n) = n + 1 for all n ∈ N

Projection function

πk
i : Nk → N with πk

i (n1, . . . , nk) = ni

12

Recursive functions: Atomic functions

The following functions are primitive recursive and µ-recursive:

The constant null

0 : N0 → N with 0() = 0

Successor function

+1 : N1 → N with + 1(n) = n + 1 for all n ∈ N

Projection function

πk
i : Nk → N with πk

i (n1, . . . , nk) = ni

13

Recursive functions

Notation:

We will write n for the tuple (n1, . . . , nk), k ≥ 0.

14

Recursive functions: Composition

Composition:

If the functions: g : Nr → N r ≥ 1

h1 : Nk → N, . . . , hr : Nk → N k ≥ 0

are primitive recursive resp. µ-recursive, then

f : Nk → N

defined for every n ∈ Nk by:

f (n) = g(h1(n), . . . , hr (n))

is also primitive recursive resp. µ-recursive.

Notation without arguments: f = g ◦ (h1, . . . , hr)

15

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

16

Primitive recursive functions

Primitive recursion

If the functions

g : Nk → N (k ≥ 0)

h : Nk+2 → N

are primitive recursive,

then the function

f : Nk+1 → N with f (n, 0) = g(n)

f (n,m + 1) = h(n,m, f (n,m))

is also primitive recursive.

17

Primitive recursive functions

Primitive recursion

If the functions

g : Nk → N (k ≥ 0)

h : Nk+2 → N

are primitive recursive,

then the function

f : Nk+1 → N with f (n, 0) = g(n)

f (n,m + 1) = h(n,m, f (n,m))

is also primitive recursive.

Notation without arguments: f = PR[g , h]

18

Primitive recursive functions

Definition (Primitive recursive functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are primitive recursive.

• Composition: The functions obtained by composition from primitive

recursive functions are primitive recursive.

• Primitive recursion: The functions obtained by primitive recursion

from primitive recursive functions are primitive recursive.

19

Primitive recursive functions

Definition (Primitive recursive functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are primitive recursive.

• Composition: The functions obtained by composition from primitive

recursive functions are primitive recursive.

• Primitive recursion: The functions obtained by primitive recursion

from primitive recursive functions are primitive recursive.

20

Primitive recursive functions

Definition (Primitive recursive functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are primitive recursive.

• Composition: The functions obtained by composition from primitive

recursive functions are primitive recursive.

• Primitive recursion: The functions obtained by primitive recursion

from primitive recursive functions are primitive recursive.

21

Primitive recursive functions

Definition (Primitive recursive functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are primitive recursive.

• Composition: The functions obtained by composition from primitive

recursive functions are primitive recursive.

• Primitive recursion: The functions obtained by primitive recursion

from primitive recursive functions are primitive recursive.

Notation: P = The set of all primitive recursive functions

22

Arithmetical functions: definitions

f (n) = n + c

f (n) = n

f (n,m) = n + m

f (n,m) = n − 1

f (n,m) = n − m

f (n,m) = n ∗ m

23

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

24

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f (n) = (+1)(...((+1)
| {z }

c times

(n)))

25

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

26

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

Identity

f : N → N, with f (n) = n

27

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

Identity

f = π1
1

28

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

Identity

f = π1
1

f (n,m) = n + m

29

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

Identity

f = π1
1

f (n,m) = n + m

f (n, 0) = n

f (n,m + 1) = (+1)(f (n,m))

30

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

Identity

f = π1
1

f (n,m) = n + m

f (n, 0) = n

f (n,m + 1) = (+1)(f (n,m))

g(n) = n g = π1
1

h(n,m, k) = +1(k) h = (+1) ◦ π3
3

31

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

Identity

f = π1
1

f (n,m) = n + m

f (n, 0) = n

f (n,m + 1) = (+1)(f (n,m))

g(n) = n g = π1
1

h(n,m, k) = +1(k) h = (+1) ◦ π3
3

f = PR[π1
1 , (+1) ◦ π3

3]

32

Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

Identity

f = π1
1

f (n,m) = n + m

f = PR[π1
1 , (+1) ◦ π3

3]

33

Arithmetical functions: definitions

f (n) = n − 1

34

Arithmetical functions: definitions

f (n) = n − 1

f (0) = 0

f (n + 1) = n

35

Arithmetical functions: definitions

f (n) = n − 1

f (0) = 0

f (n + 1) = n

g() = 0 g = 0

h(n, k) = n h = π2
1

f = PR[0, π2
1]

36

Arithmetical functions: definitions

f (n) = n − 1

f = PR[0, π2
1]

f (n,m) = n − m

37

Arithmetical functions: definitions

f (n) = n − 1

f = PR[0, π2
1]

f (n,m) = n − m

f (n, 0) = n

f (n,m + 1) = f (n,m) − 1

g(n) = n g = π1
1

h(n,m, k) = k − 1 h = (−1) ◦ π3
3

f = PR[π1
1 , (−1) ◦ π3

3]

38

Arithmetical functions: definitions

f (n) = n − 1

f = PR[0, π2
1]

f (n,m) = n − m

f = PR[π1
1 , (−1) ◦ π3

3]

f (n,m) = n ∗ m

39

Arithmetical functions: definitions

f (n) = n − 1

f = PR[0, π2
1]

f (n,m) = n − m

f = PR[π1
1 , (−1) ◦ π3

3]

f (n,m) = n ∗ m

f (n, 0) = 0

f (n,m + 1) = f (n,m) + n

g(n) = 0 g = 0

h(n,m, k) = k + n h = + ◦ (π3
3 , π

3
1)

f = PR[0,+ ◦ (π3
3 , π

3
1)]

40

Arithmetical functions: definitions

f (n) = n − 1

f = PR[0, π2
1]

f (n,m) = n − m

f = PR[π1
1 , (−1) ◦ π3

3]

f (n,m) = n ∗ m

f = PR[0,+ ◦ (π3
3 , π

3
1)]

41

Re-ordering/Omitting/Repeating Arguments

Lemma The set of primitive recursive functions is closed under:

• Re-ordering

• Omitting

• Repeating

of arguments when composing functions.

42

Re-ordering/Omitting/Repeating Arguments

Lemma The set of primitive recursive functions is closed under:

• Re-ordering

• Omitting

• Repeating

of arguments when composing functions.

Proof: (Idea)

A tuple of arguments n′ = (ni1 , . . . , nik
) obtained from n = (n1, . . . , nk) by

re-ordering, omitting or repeating components can be represented as:

n′ = (πk
i1
(n), . . . , πk

ik
(n))

43

Case distinction

Lemma (Case distinction is primitive recursive)

If • gi , hi (1 ≤ i ≤ r) are primitive recursive functions, and

• for every n there exists a unique i with hi (n) = 0

then the function f defined by:

f (n) =

8
>><

>>:

g1(n) if h1(n) = 0

. . .

gr (n) if hr (n) = 0

is primitive recursive.

44

Case distinction

Lemma (Case distinction is primitive recursive)

If • gi , hi (1 ≤ i ≤ r) are primitive recursive functions, and

• for every n there exists a unique i with hi (n) = 0

then the function f defined by:

f (n) =

8
>><

>>:

g1(n) if h1(n) = 0

. . .

gr (n) if hr (n) = 0

is primitive recursive.

Proof: f (n) = g1(n) ∗ (1 − h1(n)) + · · · + gr (n) ∗ (1 − hr (n))

45

