
Advanced Topics in Theoretical Computer Science

Part 3: Recursive functions (2)

29.11.2012

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1



Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus
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Primitive recursive functions

Primitive recursion

If the functions

g : Nk → N (k ≥ 0)

h : Nk+2 → N

are primitive recursive,

then the function

f : Nk+1 → N with f (n, 0) = g(n)

f (n,m + 1) = h(n,m, f (n,m))

is also primitive recursive.
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Primitive recursive functions

Primitive recursion

If the functions

g : Nk → N (k ≥ 0)

h : Nk+2 → N

are primitive recursive,

then the function

f : Nk+1 → N with f (n, 0) = g(n)

f (n,m + 1) = h(n,m, f (n,m))

is also primitive recursive.

Notation without arguments: f = PR[g , h]
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Primitive recursive functions

Definition (Primitive recursive functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are primitive recursive.

• Composition: The functions obtained by composition from primitive

recursive functions are primitive recursive.

• Primitive recursion: The functions obtained by primitive recursion

from primitive recursive functions are primitive recursive.

Notation: P = The set of all primitive recursive functions
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Arithmetical functions: definitions

f (n) = n + c, for c ∈ N, c > 0

f = (+1) ◦ · · · ◦ (+1)
| {z }

c times

Identity

f = π1
1

f (n,m) = n + m

f = PR[π1
1 , (+1) ◦ π3

3]

f (n) = n − 1

f = PR[0, π2
1 ]

f (n,m) = n − m

f = PR[π1
1 , (−1) ◦ π3

3]

f (n,m) = n ∗ m

f = PR[0,+ ◦ (π3
3 , π

3
1)]
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Re-ordering/Omitting/Repeating Arguments

Lemma The set of primitive recursive functions is closed under:

• Re-ordering

• Omitting

• Repeating

of arguments when composing functions.

Proof: (Idea)

A tuple of arguments n′ = (ni1 , . . . , nik
) obtained from n = (n1, . . . , nk ) by

re-ordering, omitting or repeating components can be represented as:

n′ = (πk
i1
(n), . . . , πk

ik
(n))
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Today

• More examples

• P = LOOP
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Additional Arguments

Lemma. Assume f : N
k → N is primitive recursive.

Then, for every l ∈ N, the function f ′ : N
k × N

l → N defined for every n ∈ N
k

and every m ∈ N
l by:

f
′(n, m) = f (n)

is primitive recursive.
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Additional Arguments

Lemma. Assume f : N
k → N is primitive recursive.

Then, for every l ∈ N, the function f ′ : N
k × N

l → N defined for every n ∈ N
k

and every m ∈ N
l by:

f
′(n, m) = f (n)

is primitive recursive.

Proof:

Case 1: k = 0, i.e. f is a constant. Then f ′ can be expressed by primitive recursion:

f ′(n) = f f ′ = PR[f , π2
2 ]

f ′(n + 1) = f ′(n) = π
2
2(n, f ′(n))

Case 2: k′ 6= 0. Let n = (n1, . . . , nk , m1, . . . , ml )

Then f ′(n) = f (πk+l
1 (n), . . . , πk+l

k
(n)) = f ◦ π

k+1.
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Case distinction

Lemma (Case distinction is primitive recursive)

If • gi , hi (1 ≤ i ≤ r) are primitive recursive functions, and

• for every n there exists a unique i with hi (n) = 0

then the function f defined by:

f (n) =

8
>><

>>:

g1(n) if h1(n) = 0

. . .

gr (n) if hr (n) = 0

is primitive recursive.

Proof: f (n) = g1(n) ∗ (1 − h1(n)) + · · · + gr (n) ∗ (1 − hr (n))
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Sums and products

Theorem

If g : N
k × N → N is a primitive recursive function then the following

functions f1, f2 : Nk × N → N are also primitive recursive:

f1(n,m) =

8
<

:

0 if m = 0
P

i<m g(n, i) if m > 0

f2(n,m) =

8
<

:

0 if m = 0
Q

i<m g(n, i) if m > 0
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Sums and products

Theorem

If g : N
k × N → N is a primitive recursive function then the following

functions f1, f2 : Nk × N → N are also primitive recursive:

f1(n,m) =

8
<

:

0 if m = 0
P

i<m g(n, i) if m > 0

f2(n,m) =

8
<

:

0 if m = 0
Q

i<m g(n, i) if m > 0

Proof: f1 and f2 can be written using primitive recursion and case distinction:

f1(n, 0) = 0

f1(n,m + 1) = f1(n,m) + g(n,m)
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Sums and products

Theorem

If g : N
k × N → N is a primitive recursive function then the following

functions f1, f2 : Nk × N → N are also primitive recursive:

f1(n,m) =

8
<

:

0 if m = 0
P

i<m g(n, i) if m > 0

f2(n,m) =

8
<

:

0 if m = 0
Q

i<m g(n, i) if m > 0

Proof: f1 and f2 can be written using primitive recursion and case distinction:

f1(n, 0) = 0 f2(n, 0) = 1

f1(n,m + 1) = f1(n,m) + g(n,m) f2(n,m + 1) = f2(n,m) ∗ g(n,m)
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Bounded µ operator

Definition.

Let g : Nk+1 → N be a function.

The bounded µ operator is defined as follows:

µi<m i (g(n, i) = 0) :=

8
>>>><

>>>>:

i0 if g(n, i0) = 0

and for all j < i0 g(n, j) 6= 0

0 if g(n, j) 6= 0 for all 0 ≤ j < m

or m = 0

µi<m i (g(n, i) = 0) is the smallest i < m such that g(n, i) = 0
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Bounded µ operator

Theorem.

If g : Nk+1 → N is a primitive recursive function

then the function f : N
k+1 → N defined by:

f (n,m) = µi<m i (g(n, i) = 0)

is also primitive recursive
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Bounded µ operator

Theorem.

If g : N
k+1 → N is a primitive recursive function

then the function f : Nk+1 → N defined by:

f (n,m) = µi<m i (g(n, i) = 0)

is also primitive recursive

Proof: We can define f as follows:

f (n, 0) = 0

f (n,m + 1) =

8
>>>>><

>>>>>:

0 if m = 0

m if g(n,m) = f (n,m) = 0 ∧ g(n, 0) 6= 0 ∧ m > 0

f (n,m) otherwise
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Bounded µ operator

Theorem.

If g : N
k+1 → N is a primitive recursive function

then the function f : Nk+1 → N defined by:

f (n,m) = µi<m i (g(n, i) = 0)

is also primitive recursive

Proof: We can define f as follows:

f (n, 0) = 0

f (n,m + 1) =

8
>>>>><

>>>>>:

0 if m = 0

m if g(n,m) = f (n,m) = 0∧g(n, 0) 6= 0 ∧ m > 0

f (n,m) otherwise
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Bounded µ operator

Theorem.

If g : N
k+1 → N is a primitive recursive function

then the function f : Nk+1 → N defined by:

f (n,m) = µi<m i (g(n, i) = 0)

is also primitive recursive

Proof: We can define f as follows:

f (n, 0) = 0

f (n,m + 1) =

8
>>>>><

>>>>>:

0 if m = 0

m if g(n,m) = f (n,m) = 0∧g(n, 0) 6= 0 ∧ m > 0

i.e. if g(n,m) + f (n,m)+(1 − g(n, 0)) + (1 − m) = 0

f (n,m) otherwise
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Prime number functions

Theorem: The following functions are primitive recursive:

(1) The Boolean function | : N × N → {0, 1} defined by:

|(n, m) =

(

1 if n divides m

0 otherwise

(2) The Boolean function prime : N → {0, 1} defined by:

prime(n) =

(

1 if n prime

0 otherwise

(3) The function p : N → N defined by: p(n) = pn, the n-th prime number.

(4) The function D : N × N → N defined by: D(n, i) = k iff k is the power of

the i-th prime number in the prime number decomposition of n.

D(n, i) = max({j | n mod p(i)
j
= 0})
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Prime number functions

Proof:

(1) | : N × N → {0, 1} defined by:

|(n,m) =

8
<

:

1 if n divides m

0 otherwise
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Prime number functions

Proof:

(1) | : N × N → {0, 1} defined by:

|(n,m) =

8
<

:

1 if n divides m

0 otherwise

|(n,m) = 1 iff

E

z(n ∗ z = m) iff
Q

z≤m(n ∗ z − m) + (m − n ∗ z) = 0.
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Prime number functions

Proof:

(1) | : N × N → {0, 1} defined by:

|(n,m) =

8
<

:

1 if n divides m

0 otherwise

|(n,m) = 1 iff

E

z(n ∗ z = m) iff
Q

z≤m(n ∗ z − m) + (m − n ∗ z) = 0.

|(n,m) = 1 −
Q

z≤m(n ∗ z − m) + (m − n ∗ z)
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Prime number functions

Proof:

(2) prime : N → {0, 1} defined by:

prime(n) =

8
<

:

1 if n prime

0 otherwise
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Prime number functions

Proof:

(2) prime : N → {0, 1} defined by:

prime(n) =

8
<

:

1 if n prime

0 otherwise

prime(n) = 1 iff (n ≥ 2 and

A

y < n(y = 0 ∨ y = 1 ∨ |(y , n) = 0)

prime(n) = 1 − ((2 − n) +
P

y<n(|(y , n) ∗ y ∗ ((y − 1) + (1 − y))))
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Prime number functions

Proof:

(3) The function p : N → N defined by: p(n) = pn, the n-th prime number.

p(0) = 0 and p(1) = 2.

p(n + 1) is the smallest number i which is larger than p(n) and is prime.
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Prime number functions

Proof:

(3) The function p : N → N defined by: p(n) = pn, the n-th prime number.

p(0) = 0 and p(1) = 2.

p(n + 1) is the smallest number i which is larger than p(n) and is prime.

We also have an upper bound for the number i .

Recall the proof of the fact that the set of prime numbers is infinite.

i ≤ p(n)! + 1

p(n + 1) = µi≤p(n)!+1 i [((1 − prime(i)) + ((p(n) + 1) − i)) = 0]
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Prime number functions

Proof:

(4) D : N × N → N defined by: D(n, i) = k iff k is the power of the i-th

prime number in the prime number decomposition of n.

D(n, i) = max({j | n mod p(i)j = 0})

D(0, i) := 0;

D(n, i) = min({j ≤ n | |(p(i)j+1, n) = 0})

D(n, i) = µj≤n j (|(p(i)j+1, n) = 0)
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