
Advanced Topics in Theoretical Computer Science

Part 3: Recursive functions (3)

6.12.2012

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

2

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

3

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

4

Until now

5

Primitive recursive functions

Primitive recursion. If the functions g : Nk → N and h : Nk+2 → N(k ≥ 0) are

primitive recursive, then the following function is also primitive recursive:

f : Nk+1 → N with f (n, 0) = g(n)

f (n,m + 1) = h(n,m, f (n,m))

Notation without arguments: f = PR[g , h]

Definition (Primitive recursive functions)

• Atomic functions: The functions null (0), successor (+1) and projection

(πk
i (1 ≤ i ≤ k)) are primitive recursive.

• Composition: The functions obtained by composition from primitive recursive

functions are primitive recursive.

• Primitive recursion: The functions obtained by primitive recursion from pri-

mitive recursive functions are primitive recursive.

6

Examples of primitive recursive functions

f (n) = n + c, for c ∈ N, c ≥ 0 +(n,m) = n + m

(−1)(n) = n − 1 −(n,m) = n − m

∗(n,m) = n ∗ m

Lemma The set of primitive recursive functions is closed under re-ordering, omitting

and repeating of arguments when composing functions.

Lemma. Assume f : Nk → N is primitive recursive.

Then, for every l ∈ N, the function f ′ : Nk × N
l → N defined for every n ∈ N

k

and every m ∈ N
l by:

f
′(n,m) = f (n)

is primitive recursive.

7

Primitive recursive functions

Lemma (Case distinction). If gi , hi (1 ≤ i ≤ r) are primitive recursive functions, and

for every n there exists a unique i with hi (n) = 0, then the function f defined by:

f (n) =















g1(n) if h1(n) = 0

. . .

gr (n) if hr (n) = 0

is primitive recursive.

Theorem (Sums and products)

If g : N
k × N → N is a primitive recursive function then the following functions

f1, f2 : Nk × N → N are also primitive recursive:

f1(n,m) =

{

0 if m = 0
∑

i<m g(n, i) if m > 0
f2(n,m) =

{

0 if m = 0
∏

i<m g(n, i) if m > 0

8

Bounded µ operator

Definition. Let g : Nk+1 → N be a function. The bounded µ operator is defined by:

µi<m i (g(n, i) = 0) :=

{

i0 if g(n, i0) = 0 and for all j < i0 g(n, j) 6= 0

0 if g(n, j) 6= 0 for all 0 ≤ j < m or m = 0

µi<m i (g(n, i) = 0) is the smallest i < m such that g(n, i) = 0

Theorem. If g : Nk+1 → N is a primitive recursive function then the function

f : Nk+1 → N defined by:

f (n,m) = µi<m i (g(n, i) = 0)

is also primitive recursive

9

Prime number functions

Theorem: The following functions are primitive recursive:

(1) The Boolean function | : N × N → {0, 1} defined by:

|(n,m) =

{

1 if n divides m

0 otherwise

(2) The Boolean function prime : N → {0, 1} defined by:

prime(n) =

{

1 if n prime

0 otherwise

(3) The function p : N → N defined by: p(n) = pn, the n-th prime number.

(4) The function D : N × N → N defined by: D(n, i) = k iff k is the power of

the i-th prime number in the prime number decomposition of n.

D(n, i) = max({j | n mod p(i)
j
= 0})

10

Prime number functions

Proof:

(4) D : N × N → N defined by: D(n, i) = k iff k is the power of the i-th

prime number in the prime number decomposition of n.

D(n, i) = max({j | n mod p(i)j = 0})

D(0, i) := 0;

D(n, i) = min({j ≤ n | |(p(i)j+1, n) = 0})

D(n, i) = µj≤n j (|(p(i)j+1, n) = 0)

11

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

12

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

13

Goal

Show that P = LOOP

Idea:

To show that P ⊇ LOOP we have to show that every LOOP computable

function can be expressed as a primitive recursive function.

For this, we will encode the contents of arbitrarily many registers in one

natural number (used as input for this primitive recursive function).

For this encoding we will use Gödelisation. We will need to show that

Gödelisation is primitive recursive.

To show that P ⊆ LOOP we have to show that:

– all atomic primitive recursive functions are LOOP computable, and

– LOOP is closed under composition of functions and primitive recursion.

14

Gödelisation

To show: Gödelisation is primitive recursive

Informally:

• Coding number sequences as a number

• Corresponding decoding function (projection)

are primitive recursive

15

Gödelisation

To show: Gödelisierung is primitive recursive

Informally:

• Coding number sequences as a number

• Corresponding decoding function (projection)

are primitiv recursive

More precise formulation:

There exist primitive recursive functions

K r : Nr → N (r ≥ 1)

Di : N → N (1 ≤ i ≤ r)

with:

Di (K
r (n1, . . . , nr)) = ni

16

Gödelisation

To show: Gödelisation is primitive recursive

Informally:

• Coding number sequences as a number

• Corresponding decoding function (projection)

are primitive recursive

Recall:

Gödelisation: Coding number sequences as a number

Bijection between Nr and N: K r : Nr → N, defined by:

K r (n1, . . . , nr) =

r∏

i=1

p(i)ni .

Decoding: The inverses Di : N → N of K r defined by Di (n) = D(n, i)

17

Gödelisation

Bijection between N
r and N: K r : Nr → N, defined by:

K r (n1, . . . , nr) =
r∏

i=1

p(i)ni .

Di : N → N, 1 ≤ i ≤ r , defined by Di (n) = D(n, i)

Theorem. K r and D1, . . . ,Dr are primitive recursive.

18

Gödelisation

Bijection between N
r and N: K r : Nr → N, defined by:

K r (n1, . . . , nr) =
r∏

i=1

p(i)ni .

Di : N → N, 1 ≤ i ≤ r , defined by Di (n) = D(n, i)

Theorem. K r and D1, . . . ,Dr are primitive recursive.

Lemma.

(1) Di (K
r (n1, . . . , nr)) = ni for all 1 ≤ i ≤ r .

(2) K r (n1, . . . , nr) = K r+1(n1, . . . , nr , 0)

In general, Di (K
r (n1, . . . , nr)) = 0 if i > r .

19

Gödelisation

Notation:

K r (n1, . . . , nr) = 〈n1, . . . , nr 〉

Di (n) = (n)i

For r = 0:

〈〉 = 1

(〈〉)i = 0

20

Gödelisation: Applications

Theorem (Simultaneous Recursion)

If

f1(n, 0) = g1(n)

. . .

fr (n, 0) = gr (n)

f1(n,m + 1) = h1(n,m, f1(n,m), . . . , fr (n,m))

. . .

fr (n,m + 1) = hr (n,m, f1(n,m), . . . , fr (n,m))

and if g1, . . . , gr , h1, . . . , hr are primitive recursive

then f1, . . . , fr are primitive recursive.

21

Example

Let f1 and f2 be defined by simultaneous recursion as follows:

f1(0) = 0

f2(0) = 1

f1(n + 1) = f2(n)

f2(n + 1) = f1(n) + f2(n)

22

Example

Let f1 and f2 be defined by simultaneous recursion as follows:

f1(0) = 0 g1 = 0

f2(0) = 1 g2 = 1

f1(n + 1) = f2(n) h1(n, f1(n), f2(n)) = f2(n) h1 = π3
3

f2(n + 1) = f1(n) + f2(n) h2(n, f1(n), f2(n)) = f1(n) + f2(n) h2 = + ◦ (π3
2 ,π

3
3)

23

Gödelisation: Applications

Theorem (Simultaneous Recursion)

If

f1(n, 0) = g1(n)

. . .

fr (n, 0) = gr (n)

f1(n,m + 1) = h1(n,m, f1(n,m), . . . , fr (n,m))

. . .

fr (n,m + 1) = hr (n,m, f1(n,m), . . . , fr (n,m))

and if g1, . . . , gr , h1, . . . , hr are primitive recursive

then f1, . . . , fr are primitive recursive.

24

Gödelisation: Applications

Proof: We define a new function f by:

f (n,m) = 〈f1(n,m), . . . , fr (n,m)〉

f can be computed by primitive recursion as follows:

f (n, 0) = 〈g1(n), . . . , gr (n)〉

f (n,m + 1) = 〈h1(n,m, (f (n,m))1, . . . , (f (n,m))r), . . . ,

hr (n,m, (f (n,m))1, . . . , (f (n,m))r)〉

K r ◦ (g1, . . . , gr) and K r ◦ (h1, . . . , hr) are primitive recursive.

For all 1 ≤ i ≤ r , fi (n,m) = Di (f (n,m)).

Since fi = Di ◦ f is primitive recursive, it follows that fi is primitive recursive

for all 1 ≤ i ≤ r .

25

P = LOOP

Theorem (P = LOOP). The set of all LOOP computable functions is

equal to the set of all primitive recursive functions

Proof (Idea)

1. P ⊆ LOOP

26

P = LOOP

Theorem (P = LOOP). The set of all LOOP computable functions is

equal to the set of all primitive recursive functions

Proof (Idea)

1. P ⊆ LOOP

1a: We show that all atomic primitive recursive functions are LOOP

computable

1b: We show that LOOP is closed under composition of functions

1c: We show that LOOP is closed under primitive recursion

27

P = LOOP

Theorem (P = LOOP). The set of all LOOP computable functions is

equal to the set of all primitive recursive functions

Proof (Idea)

1. P ⊆ LOOP

1a: All atomic primitive recursive functions are LOOP computable

0 : x1 := x1 − 1 //NOP

+1 : x2 := x1 + 1

πk
j xk+1 := xj

28

P = LOOP

Proof (ctd) 1b: LOOP is closed under composition of functions

Let f : Nk → N with f (n) = h(g1(n), . . . , gr (n)

Assume that:

• Ph computes h

• Pgj computes gj (1 ≤ j ≤ r)

Idea: f is computed by the program Pf :

P′

g1
; . . . ;P′

gr
;P′

h

where P′

gi
differs from Pgi (and P′

h
from Ph) only up to the fact that

registers have been renamed/the contents stored in them copied.

29

P = LOOP

Proof (ctd) 1b: LOOP is closed under composition of functions

Let f : Nk → N with f (n) = h(g1(n), . . . , gr (n)

Assume that:

• Ph computes h

• Pgj computes gj (1 ≤ j ≤ r)

More precisely: P′

gi
: obtained from Pgi by renaming register xk+i to xk+r+i .

7→ keep free registers xk+1, . . . , xk+r for writing result of Pg1 , . . . ,Pgr

P′

h: obtained from Ph by renaming xj to xk+j .

Pf : P′

g1
; xk+1 := xk+r+1; xk+r+1 := 0; . . .

P′

gr
; xk+r := xk+r+1; xk+r+1 := 0;

P′

h; xk+1 := xk+r+1; xk+2 := 0; . . . ; xk+r+1 := 0

30

P = LOOP

Proof (ctd) 1c: LOOP is closed under primitive recursion

Assume that f : Nk+1 → N is such that:

f (n, 0) = g(n)

f (n,m + 1) = h(n,m, f (n,m))

Then f is computed by the following LOOP Program:

xstorem := xk+1; // Number of loops (m)

xk+1 := 0; //Actual value of m (at the beginning 0)

P′

g ; // Computes f (n, 0); result in xk+2

loop xstorem do

Ph; // Computes f (n, xk+1 + 1) = h(n,m, f (n,m))

xk+2 := xk+2+1; // xk+2 = f (n, xk+1 + 1)

xk+2+1 := 0;

xk+1 := xk+1 + 1 // m = m + 1

end;

xstorem := 0

31

P = LOOP

Proof (ctd) 1c: LOOP is closed under primitive recursion

Assume that f : Nk+1 → N is such that:

f (n, 0) = g(n)

f (n,m + 1) = h(n,m, f (n,m))

Then f is computed by the following LOOP Program:

xstorem := xk+1; // Number of loops (m)

xk+1 := 0; //Actual value of m (at the beginning 0)

P′

g ; // Computes f (n, 0); result in xk+2

loop xstorem do

Ph; // Computes f (n, xk+1 + 1) = h(n,m, f (n,m))

xk+2 := xk+2+1; // xk+2 = f (n, xk+1 + 1)

xk+2+1 := 0;

xk+1 := xk+1 + 1 // m = m + 1

end;

xstorem := 0

where P′

g differs from Pg only in the fact that

some registers have been renamed

(e.g. output in xk+2, not in xk+1)

32

P = LOOP

Theorem (P = LOOP). The set of all LOOP computable functions is

equal to the set of all primitive recursive functions

Proof (Idea)

2. LOOP ⊆ P

Let P be a LOOP program which:

• uses registers x1, . . . , xl

• has m loop instructions

We construct a primitive recursive function fP which “simulates” P

f (〈n1, . . . , nl , h1, . . . , hm〉) =
〈
n′1, . . . , n

′

l , h1, . . . , hm
〉

if and only if:

P started with ni in register xi terminates with n′i in xi (1 ≤ i ≤ l).

In hj it is “recorded” how long loop j should still run.

33

P = LOOP

Proof (ctd) At the beginning and at the end of the simulation of P we have

h1 = 0, . . . , hm = 0.

Let g : Nk → N be the function computed by the LOOP program P.

• At the beginning the registers x1, . . . , xk contain the input n1, . . . , nk
and all the other registers contain the value 0.

• At the end of the execution of P the registers x1, . . . , xk contain the

input n1, . . . , nk , register xk+1 contains the value nk+1 = g(n1, . . . , nk)

and all the other registers contain the value 0;

The function g is then primitive recursive, since:

g(n1, . . . , nk) = nk+1 = (< n1, . . . , nk , nk+1, 0, . . . , 0
︸ ︷︷ ︸

contents of registers x1,...,xl

, 0, . . . , 0
︸ ︷︷ ︸

h1,...,hm

>)k+1

= (fP (〈n1, . . . , nk , 0, 0, . . . 〉))k+1

34

P = LOOP

Proof (ctd) Construction of fP :

2a: P is xi := xi + 1

fP(n) = 〈(n)1, . . . , (n)i−1, (n)i + 1, (n)i+1, . . . 〉

P is xi := xi − 1

fP(n) = 〈(n)1, . . . , (n)i−1, (n)i − 1, (n)i+1, . . . 〉

35

P = LOOP

Proof (ctd) Construction of fP :

2a: P is xi := xi + 1

fP(n) = 〈(n)1, . . . , (n)i−1, (n)i + 1, (n)i+1, . . . 〉

P is xi := xi − 1

fP(n) = 〈(n)1, . . . , (n)i−1, (n)i − 1, (n)i+1, . . . 〉

2b: P is P1;P2

fP = fP2
◦ fP1

i .e. fP (n) = fP2
(fP1

(n))

36

P = LOOP

Proof (ctd) Construction of fP :

2c: P is loop xi do P1 end

Let fP1
be the p.r. function which computes what P1 computes.

Initialize the j-th loop:

f1(n) =
〈
(n)1, . . . , (n)l , (n)l+1, . . . (n)l+j−1, (n)i , (n)l+j+1, . . .

〉

f1 = n ∗ p(l + j)(n)i .

Let the j-th loop run:

f2(n) =







n if (n)l+j = 0

fP1
(f2(

〈
. . . , (n)l+j − 1, . . .

〉
)) otherwise

Then:

fP = f2 ◦ f1

37

P = LOOP

Proof (ctd) Construction of fP :

2c: P is loop xi do P1 end

Let fP1
be the p.r. function which computes what P1 computes.

Initialize the j-th loop:

f1(n) =
〈
(n)1, . . . , (n)l , (n)l+1, . . . (n)l+j−1, (n)i , (n)l+j+1, . . .

〉

f1 = n ∗ p(l + j)(n)i .

Let the j-th loop run:

f2(n) =







n if (n)l+j = 0

fP1
(f2(n DIV p(l + j))) otherwise

Then:

fP = f2 ◦ f1

38

P = LOOP

Proof (ctd) We show that f2 is primitive recursive.

Let F : N× N → N be defined by:

F (n, 0) = n

F (n,m + 1) = fP1
(F (n,m) DIV p(l + j))

Then F ∈ P.

f2 = F (n,D(n, l + j)).

Since f1, f2 are primitive recursive, so is fP = f2 ◦ f1.

39

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

40

