
Advanced Topics in Theoretical Computer Science

Part 3: Recursive functions (4)

13.12.2012

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Contents

• Recapitulation: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models: e.g. Büchi Automata, λ-calculus

2

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

3

Reminder: Goal

Show that P = LOOP

Idea:

To show that P ⊇ LOOP we have to show that every LOOP computable

function can be expressed as a primitive recursive function.

For this, we will encode the contents of arbitrarily many registers in one

natural number (used as input for this primitive recursive function).

For this encoding we will use Gödelisation. We will use the fact that

Gödelisation is primitive recursive.

To show that P ⊆ LOOP we have to show that:

– all atomic primitive recursive functions are LOOP computable, and

– LOOP is closed under composition of functions and primitive recursion.

4

P = LOOP

Theorem (P = LOOP). The set of all LOOP computable functions is

equal to the set of all primitive recursive functions

Proof (Idea)

1. P ⊆ LOOP

1a: We showed that all atomic primitive recursive functions are LOOP

computable

1b: We showed that LOOP is closed under composition of functions

1c: We showed that LOOP is closed under primitive recursion

5

P = LOOP

Theorem (P = LOOP). The set of all LOOP computable functions is

equal to the set of all primitive recursive functions

Proof (Idea)

2. LOOP ⊆ P

Let P be a LOOP program which:

• uses registers x1, . . . , xl

• has m loop instructions

We construct a primitive recursive function fP which “simulates” P

f (〈n1, . . . , nl , h1, . . . , hm〉) =
˙
n′

1, . . . , n
′

l , h1, . . . , hm

¸

if and only if:

P started with ni in register xi terminates with n′

i in xi (1 ≤ i ≤ l).

In hj it is “recorded” how long loop j should still run.

6

P = LOOP

Proof (ctd)

At the beginning and at the end of the simulation of P we have

h1 = 0, . . . , hm = 0.

Assume that we can construct a primitive recursive function fP which

“simulates” P, i.e. f (〈n1, . . . , nl , h1, . . . , hm〉) =
˙
n′

1, . . . , n
′

l , h1, . . . , hm

¸

if and only if:

P started with ni in register xi terminates with n′

i in xi (1 ≤ i ≤ l).

The function computed by the LOOP program P is then primitive recursive,

since:

g(n1, . . . , nl) = (fP (〈n1, . . . , nl , 0, 0, . . . 〉))l+1

7

P = LOOP

Proof (ctd) Construction of fP :

2a: P is xi := xi + 1

fP(n) = 〈(n)1, . . . , (n)i−1, (n)i + 1, (n)i+1, . . . 〉

P is xi := xi − 1

fP(n) = 〈(n)1, . . . , (n)i−1, (n)i − 1, (n)i+1, . . . 〉

8

P = LOOP

Proof (ctd) Construction of fP :

2a: P is xi := xi + 1

fP(n) = 〈(n)1, . . . , (n)i−1, (n)i + 1, (n)i+1, . . . 〉

P is xi := xi − 1

fP(n) = 〈(n)1, . . . , (n)i−1, (n)i − 1, (n)i+1, . . . 〉

2b: P is P1;P2

fP = fP2
◦ fP1

i .e. fP (n) = fP2
(fP1

(n))

9

P = LOOP

Proof (ctd) Construction of fP :

2c: P is loop xi do P1 end

Let fP1
be the p.r. function which computes what P1 computes.

Initialize the j-th loop:

f1(n) =
˙
(n)1, . . . , (n)l , (n)l+1, . . . (n)l+j−1, (n)i , (n)l+j+1, . . .

¸

Let the j-th loop run:

f2(n) =

8
<

:

n if (n)l+j = 0

fP1
(f2(

˙
. . . , (n)l+j − 1, . . .

¸
)) otherwise

Then:

fP(n) = f2(f1(n)) = (f2 ◦ f1)(n)

10

P = LOOP

Proof (ctd) Construction of fP :

2c: P is loop xi do P1 end

Let fP1
be the p.r. function which computes what P1 computes.

Initialize the j-th loop:

f1(n) =
˙
(n)1, . . . , (n)l , (n)l+1, . . . (n)l+j−1, (n)i , (n)l+j+1, . . .

¸

f1 = n ∗ p(l + j)(n)i . if (n)l+j = 0 before the loop is executed

Let the j-th loop run:

f2(n) =

8
<

:

n if (n)l+j = 0

fP1
(f2(n DIV p(l + j))) otherwise

Then:

fP = f2 ◦ f1

11

P = LOOP

Proof (ctd) We show that f2 is primitive recursive.

Let F : N × N → N be defined by:

F (n, 0) = n

F (n,m + 1) = fP1
(F (n, m))

Then F ∈ P.

It can be checked that f2(n) = F (n,D(n, l + j)). Therefore, f2 ∈ P.

Since f1, f2 are primitive recursive, so is fP = f2 ◦ f1.

12

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

13

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

14

µ-recursive Functions

Definition (µ Operator)

f (n) = µi(g(n, i) = 0) =

8
>>>>><

>>>>>:

i0 if g(n, i0) = 0

and for all 0 ≤ j < i0

g(n, j) defined and 6= 0

undefined otherwise

The smallest i such that g(n, i) = 0 (undefined if no such i exists or when

g is undefined before taking the value 0)

15

µ-recursive Functions

Notation:

f (n) = µi(g(n, i) = 0)

... without arguments:

f = µg

16

µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

b are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive recursive functions are µ-recursive.

17

µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive recursive functions are µ-recursive.

18

µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive recursive functions are µ-recursive.

19

µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive recursive functions are µ-recursive.

20

µ-recursive Functions

Definition (µ-recursive Functions)

• Atomic functions: The functions

– Null 0

– Successor +1

– Projection πk
i (1 ≤ i ≤ k)

are µ-recursive.

• Composition: The functions obtained by composition from µ-

recursive functions are µ-recursive.

• Primitive recursion: The functions obtained by primitive recursion

from µ-recursive recursive functions are µ-recursive.

• µ Operator: The functions obtained by applying the µ operator from

µ-recursive recursive functions are µ-recursive.

21

µ-recursive Functions

Notation:

Fµ = Set of all total µ-recursive functions

F
part
µ = Set of all µ-recursive functions

(total and partial)

22

µ-recursive Functions

Theorem. Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

23

µ-recursive Functions

Theorem. Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

Proof (Idea)

We already proved that P = LOOP ⊂ WHILE.

It remains to show that the µ operator can be “implemented” as a WHILE

program.

24

µ-recursive Functions

Theorem. Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

Proof (Idea) We already proved that P = LOOP ⊂ WHILE.

It remains to show that the µ operator can be “implemented” as a WHILE

program (below: informal notation)

i := 0;

while g(n, i) 6= 0 do i := i + 1 end

25

µ-recursive Functions

Theorem. Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

Proof (Idea) We already proved that P = LOOP ⊂ WHILE.

It remains to show that the µ operator can be “implemented” as a WHILE

program (below: informal notation)

i := 0;

while g(n, i) 6= 0 do i := i + 1 end

It can happen that the µ operator is applied to a partial function:

• g(n, j) might be undefined for some j before a value i is found for which

g(n, i) = 0

• g(n, i) = 0 is defined for all i but is never 0.

The µ operator is defined s.t. in such cases it behaves exactly like the while program.

26

µ-recursive Functions

Question:

Are there µ-recursive functions which are not primitive recursive?

27

Ackermann Funktion

Wilhelm Ackermann (1896–1962)

• Mathematician and logician

• PhD advisor: D. Hilbert

Co-author of Hilbert’s Book:

“Grundzüge der Theoretischen Logik”

• Mathematics teacher, Lüdenscheid

28

µ-recursive Functions

Definition: Ackermann function A

A0(x) =

8
>><

>>:

1 is x = 0

2 is x = 1

x + 2 otherwise

An+1(0) = An(1)

An+1(x + 1) = An(An+1(x))

A(x) = Ax (x)

29

µ-recursive Functions

Definition: Ackermann function A

A0(x) =

8
>><

>>:

1 is x = 0

2 is x = 1

x + 2 otherwise

An+1(0) = An(1)

An+1(x + 1) = An(An+1(x))

A(x) = Ax (x)

A1(x) ≥ 2 ∗ x ; A2(x) ≥ 2x ; A3(x) ≥ 22..
.2

| {z }

x times

30

µ-recursive Functions

Definition: Ackermann function A

A0(x) =

8
>><

>>:

1 is x = 0

2 is x = 1

x + 2 otherwise

An+1(0) = An(1)

An+1(x + 1) = An(An+1(x))

A(x) = Ax (x)

A1(x) ≥ 2 ∗ x ; A2(x) ≥ 2x ; A3(x) ≥ 22..
.2

| {z }

x times

A4(3) ≥ 2222
= 65536; A4(4) ≥ 22..

.2

| {z }

A4(3) times

= 22..
.2

| {z }

65536 times

;

31

µ-recursive Functions

Theorem. The Ackermann function is:

• total

• µ-recursive

• not primitive recursive

32

µ-recursive Functions

Theorem. The Ackermann function is:

• total

• µ-recursive

• not primitive recursive

Proof: The Ackermann functions An are total. (In every recursion step one

of the arguments is smaller.)

We show that A is µ-recursive. Idea of proof:

A is TM-computable: We can store the recursion stack on the tape of a

TM.

We will show that Fµ = WHILE and that TM ⊆ Fµ

From this it will follow that A is µ-recursive.

33

µ-recursive Functions

Theorem. The Ackermann function is:

• total

• µ-recursive

• not primitive recursive

Proof: A is not primitive recursive. Idea of proof:

For a primitive recursive function f , the depth of function unwind needed

to compute f (n) is the same for all n. But A cannot be computed with

constant unwind depth. (The detailed proof is complicated.)

34

µ-recursive Functions

Theorem. The Ackermann function is:

• total

• µ-recursive

• not primitive recursive

Proof: A is not primitive recursive. Idea of proof:

For a primitive recursive function f , the depth of function unwind needed

to compute f (n) is the same for all n. But A cannot be computed with

constant unwind depth. (The detailed proof is complicated.)

Alternative proof: We can show that the Ackermann function grows faster

than all p.r. functions. (Proof by structural induction)

35

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

36

3. Recursive functions

• Introduction/Motivation

• Primitive recursive functions 7→ P

• P = LOOP

• µ-recursive functions 7→ Fµ

• Fµ = WHILE

• Summary

37

Overview

We know that:

• LOOP ⊆ WHILE = GOTO ⊆ TM

• WHILE = GOTO (WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

In this section we proved:

• LOOP = P

• Fµ ⊆ WHILE and F
part
µ ⊆ WHILEpart

Still to show:

• TM ⊆ Fµ

• TMpart ⊆ F
part
µ

38

TM revisited

In what follows we will need the following results:

39

TM revisited

(1) Gödelisation of Turing machines

We can associate with every TM

M = (K , Σ, δ, s)

a unique Gödel number

〈M〉 ∈ N

such that

• the coding function (computing 〈M〉 from M)

• the decoding function (computing the components of M from 〈M〉)

are primitive recursive

40

TM revisited

(2) Gödelisation of configurations of Turing machines

We can associate with every configuration of a given TM

C : q,wau

a unique Gödel number

〈C〉 ∈ N

such that

• the coding function (computing 〈C〉 from the components of the

configuration C)

• the decoding function (computing the components of C from 〈C〉) are

primitive recursive

41

The Simulation Lemma

Lemma (Simulation Lemma)

There exists a primitive recursive function

fU : N3 → N

such that for every Turing machine M the following hold:

If C0, . . . ,Ct are configurations of M (where t ≥ 0) with

Ci ⊢M Ci+1 (0 ≤ i < t)

then:

fU(〈M〉 , 〈C0〉 , t) = 〈Ct〉

42

The Simulation Lemma

Proof. (Idea)

• The coding/decoding functions for TM and configurations are primitive

recursive

• Every single step of a TM is primitive recursive

• A given number t of steps in a TM is primitive recursive

Therefore, fU is primitive recursive.

(Detailed, constructive proof in which the functions are explicitly given: 4

pages in [Erk, Priese])

43

TM computable functions are µ-recursive

Theorem Every TM computable function is µ-recursive.

TM ⊆ Fµ and TMpart ⊆ F part
µ

Proof (Sketch)

Let f : Nk → N be a TM computable function. Let M be a TM which computes f .

f (n1, . . . , nk) = 0 iff s, # | . . . |
| {z }

n1

. . . # | . . . |
| {z }

nk

⊢M h, | . . . |
| {z }

nk

#

Hence: f (n1, . . . , nk) = (fU(〈M〉 , start, µi((fU(〈M〉 , start, i))State = 〈h〉)))w , where:

• start =

*

s, # | . . . |
| {z }

n1

. . . # | . . . |
| {z }

nk

#

+

• 〈h〉 is the Gödelisation of the end state
• (·)State is the decoding of the state of a configuration
• (·)w is the decoding of the word left to the writing head

µi(g(n, i) = h(n, i)) is an abbreviation for µi((g(n, i)−h(n, i))+(h(n, i)−g(n, i)) = 0)

(smallest i for which g(n, i) = h(n, i))

44

Kleene Normal Form

Corollary (Kleene Normal Form)

For every µ-recursive function f there are primitive recursive functions

g , h such that

f (n) = g(µi(h(n) = 0))

so f = g ◦ µh.

45

Consequence

Fµ = TM = WHILE

46

Summary

Classes of computable functions:

• LOOP = P ⊆ WHILE = GOTO = TM = Fµ

• WHILEpart = GOTOpart = TMpart = F
part
µ

• LOOP 6= TM

47

