Advanced Topics in Theoretical Computer Science

Part 2: Register machines: wrapping up

22.11.2012

Viorica Sofronie-Stokkermans

Universitat Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Until now

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

LOOP Programs: Syntax

-

Definition

e Atomic programs: For each register x;:

- X =x+1

- Xxji=x; —1

are LOOP instructions and also LOOP programs.

o If P;, P> are LOOP programs then

— P1; Py is a LOOP program
e If Pisa LOOP program then

— loop x; do P endisa LOOP program
(and a LOOP instruction)

LOOP Programs: Semantics

(Definition (Semantics of LOOP programs)

Let P be a LOOP program. A(P) is inductively defined as follows:
(1) On atomic programs: A(x; := x; £ 1)(s1, s2) iff:

o s(xi) =s1(x) 1
o sy(xj) = si(xj) forall j # i
(2) Sequential composition: A(Py; P2)(s1, s2) iff there exists s’ s.t.:
o A(P1)(s1,5")
o A(P)(s, %)
(3) Loop programs: A(loop x; do P end)(s1, s2) iff there exist states s;,s;, ..., s, with:
e si(xj) =n
e s1=35)
e 5, =35

o A(P)(s; s44q) for0< k <n

_

WHILE Programs: Syntax

-

Definition

e Atomic programs: For each register x;:

- X =x+1

- Xxji=x; —1

are WHILE instructions and also WHILE programs.

o If P1, P> are WHILE programs then

— P1; P> is a WHILE program
e If Pisa WHILE program then

— while x; #0 do P endis a WHILE program
(and a WHILE instruction)

WHILE Programs: Semantics

(Definition (Semantics of WHILE programs)
Let P be a WHILE program. A(P) is inductively defined as follows:
(1) On atomic programs: A(x; := x; £ 1)(s1, s2) iff:

o s(xi) =s1(x) 1
o sy(xj) =si(xj) forall j #i
(2) Sequential composition: A(Py; P2)(s1, s2) iff there exists s’ s.t.:
o A(P1)(s1,s")
o A(P)(s, %)
(3) While programs: A(while x; # 0 do P end)(si, s) iff there exists n € N

and there exist states s),s;, ..., s, with:
® S| — 56
® S — S,;

o A(P)(sy,sp4q) for0< k <n
o s/(x;))#Z0for0< k<n

\ o S,:(X,') =0

GOTO Programs: Syntax

Indices (numbers for the lines in the program) j > 0

(

Definition

e Atomic programs:

are GOTO instructions for each register x;.

e If x; is a register and j is an index then

— if x; =0 goto jisa GOTO instruction.

o If I,..., I are GOTO instructions and ji, ..., jkx are indices then
— J1:h;..o gk Ik isa GOTO program

GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j1:h; j2:h; ...; jk:lk

Let jx11 be an index which does not occur in P (program end).

 Definition A(P)(s1, s2) holds iff for every n > 0 there exist states s,
Z0, - . -,2Zn S.T.:

’ ’ . _ _
® Sy — S1,S, = 52, 20 = J1,Zn = Jk+1-

o ForO0 < /< n,ifjs: [is the linein P with js = z:

if I, = x; ;== x; &1 then: si1(xi) =s/(x) £1
s7.1(x) = 57 () for j # i
Zit1 = Js41

if Is = if x; = 0 goto jgoro then: s/, ; =5/

.jgoto if x;, =20
Zji+1 = .)
Js+1 otherwise

/ . .
..., s, and indices

Register Machines

Definition
A register machine is a machine consisting of the following elements:

e A finite (but unbounded) number of registers xj, x2, x3 ..., Xn;
each register contains a natural number.

e A LOOP-, WHILE- or GOTO-program.

Register Machines: Computable function

(Definition. A function f is)

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE
program, which computes f

e GOTO computable if there exists a register machine with a GOTO
program, which computes f

e [M computableif there exists a Turing machine which computes f)

10

Computable functions

Theorem. Every LOOP program terminates for every input.

Consequence: All LOOP computable functions are total.

WHILE and GOTO programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs
(are partial functions)

11

Computable functions

LOOP
WHILE
WHILEP"

GOTO
GOTOPrt

™
T \MPart

Set of all LOOP computable functions

Set of all total WHILE computable functions
Set of all WHILE computable functions
(including the partial ones)

Set of all total GOTO computable functions
Set of all GOTO computable functions
(including the partial ones)

Set of all total TM computable functions
Set of all TM computable functions

(including the partial ones)

12

Relationships between LOOP, WHILE, GOTO

Theorem. LOOP C WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.
for programs of the form x; := x; + 1 and of the form x; := x; — 1.
(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that the property holds for all “subprograms” of P.
Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = Py; P,. By the induction hypothesis, there exist WHILE programs P;, P,
with A(P;) = A(P/). Let P’ = P{; P; (a WHILE program).
A(P')(sl, sy) iff there exists s with A(P{)(sl, s) and A(Pé)(s, s9)
iff there exists s with A(Pq)(sy,s) and A(Py)(s,sp) iff A(P)(s1.59)
Case 2: P = loop x; do P;. By the induction hypothesis, there exists a WHILE

program P; with A(P;) = A(P]). Let P’ be the following WHILE program:
P/ = while xi #0 doxp :=xp + 1 xp41 = Xxp41 + 1, x; :=x; — 1 end;

while Xp4-1 # 0 do Xj = Xj + 1;X,H_1 = Xp41 — 1 end; while xp # 0 do P{;xn ‘= xp — 1 end.

A(P’)(Sl, 52) = A(P)(Sl, 52) (show that P and P’ change values of registers in the same way).

13

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO: WHILEP* = GOTOQP"

Proof: I. WHILE C GOTO; WHILEP*™ C GOTOP*"™ (WHILE programs expressible as
GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs,
i.e. for programs of the form x; := x; & 1 (expressible as j : x; := x; = 1).

Let P be a non-atomic WHILE program.
Induction hypothesis: We assume that the property holds for all “subprograms” of P.
Induction step: We show that then it also holds for P. Proof depends on form of P.

Case 1: P = Py; P,. By the induction hypothesis, there exist GOTO programs P;, P,
with A(P;) = A(P/). We can assume w.l.o.g. that the indices used for labelling
the instructions are disjoint. Let P’ = P{; P; (a GOTO program). We can show
that A(P’)(s1, s2) iff A(P)(s1,s2) as before.

Case 2: P = while x; # 0 do P; end . By the induction hypothesis, there exists a

GOTO program P{ such that A(P;) = A(P;). Let P’ be the following GOTO
program: j; : if x; = 0 goto j3; P’ Jo i ifxp =0gotoj1; j3: xp :=xp — 1
It can be checked that A(P’)(s1, s2) iff A(P)(s1, s2).

14

Relationships between LOOP, WHILE, GOTO

Theorem. WHILE = GOTO; WHILEP™ — GOTOP"

Proof: Il. WHILE O GOTO and WHILEP™ O GOTOP"

We proved that every GOTO program can be simulated with WHILE instructions.

Corollary
Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.

15

Relationships between LOOP, WHILE, GOTO

Theorem: LOOP # TM

Idea of the proof:

For every unary LOOP-computable function f : N — N there exists a LOOP program
Pr which computes it.

We show that:
e The set of all unary LOOP programs is recursively enumerable

e There exists a Turing machine M;ppop such that if Py, P>, P3,... is an
enumeration of all (unary) LOOP programs then if P; computes from input m
output o then M;ppop computes from input (i, m) the output o.

e We construct a TM-computable function which is not LOOP computable using
a ‘diagonalisation” argument.

16

Summary

We showed that:

7

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEPt = GOTOPat C TMPart
e LOOP #£ TM

Still to show:

e TM C WHILE
o TMPt C WHILEP

17

