Advanced Topics in Theoretical Computer Science

Part 2: Register machines: wrapping up

22.11.2012

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Until now

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

LOOP Programs: Syntax

Definition

- Atomic programs: For each register x_i:
 - $x_i := x_i + 1$
 - $-x_i := x_i 1$

are LOOP instructions and also LOOP programs.

- If P_1 , P_2 are LOOP programs then
 - P_1 ; P_2 is a LOOP program
- If *P* is a LOOP program then
 - loop x_i do P end is a LOOP program (and a LOOP instruction)

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

Let *P* be a LOOP program. $\Delta(P)$ is inductively defined as follows: (1) On atomic programs: $\Delta(x_i := x_i \pm 1)(s_1, s_2)$ iff:

• $s_2(x_i) = s_1(x_i) \pm 1$

•
$$s_2(x_j) = s_1(x_j)$$
 for all $j \neq i$

(2) Sequential composition: $\Delta(P_1; P_2)(s_1, s_2)$ iff there exists s' s.t.:

- $\Delta(P_1)(s_1, s')$
- $\Delta(P_2)(s', s_2)$

(3) Loop programs: $\Delta(\text{loop } x_i \text{ do } P \text{ end})(s_1, s_2)$ iff there exist states s'_0, s'_1, \ldots, s'_n with:

•
$$s_1(x_i) = n$$

•
$$s_1 = s'_0$$

•
$$s_2 = s'_n$$

• $\Delta(P)(s'_k, s'_{k+1})$ for $0 \le k < n$

WHILE Programs: Syntax

Definition

- Atomic programs: For each register x_i:
 - $x_i := x_i + 1$
 - $-x_i := x_i 1$

are WHILE instructions and also WHILE programs.

- If P_1 , P_2 are WHILE programs then
 - P_1 ; P_2 is a WHILE program
- If *P* is a WHILE program then
 - while $x_i \neq 0$ do *P* end is a WHILE program (and a WHILE instruction)

WHILE Programs: Semantics

Definition (Semantics of WHILE programs) Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows: (1) On atomic programs: $\Delta(x_i := x_i \pm 1)(s_1, s_2)$ iff:

- $s_2(x_i) = s_1(x_i) \pm 1$
- $s_2(x_j) = s_1(x_j)$ for all $j \neq i$

(2) Sequential composition: $\Delta(P_1; P_2)(s_1, s_2)$ iff there exists s' s.t.:

- $\Delta(P_1)(s_1, s')$
- $\Delta(P_2)(s', s_2)$

(3) While programs: Δ (while $x_i \neq 0$ do P end) (s_1, s_2) iff there exists $n \in \mathbb{N}$ and there exist states s'_0, s'_1, \ldots, s'_n with:

- $s_1 = s'_0$
- $s_2 = s'_n$
- $\Delta(P)(s'_k, s'_{k+1})$ for $0 \le k < n$
- $s'_k(x_i) \neq 0$ for $0 \leq k < n$

•
$$s'_n(x_i) = 0$$

GOTO Programs: Syntax

Indices (numbers for the lines in the program) $j \ge 0$

Definition

- Atomic programs:
 - $-x_i := x_i + 1$
 - $-x_i := x_i 1$

are GOTO instructions for each register x_i .

• If x_i is a register and j is an index then

- if $x_i = 0$ goto *j* is a GOTO instruction.

If I₁,..., I_k are GOTO instructions and j₁,..., j_k are indices then
- j₁: I₁;...; j_k: I_k is a GOTO program

GOTO Programs: Semantics

Let P be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

 $\begin{array}{l} \textbf{Definition } \Delta(P)(s_1, s_2) \text{ holds iff for every } n \geq 0 \text{ there exist states } s_0', \ldots, s_n' \text{ and indices} \\ z_0, \ldots, z_n \text{ s.t.:} \\ \bullet \ s_0' = s_1, s_n' = s_2; \ z_0 = j_1, z_n = j_{k+1}. \\ \bullet \ \text{For } 0 \leq l \leq n, \text{ if } j_s : l_s \text{ is the line in } P \text{ with } j_s = z_l: \\ \text{ if } l_s = x_i := x_i \pm 1 \text{ then:} \qquad s_{i+1}'(x_i) = s_i'(x_i) \pm 1 \\ \qquad s_{i+1}'(x_j) = s_i'(x_j) \text{ for } j \neq i \\ \qquad z_{i+1} = j_{s+1} \\ \text{ if } l_s = \text{ if } x_i = 0 \text{ goto } j_{\text{goto }} \text{ then:} \qquad s_{i+1}' = s_i' \\ \qquad z_{i+1} = \begin{cases} j_{\text{goto }} & \text{ if } x_i = 0 \\ j_{s+1} & \text{ otherwise} \end{cases} \end{array}$

Register Machines

Definition

A register machine is a machine consisting of the following elements:

- A finite (but unbounded) number of registers x₁, x₂, x₃..., x_n; each register contains a natural number.
- A LOOP-, WHILE- or GOTO-program.

Register Machines: Computable function

Definition. A function f is

- LOOP computable if there exists a register machine with a LOOP program, which computes *f*
- WHILE computable if there exists a register machine with a WHILE program, which computes *f*
- GOTO computable if there exists a register machine with a GOTO program, which computes *f*
- TM computableif there exists a Turing machine which computes f

Computable functions

Theorem. Every LOOP program terminates for every input.

Consequence: All LOOP computable functions are total.

WHILE and GOTO programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Computable functions

LOOP =	= S	et of all	LOOP	computable	functions
--------	-----	-----------	------	------------	-----------

- WHILE = Set of all total WHILE computable functions
- WHILE^{part} = Set of all WHILE computable functions (including the partial ones)
- GOTO = Set of all total GOTO computable functions
- GOTO^{part} = Set of all GOTO computable functions (including the partial ones)
 - TM = Set of all total TM computable functions
 - TM^{part} = Set of all TM computable functions (including the partial ones)

Theorem. LOOP \subseteq WHILE (every LOOP computable function is WHILE computable)

Proof: Structural induction

Induction basis: We show that the property is true for all atomic LOOP programs, i.e.

for programs of the form $x_i := x_i + 1$ and of the form $x_i := x_i - 1$.

(Obviously true, because these programs are also WHILE programs).

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that the property holds for all "subprograms" of P. **Induction step:** We show that then it also holds for P. Proof depends on form of P.

Case 1: $P = P_1$; P_2 . By the induction hypothesis, there exist WHILE programs P'_1 , P'_2 with $\Delta(P_i) = \Delta(P'_i)$. Let $P' = P'_1$; P'_2 (a WHILE program). $\Delta(P')(s_1, s_2)$ iff there exists *s* with $\Delta(P'_1)(s_1, s)$ and $\Delta(P'_2)(s, s_2)$ iff there exists *s* with $\Delta(P_1)(s_1, s)$ and $\Delta(P_2)(s, s_2)$ iff $\Delta(P)(s_1, s_2)$

Case 2: $P = \text{loop } x_i \text{ do } P_1$. By the induction hypothesis, there exists a WHILE program P'_1 with $\Delta(P_1) = \Delta(P'_1)$. Let P' be the following WHILE program: $P' = \text{ while } x_i \neq 0 \text{ do } x_n := x_n + 1; x_{n+1} := x_{n+1} + 1; x_i := x_i - 1 \text{ end};$ while $x_{n+1} \neq 0 \text{ do } x_i := x_i + 1; x_{n+1} := x_{n+1} - 1 \text{ end};$ while $x_n \neq 0 \text{ do } P'_1; x_n := x_n - 1 \text{ end}.$ $\Delta(P')(s_1, s_2) = \Delta(P)(s_1, s_2)$ (show that P and P' change values of registers in the same way).

Theorem. WHILE = GOTO; WHILE^{part} = $GOTO^{part}$

Proof: I. WHILE \subseteq GOTO; WHILE^{part} \subseteq GOTO^{part} (WHILE programs expressible as GOTO programs). Proof by structural induction.

Induction basis: We show that the property is true for all atomic WHILE programs, i.e. for programs of the form $x_i := x_i \pm 1$ (expressible as $j : x_i := x_i \pm 1$).

Let P be a non-atomic WHILE program.

Induction hypothesis: We assume that the property holds for all "subprograms" of *P*. **Induction step:** We show that then it also holds for *P*. Proof depends on form of *P*.

- **Case 1:** $P = P_1$; P_2 . By the induction hypothesis, there exist GOTO programs P'_1 , P'_2 with $\Delta(P_i) = \Delta(P'_i)$. We can assume w.l.o.g. that the indices used for labelling the instructions are disjoint. Let $P' = P'_1$; P'_2 (a GOTO program). We can show that $\Delta(P')(s_1, s_2)$ iff $\Delta(P)(s_1, s_2)$ as before.
- Case 2: P = while $x_i \neq 0$ do P_1 end . By the induction hypothesis, there exists a GOTO program P'_1 such that $\Delta(P_1) = \Delta(P'_1)$. Let P' be the following GOTO program: j_1 : if $x_i = 0$ goto j_3 ; P'; j_2 : if $x_n = 0$ goto j_1 ; j_3 : $x_n := x_n 1$ It can be checked that $\Delta(P')(s_1, s_2)$ iff $\Delta(P)(s_1, s_2)$.

Theorem. WHILE = GOTO; WHILE^{part} = $GOTO^{part}$

Proof: II. WHILE \supseteq GOTO and WHILE^{part} \supseteq GOTO^{part}

We proved that every GOTO program can be simulated with WHILE instructions.

Corollary Every WHILE computable function can be computed by a WHILE+IF program with **one while loop only**.

Theorem: LOOP \neq TM

Idea of the proof:

For every unary LOOP-computable function $f : \mathbb{N} \to \mathbb{N}$ there exists a LOOP program P_f which computes it.

We show that:

- The set of all unary LOOP programs is recursively enumerable
- There exists a Turing machine M_{LOOP} such that if P_1, P_2, P_3, \ldots is an enumeration of all (unary) LOOP programs then if P_i computes from input m output o then M_{LOOP} computes from input (i, m) the output o.
- We construct a TM-computable function which is not LOOP computable using a "diagonalisation" argument.

Summary

We showed that:

- LOOP \subseteq WHILE = GOTO \subseteq TM
- $\bullet \ \ \mathsf{WHILE} = \mathsf{GOTO} \subsetneq \mathsf{WHILE}^{\mathsf{part}} = \mathsf{GOTO}^{\mathsf{part}} \subseteq \mathsf{TM}^{\mathsf{part}}$
- LOOP \neq TM

Still to show:

- $\mathsf{TM} \subseteq \mathsf{WHILE}$
- $\mathsf{TM}^{\mathsf{part}} \subseteq \mathsf{WHILE}^{\mathsf{part}}$