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Register Machines

The register machine gets its name from its one or more “registers’:

In place of a Turing machine’s tape and head (or tapes and heads) the

model uses multiple, uniquely-addressed registers, each of which holds a
single positive integer.
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e equally powerful fundament for computability theory
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e equally powerful fundament for computability theory
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similar to ...
the imperative kernel of programming languages

pseudo-code



Register Machines

Computation of a mod b (pseudocode)

ri= a;
while r > b do

r.=r—>b
end;

return r
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Definition: Questions

Which instructions (if, while, goto?)
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Register Machines

Definition: Questions

Which instructions (if, while, goto?)
Which data types? (integers? strings?)
Which data structures? (arrays?)
Which atomic instructions?

Which Input/Output?
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loop or while or if 4+ goto
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Register Machines

Settings (Informally)

e Instruction set:
— Various variants:
loop or while or if 4+ goto
e Data types:
— The natural numbers.
This is the only difference to normal computers
e Data structures

— Unbounded but finite number of registers denoted x1, x2, x3 .. ., Xp;
each register contains a natural number
(no arrays, objects, ...)
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Register Machines

Settings (Informally)

e Atomic instructions:

— Increment/Decrement a register
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Register Machines

Settings (Informally)

e Atomic instructions:
— Increment/Decrement a register

e Input/Output

— Input: n input values in the first n registers

All the other registers are 0 at the beginning.

— QOutput: In register n + 1.
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Example: LOOP Programs

Syntax

-

Definition
e Atomic programs: For each register x;:
- xi:=x;+1
- X i=x —1

are LOOP instructions and also LOOP programs.
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Example: LOOP Programs

Syntax

-

Definition
e Atomic programs: For each register x;:
- X =x+1
- X =x; —1
are LOOP instructions and also LOOP programs.
o If P;, P> are LOOP programs then
— P1; P> is a LOOP program
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Example: LOOP Programs

Syntax
4 )
Definition
e Atomic programs: For each register x;:
- xi:=x;+1
- X i=x —1
are LOOP instructions and also LOOP programs.
o If P;, P> are LOOP programs then
— P1; P> is a LOOP program
o If Pisa LOOP program then
— loop x; do P endisa LOOP instruction and a LOOP program.
\ _J
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Example: LOOP Programs

Syntax
4 )
Definition
e Atomic programs: For each register x;:
- Xji=x;+1
- X i=x —1
are LOOP instructions and also LOOP programs.
o If P;, P> are LOOP programs then
— P1; P> is a LOOP program
e If Pisa LOOP program then
— loop x; do P endisa LOOP program (and a LOOP instruc-
tion)
\ J
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Example: WHILE Programs

Syntax

(

Definition

e Atomic programs: For each register x;:

are WHILE instructions and also WHILE programs.
o If P1, P> are WHILE programs then
— P1; P> is a WHILE program
e If Pis a WHILE program then

instruction)

— while x; #20 do P end is a WHILE program (and a WHILE

J
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Example: GOTO Programs

Syntax Indexes (numbers for the lines in the program) j > 0

(

Definition

e Atomic programs:

are GOTO instructions for each register x;.

e If x; is a register and j is an index then

— if x;, =0 goto jisa GOTO instruction.

o If I1,..., 1 are GOTO instructions and ji, ..., jkx are indices then
—J1:h;. . jk i I isa GOTO program

25



Register Machines

Definition
A register machine is a machine consisting of the following elements:

e A finite (but unbounded) number of registers xj, x2, x3 ..., Xn;
each register contains a natural number.

e A LOOP-, WHILE- or GOTO-program.

26



Register Machines: State

Definition (State of a register machine)
The state s of a register machine is a map:

s:{xi|ieN}—N

which associates with every register a natural number as value.
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Register Machines: State

Definition (Initial state; Input)
Let mq,..., m, € N be given as input to a register machine.
In the input state sp we have

o sp(xj)=my forall 1 < i<k
o so(x;) =0 forall i > k
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Register Machines: State

Definition (Initial state; Input)
Let my,..., m, € N be given as input to a register machine.
In the input state sp we have

e sp(x;)=my forall 1 <i<k
e sp(x;) =0 forall i > k

Definition (Output)
If a register machine started with the input my,..., my € N
halts in a state s.ferm then:

Sterm (Xk+1 )

Is the output of the machine.
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Register Machines: Semantics

-

N
Definition (The semantics of a register machine)
The semantics A(P) of a register machine P is a (binary) relation
A(P)CSxS
on the set S of all states of the machine.
(s1,s2)€A(P) means that if P is executed in state s; then it halts in state s.
J

\_
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Register Machines: Computed function

-

.

Definition (Computed function)
A register machine P computes a function

f:NfF >N
if and only if for all my,..., m € N the following holds:
If we start P with initial state with the input mq, ..., my then:
e P terminates if and only if f(my,..., my) is defined

e If P terminates, then the output of P is f(m, ..., my)

e Additional condition (next page)
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Register Machines: Computed function

Definition (Computed function) (ctd.)

Additional condition
We additionally require that when a register machine halts, all the regi-

sters (with the exception of the output register) contain again the values

they had in the initial state.

e Input registers xq, ..., x, contain the initial values

e The registers x; with i/ > k 4+ 1 contain value O
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Register Machines: Computed function

-
Definition (Computed function) (ctd)
Additional condition
We additionally require that when a register machine halts, all the regi-
sters (with the exception of the output register) contain again the values
they had in the initial state.
e Input registers xq, ..., x, contain the initial values
e The registers x; with i/ > k 4+ 1 contain value O
N\

Consequence: A machine which does not fulfill the additional condition

(even only for some inputs) does not compute a function at all.




Register Machines: Computable function

Example:
The program:
P :=loop xo do xp :=x» — 1 end; xp := x» + 1;
loop x1 do x; := x3 — 1 end

does not compute a function: At the end, P has value 0 in x; and 1 in x».
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Register Machines: Computable function

(Definition. A function f is

~

e LOOP computable if there exists a register machine with a LOOP

program, which computes f
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Register Machines: Computable function

(Definition. A function f is A

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE
program, which computes f
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Register Machines: Computable function

(Definition. A function f is h

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE
program, which computes f

e GOTO computable if there exists a register machine with a GOTO
program, which computes f

e [ M computableif there exists a Turing machine which computes f

- J
LOOP = Set of all LOOP computable functions
WHILE =  Set of all WHILE computable functions
GOTO =  Set of all GOTO computable functions

TM = Set of all TM computable functions
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Register Machines: Overview

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines
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LOOP Programs: Syntax

4 )
Definition
e Atomic programs: For each register x;:
- X =x+1
- x;i=x; — 1
are LOOP instructions and also LOOP programs.
o If P;, P> are LOOP programs then
— P1; Py is a LOOP program
e If Pisa LOOP program then
— loop x; do P endis a LOOP instruction and a LOOP program.
N\ J
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs)
Let P be a LOOP program. A(P) is inductively defined as follows:

(1) On atomic programs:

o A(x;:=x;+ 1)(s1,s2) if and only if:
- s2(x) =s1(x) +1
— s2(xj) = s1(xj) for all j # i

42



LOOP Programs: Semantics

Definition (Semantics of LOOP programs)
Let P be a LOOP program. A(P) is inductively defined as follows:

(1) On atomic programs:

o A(x;:=x;+ 1)(s1,s2) if and only if:
- s2(x) =s1(x) +1
— s2(xj) = s1(xj) for all j # i

o A(x;:=x; — 1)(s1,s2) if and only if:

B 52(X_) _ Sl(X,') —1 if Sl(X,') >0
' 0 if s1(x;) = 0

_ — so(xj) = s1(xj) for all j # i




LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

(2) Sequential composition:

e A(P1; P2)(s1,s) if and only if there exists s’ such that:
— A(P1)(s1,5)
— A(P) (s, )

Let P be a LOOP program. A(P) is inductively defined as follows:
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)
Let P be a LOOP program. A(P) is inductively defined as follows:

(3) Loop programs

e A(loop x; do P end)(s1,s2) if and only if there exist states

4,81, - - -+ S, with:
- s1(x;) =n

— 51 =8

— s =35/

— A(P)(s;,s;,1) for 0 < k <n
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LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)
Let P be a LOOP program. A(P) is inductively defined as follows:

(3) Loop programs

e A(loop x; do P end)(s1,s2) if and only if there exist states

O Y o F
— s1(x;) = n
— 51 =5}
— s =35/
_ — A(P)(s;,s;41) for 0 < k <n y
Remark:

The number of steps in the loop is the value of x; at the beginning of the
loop. Changes to x; during the loop are not relevant.
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LOOP programs: Semantics

Program end: If there is no next program line, then the program execution

terminates.

We say that a LOOP program terminates on an input ny, ..., ng if its
execution on this input terminates (in the sense above) after a finite number

of steps.
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LOOP computable functions

Theorem. Every LOOP program terminates for every input.
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LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program
that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)
Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = Py; P> simple

Case 2: P = loop x; do P end

Since the number of steps in the loop (the initial value of x;) is fixed, no infinite loop
is possible.
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LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program
that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)
Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = P1; P simple

Case 2: P = loop x; do P end

Since the number of steps in the loop (the initial value of x;) is fixed, no infinite loop
is possible.

Consequence: All LOOP computable functions are total.
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LOOP Programs

Additional instructions

o x; =0
loop x; do x; :=x; —1 end
e x; = cforceN
x; = 0;
Xj = x; + 1; \
> C times
Xi:=xi+1
o X = X;
Xp 1= 0;

loop x; do xp:=xp+1 end,
x; ;= 0;

loop x, do x;:=x;+1 end;

(xn new register, not used before)
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LOOP Programs

Additional instructions
® Xj: != X —+ Xk
Xj 1= Xj;

loop xx do x;:=x;+ 1 end;

o X, = XJ — Xk

Xj 1= Xj;

loop x;, do x;j:=x; —1 end;
® X = Xj*x Xk

x1 = 0;

loop xx do x;:=Xx; +Xx; end;
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LOOP Programs

Additional instructions

In what follows, xn, Xp4+1,... denote new registers (not used before).

o x; := e1 + e (e1, & arithmetical expressions)
X 1= e1;
Xp 1= €5;
loop x, do x;:=x;+1 end; x, :=0

o x; := e; — e (e, e arithmetical expressions)
X = e
loop x, do x;:=x;—1 end; x, :=0

e x; := e1 x e (e1, e arithmetical expressions)
x; :=0;
Xn .= €1,

loop x, do x; :=x;+ e end; x, :=0



LOOP Programs

Additional instructions

o if X, =0 then P; else P, end
xpn =1 — x;;
Xp+1 = 1 — Xp;
loop x, do P; end;
loop xp11 do P> end;
Xp = 0; xp31 :=0

o if x; <x; then Py else P
Xn 1= Xj — Xj;
if x, =0 then P; else P> end

xp =0
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Register Machines: Overview

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines
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WHILE Programs: Syntax

Definition
e Atomic programs: For each register x;:

- x;:=x+1

- Xxj=x; — 1

are WHILE instructions and WHILE programs.

o If P1, P> are WHILE programs then

— P1; P> is a WHILE program
e If Pis a WHILE program then

program.

— while x; 20 do P endis a WHILE instruction and a WHILE

J
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WHILE Programs: Semantics

Definition (Semantics of WHILE programs)
Let P be a WHILE program. A(P) is inductively defined as follows:

(1) On atomic programs:

o A(x;:=x;+ 1)(s1,s2) if and only if:
— so(x;) = s1(x;) + 1
— s2(xj) = s1(xj) for all j # i
o A(x;:=x; —1)(s1,s) if and only if:
si(x;) —1 ifsi(x;)) >0

- =) =9 if s1(x) = O

L — s2(xj) = s1(xj) for all j # i
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WHILE Programs: Semantics

Definition (Semantics of WHILE programs)

(2) Sequential composition:

e A(P1; P2)(s1,s) if and only if there exists s’ such that:
— A(P1)(s1,5)
— A(P) (s, )

Let P be a WHILE program. A(P) is inductively defined as follows:
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WHILE Programs: Semantics

Let P be a WHILE program. A(P) is inductively defined as follows:
(3) While programs

e A(while x; # 0 do P end)(s1, s2) if and only if there exists n € N

and there exist states s, s7, ..., s}, with:
— 51 =5}
— s =5/

— A(P)(s;,s;,1) for 0 < k <n
— 5,(x;)) #0for 0 < k < n
— sp(xi) =0

(Definition (Semantics of WHILE programs ctd.) )
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WHILE Programs: Semantics

Definition (Semantics of WHILE programs ctd.)
Let P be a WHILE program. A(P) is inductively defined as follows:

(3) While programs
e A(while x; # 0 do P end)(s1, s2) if and only if there exists n € N

and there exist states sj, s7, ..., s with:
— 51 =S
— s =5/

— A(P)(s;,s;,1) for 0 < k <n
— 5,(x;)) #0for 0 < k < n
= sp(xi) =0

- J

Remark: The number of loop iterations is not fixed at the beginning.

The contents of P may influence the number of iterations.
Infinite loop are possible.
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WHILE and LOOP

Theorem. LOOP C WHILE
i.e., every LOOP computable function is also WHILE computable

Proof (Idea) We first show that the LOOP instruction “loop x; do P end”
can be simulated by the following WHILE program P, ie:

while x; #2 0 do ** simulate x,, := x; **
Xp = Xp + L Xpt1 = Xp41 + L x5 1= x5 — 1

end;

while xp,11 # 0 do
Xi = Xi + 1, Xp41 := Xpp1 — 1

end:;

while x, # 0 do ** simulate the loop instruction **

P:x, =x,—1
end

Here xp, x, 41 are new registers (in which at the beginning 0 is stored; not used in P).
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Partial WHILE computable functions

It is easy to see that the new WHILE program P, ‘simulates’
loop x; do P end |, i.e.

(s,s’) € A(loop x; do P end) iff (s,5") € A(Punile)

Using this, it can be proved (by structural induction) that every LOOP
program can be simulated by a WHILE program.
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Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs
(are partial functions)
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Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs

(are partial functions)

Example: P := while x1 20 do x; :=x1+1 end
computes f : N — N with:

0 if n=20

f(n):=
undefined if n#0
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Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs
(are partial functions)

Notation
e WHILE = The set of all total WHILE computable functions

e WHILEP¥" = The set of all WHILE computable functions
(including the partial ones)
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Partial WHILE computable functions

Notation

e WHILE = The set of all total WHILE computable functions
e WHILEP? = The set of all WHILE computable functions

(including the partial ones)

Question:
Are all total WHILE computable functions LOOP computable

or LOOP C WHILE?
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Partial WHILE computable functions

Notation

e WHILE = The set of all total WHILE computable functions

e WHILEP? = The set of all WHILE computable functions
(including the partial ones)

Question:
Are all total WHILE computable functions LOOP computable

or LOOP C WHILE?

Later we will show that:

e one can construct a total TM computable function which cannot be

computed with a LOOP program

e WHILE computable = TM computable
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