Advanced Topics in Theoretical Computer Science

Part 2: Register machines

8.11.2012

Viorica Sofronie-Stokkermans

Universitat Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

Contents

Recapitulation: Turing machines and Turing computability
Register machines (LOOP, WHILE, GOTO)

Recursive functions

The Church-Turing Thesis

Computability and (Un-)decidability

Complexity

Other computation models: e.g. Biichi Automata, A-calculus

2. Register Machines

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

2. Register Machines

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

Register Machines

The register machine gets its name from its one or more “registers’:

In place of a Turing machine’s tape and head (or tapes and heads) the

model uses multiple, uniquely-addressed registers, each of which holds a
single positive integer.

Register Machines

In comparison to Turing machines:
e equally powerful fundament for computability theory

e Advantage: Programs are easier to understand

Register Machines

In comparison to Turing machines:
e equally powerful fundament for computability theory

e Advantage: Programs are easier to understand

similar to ...
the imperative kernel of programming languages

pseudo-code

Register Machines

Computation of a mod b (pseudocode)

ri= a;
while r > b do

r.=r—>b
end;

return r

Register Machines

Definition: Questions

Which instructions (if, while, goto?)

10

Register Machines

Definition: Questions
Which instructions (if, while, goto?)

Which data types? (integers? strings?)

11

Register Machines

Definition: Questions
Which instructions (if, while, goto?)
Which data types? (integers? strings?)

Which data structures? (arrays?)

12

Register Machines

Definition: Questions

Which instructions (if, while, goto?)
Which data types? (integers? strings?)
Which data structures? (arrays?)

Which atomic instructions?

13

Register Machines

Definition: Questions

Which instructions (if, while, goto?)
Which data types? (integers? strings?)
Which data structures? (arrays?)
Which atomic instructions?

Which Input/Output?

14

Register Machines

Settings (Informally)

e Instruction set:

— Various variants:
loop or while or if 4+ goto

15

Register Machines

Settings (Informally)

e Instruction set:
— Various variants:
loop or while or if 4+ goto
e Data types:

— The natural numbers.
This is the only difference to normal computers

16

Register Machines

Settings (Informally)

e Instruction set:
— Various variants:
loop or while or if 4+ goto
e Data types:
— The natural numbers.
This is the only difference to normal computers
e Data structures

— Unbounded but finite number of registers denoted x1, x2, x3 .. ., Xp;
each register contains a natural number
(no arrays, objects, ...)

17

Register Machines

Settings (Informally)

e Atomic instructions:

— Increment/Decrement a register

18

Register Machines

Settings (Informally)

e Atomic instructions:
— Increment/Decrement a register

e Input/Output

— Input: n input values in the first n registers

All the other registers are 0 at the beginning.

— QOutput: In register n + 1.

19

Example: LOOP Programs

Syntax

-

Definition
e Atomic programs: For each register x;:
- xi:=x;+1
- X i=x —1

are LOOP instructions and also LOOP programs.

20

Example: LOOP Programs

Syntax

-

Definition
e Atomic programs: For each register x;:
- X =x+1
- X =x; —1
are LOOP instructions and also LOOP programs.
o If P;, P> are LOOP programs then
— P1; P> is a LOOP program

21

Example: LOOP Programs

Syntax
4)
Definition
e Atomic programs: For each register x;:
- xi:=x;+1
- X i=x —1
are LOOP instructions and also LOOP programs.
o If P;, P> are LOOP programs then
— P1; P> is a LOOP program
o If Pisa LOOP program then
— loop x; do P endisa LOOP instruction and a LOOP program.
\ _J

22

Example: LOOP Programs

Syntax
4)
Definition
e Atomic programs: For each register x;:
- Xji=x;+1
- X i=x —1
are LOOP instructions and also LOOP programs.
o If P;, P> are LOOP programs then
— P1; P> is a LOOP program
e If Pisa LOOP program then
— loop x; do P endisa LOOP program (and a LOOP instruc-
tion)
\ J

23

Example: WHILE Programs

Syntax

(

Definition

e Atomic programs: For each register x;:

are WHILE instructions and also WHILE programs.
o If P1, P> are WHILE programs then
— P1; P> is a WHILE program
e If Pis a WHILE program then

instruction)

— while x; #20 do P end is a WHILE program (and a WHILE

J

24

Example: GOTO Programs

Syntax Indexes (numbers for the lines in the program) j > 0

(

Definition

e Atomic programs:

are GOTO instructions for each register x;.

e If x; is a register and j is an index then

— if x;, =0 goto jisa GOTO instruction.

o If I1,..., 1 are GOTO instructions and ji, ..., jkx are indices then
—J1:h;. . jk i I isa GOTO program

25

Register Machines

Definition
A register machine is a machine consisting of the following elements:

e A finite (but unbounded) number of registers xj, x2, x3 ..., Xn;
each register contains a natural number.

e A LOOP-, WHILE- or GOTO-program.

26

Register Machines: State

Definition (State of a register machine)
The state s of a register machine is a map:

s:{xi|ieN}—N

which associates with every register a natural number as value.

27

Register Machines: State

Definition (Initial state; Input)
Let mq,..., m, € N be given as input to a register machine.
In the input state sp we have

o sp(xj)=my forall 1 < i<k
o so(x;) =0 forall i > k

28

Register Machines: State

Definition (Initial state; Input)
Let my,..., m, € N be given as input to a register machine.
In the input state sp we have

e sp(x;)=my forall 1 <i<k
e sp(x;) =0 forall i > k

Definition (Output)
If a register machine started with the input my,..., my € N
halts in a state s.ferm then:

Sterm (Xk+1)

Is the output of the machine.

29

Register Machines: Semantics

-

N
Definition (The semantics of a register machine)
The semantics A(P) of a register machine P is a (binary) relation
A(P)CSxS
on the set S of all states of the machine.
(s1,s2)€A(P) means that if P is executed in state s; then it halts in state s.
J

_

30

Register Machines: Computed function

-

.

Definition (Computed function)
A register machine P computes a function

f:NfF >N
if and only if for all my,..., m € N the following holds:
If we start P with initial state with the input mq, ..., my then:
e P terminates if and only if f(my,..., my) is defined

e If P terminates, then the output of P is f(m, ..., my)

e Additional condition (next page)

31

Register Machines: Computed function

Definition (Computed function) (ctd.)

Additional condition
We additionally require that when a register machine halts, all the regi-

sters (with the exception of the output register) contain again the values

they had in the initial state.

e Input registers xq, ..., x, contain the initial values

e The registers x; with i/ > k 4+ 1 contain value O

32

Register Machines: Computed function

-
Definition (Computed function) (ctd)
Additional condition
We additionally require that when a register machine halts, all the regi-
sters (with the exception of the output register) contain again the values
they had in the initial state.
e Input registers xq, ..., x, contain the initial values
e The registers x; with i/ > k 4+ 1 contain value O
N\

Consequence: A machine which does not fulfill the additional condition

(even only for some inputs) does not compute a function at all.

Register Machines: Computable function

Example:
The program:
P :=loop xo do xp :=x» — 1 end; xp := x» + 1;
loop x1 do x; := x3 — 1 end

does not compute a function: At the end, P has value 0 in x; and 1 in x».

34

Register Machines: Computable function

(Definition. A function f is

~

e LOOP computable if there exists a register machine with a LOOP

program, which computes f

35

Register Machines: Computable function

(Definition. A function f is A

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE
program, which computes f

36

Register Machines: Computable function

(Definition. A function f is h

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE
program, which computes f

e GOTO computable if there exists a register machine with a GOTO
program, which computes f

37

Register Machines: Computable function

(Definition. A function f is)

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE
program, which computes f

e GOTO computable if there exists a register machine with a GOTO
program, which computes f

e [M computable if there exists a Turing machine which computes f)

38

Register Machines: Computable function

(Definition. A function f is h

e LOOP computable if there exists a register machine with a LOOP
program, which computes f

e WHILE computable if there exists a register machine with a WHILE
program, which computes f

e GOTO computable if there exists a register machine with a GOTO
program, which computes f

e [M computableif there exists a Turing machine which computes f

- J
LOOP = Set of all LOOP computable functions
WHILE = Set of all WHILE computable functions
GOTO = Set of all GOTO computable functions

TM = Set of all TM computable functions

39

Register Machines: Overview

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

40

LOOP Programs: Syntax

4)
Definition
e Atomic programs: For each register x;:
- X =x+1
- x;i=x; — 1
are LOOP instructions and also LOOP programs.
o If P;, P> are LOOP programs then
— P1; Py is a LOOP program
e If Pisa LOOP program then
— loop x; do P endis a LOOP instruction and a LOOP program.
N\ J

41

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)
Let P be a LOOP program. A(P) is inductively defined as follows:

(1) On atomic programs:

o A(x;:=x;+ 1)(s1,s2) if and only if:
- s2(x) =s1(x) +1
— s2(xj) = s1(xj) for all j # i

42

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)
Let P be a LOOP program. A(P) is inductively defined as follows:

(1) On atomic programs:

o A(x;:=x;+ 1)(s1,s2) if and only if:
- s2(x) =s1(x) +1
— s2(xj) = s1(xj) for all j # i

o A(x;:=x; — 1)(s1,s2) if and only if:

B 52(X_) _ Sl(X,') —1 if Sl(X,') >0
' 0 if s1(x;) = 0

_ — so(xj) = s1(xj) for all j # i

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)

(2) Sequential composition:

e A(P1; P2)(s1,s) if and only if there exists s’ such that:
— A(P1)(s1,5)
— A(P) (s,)

Let P be a LOOP program. A(P) is inductively defined as follows:

44

LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)
Let P be a LOOP program. A(P) is inductively defined as follows:

(3) Loop programs

e A(loop x; do P end)(s1,s2) if and only if there exist states

4,81, - - -+ S, with:
- s1(x;) =n

— 51 =8

— s =35/

— A(P)(s;,s;,1) for 0 < k <n

45

LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)
Let P be a LOOP program. A(P) is inductively defined as follows:

(3) Loop programs

e A(loop x; do P end)(s1,s2) if and only if there exist states

O Y o F
— s1(x;) = n
— 51 =5}
— s =35/
_ — A(P)(s;,s;41) for 0 < k <n y
Remark:

The number of steps in the loop is the value of x; at the beginning of the
loop. Changes to x; during the loop are not relevant.

46

LOOP programs: Semantics

Program end: If there is no next program line, then the program execution

terminates.

We say that a LOOP program terminates on an input ny, ..., ng if its
execution on this input terminates (in the sense above) after a finite number

of steps.

47

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

48

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program
that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)
Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = Py; P> simple

Case 2: P = loop x; do P end

Since the number of steps in the loop (the initial value of x;) is fixed, no infinite loop
is possible.

49

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program
that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)
Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that all subprograms of P terminate on all inputs.

Induction step: We prove that then P terminates on every input as well.

Case 1: P = P1; P simple

Case 2: P = loop x; do P end

Since the number of steps in the loop (the initial value of x;) is fixed, no infinite loop
is possible.

Consequence: All LOOP computable functions are total.

50

LOOP Programs

Additional instructions

o x; =0
loop x; do x; :=x; —1 end
e x; = cforceN
x; = 0;
Xj = x; + 1; \
> C times
Xi:=xi+1
o X = X;
Xp 1= 0;

loop x; do xp:=xp+1 end,
x; ;= 0;

loop x, do x;:=x;+1 end;

(xn new register, not used before)

51

LOOP Programs

Additional instructions
® Xj: != X —+ Xk
Xj 1= Xj;

loop xx do x;:=x;+ 1 end;

o X, = XJ — Xk

Xj 1= Xj;

loop x;, do x;j:=x; —1 end;
® X = Xj*x Xk

x1 = 0;

loop xx do x;:=Xx; +Xx; end;

52

LOOP Programs

Additional instructions

In what follows, xn, Xp4+1,... denote new registers (not used before).

o x; := e1 + e (e1, & arithmetical expressions)
X 1= e1;
Xp 1= €5;
loop x, do x;:=x;+1 end; x, :=0

o x; := e; — e (e, e arithmetical expressions)
X = e
loop x, do x;:=x;—1 end; x, :=0

e x; := e1 x e (e1, e arithmetical expressions)
x; :=0;
Xn .= €1,

loop x, do x; :=x;+ e end; x, :=0

LOOP Programs

Additional instructions

o if X, =0 then P; else P, end
xpn =1 — x;;
Xp+1 = 1 — Xp;
loop x, do P; end;
loop xp11 do P> end;
Xp = 0; xp31 :=0

o if x; <x; then Py else P
Xn 1= Xj — Xj;
if x, =0 then P; else P> end

xp =0

54

Register Machines: Overview

Register machines (Random access machines)
LOOP Programs
WHILE Programs
GOTO Programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

55

WHILE Programs: Syntax

Definition
e Atomic programs: For each register x;:

- x;:=x+1

- Xxj=x; — 1

are WHILE instructions and WHILE programs.

o If P1, P> are WHILE programs then

— P1; P> is a WHILE program
e If Pis a WHILE program then

program.

— while x; 20 do P endis a WHILE instruction and a WHILE

J

56

WHILE Programs: Semantics

Definition (Semantics of WHILE programs)
Let P be a WHILE program. A(P) is inductively defined as follows:

(1) On atomic programs:

o A(x;:=x;+ 1)(s1,s2) if and only if:
— so(x;) = s1(x;) + 1
— s2(xj) = s1(xj) for all j # i
o A(x;:=x; —1)(s1,s) if and only if:
si(x;) —1 ifsi(x;)) >0

- =) =9 if s1(x) = O

L — s2(xj) = s1(xj) for all j # i

57

WHILE Programs: Semantics

Definition (Semantics of WHILE programs)

(2) Sequential composition:

e A(P1; P2)(s1,s) if and only if there exists s’ such that:
— A(P1)(s1,5)
— A(P) (s,)

Let P be a WHILE program. A(P) is inductively defined as follows:

58

WHILE Programs: Semantics

Let P be a WHILE program. A(P) is inductively defined as follows:
(3) While programs

e A(while x; # 0 do P end)(s1, s2) if and only if there exists n € N

and there exist states s, s7, ..., s}, with:
— 51 =5}
— s =5/

— A(P)(s;,s;,1) for 0 < k <n
— 5,(x;)) #0for 0 < k < n
— sp(xi) =0

(Definition (Semantics of WHILE programs ctd.))

59

WHILE Programs: Semantics

Definition (Semantics of WHILE programs ctd.)
Let P be a WHILE program. A(P) is inductively defined as follows:

(3) While programs
e A(while x; # 0 do P end)(s1, s2) if and only if there exists n € N

and there exist states sj, s7, ..., s with:
— 51 =S
— s =5/

— A(P)(s;,s;,1) for 0 < k <n
— 5,(x;)) #0for 0 < k < n
= sp(xi) =0

- J

Remark: The number of loop iterations is not fixed at the beginning.

The contents of P may influence the number of iterations.
Infinite loop are possible.

60

WHILE and LOOP

Theorem. LOOP C WHILE
i.e., every LOOP computable function is also WHILE computable

Proof (Idea) We first show that the LOOP instruction “loop x; do P end”
can be simulated by the following WHILE program P, ie:

while x; #2 0 do ** simulate x,, := x; **
Xp = Xp + L Xpt1 = Xp41 + L x5 1= x5 — 1

end;

while xp,11 # 0 do
Xi = Xi + 1, Xp41 := Xpp1 — 1

end:;

while x, # 0 do ** simulate the loop instruction **

P:x, =x,—1
end

Here xp, x, 41 are new registers (in which at the beginning 0 is stored; not used in P).

61

Partial WHILE computable functions

It is easy to see that the new WHILE program P, ‘simulates’
loop x; do P end |, i.e.

(s,s’) € A(loop x; do P end) iff (s,5") € A(Punile)

Using this, it can be proved (by structural induction) that every LOOP
program can be simulated by a WHILE program.

62

Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs
(are partial functions)

63

Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs

(are partial functions)

Example: P := while x1 20 do x; :=x1+1 end
computes f : N — N with:

0 if n=20

f(n):=
undefined if n#0

64

Partial WHILE computable functions

Non-termination
WHILE programs can contain infinite loops. Therefore:
e WHILE programs do not always terminate

e WHILE computable functions can be undefined for some inputs
(are partial functions)

Notation
e WHILE = The set of all total WHILE computable functions

e WHILEP¥" = The set of all WHILE computable functions
(including the partial ones)

65

Partial WHILE computable functions

Notation

e WHILE = The set of all total WHILE computable functions
e WHILEP? = The set of all WHILE computable functions

(including the partial ones)

Question:
Are all total WHILE computable functions LOOP computable

or LOOP C WHILE?

66

Partial WHILE computable functions

Notation

e WHILE = The set of all total WHILE computable functions

e WHILEP? = The set of all WHILE computable functions
(including the partial ones)

Question:
Are all total WHILE computable functions LOOP computable

or LOOP C WHILE?

Later we will show that:

e one can construct a total TM computable function which cannot be

computed with a LOOP program

e WHILE computable = TM computable

67

