Advanced Topics in Theoretical Computer Science

Part 2: Register machines

$$
8.11 .2012
$$

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata, λ-calculus

2. Register Machines

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

2. Register Machines

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

Register Machines

The register machine gets its name from its one or more "registers":

In place of a Turing machine's tape and head (or tapes and heads) the model uses multiple, uniquely-addressed registers, each of which holds a single positive integer.

Register Machines

In comparison to Turing machines:

- equally powerful fundament for computability theory
- Advantage: Programs are easier to understand

Register Machines

In comparison to Turing machines:

- equally powerful fundament for computability theory
- Advantage: Programs are easier to understand
similar to ...
the imperative kernel of programming languages
pseudo-code

Register Machines

Computation of $a \bmod b$ (pseudocode)
$r:=a ;$
while $r \geq b$ do

$$
r:=r-b
$$

end;
return r

Register Machines

Definition: Questions

Which instructions (if, while, goto?)

Register Machines

Definition: Questions

Which instructions (if, while, goto?)
Which data types? (integers? strings?)

Register Machines

Definition: Questions

Which instructions (if, while, goto?)
Which data types? (integers? strings?)
Which data structures? (arrays?)

Register Machines

Definition: Questions

Which instructions (if, while, goto?)
Which data types? (integers? strings?)
Which data structures? (arrays?)
Which atomic instructions?

Register Machines

Definition: Questions

Which instructions (if, while, goto?)
Which data types? (integers? strings?)
Which data structures? (arrays?)
Which atomic instructions?
Which Input/Output?

Register Machines

Settings (Informally)

- Instruction set:
- Various variants:
loop or while or if + goto

Register Machines

Settings (Informally)

- Instruction set:
- Various variants: loop or while or if + goto
- Data types:
- The natural numbers.

This is the only difference to normal computers

Register Machines

Settings (Informally)

- Instruction set:
- Various variants: loop or while or if + goto
- Data types:
- The natural numbers.

This is the only difference to normal computers

- Data structures
- Unbounded but finite number of registers denoted $x_{1}, x_{2}, x_{3} \ldots, x_{n}$; each register contains a natural number (no arrays, objects, ...)

Register Machines

Settings (Informally)

- Atomic instructions:
- Increment/Decrement a register

Register Machines

Settings (Informally)

- Atomic instructions:
- Increment/Decrement a register
- Input/Output
- Input: n input values in the first n registers

All the other registers are 0 at the beginning.

- Output: In register $n+1$.

Example: LOOP Programs

Syntax

Definition

- Atomic programs: For each register x_{i} :
$-x_{i}:=x_{i}+1$
$-x_{i}:=x_{i}-1$
are LOOP instructions and also LOOP programs.

Example: LOOP Programs

Syntax

Definition

- Atomic programs: For each register x_{i} :
$-x_{i}:=x_{i}+1$
$-x_{i}:=x_{i}-1$
are LOOP instructions and also LOOP programs.
- If P_{1}, P_{2} are LOOP programs then
- $P_{1} ; P_{2}$ is a LOOP program

Example: LOOP Programs

Syntax

Definition

- Atomic programs: For each register x_{i} :
$-x_{i}:=x_{i}+1$
$-x_{i}:=x_{i}-1$
are LOOP instructions and also LOOP programs.
- If P_{1}, P_{2} are LOOP programs then
- $P_{1} ; P_{2}$ is a LOOP program
- If P is a LOOP program then
- loop x_{i} do P end is a LOOP instruction and a LOOP program.

Example: LOOP Programs

Syntax

Definition

- Atomic programs: For each register x_{i} :
$-x_{i}:=x_{i}+1$
$-x_{i}:=x_{i}-1$
are LOOP instructions and also LOOP programs.
- If P_{1}, P_{2} are LOOP programs then
- $P_{1} ; P_{2}$ is a LOOP program
- If P is a LOOP program then
- loop x_{i} do P end is a LOOP program (and a LOOP instruction)

Example: WHILE Programs

Syntax

Definition

- Atomic programs: For each register x_{i} :
$-x_{i}:=x_{i}+1$
$-x_{i}:=x_{i}-1$
are WHILE instructions and also WHILE programs.
- If P_{1}, P_{2} are WHILE programs then
- $P_{1} ; P_{2}$ is a WHILE program
- If P is a WHILE program then
- while $x_{i} \neq 0$ do P end is a WHILE program (and a WHILE instruction)

Example: GOTO Programs

Syntax Indexes (numbers for the lines in the program) $j \geq 0$

Definition

- Atomic programs:
$-x_{i}:=x_{i}+1$
$-x_{i}:=x_{i}-1$
are GOTO instructions for each register x_{i}.
- If x_{i} is a register and j is an index then
- if $x_{i}=0$ goto j is a GOTO instruction.
- If I_{1}, \ldots, I_{k} are GOTO instructions and j_{1}, \ldots, j_{k} are indices then
- $j_{1}: I_{1} ; \ldots ; j_{k}: I_{k}$ is a GOTO program

Register Machines

Definition

A register machine is a machine consisting of the following elements:

- A finite (but unbounded) number of registers $x_{1}, x_{2}, x_{3} \ldots, x_{n}$; each register contains a natural number.
- A LOOP-, WHILE- or GOTO-program.

Register Machines: State

Definition (State of a register machine)
The state s of a register machine is a map:

$$
s:\left\{x_{i} \mid i \in \mathbb{N}\right\} \rightarrow \mathbb{N}
$$

which associates with every register a natural number as value.

Register Machines: State

Definition (Initial state; Input)

Let $m_{1}, \ldots, m_{k} \in \mathbb{N}$ be given as input to a register machine.
In the input state s_{0} we have

- $s_{0}\left(x_{i}\right)=m_{1}$ for all $1 \leq i \leq k$
- $s_{0}\left(x_{i}\right)=0$ for all $i>k$

Register Machines: State

Definition (Initial state; Input)

Let $m_{1}, \ldots, m_{k} \in \mathbb{N}$ be given as input to a register machine.
In the input state s_{0} we have

- $s_{0}\left(x_{i}\right)=m_{1}$ for all $1 \leq i \leq k$
- $s_{0}\left(x_{i}\right)=0$ for all $i>k$

Definition (Output)

If a register machine started with the input $m_{1}, \ldots, m_{k} \in \mathbb{N}$
halts in a state $s_{\text {sfterm }}$ then:

$$
s_{\text {term }}\left(x_{k+1}\right)
$$

is the output of the machine.

Register Machines: Semantics

Definition (The semantics of a register machine)
The semantics $\Delta(P)$ of a register machine P is a (binary) relation

$$
\Delta(P) \subseteq S \times S
$$

on the set S of all states of the machine.
$\left(s_{1}, s_{2}\right) \in \Delta(P)$ means that if P is executed in state s_{1} then it halts in state s_{2}.

Register Machines: Computed function

Definition (Computed function)

A register machine P computes a function

$$
f: \mathbb{N}^{k} \rightarrow \mathbb{N}
$$

if and only if for all $m_{1}, \ldots, m_{k} \in \mathbb{N}$ the following holds:
If we start P with initial state with the input m_{1}, \ldots, m_{k} then:

- P terminates if and only if $f\left(m_{1}, \ldots, m_{k}\right)$ is defined
- If P terminates, then the output of P is $f\left(m_{1}, \ldots, m_{k}\right)$
- Additional condition (next page)

Register Machines: Computed function

Definition (Computed function) (ctd.)

Additional condition

We additionally require that when a register machine halts, all the registers (with the exception of the output register) contain again the values they had in the initial state.

- Input registers x_{1}, \ldots, x_{k} contain the initial values
- The registers x_{i} with $i>k+1$ contain value 0

Register Machines: Computed function

Definition (Computed function) (ctd)

Additional condition

We additionally require that when a register machine halts, all the registers (with the exception of the output register) contain again the values they had in the initial state.

- Input registers x_{1}, \ldots, x_{k} contain the initial values
- The registers x_{i} with $i>k+1$ contain value 0

Consequence: A machine which does not fulfill the additional condition (even only for some inputs) does not compute a function at all.

Register Machines: Computable function

Example:

The program:

$$
\begin{aligned}
P:= & \operatorname{loop} x_{2} \text { do } x_{2}:=x_{2}-1 \text { end; } x_{2}:=x_{2}+1 ; \\
& \text { loop } x_{1} \text { do } x_{1}:=x_{1}-1 \text { end }
\end{aligned}
$$

does not compute a function: At the end, P has value 0 in x_{1} and 1 in x_{2}.

Register Machines: Computable function

Definition. A function f is

- LOOP computable if there exists a register machine with a LOOP program, which computes f

Register Machines: Computable function

Definition. A function f is

- LOOP computable if there exists a register machine with a LOOP program, which computes f
- WHILE computable if there exists a register machine with a WHILE program, which computes f

Register Machines: Computable function

Definition. A function f is

- LOOP computable if there exists a register machine with a LOOP program, which computes f
- WHILE computable if there exists a register machine with a WHILE program, which computes f
- GOTO computable if there exists a register machine with a GOTO program, which computes f

Register Machines: Computable function

Definition. A function f is

- LOOP computable if there exists a register machine with a LOOP program, which computes f
- WHILE computable if there exists a register machine with a WHILE program, which computes f
- GOTO computable if there exists a register machine with a GOTO program, which computes f
- TM computable if there exists a Turing machine which computes f

Register Machines: Computable function

Definition. A function f is

- LOOP computable if there exists a register machine with a LOOP program, which computes f
- WHILE computable if there exists a register machine with a WHILE program, which computes f
- GOTO computable if there exists a register machine with a GOTO program, which computes f
- TM computableif there exists a Turing machine which computes f

LOOP $=$ Set of all LOOP computable functions
WHILE $=$ Set of all WHILE computable functions
GOTO $=$ Set of all GOTO computable functions
TM $=$ Set of all TM computable functions

Register Machines: Overview

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

LOOP Programs: Syntax

Definition

- Atomic programs: For each register x_{i} :
$-x_{i}:=x_{i}+1$
$-x_{i}:=x_{i}-1$
are LOOP instructions and also LOOP programs.
- If P_{1}, P_{2} are LOOP programs then
- $P_{1} ; P_{2}$ is a LOOP program
- If P is a LOOP program then
- loop x_{i} do P end is a LOOP instruction and a LOOP program.

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)
Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:
(1) On atomic programs:

- $\Delta\left(x_{i}:=x_{i}+1\right)\left(s_{1}, s_{2}\right)$ if and only if:
$-s_{2}\left(x_{i}\right)=s_{1}\left(x_{i}\right)+1$
$-s_{2}\left(x_{j}\right)=s_{1}\left(x_{j}\right)$ for all $j \neq i$

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)
Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:
(1) On atomic programs:

- $\Delta\left(x_{i}:=x_{i}+1\right)\left(s_{1}, s_{2}\right)$ if and only if:
$-s_{2}\left(x_{i}\right)=s_{1}\left(x_{i}\right)+1$
$-s_{2}\left(x_{j}\right)=s_{1}\left(x_{j}\right)$ for all $j \neq i$
- $\Delta\left(x_{i}:=x_{i}-1\right)\left(s_{1}, s_{2}\right)$ if and only if:
$-s_{2}\left(x_{i}\right)= \begin{cases}s_{1}\left(x_{i}\right)-1 & \text { if } s_{1}\left(x_{i}\right)>0 \\ 0 & \text { if } s_{1}\left(x_{i}\right)=0\end{cases}$
- $s_{2}\left(x_{j}\right)=s_{1}\left(x_{j}\right)$ for all $j \neq i$

LOOP Programs: Semantics

Definition (Semantics of LOOP programs)
Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:
(2) Sequential composition:

- $\Delta\left(P_{1} ; P_{2}\right)\left(s_{1}, s_{2}\right)$ if and only if there exists s^{\prime} such that:
- $\Delta\left(P_{1}\right)\left(s_{1}, s^{\prime}\right)$
- $\Delta\left(P_{2}\right)\left(s^{\prime}, s_{2}\right)$

LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)
Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:
(3) Loop programs

- Δ (loop x_{i} do P end $)\left(s_{1}, s_{2}\right)$ if and only if there exist states $s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ with:
$-s_{1}\left(x_{i}\right)=n$
- $s_{1}=s_{0}^{\prime}$
$-s_{2}=s_{n}^{\prime}$
- $\Delta(P)\left(s_{k}^{\prime}, s_{k+1}^{\prime}\right)$ for $0 \leq k<n$

LOOP Programs: Semantics

Definition (Semantics of LOOP programs ctd.)
Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:
(3) Loop programs

- Δ (loop x_{i} do P end) $\left(s_{1}, s_{2}\right)$ if and only if there exist states $s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ with:
$-s_{1}\left(x_{i}\right)=n$
$-s_{1}=s_{0}^{\prime}$
$-s_{2}=s_{n}^{\prime}$
- $\Delta(P)\left(s_{k}^{\prime}, s_{k+1}^{\prime}\right)$ for $0 \leq k<n$

Remark:
The number of steps in the loop is the value of x_{i} at the beginning of the loop. Changes to x_{i} during the loop are not relevant.

LOOP programs: Semantics

Program end: If there is no next program line, then the program execution terminates.

We say that a LOOP program terminates on an input n_{1}, \ldots, n_{k} if its execution on this input terminates (in the sense above) after a finite number of steps.

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

LOOP computable functions

Theorem. Every LOOP program terminates for every input.
Proof (Idea): We prove by induction on the structure of a LOOP program that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)
Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that all subprograms of P terminate on all inputs.
Induction step: We prove that then P terminates on every input as well.
Case 1: $P=P_{1} ; P_{2} \quad$ simple
Case 2: $P=$ loop x_{i} do P end
Since the number of steps in the loop (the initial value of x_{i}) is fixed, no infinite loop is possible.

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)
Let P be a non-atomic LOOP program.
Induction hypothesis: We assume that all subprograms of P terminate on all inputs.
Induction step: We prove that then P terminates on every input as well.
Case 1: $P=P_{1} ; P_{2} \quad$ simple
Case 2: $P=$ loop x_{i} do P end
Since the number of steps in the loop (the initial value of x_{i}) is fixed, no infinite loop is possible.

Consequence: All LOOP computable functions are total.

LOOP Programs

Additional instructions

- $x_{i}:=0$
loop x_{i} do $x_{i}:=x_{i}-1$ end
- $x_{i}:=c$ for $c \in \mathbb{N}$

$$
\left.\begin{array}{l}
x_{i}:=0 \\
x_{i}:=x_{i}+1 ; \\
\ldots \\
x_{i}:=x_{i}+1
\end{array}\right\} \quad c \text { times }
$$

- $x_{i}:=x_{j}$
$x_{n}:=0 ;$
loop x_{j} do $x_{n}:=x_{n}+1$ end;
$x_{i}:=0$;
loop x_{n} do $x_{i}:=x_{i}+1$ end;
(x_{n} new register, not used before)

LOOP Programs

Additional instructions

- $x_{i}:=x_{j}+x_{k}$
$x_{i}:=x_{j}$;
loop x_{k} do $x_{i}:=x_{i}+1$ end;
- $x_{i}:=x_{j}-x_{k}$
$x_{i}:=x_{j}$;
loop x_{k} do $x_{i}:=x_{i}-1$ end;
- $x_{i}:=x_{j} * x_{k}$
$x_{1}:=0$;
loop x_{k} do $x_{i}:=x_{i}+x_{j}$ end;

LOOP Programs

Additional instructions

In what follows, x_{n}, x_{n+1}, \ldots denote new registers (not used before).

- $x_{i}:=e_{1}+e_{2}\left(e_{1}, e_{2}\right.$ arithmetical expressions)
$x_{i}:=e_{1}$;
$x_{n}:=e_{2}$;
loop x_{n} do $x_{i}:=x_{i}+1$ end; $x_{n}:=0$
- $x_{i}:=e_{1}-e_{2}\left(e_{1}, e_{2}\right.$ arithmetical expressions)
$x_{i}:=e_{1} ;$
$x_{n}:=e_{2} ;$
loop x_{n} do $x_{i}:=x_{i}-1$ end; $x_{n}:=0$
- $x_{i}:=e_{1} * e_{2}\left(e_{1}, e_{2}\right.$ arithmetical expressions)
$x_{i}:=0$;
$x_{n}:=e_{1}$;
loop x_{n} do $x_{i}:=x_{i}+e_{2}$ end; $x_{n}:=0$

LOOP Programs

Additional instructions

- if $x_{i}=0$ then P_{1} else P_{2} end
$x_{n}:=1-x_{i} ;$
$x_{n+1}:=1-x_{n}$;
loop x_{n} do P_{1} end;
loop x_{n+1} do P_{2} end;
$x_{n}:=0 ; x_{n+1}:=0$
- if $x_{i} \leq x_{j}$ then P_{1} else P_{2}
$x_{n}:=x_{i}-x_{j} ;$
if $x_{n}=0$ then P_{1} else P_{2} end
$x_{n}:=0$

Register Machines: Overview

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

WHILE Programs: Syntax

Definition

- Atomic programs: For each register x_{i} :
$-x_{i}:=x_{i}+1$
$-x_{i}:=x_{i}-1$
are WHILE instructions and WHILE programs.
- If P_{1}, P_{2} are WHILE programs then
- $P_{1} ; P_{2}$ is a WHILE program
- If P is a WHILE program then
- while $x_{i} \neq 0$ do P end is a WHILE instruction and a WHILE program.

WHILE Programs: Semantics

Definition (Semantics of WHILE programs)
Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:
(1) On atomic programs:

- $\Delta\left(x_{i}:=x_{i}+1\right)\left(s_{1}, s_{2}\right)$ if and only if:
$-s_{2}\left(x_{i}\right)=s_{1}\left(x_{i}\right)+1$
$-s_{2}\left(x_{j}\right)=s_{1}\left(x_{j}\right)$ for all $j \neq i$
- $\Delta\left(x_{i}:=x_{i}-1\right)\left(s_{1}, s_{2}\right)$ if and only if:
$-s_{2}\left(x_{i}\right)= \begin{cases}s_{1}\left(x_{i}\right)-1 & \text { if } s_{1}\left(x_{i}\right)>0 \\ 0 & \text { if } s_{1}\left(x_{i}\right)=0\end{cases}$
- $s_{2}\left(x_{j}\right)=s_{1}\left(x_{j}\right)$ for all $j \neq i$

WHILE Programs: Semantics

Definition (Semantics of WHILE programs)
Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:
(2) Sequential composition:

- $\Delta\left(P_{1} ; P_{2}\right)\left(s_{1}, s_{2}\right)$ if and only if there exists s^{\prime} such that:
- $\Delta\left(P_{1}\right)\left(s_{1}, s^{\prime}\right)$
- $\Delta\left(P_{2}\right)\left(s^{\prime}, s_{2}\right)$

WHILE Programs: Semantics

Definition (Semantics of WHILE programs ctd.)
Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:
(3) While programs

- $\Delta\left(\right.$ while $x_{i} \neq 0$ do P end $)\left(s_{1}, s_{2}\right)$ if and only if there exists $n \in \mathbb{N}$ and there exist states $s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ with:
$-s_{1}=s_{0}^{\prime}$
$-s_{2}=s_{n}^{\prime}$
$-\Delta(P)\left(s_{k}^{\prime}, s_{k+1}^{\prime}\right)$ for $0 \leq k<n$
$-s_{k}^{\prime}\left(x_{i}\right) \neq 0$ for $0 \leq k<n$
$-s_{n}^{\prime}\left(x_{i}\right)=0$

WHILE Programs: Semantics

Definition (Semantics of WHILE programs ctd.)
Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:
(3) While programs

- $\Delta\left(\right.$ while $x_{i} \neq 0$ do P end $)\left(s_{1}, s_{2}\right)$ if and only if there exists $n \in \mathbb{N}$ and there exist states $s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime}$ with:
$-s_{1}=s_{0}^{\prime}$
$-s_{2}=s_{n}^{\prime}$
$-\Delta(P)\left(s_{k}^{\prime}, s_{k+1}^{\prime}\right)$ for $0 \leq k<n$
$-s_{k}^{\prime}\left(x_{i}\right) \neq 0$ for $0 \leq k<n$
$-s_{n}^{\prime}\left(x_{i}\right)=0$
Remark: The number of loop iterations is not fixed at the beginning. The contents of P may influence the number of iterations. Infinite loop are possible.

WHILE and LOOP

```
Theorem. LOOP \subseteq WHILE
i.e., every LOOP computable function is also WHILE computable
```

Proof (Idea) We first show that the LOOP instruction "loop x_{i} do P end" can be simulated by the following WHILE program $P_{\text {while }}$:

```
while }\mp@subsup{x}{i}{}\not=0\mathrm{ do
    xn}:=\mp@subsup{x}{n}{}+1;\mp@subsup{x}{n+1}{}:=\mp@subsup{x}{n+1}{}+1;\mp@subsup{x}{i}{}:=\mp@subsup{x}{i}{}-
    end;
    while }\mp@subsup{x}{n+1}{}\not=0\mathrm{ do
        xi}:=\mp@subsup{x}{i}{}+1;\mp@subsup{x}{n+1}{}:=\mp@subsup{x}{n+1}{}-
    end;
        P;}\mp@subsup{x}{n}{}:=\mp@subsup{x}{n}{}-
    end
```

 ** simulate \(x_{n}:=x_{i}{ }^{* *}\)
 while \(x_{n} \neq 0\) do \(\quad * *\) simulate the loop instruction \({ }^{* *}\)
 Here x_{n}, x_{n+1} are new registers (in which at the beginning 0 is stored; not used in P).

Partial WHILE computable functions

It is easy to see that the new WHILE program $P_{\text {while }}$ "simulates" loop x_{i} do P end, i.e.

$$
\left(s, s^{\prime}\right) \in \Delta\left(\text { loop } x_{i} \text { do } P \text { end }\right) \text { iff }\left(s, s^{\prime}\right) \in \Delta\left(P_{\text {while }}\right)
$$

Using this, it can be proved (by structural induction) that every LOOP program can be simulated by a WHILE program.

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Example: $P:=$ while $x_{1} \neq 0$ do $x_{1}:=x_{1}+1$ end computes $f: \mathbb{N} \rightarrow \mathbb{N}$ with:

$$
f(n):= \begin{cases}0 & \text { if } n=0 \\ \text { undefined } & \text { if } n \neq 0\end{cases}
$$

Partial WHILE computable functions

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Notation

- WHILE $=$ The set of all total WHILE computable functions
- WHILE $^{\text {part }}=$ The set of all WHILE computable functions (including the partial ones)

Partial WHILE computable functions

Notation

- WHILE $=$ The set of all total WHILE computable functions
- WHILE ${ }^{\text {part }}=$ The set of all WHILE computable functions (including the partial ones)

Question:
Are all total WHILE computable functions LOOP computable or LOOP \subset WHILE?

Partial WHILE computable functions

Notation

- WHILE $=$ The set of all total WHILE computable functions
- WHILE ${ }^{\text {part }}=$ The set of all WHILE computable functions (including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable or LOOP \subset WHILE?

Later we will show that:

- one can construct a total TM computable function which cannot be computed with a LOOP program
- WHILE computable $=$ TM computable

