Advanced Topics in Theoretical Computer Science

Part 2: Register machines

8.11.2012

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- ullet Other computation models: e.g. Büchi Automata, λ -calculus

Contents

- Recapitulation: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- ullet Other computation models: e.g. Büchi Automata, λ -calculus

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

The register machine gets its name from its one or more "registers":

In place of a Turing machine's tape and head (or tapes and heads) the model uses multiple, uniquely-addressed registers, each of which holds a single positive integer.

In comparison to Turing machines:

- equally powerful fundament for computability theory
- Advantage: Programs are easier to understand

In comparison to Turing machines:

- equally powerful fundament for computability theory
- Advantage: Programs are easier to understand

similar to ...
the imperative kernel of programming languages
pseudo-code

Computation of a mod b (pseudocode)

```
r := a;
while r \ge b do
r := r - b
end;
return r
```

Definition: Questions

Which instructions (if, while, goto?)

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Which atomic instructions?

Definition: Questions

Which instructions (if, while, goto?)

Which data types? (integers? strings?)

Which data structures? (arrays?)

Which atomic instructions?

Which Input/Output?

- Instruction set:
 - Various variants:loop or while or if + goto

- Instruction set:
 - Various variants:loop or while or if + goto
- Data types:
 - The natural numbers.
 This is the only difference to normal computers

- Instruction set:
 - Various variants:loop or while or if + goto
- Data types:
 - The natural numbers.
 This is the only difference to normal computers
- Data structures
 - Unbounded but finite number of registers denoted $x_1, x_2, x_3, \ldots, x_n$; each register contains a natural number (no arrays, objects, ...)

- Atomic instructions:
 - Increment/Decrement a register

- Atomic instructions:
 - Increment/Decrement a register
- Input/Output
 - Input: n input values in the first n registers
 All the other registers are 0 at the beginning.
 - Output: In register n + 1.

Syntax

Definition

- Atomic programs: For each register x_i :
 - $x_i := x_i + 1$
 - $x_i := x_i 1$

Syntax

Definition

• Atomic programs: For each register x_i :

$$- x_i := x_i + 1$$

$$- x_i := x_i - 1$$

- If P_1 , P_2 are LOOP programs then
 - $-P_1$; P_2 is a LOOP program

Syntax

Definition

- Atomic programs: For each register x_i :
 - $x_i := x_i + 1$
 - $x_i := x_i 1$

- If P_1 , P_2 are LOOP programs then
 - $-P_1$; P_2 is a LOOP program
- If *P* is a LOOP program then
 - loop x_i do P end is a LOOP instruction and a LOOP program.

Syntax

Definition

• Atomic programs: For each register x_i :

$$- x_i := x_i + 1$$

$$- x_i := x_i - 1$$

- If P_1 , P_2 are LOOP programs then
 - $-P_1$; P_2 is a LOOP program
- If *P* is a LOOP program then
 - loop x_i do P end is a LOOP program (and a LOOP instruction)

Example: WHILE Programs

Syntax

Definition

- Atomic programs: For each register x_i :
 - $x_i := x_i + 1$
 - $x_i := x_i 1$

are WHILE instructions and also WHILE programs.

- If P_1 , P_2 are WHILE programs then
 - $-P_1$; P_2 is a WHILE program
- If *P* is a WHILE program then
 - while $x_i \neq 0$ do P end is a WHILE program (and a WHILE instruction)

Syntax Indexes (numbers for the lines in the program) $j \geq 0$

Definition

- Atomic programs:
 - $x_i := x_i + 1$
 - $x_i := x_i 1$

are GOTO instructions for each register x_i .

- If x_i is a register and j is an index then
 - if $x_i = 0$ goto j is a GOTO instruction.
- If I_1, \ldots, I_k are GOTO instructions and j_1, \ldots, j_k are indices then
 - $-j_1:I_1;\ldots;j_k:I_k$ is a GOTO program

Definition

A register machine is a machine consisting of the following elements:

- A finite (but unbounded) number of registers $x_1, x_2, x_3, \dots, x_n$; each register contains a natural number.
- A LOOP-, WHILE- or GOTO-program.

Register Machines: State

Definition (State of a register machine)

The state s of a register machine is a map:

$$s: \{x_i \mid i \in \mathbb{N}\} \to \mathbb{N}$$

which associates with every register a natural number as value.

Register Machines: State

Definition (Initial state; Input)

Let $m_1, \ldots, m_k \in \mathbb{N}$ be given as input to a register machine.

In the input state s_0 we have

- $s_0(x_i) = m_1$ for all $1 \le i \le k$
- $s_0(x_i) = 0$ for all i > k

Register Machines: State

Definition (Initial state; Input)

Let $m_1, \ldots, m_k \in \mathbb{N}$ be given as input to a register machine. In the input state s_0 we have

- $s_0(x_i) = m_1$ for all $1 \le i \le k$
- $s_0(x_i) = 0$ for all i > k

Definition (Output)

If a register machine started with the input $m_1, \ldots, m_k \in \mathbb{N}$ halts in a state s_{sfterm} then:

$$s_{\text{term}}(x_{k+1})$$

is the output of the machine.

Register Machines: Semantics

Definition (The semantics of a register machine)

The semantics $\Delta(P)$ of a register machine P is a (binary) relation

$$\Delta(P) \subseteq S \times S$$

on the set S of all states of the machine.

 $(s_1, s_2) \in \Delta(P)$ means that if P is executed in state s_1 then it halts in state s_2 .

Register Machines: Computed function

Definition (Computed function)

A register machine P computes a function

$$f:\mathbb{N}^k \to \mathbb{N}$$

if and only if for all $m_1, \ldots, m_k \in \mathbb{N}$ the following holds:

If we start P with initial state with the input m_1, \ldots, m_k then:

- P terminates if and only if $f(m_1, ..., m_k)$ is defined
- If P terminates, then the output of P is $f(m_1, \ldots, m_k)$
- Additional condition (next page)

Register Machines: Computed function

Definition (Computed function) (ctd.)

Additional condition

We additionally require that when a register machine halts, all the registers (with the exception of the output register) contain again the values they had in the initial state.

- Input registers x_1, \ldots, x_k contain the initial values
- The registers x_i with i > k + 1 contain value 0

Register Machines: Computed function

Definition (Computed function) (ctd)

Additional condition

We additionally require that when a register machine halts, all the registers (with the exception of the output register) contain again the values they had in the initial state.

- Input registers x_1, \ldots, x_k contain the initial values
- The registers x_i with i > k + 1 contain value 0

Consequence: A machine which does not fulfill the additional condition (even only for some inputs) does not compute a function at all.

Register Machines: Computable function

Example:

The program:

$$P := \mathsf{loop}\ x_2\ \mathsf{do}\ x_2 := x_2 - 1\ \mathsf{end};\ x_2 := x_2 + 1;$$
 $\mathsf{loop}\ x_1\ \mathsf{do}\ x_1 := x_1 - 1\ \mathsf{end}$

does not compute a function: At the end, P has value 0 in x_1 and 1 in x_2 .

Register Machines: Computable function

Definition. A function f is

• LOOP computable if there exists a register machine with a LOOP program, which computes *f*

Register Machines: Computable function

Definition. A function f is

- LOOP computable if there exists a register machine with a LOOP program, which computes *f*
- WHILE computable if there exists a register machine with a WHILE program, which computes *f*

Register Machines: Computable function

Definition. A function *f* is

- LOOP computable if there exists a register machine with a LOOP program, which computes *f*
- WHILE computable if there exists a register machine with a WHILE program, which computes *f*
- GOTO computable if there exists a register machine with a GOTO program, which computes *f*

Register Machines: Computable function

Definition. A function *f* is

- LOOP computable if there exists a register machine with a LOOP program, which computes *f*
- WHILE computable if there exists a register machine with a WHILE program, which computes *f*
- GOTO computable if there exists a register machine with a GOTO program, which computes *f*
- \bullet TM computable if there exists a Turing machine which computes f

Register Machines: Computable function

Definition. A function *f* is

- LOOP computable if there exists a register machine with a LOOP program, which computes f
- WHILE computable if there exists a register machine with a WHILE program, which computes f
- GOTO computable if there exists a register machine with a GOTO program, which computes f
- \bullet TM computable if there exists a Turing machine which computes f

```
LOOP = Set of all LOOP computable functions

WHILE = Set of all WHILE computable functions

GOTO = Set of all GOTO computable functions

TM = Set of all TM computable functions
```

Register Machines: Overview

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

LOOP Programs: Syntax

Definition

- Atomic programs: For each register x_i :
 - $x_i := x_i + 1$
 - $x_i := x_i 1$

are LOOP instructions and also LOOP programs.

- If P_1 , P_2 are LOOP programs then
 - $-P_1$; P_2 is a LOOP program
- If *P* is a LOOP program then
 - loop x_i do P end is a LOOP instruction and a LOOP program.

Definition (Semantics of LOOP programs)

Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:

(1) On atomic programs:

- $\Delta(x_i := x_i + 1)(s_1, s_2)$ if and only if:
 - $s_2(x_i) = s_1(x_i) + 1$
 - $s_2(x_j) = s_1(x_j)$ for all $j \neq i$

Definition (Semantics of LOOP programs)

Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:

(1) On atomic programs:

- $\Delta(x_i := x_i + 1)(s_1, s_2)$ if and only if:
 - $s_2(x_i) = s_1(x_i) + 1$
 - $s_2(x_j) = s_1(x_j)$ for all $j \neq i$
- $\Delta(x_i := x_i 1)(s_1, s_2)$ if and only if:

$$-s_2(x_i) = \begin{cases} s_1(x_i) - 1 & \text{if } s_1(x_i) > 0 \\ 0 & \text{if } s_1(x_i) = 0 \end{cases}$$

-
$$s_2(x_j) = s_1(x_j)$$
 for all $j \neq i$

Definition (Semantics of LOOP programs)

Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:

(2) Sequential composition:

- $\Delta(P_1; P_2)(s_1, s_2)$ if and only if there exists s' such that:
 - $-\Delta(P_1)(s_1,s')$
 - $-\Delta(P_2)(s',s_2)$

Definition (Semantics of LOOP programs ctd.)

Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:

(3) Loop programs

• $\Delta(\text{loop } x_i \text{ do } P \text{ end})(s_1, s_2)$ if and only if there exist states s'_0, s'_1, \ldots, s'_n with:

$$-s_1(x_i)=n$$

$$- s_1 = s'_0$$

$$- s_2 = s_n'$$

$$- \Delta(P)(s'_k, s'_{k+1})$$
 for $0 \le k < n$

Definition (Semantics of LOOP programs ctd.)

Let P be a LOOP program. $\Delta(P)$ is inductively defined as follows:

(3) Loop programs

• $\Delta(\text{loop } x_i \text{ do } P \text{ end})(s_1, s_2)$ if and only if there exist states s'_0, s'_1, \ldots, s'_n with:

$$- s_1(x_i) = n$$

$$- s_1 = s'_0$$

$$- s_2 = s_n'$$

$$- \Delta(P)(s'_k, s'_{k+1})$$
 for $0 \le k < n$

Remark:

The number of steps in the loop is the value of x_i at the beginning of the loop. Changes to x_i during the loop are not relevant.

Program end: If there is no next program line, then the program execution terminates.

We say that a LOOP program terminates on an input n_1, \ldots, n_k if its execution on this input terminates (in the sense above) after a finite number of steps.

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that all subprograms of *P* terminate on all inputs.

Induction step: We prove that then *P* terminates on every input as well.

Case 1: $P = P_1$; P_2 simple

Case 2: $P = \text{loop } x_i \text{ do } P \text{ end }$

Since the number of steps in the loop (the initial value of x_i) is fixed, no infinite loop is possible.

LOOP computable functions

Theorem. Every LOOP program terminates for every input.

Proof (Idea): We prove by induction on the structure of a LOOP program that all LOOP programs terminate:

Induction basis: Show that all atomic programs terminate (simple)

Let P be a non-atomic LOOP program.

Induction hypothesis: We assume that all subprograms of *P* terminate on all inputs.

Induction step: We prove that then *P* terminates on every input as well.

Case 1: $P = P_1$; P_2 simple

Case 2: $P = loop x_i do P end$

Since the number of steps in the loop (the initial value of x_i) is fixed, no infinite loop is possible.

Consequence: All LOOP computable functions are total.

Additional instructions

- $\bullet \ \ x_i := 0$ loop x_i do $x_i := x_i 1$ end
- $egin{aligned} ullet & x_i := c ext{ for } c \in \mathbb{N} \ & x_i := 0; \ & x_i := x_i + 1; \ & \dots \ & x_i := x_i + 1 \end{aligned}
 ight\} c ext{ times}$
- $x_i := x_j$ $x_n := 0;$ $(x_n \text{ new register, not used before})$ loop x_j do $x_n := x_n + 1$ end; $x_i := 0;$ loop x_n do $x_i := x_i + 1$ end;

Additional instructions

- $x_i := x_j + x_k$ $x_i := x_j$; loop x_k do $x_i := x_i + 1$ end;
- $x_i := x_j x_k$ $x_i := x_j$; loop x_k do $x_i := x_i - 1$ end;
- $x_i := x_j * x_k$ $x_1 := 0;$ loop x_k do $x_i := x_i + x_j$ end;

Additional instructions

In what follows, x_n, x_{n+1}, \ldots denote new registers (not used before).

- $x_i := e_1 + e_2$ (e_1 , e_2 arithmetical expressions) $x_i := e_1$; $x_n := e_2$; loop x_n do $x_i := x_i + 1$ end; $x_n := 0$
- $x_i := e_1 e_2$ (e_1 , e_2 arithmetical expressions) $x_i := e_1$; $x_n := e_2$; loop x_n do $x_i := x_i - 1$ end; $x_n := 0$
- $x_i := e_1 * e_2$ (e_1 , e_2 arithmetical expressions) $x_i := 0$; $x_n := e_1$; loop x_n do $x_i := x_i + e_2$ end; $x_n := 0$

Additional instructions

- if $x_i = 0$ then P_1 else P_2 end $x_n := 1 x_i$; $x_{n+1} := 1 x_n$; loop x_n do P_1 end; loop x_{n+1} do P_2 end; $x_n := 0$; $x_{n+1} := 0$
- if $x_i \le x_j$ then P_1 else P_2 $x_n := x_i x_j;$ if $x_n = 0$ then P_1 else P_2 end $x_n := 0$

Register Machines: Overview

- Register machines (Random access machines)
- LOOP Programs
- WHILE Programs
- GOTO Programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

WHILE Programs: Syntax

Definition

- Atomic programs: For each register x_i :
 - $x_i := x_i + 1$
 - $x_i := x_i 1$

are WHILE instructions and WHILE programs.

- If P_1 , P_2 are WHILE programs then
 - P_1 ; P_2 is a WHILE program
- If *P* is a WHILE program then
 - while $x_i \neq 0$ do P end is a WHILE instruction and a WHILE program.

Definition (Semantics of WHILE programs)

Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:

(1) On atomic programs:

- $\Delta(x_i := x_i + 1)(s_1, s_2)$ if and only if:
 - $s_2(x_i) = s_1(x_i) + 1$
 - $s_2(x_j) = s_1(x_j)$ for all $j \neq i$
- $\Delta(x_i := x_i 1)(s_1, s_2)$ if and only if:

$$- \ s_2(x_i) = \left\{ egin{array}{ll} s_1(x_i) - 1 & ext{if } s_1(x_i) > 0 \ 0 & ext{if } s_1(x_i) = 0 \end{array}
ight.$$

-
$$s_2(x_j) = s_1(x_j)$$
 for all $j \neq i$

Definition (Semantics of WHILE programs)

Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:

(2) Sequential composition:

- $\Delta(P_1; P_2)(s_1, s_2)$ if and only if there exists s' such that:
 - $-\Delta(P_1)(s_1,s')$
 - $-\Delta(P_2)(s',s_2)$

Definition (Semantics of WHILE programs ctd.)

Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:

(3) While programs

• Δ (while $x_i \neq 0$ do P end) (s_1, s_2) if and only if there exists $n \in \mathbb{N}$ and there exist states s'_0, s'_1, \ldots, s'_n with:

$$-s_1=s_0'$$

$$- s_2 = s'_n$$

$$-\Delta(P)(s'_k, s'_{k+1})$$
 for $0 \le k < n$

$$-s'_k(x_i) \neq 0$$
 for $0 \leq k < n$

$$- s_n'(x_i) = 0$$

Definition (Semantics of WHILE programs ctd.)

Let P be a WHILE program. $\Delta(P)$ is inductively defined as follows:

(3) While programs

• Δ (while $x_i \neq 0$ do P end) (s_1, s_2) if and only if there exists $n \in \mathbb{N}$ and there exist states s'_0, s'_1, \ldots, s'_n with:

$$- s_1 = s'_0$$

$$- s_2 = s'_n$$

$$-\Delta(P)(s'_k, s'_{k+1})$$
 for $0 \le k < n$

$$-s'_k(x_i) \neq 0$$
 for $0 \leq k < n$

$$- s_n'(x_i) = 0$$

Remark: The number of loop iterations is not fixed at the beginning.

The contents of P may influence the number of iterations.

Infinite loop are possible.

WHILE and LOOP

Theorem. LOOP ⊆ WHILE

i.e., every LOOP computable function is also WHILE computable

Proof (Idea) We first show that the LOOP instruction "loop x_i do P end" can be simulated by the following WHILE program P_{while} :

Here x_n, x_{n+1} are new registers (in which at the beginning 0 is stored; not used in P).

It is easy to see that the new WHILE program P_{while} "simulates" loop x_i do P end , i.e.

$$(s, s') \in \Delta(\text{loop } x_i \text{ do } P \text{ end}) \text{ iff } (s, s') \in \Delta(P_{\text{while}})$$

Using this, it can be proved (by structural induction) that every LOOP program can be simulated by a WHILE program.

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Example: $P := \text{while } x_1 \neq 0 \text{ do } x_1 := x_1 + 1 \text{ end}$

computes $f: \mathbb{N} \to \mathbb{N}$ with:

$$f(n) := \begin{cases} 0 & \text{if } n = 0 \\ \text{undefined} & \text{if } n \neq 0 \end{cases}$$

Non-termination

WHILE programs can contain infinite loops. Therefore:

- WHILE programs do not always terminate
- WHILE computable functions can be undefined for some inputs (are partial functions)

Notation

- WHILE = The set of all total WHILE computable functions
- WHILE^{part} = The set of all WHILE computable functions (including the partial ones)

Notation

- WHILE = The set of all total WHILE computable functions
- WHILE^{part} = The set of all WHILE computable functions (including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable or LOOP \subset WHILE?

Notation

- WHILE = The set of all total WHILE computable functions
- WHILE^{part} = The set of all WHILE computable functions (including the partial ones)

Question:

Are all total WHILE computable functions LOOP computable or LOOP \subset WHILE?

Later we will show that:

- one can construct a total TM computable function which cannot be computed with a LOOP program
- WHILE computable = TM computable