Advanced Topics in Theoretical Computer Science

Part 2: Register machines (2)

15.11.2012

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Until now

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

Today

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

Today

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

GOTO Programs: Syntax

Definition: An index (line number) is a natural number $j \ge 0$.

GOTO Programs: Syntax

Definition: An index (line number) is a natural number $j \geq 0$.

Definition

• Atomic programs:

```
egin{aligned} x_i &:= x_i + 1 \ x_i &:= x_i - 1 \end{aligned} are GOTO instructions for each register x_i.
```

- If x_i is a register and j is an index then if $x_i = 0$ goto j is a GOTO instruction.
- If I_1, \ldots, I_k are GOTO instructions and j_1, \ldots, j_k are indices then $j_1 : I_1; \ldots; j_k : I_k$ is a GOTO program

Differences between WHILE and GOTO

Different structure:

- WHILE programs contain WHILE programs
 Recursive definition of syntax and semantics.
- GOTO programs are a list of GOTO instructions
 Non recursive definition of syntax and semantics.

Let *P* be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

Definition. $\Delta(P)(s_1, s_2)$ holds if and only if for every $n \geq 0$ there exist:

- states s'_0, \ldots, s'_n
- indices z_0, \ldots, z_n

such that the following hold:

(1a)
$$s_0' = s_1$$

(1b)
$$s'_n = s_2$$

$$(1\mathsf{c}) \ \ z_0 = j_1$$

(1c)
$$z_0 = j_1$$

(1d) $z_n = j_{k+1}$

and

(continuation on next page)

Let P be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

Definition (ctd.). $\Delta(P)(s_1, s_2)$ holds if and only if for every $n \geq 0$ there exist:

- states s'_0, \ldots, s'_n
- indices z_0, \ldots, z_n

such that the following hold:

(2) For $0 \le l \le n$, if $j_s : l_s$ is the line in P with $j_s = z_l$:

(2a) if
$$I_s$$
 is $x_i := x_i + 1$ then: $s'_{i+1}(x_i) = s'_i(x_i) + 1$ $s'_{i+1}(x_j) = s'_i(x_j)$ for $j \neq i$ $z_{i+1} = j_{s+1}$

and

(continuation on next page)

Let P be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

Definition (ctd.). $\Delta(P)(s_1, s_2)$ holds if and only if for every $n \geq 0$ there exist:

- states s'_0, \ldots, s'_n
- indices z_0, \ldots, z_n

such that the following hold:

(2) For
$$0 \le l \le n$$
, if $j_s : l_s$ is the line in P with $j_s = z_l$:

(2b) if l_s is $x_i := x_i - 1$ then: $s'_{i+1}(x_i) = \begin{cases} s'_i(x_i) - 1 & \text{if } s'_i(x_i) > 0 \\ 0 & \text{if } s'_i(x_i) = 0 \end{cases}$
 $s'_{i+1}(x_j) = s'_i(x_j) \text{ for } j \ne i$
 $z_{i+1} = j_{s+1}$

and

(continuation on next page)

Let *P* be a GOTO program of the form:

$$P = j_1 : I_1; \ j_2 : I_2; \ \ldots; \ j_k : I_k$$

Let j_{k+1} be an index which does not occur in P (program end).

Definition (ctd.). $\Delta(P)(s_1, s_2)$ holds if and only if for every $n \geq 0$ there exist:

- states s'_0, ..., s'_n
 indices z₀, ..., z_n

such that the following hold:

(2) For $0 \le l \le n$, if $j_s : l_s$ is the line in P with $j_s = z_l$: (2c) if I_s is if $x_i = 0$ goto j_{goto} then: $s'_{i+1} = s'_i$

$$z_{i+1} = \left\{ egin{array}{ll} j_{
m goto} & ext{if } x_i = 0 \ j_{s+1} & ext{otherwise} \end{array}
ight.$$

Remark

The number of line changes (iterations) is not fixed at the beginning. Infinite loops are possible.

Remark

The number of line changes (iterations) is not fixed at the beginning. Infinite loops are possible.

Notation

- GOTO = The set of all total GOTO computable functions
- GOTO^{part} = The set of all GOTO computable functions (including the partial ones)

Theorem.

- (1) WHILE = GOTO
- (2) $WHILE^{part} = GOTO^{part}$

Theorem.

- (1) WHILE = GOTO
- (2) $WHILE^{part} = GOTO^{part}$

Proof:

To show:

I. WHILE \subseteq GOTO and WHILE^{part} \subseteq GOTO^{part}

II. GOTO ⊆ WHILE and GOTO^{part} ⊆ WHILE^{part}

Theorem.

- (1) WHILE = GOTO
 (2) WHILE^{part} = GOTO^{part}

Proof:

I. WHILE \subseteq GOTO and WHILE^{part} \subseteq GOTO^{part}

It is sufficient to prove that while $x_i \neq 0$ do P end can be simulated with GOTO instructions.

We can assume without loss of generality that P does not contain any while (we can replace the occurrences of "while" from inside out).

```
Proof (ctd.)  \text{while } x_i \neq 0 \text{ do } P \text{ end}  is replaced by:  j_1: \quad \text{if } x_i = 0 \text{ goto } j_3;   P';   j_2: \quad \text{if } x_n = 0 \text{ goto } j_1;  ** Since x_n = 0 unconditional jump **  j_3: \quad x_n := x_n - 1
```

where:

- x_n is a new register, which was not used before.
- P' is obtained from P by assigning to all instructions without an index an arbitrary new index.

```
Proof (ctd.)  \text{while } x_i \neq 0 \text{ do } P \text{ end}  is replaced by:  j_1: \quad \text{if } x_i = 0 \text{ goto } j_3;   P';   j_2: \quad \text{if } x_n = 0 \text{ goto } j_1;  ** Since x_n = 0 unconditional jump **  j_3: \quad x_n := x_n - 1
```

where:

- x_n is a new register, which was not used before.
- P' is obtained from P by assigning to all instructions without an index an arbitrary new index.

Remark: Totality is preserved by this transformation. Semantics is the same.

Proof (ctd.)

Using the fact that while $x_i \neq 0$ do P end can be simulated by a GOTO program we can show (by structural induction) that every WHILE program can be simulated by a GOTO program.

Theorem.

- (1) WHILE = GOTO
- (2) $WHILE^{part} = GOTO^{part}$

Proof:

II. GOTO \subseteq WHILE and GOTO^{part} \subseteq WHILE^{part}

It is sufficient to prove that every GOTO program can be simulated with WHILE instructions.

```
Proof (ctd.) j_1: I_1; j_2: I_2; ...; j_k: I_k
```

is replaced by the following while program:

```
x_{\mathrm{index}} := j_1;
while x_{\mathrm{index}} \neq 0 do

if x_{\mathrm{index}} = j_1 then l_1' end;

if x_{\mathrm{index}} = j_2 then l_2' end;

...

if x_{\mathrm{index}} = j_k then l_k' end;
end
```

```
Proof (ctd.)
j_1: I_1; j_2: I_2; ...; j_k: I_k
```

is replaced by the following while program:

```
x_{\mathrm{index}} := j_1;
while x_{\mathrm{index}} \neq 0 do

if x_{\mathrm{index}} = j_1 then l_1' end;

if x_{\mathrm{index}} = j_2 then l_2' end;

...

if x_{\mathrm{index}} = j_k then l_k' end;
end
```

```
For 1 \le i < k:

If I_i is x_i := x_i \pm 1:

I_i' \text{ is } x_i := x_i \pm 1; x_{\text{index}} := j_{i+1}

If I_i is if x_i = 0 goto j_{\text{goto}}:

I_i' \text{ is if } x_i = 0 \text{ then } x_{\text{index}} := j_{\text{goto}}
\text{else } x_{\text{index}} := j_{i+1} \text{ end}

In addition, j_{k+1} = 0
```

Consequences of the proof:

Corollary 1

The instructions defined in the context of LOOP programs:

$$x_i := c$$
 $x_i := x_j$ $x_i := x_j * x_k$ $x_i = x_j * x_k$, if $x_i = 0$ then P_i else P_j if $x_i \le x_j$ then P_i else P_j

can also be used in GOTO programs.

Consequences of the proof:

Corollary 2

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Consequences of the proof:

Corollary 2

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Proof: We showed that:

- (i) every WHILE program can be simulated by a GOTO program
- (ii) every GOTO program can be simulated by a WHILE program with only one loop, containing also some if instructions (WHILE-IF program).

Let P be a WHILE program. P can be simulated by a GOTO program P'. P' can be simulated by a WHILE-IF program with one WHILE loop only.

Consequence of the proof:

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Other consequences

• GOTO programming is not more powerful than WHILE programming

Consequence of the proof:

Every WHILE computable function can be computed by a WHILE+IF program with one while loop only.

Other consequences

• GOTO programming is not more powerful than WHILE programming "Spaghetti-Code" (GOTO) ist not more powerful than "structured code" (WHILE)

Register Machines: Overview

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

Register Machines: Overview

- Register machines (Random access machines)
- LOOP programs
- WHILE programs
- GOTO programs
- Relationships between LOOP, WHILE, GOTO
- Relationships between register machines and Turing machines

Relationships

Already shown:

$$\mathsf{LOOP} \subseteq \mathsf{WHILE} = \mathsf{GOTO} \subsetneq \mathsf{WHILE}^\mathsf{part} = \mathsf{GOTO}^\mathsf{part}$$

Relationships

Already shown:

$$\mathsf{LOOP} \subseteq \mathsf{WHILE} = \mathsf{GOTO} \subsetneq \mathsf{WHILE}^\mathsf{part} = \mathsf{GOTO}^\mathsf{part}$$

To be proved:

- LOOP ≠ WHILE
- WHILE = TM and WHILE part = TM part

$\mathsf{GOTO}\subseteq\mathsf{TM}$

 $\textbf{Theorem} \quad \mathsf{GOTO} \subseteq \mathsf{TM} \text{ and } \mathsf{GOTO}^{\mathsf{part}} \subseteq \mathsf{TM}^{\mathsf{part}}$

$GOTO \subset TM$

Theorem. $GOTO \subseteq TM$ and $GOTO^{part} \subseteq TM^{part}$

Proof (idea)

It is sufficient to prove that for every GOTO program

$$P = j_1 : I_1; j_2 : I_2; ...; j_k : I_k$$

we can construct an equivalent Turing machine.

$GOTO \subset TM$

Proof (continued)

Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet $\Sigma = \{\#, |\}.$

- Tape i contains as many |'s as the value of x_i is.
- There is a state s_n of M for every instruction $j_n:I_n$.
- When M is in state s_n , it does what corresponds to instruction I_n :
 - Increment or decrement the register
 - Evaluate jump condition
 - Change its state to the corresponding next state.

$GOTO \subset TM$

Proof (continued)

Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet $\Sigma = \{\#, |\}.$

- Tape i contains as many |'s as the value of x_i is.
- There is a state s_n of M for every instruction $j_n : I_n$.
- When M is in state s_n , it does what corresponds to instruction I_n :
 - Increment or decrement the register
 - Evaluate jump condition
 - Change its state to the corresponding next state.

It is clear that we can construct a TM which does everything above.

$GOTO \subseteq TM$

Proof (continued)

- Tape i contains as many |'s as the value of x_i is.
- There is a state s_n of M for every program $P_n = j_n : I_n$.
- When M is in state s_n , it does what corresponds to instruction I_n :
 - Increment or decrement the register
 - Evaluate jump condition
 - Change its state to the corresponding next state.

I _n	M _n
$x_i := x_i + 1$	$> ^{(i)}R^{(i)}$
$x_i := x_i - 1$	$> L^{(i)} \stackrel{\#^{(i)}}{\rightarrow} R^{(i)}$
	\downarrow (i)
	$\#^{(i)}$

$GOTO \subseteq TM$

Proof (continued)

- Tape i contains as many |'s as the value of x_i is.
- There is a state s_n of M for every program $P_n = j_n : I_n$.
- When M is in state s_n , it does what corresponds to instruction I_n :
 - Increment or decrement the register
 - Evaluate jump condition
 - Change its state to the corresponding next state.

I _n	M_n
$x_i := x_i + 1$	$>$ $ ^{(i)}R^{(i)}$
$x_i := x_i - 1$	$> L^{(i)} \stackrel{\#^{(i)}}{\rightarrow} R^{(i)}$
	$\psi^{ (i)}$ $\#^{(i)}$

P_n	M_n
$P_{n_1}; P_{n_2}$	$> M_{n_1}M_{n_2}$
if $x_i = 0$ goto j	$> L^{(i)} \stackrel{\#^{(i)}}{\longrightarrow} R^{(i)} \longrightarrow M_j$
	\downarrow (i)
	$R^{(i)} o M_{n+1}$

$\mathsf{GOTO} \subseteq \mathsf{TM}$

Proof (continued)

In "Theoretische Informatik I" it was proved:

For every *TM* with several tapes there exists an equivalent standard *TM* with only one tape.

$GOTO \subseteq TM$

Proof (continued)

In "Theoretische Informatik I" it was proved:

For every *TM* with several tapes there exists an equovalent Standard TM with only one tape.

Therefore there exists a Standard TM which simulates program P

$GOTO \subseteq TM$

Proof (continued)

In "Theoretische Informatik I" it was proved:

For every *TM* with several tapes there exists an equivalent standard *TM* with only one tape.

Therefore there exists a standard TM which simulates program P

Remark: We will prove later that

 $TM \subseteq GOTO$ and therefore TM = GOTO = WHILE.

In what follows we consider only LOOP programs which have only one input.

In what follows we consider only LOOP programs which have only one input.

If there exists a total TM-computable function $f: \mathbb{N} \to \mathbb{N}$ which is not LOOP computable then we showed that LOOP \neq TM

In what follows we consider only LOOP programs which have only one input.

If there exists a total TM-computable function $f: \mathbb{N} \to \mathbb{N}$ which is not LOOP computable then we showed that LOOP \neq TM

Idea of the proof:

For every unary LOOP-computable function $f : \mathbb{N} \to \mathbb{N}$ there exists a LOOP program P_f which computes it.

We show that:

- The set of all unary LOOP programs is recursively enumerable
- There exists a Turing machine M_{LOOP} such that if P_1, P_2, P_3, \ldots is an enumeration of all (unary) LOOP programs then if P_i computes from input m output o then M_{LOOP} computes from input (i, m) the output o.
- We construct a TM-computable function which is not LOOP computable using a "diagonalisation" argument.

Lemma. The set of all LOOP programs is recursively enumerable.

Lemma. The set of all LOOP programs is recursively enumerable.

Proof (Idea) Regard any LOOP program as a word over the alphabet:

$$\Sigma_{LOOP} = \{;, x, :=, +, -, 1, loop, do, end\}$$

 x_i is encoded as x^i .

We can easily construct a grammar which generates all LOOP programs.

Proposition (TI 1): The recursively enumerable languages are exactly the languages generated by arbitrary grammars (i.e. languages of type 0).

Remark: The same holds also for WHILE programs, GOTO programs and Turing machines

Lemma.

There exists a Turing machine M_{LOOP} which simulates all LOOP programs

More precisely:

Let P_1, P_2, P_3, \ldots be an enumeration of all LOOP programs.

If P_i computes from input m output o then M_{LOOP} computes from input (i, m) the output o.

Lemma.

There exists a Turing machine M_{LOOP} which simulates all LOOP programs

More precisely:

Let P_1, P_2, P_3, \ldots be an enumeration of all LOOP programs.

If P_i computes from input m output o then M_{LOOP} computes from input (i, m) the output o.

Proof: similar to the proof that there exists an universal TM, which simulates all Turing machines.

Lemma.

There exists a Turing machine M_{LOOP} which simulates all LOOP programs.

More precisely:

Let P_1, P_2, P_3, \ldots be an enumeration of all LOOP programs.

If P_i computes from input m output o then M_{LOOP} computes from input (i, m) the output o.

Proof: similar to the proof that there exists an universal TM, which simulates all Turing machines.

Remark: The same holds also for WHILE programs, GOTO programs and Turing machines

Theorem: LOOP \neq TM

Proof: Let $\Psi : \mathbb{N} \to \mathbb{N}$ be defined by:

 $\Psi(i) = P_i(i) + 1$ Output of the *i*-th LOOP program P_i on input *i* to which 1 is added.

 Ψ is clearly total. We will show that the following hold:

Claim 1: $\Psi \in TM$

Claim 2: Ψ ∉ LOOP

Claim 1: $\Psi \in TM$

Proof: We have shown that:

- the set of all LOOP programs is r.e., i.e. there is a Turing machine M_0 which enumerates P_1, \ldots, P_n, \ldots (as Gödel numbers)
- there exists a Turing machine M_{LOOP} which simulates all LOOP programs

In order to construct a Turing machine which computes Ψ we proceed as follows:

- We use M_0 to compute from i the LOOP program P_i
- We use M_{LOOP} to compute $P_i(i)$
- We add 1 to the result.

Claim 2: Ψ ∉ LOOP

Proof: We assume, in order to derive a contradiction, that $\Psi \in LOOP$, i.e. there exists a LOOP program P_{i_0} which computes Ψ .

Then:

- The output of P_{i_0} on input i_0 is $P_{i_0}(i_0)$.
- $\bullet \ \ \Psi(i_0) = P_{i_0}(i_0) + 1 \neq P_{i_0}(i_0)$

Contradiction!

Claim 2: Ψ ∉ LOOP

Proof: We assume, in order to derive a contradiction, that $\Psi \in LOOP$, i.e. there exists a LOOP program P_{i_0} which computes Ψ .

Then:

- The output of P_{i_0} on input i_0 is $P_{i_0}(i_0)$.
- $\bullet \ \ \Psi(i_0) = P_{i_0}(i_0) + 1 \neq P_{i_0}(i_0)$

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and Turing machines.

Claim 2: Ψ ∉ LOOP

Proof: We assume, in order to derive a contradiction, that $\Psi \in LOOP$, i.e. there exists a LOOP program P_{i_0} which computes Ψ .

Then:

- The output of P_{i_0} on input i_0 is $P_{i_0}(i_0)$.
- $\bullet \ \ \Psi(i_0) = P_{i_0}(i_0) + 1 \neq P_{i_0}(i_0)$

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and Turing machines.

Why?

Claim 2: Ψ ∉ LOOP

Proof: We assume, in order to derive a contradiction, that $\Psi \in LOOP$, i.e. there exists a LOOP program P_{i_0} which computes Ψ .

Then:

- The output of P_{i_0} on input i_0 is $P_{i_0}(i_0)$.
- $\Psi(i_0) = P_{i_0}(i_0) + 1 \neq P_{i_0}(i_0)$

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and Turing machines.

The proof relies on the fact that Ψ is total (otherwise $P_{i_0}(i_0) + 1$ could be undefined).

Summary

We showed that:

- $\bullet \ \ \mathsf{LOOP} \subseteq \mathsf{WHILE} = \mathsf{GOTO} \subseteq \mathsf{TM}$
- $\bullet \ \ \mathsf{WHILE} = \mathsf{GOTO} \subsetneq \mathsf{WHILE}^\mathsf{part} = \mathsf{GOTO}^\mathsf{part} \subseteq \mathsf{TM}^\mathsf{part}$
- LOOP \neq TM

Summary

We showed that:

- LOOP \subseteq WHILE = GOTO \subseteq TM
- $\bullet \ \ \mathsf{WHILE} = \mathsf{GOTO} \subsetneq \mathsf{WHILE}^\mathsf{part} = \mathsf{GOTO}^\mathsf{part} \subseteq \mathsf{TM}^\mathsf{part}$
- LOOP \neq TM

Still to show:

- \bullet TM \subseteq WHILE
- \bullet TM^{part} \subseteq WHILE^{part}

Summary

We showed that:

- LOOP \subsetneq WHILE = GOTO \subseteq TM
- $\bullet \ \ \mathsf{WHILE} = \mathsf{GOTO} \subsetneq \mathsf{WHILE}^\mathsf{part} = \mathsf{GOTO}^\mathsf{part} \subseteq \mathsf{TM}^\mathsf{part}$
- LOOP ≠ TM

Still to show:

- \bullet TM \subseteq WHILE
- \bullet TM^{part} \subseteq WHILE^{part}

For proving this, another model of computation will be used: recursive functions