Advanced Topics in Theoretical Computer Science

Part 2: Register machines (2)

15.11.2012

Viorica Sofronie-Stokkermans

Universitat Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Until now

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

Today

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

Today

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

GOTO Programs: Syntax

Definition: An index (line number) is a natural number j > 0.

GOTO Programs: Syntax

Definition: An index (line number) is a natural number j > 0.

Definition
e Atomic programs:
Xji =X+ 1
Xj =x; — 1
are GOTO instructions for each register Xx;.

e If x; is a register and j is an index then
if x;, =0 goto jisa GOTO instruction.

o If I1,..., I are GOTO instructions and ji, ..., jkx are indices then

L j1:h; .. jk il isa GOTO program

Differences between WHILE and GOTO

Different structure:

e WHILE programs contain WHILE programs
Recursive definition of syntax and semantics.

e GOTO programs are a list of GOTO instructions
Non recursive definition of syntax and semantics.

GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j1:h; j2:b; - .5 jk:lk

Let jix11 be an index which does not occur in P (program end).

(Definition. A(P)(s1, s2) holds if and only if for every n > 0 there exist:

e states 56 S
e indices 7, .. ., Zn

such that the following hold:
(la) s; = s1

(1b) s/ = s

(1c) z0 = h

(1d) zp = jk+1

\and (continuation on next page)

GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j:h; jo:hb; .. jk:lk

Let ji,11 be an index which does not occur in P (program end).

Definition (ctd.). A(P)(s1, s2) holds if and only if for every n > 0 there exist:

! n
e indices zg, ..., z,

e statessy,...,s,

such that the following hold:
(2) For 0 < I < n, if js: Is is the line in P with js = z:
(2a) if s is x; == x; + 1 then: s7,;(x;) = s/ (x;) + 1
si1(%) = s (x) for j # i

Zit1 = Js41

and (continuation on next page)

GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j:h;jo:hb; ... jk:lk

Let ji,r1 be an index which does not occur in P (program end).

Definition (ctd.). A(P)(s1, s2) holds if and only if for every n > 0 there exist:

/ /
e states sy,...,s,

e indices zg, ..., z,
such that the following hold:
(2) For 0 < I < n, if js: Is is the line in P with js = z:
si(x;))—1 ifs/(x)>0
0 if s'(x;)=0
sir1(xj) = s/ (x;) for j # i

Zit1 = Js+1

(2b) if Is is x; := x; — 1 then: s/, ;(x;) = {

and (continuation on next page)

10

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P=ji:h; jpihi oo gkl

Let ji,11 be an index which does not occur in P (program end).

such that the following hold:

(2) For 0 <[/ < n, if js: Is is the line in P with js = z:

(2c) if Is is if x; = 0 goto jgoro then: si,; =s7

Zi+1 = . .
Jjs+1 otherwise

& < el)
Definition (ctd.). A(P)(s1, s2) holds if and only if for every n > 0 there exist:
e statessy,...,s,
e indices zg, ..., z,

11

GOTO Programs: Semantics

Remark
The number of line changes (iterations) is not fixed at the beginning.
Infinite loops are possible.

12

GOTO Programs: Semantics

Remark

The number of line changes (iterations) is not fixed at the beginning.

Infinite loops are possible.

Notation
e GOTO = The set of all total GOTO computable functions

e GOTOP = The set of all GOTO computable functions
(including the partial ones)

13

WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP2"t = GOTQvPart

14

WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP2"t = GOTQvPart

Proof:
To show:

. WHILE C GOTO and WHILEP* C GOTOQP"*

Il. GOTO C WHILE and GOTOP"t C WHILEP?"t

15

WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP2"t = GOTQvPart

Proof:
. WHILE C GOTO and WHILEP2"t C GOTOP2"

It is sufficient to prove that while x; ## 0 do P end can be simulated with
GOTO instructions.

We can assume without loss of generality that P does not contain any while
(we can replace the occurrences of “while” from inside out).

16

WHILE and GOTO

Proof (ctd.)
while x; # 0 do P end

Is replaced by:

Jj1: if x; =0 goto J3;
P/.
Jo o if xp =0 goto Jji; ** Since x, = 0 unconditional jump **

Jj3: Xn:i=xp—1
where:

® X, is a new register, which was not used before.

e P’ is obtained from P by assigning to all instructions without an index
an arbitrary new index.

17

WHILE and GOTO

Proof (ctd.)
while x; = 0 do P end

Is replaced by:
Jj1: if x; =0 goto J3;
P/.
Jjo : if x, =0 goto Jji; ** Since x, = 0 unconditional jump **
Jj3: Xpi=xp—1
where:

® X, is a new register, which was not used before.

e P’ is obtained from P by assigning to all instructions without an index

an arbitrary new index.

Remark: Totality is preserved by this transformation. Semantics is the same.

18

WHILE and GOTO

Proof (ctd.)

Using the fact that while x; # 0 do P end can be simulated by a GOTO
program we can show (by structural induction) that every WHILE program
can be simulated by a GOTO program.

19

WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEPt = GOTOP"

Proof:
II. GOTO C WHILE and GOTOP2't C WHILEP2"

It is sufficient to prove that every GOTO program can be simulated with
WHILE instructions.

20

WHILE and GOTO

Proof (ctd.)
Jiihsgo by gk Ik

is replaced by the following while program:

Xindex ‘= J1;

while Xndex 7Z 0 do
if Xindex = Jj1 then I] end;
if Xindex = J2 then I; end;

if Xindex :_jk then Ili end;

end

21

WHILE and GOTO

Proof (ctd.)
Jr il i by I

is replaced by the following while program:

Xindex ::.il;

while Xindex 75 0 do
if Xindex = Jj1 then I end;
if Xindex = Jjo then I end;

if Xindex = Jk then I, end;
end

(For1§i<k:
If I;is x; := x; = 1:

I

I”is if x; =0

Jn addition, jx+1 =0

/7 - . . e g
I; 1s xj := X; £ 1; Xindex = Ji+1

then Xindex ::.igoto

else Xindex = Ji+1 end

22

GOTO and WHILE are equally powerful

Consequences of the proof:

(Corollary 1
The instructions defined in the context of LOOP programs:

Xj = C Xj 1= Xj Xj 1= Xj * X Xj = Xj * X,
if x; =0 then P; else P; if x; < x; then P; else P;

can also be used in GOTO programs.

23

GOTO and WHILE are equally powerful

Consequences of the proof:

7

Corollary 2
Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.

24

GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2
Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.

. v

Proof: We showed that:

(i) every WHILE program can be simulated by a GOTO program

(ii) every GOTO program can be simulated by a WHILE program with only
one loop, containing also some if instructions (WHILE-IF program).

Let P be a WHILE program. P can be simulated by a GOTO program P’.
P’ can be simulated by a WHILE-IF program with one WHILE loop only.

25

GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.

Other consequences

e GOTO programming is not more powerful than WHILE programming

26

GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Other consequences

e GOTO programming is not more powerful than WHILE programming

“Spaghetti-Code” (GOTO) ist not more powerful than “structured code” (WHILE)

27

Register Machines: Overview

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

28

Register Machines: Overview

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines

29

Relationships

Already shown:

LOOP C WHILE = GOTO C WHILEP = GOTOP"

30

Relationships

Already shown:

LOOP C WHILE = GOTO C WHILEP = GOTOP"

To be proved:
e LOOP #£ WHILE
e WHILE = TM and WHILEPat = TMpart

31

GOTO C TM

Theorem GOTO C TM and GOTOP C TMPart

32

GOTO C TM

Theorem. GOTO C TM and GOTQP® C TMPat

Proof (idea)

It is sufficient to prove that for every GOTO program
P= j:h;j2:hb . ijc:lk

we can construct an equivalent Turing machine.

33

GOTO C TM

Proof (continued)
Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

=171
e Tape i contains as many |'s as the value of x; is.

e There is a state s, of M for every instruction j, : /5.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

34

GOTO C TM

Proof (continued)
Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

=171
e Tape i contains as many |'s as the value of x; is.

e There is a state s, of M for every instruction j, : /5.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

It is clear that we can construct a TM which does everything above.

35

GOTO C TM

Proof (continued)
e Tape i contains as many |'s as the value of x; is.
e There is a state s, of M for every program P, = j, : I,.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

In M,

xi=xi+1 | >|DR0

xi =xi—1 [>L0 7, RU)
L1

#(i)

GOTO C TM

Proof (continued)
e Tape i contains as many |'s as the value of x; is.
e There is a state s, of M for every program P, = j, : I,.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register

— Evaluate jump condition

— Change its state to the corresponding next state.

l, M, P, M,
xi =xi+1 | >|DRY Pn,; Pn, > My, My,
xi:=xi—1 | > L0 #0 R if ; =0 gotoj | > L #0 RY) — M,
ll(i) l|(i)
#U) RV — Mo

GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equivalent standard TM
with only one tape.

38

GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equovalent Standard TM

with only one tape.

Therefore there exists a Standard TM which simulates program P

39

GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equivalent standard TM

with only one tape.

Therefore there exists a standard TM which simulates program P

Remark: We will prove later that
TM C GOTO and therefore TM = GOTO = WHILE.

40

LOOP # TM

In what follows we consider only LOOP programs which have only one
input.

41

LOOP # TM

In what follows we consider only LOOP programs which have only one
input.

If there exists a total TM-computable function f : N — N which is not
LOOP computable then we showed that LOOP # TM

42

LOOP # TM

In what follows we consider only LOOP programs which have only one
input.

If there exists a total TM-computable function f : N — N which is not
LOOP computable then we showed that LOOP # TM

Idea of the proof:

For every unary LOOP-computable function f : N — N there exists a LOOP program
Pr which computes it.

We show that:
e The set of all unary LOOP programs is recursively enumerable

o There exists a Turing machine M;ppop such that if Py, P>, Ps3,... is an
enumeration of all (unary) LOOP programs then if P; computes from input m
output o then M;ppop computes from input (i, m) the output o.

e We construct a TM-computable function which is not LOOP computable using
a ‘diagonalisation” argument.

43

LOOP # TM

Lemma. The set of all LOOP programs is recursively enumerable.

44

LOOP # TM

Lemma. The set of all LOOP programs is recursively enumerable.

Proof (ldea) Regard any LOOP program as a word over the alphabet:

Yoop=1{;, x, : =, +, —, 1, loop,do,end}

X; Is encoded as x'.

We can easily construct a grammar which generates all LOOP programs.

Proposition (T1 1): The recursively enumerable languages are exactly the
languages generated by arbitrary grammars (i.e. languages of type 0).

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines

45

LOOP # TM

Lemma.
There exists a Turing machine M; pop which simulates all LOOP programs

More precisely:

Let Py, P>, P3,... be an enumeration of all LOOP programs.

If P; computes from input m output o then M;ppop computes from input
(i, m) the output o.

46

LOOP # TM

-
Lemma.
There exists a Turing machine M; pop which simulates all LOOP programs
More precisely:
Let Py, P>, P3,... be an enumeration of all LOOP programs.
If P; computes from input m output o then M;ppop computes from input
(i, m) the output o.

-

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.

47

LOOP # TM

&

Lemma.
There exists a Turing machine M;ppop which simulates all LOOP programs.

More precisely:

Let P, P>, P3,... be an enumeration of all LOOP programs.

If P; computes from input m output o then M;ppop computes from input
(i, m) the output o.

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines

LOOP # TM

Theorem: LOOP # TM

Proof: Let W : N — N be defined by:
V(i) = P;(i)+1 Output of the i-th LOOP program P; on input i
to which 1 is added.

WV is clearly total. We will show that the following hold:
Claim 1: v € TM
Claim 2: ¥V ¢ LOOP

49

LOOP # TM

Claml: v &€ TM

Proof: We have shown that:

e the set of all LOOP programs is r.e., i.e. there is a Turing machine M
which enumerates Py, ..., P,, ... (as Godel numbers)

e there exists a Turing machine M;ppop which simulates all LOOP
programs

In order to construct a Turing machine which computes W we proceed as
follows:

e We use My to compute from i the LOOP program P;
e We use M;ppop to compute P;(i)

e We add 1 to the result.

50

LOOP # TM

Claim 2: ¥V ¢ LOOP

Proof: We assume, in order to derive a contradiction, that W € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of P;, on input iy is Pj,(ip).
® W(io) = Pio(iO) +1 75 Pio(iO)

Contradiction!

51

LOOP # TM

Claim 2: W ¢ LOOP

Proof: We assume, in order to derive a contradiction, that W € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of P;, on input iy is Pj,(ip).
® W(io) = Pio(iO) +1 75 Pio(iO)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and
Turing machines.

52

LOOP # TM

Claim 2: W ¢ LOOP

Proof: We assume, in order to derive a contradiction, that WV € LOORP, i.e.

there exists a LOOP program P;; which computes V.
Then:

e The output of P;, on input iy is P, (ip).

o W(ig) = Pj,(io) +1+# Pj,(io)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

Why?

53

LOOP # TM

Claim 2: W ¢ LOOP

Proof: We assume, in order to derive a contradiction, that ¥V € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of P;, on input iy is Pj,(io).
® W(io) = Pio(iO) +1 75 Pio(iO)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and
Turing machines.

The proof relies on the fact that W is total (otherwise Pj (ip) + 1 could be
undefined).

54

Summary

We showed that:

7

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEPt = GOTOPat C TMPart
e LOOP #£ TM

55

Summary

We showed that:

7

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEPt = GOTOPat C TMPart
e LOOP #£ TM

Still to show:

e TM C WHILE
o TMPt C WHILEP

56

Summary

We showed that:

(A

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEP™ = GOTOPa"t C TMpart
e LOOP # TM

Still to show:
e TM C WHILE
e TMP2t C \WHILEP"

For proving this, another model of computation will be used:
recursive functions

57

