
Advanced Topics in Theoretical Computer Science

Part 2: Register machines (2)

15.11.2012

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Until now

• Register machines (Random access machines)

• LOOP programs

• WHILE programs

• GOTO programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

2

Today

• Register machines (Random access machines)

• LOOP programs

• WHILE programs

• GOTO programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

3

Today

• Register machines (Random access machines)

• LOOP programs

• WHILE programs

• GOTO programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

4

GOTO Programs: Syntax

Definition: An index (line number) is a natural number j ≥ 0.

5

GOTO Programs: Syntax

Definition: An index (line number) is a natural number j ≥ 0.

Definition

• Atomic programs:

xi := xi + 1

xi := xi − 1

are GOTO instructions for each register xi .

• If xi is a register and j is an index then

if xi = 0 goto j is a GOTO instruction.

• If I1, . . . , Ik are GOTO instructions and j1, . . . , jk are indices then

j1 : I1; . . . ; jk : Ik is a GOTO program

6

Differences between WHILE and GOTO

Different structure:

• WHILE programs contain WHILE programs

Recursive definition of syntax and semantics.

• GOTO programs are a list of GOTO instructions

Non recursive definition of syntax and semantics.

7

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition. ∆(P)(s1, s2) holds if and only if for every n ≥ 0 there exist:

• states s′

0 , . . . , s′

n

• indices z0, . . . , zn

such that the following hold:

(1a) s′

0 = s1

(1b) s′

n = s2

(1c) z0 = j1

(1d) zn = jk+1

and (continuation on next page)

8

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if for every n ≥ 0 there exist:

• states s′

0 , . . . , s′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ l ≤ n, if js : Is is the line in P with js = zl :

(2a) if Is is xi := xi + 1 then: s′

i+1(xi) = s′

i (xi) + 1

s′

i+1(xj) = s′

i (xj) for j 6= i

zi+1 = js+1

and (continuation on next page)

9

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if for every n ≥ 0 there exist:

• states s′

0 , . . . , s′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ l ≤ n, if js : Is is the line in P with js = zl :

(2b) if Is is xi := xi − 1 then: s′

i+1(xi) =

(

s′

i (xi) − 1 if s′

i (xi) > 0

0 if s′

i (xi) = 0

s′

i+1(xj) = s′

i (xj) for j 6= i

zi+1 = js+1

and (continuation on next page)

10

GOTO Programs: Semantics

Let P be a GOTO program of the form:

P = j1 : I1; j2 : I2; . . . ; jk : Ik

Let jk+1 be an index which does not occur in P (program end).

Definition (ctd.). ∆(P)(s1, s2) holds if and only if for every n ≥ 0 there exist:

• states s′

0 , . . . , s′

n

• indices z0, . . . , zn

such that the following hold:

(2) For 0 ≤ l ≤ n, if js : Is is the line in P with js = zl :

(2c) if Is is if xi = 0 goto jgoto then: s′

i+1 = s′

i

zi+1 =

(

jgoto if xi = 0

js+1 otherwise

11

GOTO Programs: Semantics

Remark

The number of line changes (iterations) is not fixed at the beginning.

Infinite loops are possible.

12

GOTO Programs: Semantics

Remark

The number of line changes (iterations) is not fixed at the beginning.

Infinite loops are possible.

Notation

• GOTO = The set of all total GOTO computable functions

• GOTOpart = The set of all GOTO computable functions

(including the partial ones)

13

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

14

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof:

To show:

I. WHILE ⊆ GOTO and WHILEpart ⊆ GOTOpart

II. GOTO ⊆ WHILE and GOTOpart ⊆ WHILEpart

15

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof:

I. WHILE ⊆ GOTO and WHILEpart ⊆ GOTOpart

It is sufficient to prove that while xi 6= 0 do P end can be simulated with

GOTO instructions.

We can assume without loss of generality that P does not contain any while

(we can replace the occurrences of “while” from inside out).

16

WHILE and GOTO

Proof (ctd.)

while xi 6= 0 do P end

is replaced by:

j1 : if xi = 0 goto j3;

P′ ;

j2 : if xn = 0 goto j1; ** Since xn = 0 unconditional jump **

j3 : xn := xn − 1

where:

• xn is a new register, which was not used before.

• P′ is obtained from P by assigning to all instructions without an index

an arbitrary new index.

17

WHILE and GOTO

Proof (ctd.)

while xi 6= 0 do P end

is replaced by:

j1 : if xi = 0 goto j3;

P′ ;

j2 : if xn = 0 goto j1; ** Since xn = 0 unconditional jump **

j3 : xn := xn − 1

where:

• xn is a new register, which was not used before.

• P′ is obtained from P by assigning to all instructions without an index

an arbitrary new index.

Remark: Totality is preserved by this transformation. Semantics is the same.

18

WHILE and GOTO

Proof (ctd.)

Using the fact that while xi 6= 0 do P end can be simulated by a GOTO

program we can show (by structural induction) that every WHILE program

can be simulated by a GOTO program.

19

WHILE and GOTO

Theorem.

(1) WHILE = GOTO

(2) WHILEpart = GOTOpart

Proof:

II. GOTO ⊆ WHILE and GOTOpart ⊆ WHILEpart

It is sufficient to prove that every GOTO program can be simulated with

WHILE instructions.

20

WHILE and GOTO

Proof (ctd.)

j1 : I1; j2 : I2; . . . ; jk : Ik

is replaced by the following while program:

xindex := j1;

while xindex 6= 0 do

if xindex = j1 then I ′

1 end;

if xindex = j2 then I ′

2 end;

. . .

if xindex = jk then I ′

k
end;

end

21

WHILE and GOTO

Proof (ctd.)

j1 : I1; j2 : I2; . . . ; jk : Ik

is replaced by the following while program:

xindex := j1;

while xindex 6= 0 do

if xindex = j1 then I ′

1 end;

if xindex = j2 then I ′

2 end;

. . .

if xindex = jk then I ′

k
end;

end

For 1 ≤ i < k:

If Ii is xi := xi ± 1:

I ′

i is xi := xi ± 1; xindex := ji+1

If Ii is if xi = 0 goto jgoto:

I ′

i is if xi = 0 then xindex := jgoto

else xindex := ji+1 end

In addition, jk+1 = 0

22

GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 1

The instructions defined in the context of LOOP programs:

xi := c xi := xj xi := xj ∗ xk xi = xj ∗ xk ,

if xi = 0 then Pi else Pj if xi ≤ xj then Pi else Pj

can also be used in GOTO programs.

23

GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

24

GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Proof: We showed that:

(i) every WHILE program can be simulated by a GOTO program

(ii) every GOTO program can be simulated by a WHILE program with only

one loop, containing also some if instructions (WHILE-IF program).

Let P be a WHILE program. P can be simulated by a GOTO program P′ .

P′ can be simulated by a WHILE-IF program with one WHILE loop only.

25

GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Other consequences

• GOTO programming is not more powerful than WHILE programming

26

GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Other consequences

• GOTO programming is not more powerful than WHILE programming

“Spaghetti-Code” (GOTO) ist not more powerful than “structured code” (WHILE)

27

Register Machines: Overview

• Register machines (Random access machines)

• LOOP programs

• WHILE programs

• GOTO programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

28

Register Machines: Overview

• Register machines (Random access machines)

• LOOP programs

• WHILE programs

• GOTO programs

• Relationships between LOOP, WHILE, GOTO

• Relationships between register machines and Turing machines

29

Relationships

Already shown:

LOOP ⊆ WHILE = GOTO (WHILEpart = GOTOpart

30

Relationships

Already shown:

LOOP ⊆ WHILE = GOTO (WHILEpart = GOTOpart

To be proved:

• LOOP 6= WHILE

• WHILE = TM and WHILEpart = TMpart

31

GOTO ⊆ TM

Theorem GOTO ⊆ TM and GOTOpart ⊆ TMpart

32

GOTO ⊆ TM

Theorem. GOTO ⊆ TM and GOTOpart ⊆ TMpart

Proof (idea)

It is sufficient to prove that for every GOTO program

P = j1 : I1; j2 : I2; . . . ; jk : Ik

we can construct an equivalent Turing machine.

33

GOTO ⊆ TM

Proof (continued)

Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

Σ = {#, |}.

• Tape i contains as many |’s as the value of xi is.

• There is a state sn of M for every instruction jn : In.

• When M is in state sn, it does what corresponds to instruction In:

– Increment or decrement the register

– Evaluate jump condition

– Change its state to the corresponding next state.

34

GOTO ⊆ TM

Proof (continued)

Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

Σ = {#, |}.

• Tape i contains as many |’s as the value of xi is.

• There is a state sn of M for every instruction jn : In.

• When M is in state sn, it does what corresponds to instruction In:

– Increment or decrement the register

– Evaluate jump condition

– Change its state to the corresponding next state.

It is clear that we can construct a TM which does everything above.

35

GOTO ⊆ TM

Proof (continued)

• Tape i contains as many |’s as the value of xi is.

• There is a state sn of M for every program Pn = jn : In.

• When M is in state sn, it does what corresponds to instruction In:

– Increment or decrement the register

– Evaluate jump condition

– Change its state to the corresponding next state.

In Mn

xi := xi + 1 > |(i)R(i)

xi := xi − 1 > L(i) #(i)

→ R(i)

↓|(i)

#(i)

36

GOTO ⊆ TM

Proof (continued)

• Tape i contains as many |’s as the value of xi is.

• There is a state sn of M for every program Pn = jn : In.

• When M is in state sn, it does what corresponds to instruction In:

– Increment or decrement the register

– Evaluate jump condition

– Change its state to the corresponding next state.

In Mn

xi := xi + 1 > |(i)R(i)

xi := xi − 1 > L(i) #(i)

→ R(i)

↓|(i)

#(i)

Pn Mn

Pn1
; Pn2

> Mn1
Mn2

if xi = 0 goto j > L(i) #(i)

→ R(i) → Mj

↓|(i)

R(i) → Mn+1

37

GOTO ⊆ TM

Proof (continued)

In “Theoretische Informatik I” it was proved:

For every TM with several tapes there exists an equivalent standard TM

with only one tape.

38

GOTO ⊆ TM

Proof (continued)

In “Theoretische Informatik I” it was proved:

For every TM with several tapes there exists an equovalent Standard TM

with only one tape.

Therefore there exists a Standard TM which simulates program P

39

GOTO ⊆ TM

Proof (continued)

In “Theoretische Informatik I” it was proved:

For every TM with several tapes there exists an equivalent standard TM

with only one tape.

Therefore there exists a standard TM which simulates program P

Remark: We will prove later that

TM ⊆ GOTO and therefore TM = GOTO = WHILE.

40

LOOP 6= TM

In what follows we consider only LOOP programs which have only one

input.

41

LOOP 6= TM

In what follows we consider only LOOP programs which have only one

input.

If there exists a total TM-computable function f : N → N which is not

LOOP computable then we showed that LOOP 6= TM

42

LOOP 6= TM

In what follows we consider only LOOP programs which have only one

input.

If there exists a total TM-computable function f : N → N which is not

LOOP computable then we showed that LOOP 6= TM

Idea of the proof:

For every unary LOOP-computable function f : N → N there exists a LOOP program

Pf which computes it.

We show that:

• The set of all unary LOOP programs is recursively enumerable

• There exists a Turing machine MLOOP such that if P1, P2, P3, . . . is an

enumeration of all (unary) LOOP programs then if Pi computes from input m

output o then MLOOP computes from input (i , m) the output o.

• We construct a TM-computable function which is not LOOP computable using

a “diagonalisation” argument.

43

LOOP 6= TM

Lemma. The set of all LOOP programs is recursively enumerable.

44

LOOP 6= TM

Lemma. The set of all LOOP programs is recursively enumerable.

Proof (Idea) Regard any LOOP program as a word over the alphabet:

ΣLOOP = {; , x , : =, +, −, 1, loop, do, end}

xi is encoded as x i .

We can easily construct a grammar which generates all LOOP programs.

Proposition (TI 1): The recursively enumerable languages are exactly the

languages generated by arbitrary grammars (i.e. languages of type 0).

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines

45

LOOP 6= TM

Lemma.

There exists a Turing machine MLOOP which simulates all LOOP programs

More precisely:

Let P1,P2,P3, . . . be an enumeration of all LOOP programs.

If Pi computes from input m output o then MLOOP computes from input

(i ,m) the output o.

46

LOOP 6= TM

Lemma.

There exists a Turing machine MLOOP which simulates all LOOP programs

More precisely:

Let P1,P2,P3, . . . be an enumeration of all LOOP programs.

If Pi computes from input m output o then MLOOP computes from input

(i ,m) the output o.

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.

47

LOOP 6= TM

Lemma.

There exists a Turing machine MLOOP which simulates all LOOP programs.

More precisely:

Let P1,P2,P3, . . . be an enumeration of all LOOP programs.

If Pi computes from input m output o then MLOOP computes from input

(i ,m) the output o.

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines

48

LOOP 6= TM

Theorem: LOOP 6= TM

Proof: Let Ψ : N → N be defined by:

Ψ(i) = Pi (i) + 1 Output of the i-th LOOP program Pi on input i

to which 1 is added.

Ψ is clearly total. We will show that the following hold:

Claim 1: Ψ ∈ TM

Claim 2: Ψ 6∈ LOOP

49

LOOP 6= TM

Claim 1: Ψ ∈ TM

Proof: We have shown that:

• the set of all LOOP programs is r.e., i.e. there is a Turing machine M0

which enumerates P1, . . . ,Pn, . . . (as Gödel numbers)

• there exists a Turing machine MLOOP which simulates all LOOP

programs

In order to construct a Turing machine which computes Ψ we proceed as

follows:

• We use M0 to compute from i the LOOP program Pi

• We use MLOOP to compute Pi (i)

• We add 1 to the result.

50

LOOP 6= TM

Claim 2: Ψ 6∈ LOOP

Proof: We assume, in order to derive a contradiction, that Ψ ∈ LOOP, i.e.

there exists a LOOP program Pi0 which computes Ψ.

Then:

• The output of Pi0 on input i0 is Pi0 (i0).

• Ψ(i0) = Pi0 (i0) + 1 6= Pi0 (i0)

Contradiction!

51

LOOP 6= TM

Claim 2: Ψ 6∈ LOOP

Proof: We assume, in order to derive a contradiction, that Ψ ∈ LOOP, i.e.

there exists a LOOP program Pi0 which computes Ψ.

Then:

• The output of Pi0 on input i0 is Pi0 (i0).

• Ψ(i0) = Pi0 (i0) + 1 6= Pi0 (i0)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

52

LOOP 6= TM

Claim 2: Ψ 6∈ LOOP

Proof: We assume, in order to derive a contradiction, that Ψ ∈ LOOP, i.e.

there exists a LOOP program Pi0 which computes Ψ.

Then:

• The output of Pi0 on input i0 is Pi0 (i0).

• Ψ(i0) = Pi0 (i0) + 1 6= Pi0 (i0)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

Why?

53

LOOP 6= TM

Claim 2: Ψ 6∈ LOOP

Proof: We assume, in order to derive a contradiction, that Ψ ∈ LOOP, i.e.

there exists a LOOP program Pi0 which computes Ψ.

Then:

• The output of Pi0 on input i0 is Pi0 (i0).

• Ψ(i0) = Pi0 (i0) + 1 6= Pi0 (i0)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

The proof relies on the fact that Ψ is total (otherwise Pi0 (i0) + 1 could be

undefined).

54

Summary

We showed that:

• LOOP ⊆ WHILE = GOTO ⊆ TM

• WHILE = GOTO (WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

55

Summary

We showed that:

• LOOP ⊆ WHILE = GOTO ⊆ TM

• WHILE = GOTO (WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

Still to show:

• TM ⊆ WHILE

• TMpart ⊆ WHILEpart

56

Summary

We showed that:

• LOOP (WHILE = GOTO ⊆ TM

• WHILE = GOTO (WHILEpart = GOTOpart ⊆ TMpart

• LOOP 6= TM

Still to show:

• TM ⊆ WHILE

• TMpart ⊆ WHILEpart

For proving this, another model of computation will be used:

recursive functions

57

