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GOTO Programs: Syntax

Definition: An index (line number) is a natural number j > 0.




GOTO Programs: Syntax

Definition: An index (line number) is a natural number j > 0.

Definition
e Atomic programs:
Xji =X+ 1
Xj =x; — 1
are GOTO instructions for each register Xx;.

e If x; is a register and j is an index then
if x;, =0 goto jisa GOTO instruction.

o If I1,..., I are GOTO instructions and ji, ..., jkx are indices then

L j1:h; .. jk il isa GOTO program




Differences between WHILE and GOTO

Different structure:

e WHILE programs contain WHILE programs
Recursive definition of syntax and semantics.

e GOTO programs are a list of GOTO instructions
Non recursive definition of syntax and semantics.



GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j1:h; j2:b; - .5 jk:lk

Let jix11 be an index which does not occur in P (program end).

(Definition. A(P)(s1, s2) holds if and only if for every n > 0 there exist:

e states 56 ..... S
e indices 7, .. ., Zn

such that the following hold:
(la) s; = s1

(1b) s/ = s

(1c) z0 = h

(1d) zp = jk+1

\and (continuation on next page)




GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j:h; jo:hb; .. jk:lk

Let ji,11 be an index which does not occur in P (program end).

Definition (ctd.). A(P)(s1, s2) holds if and only if for every n > 0 there exist:

! n
e indices zg, ..., z,

e statessy,...,s,

such that the following hold:
(2) For 0 < I < n, if js: Is is the line in P with js = z:
(2a) if s is x; == x; + 1 then: s7,;(x;) = s/ (x;) + 1
si1(%) = s (x) for j # i

Zit1 = Js41

and .... (continuation on next page)




GOTO Programs: Semantics

Let P be a GOTO program of the form:
P=j:h;jo:hb; ... jk:lk

Let ji,r1 be an index which does not occur in P (program end).

Definition (ctd.). A(P)(s1, s2) holds if and only if for every n > 0 there exist:

/ /
e states sy,...,s,

e indices zg, ..., z,
such that the following hold:
(2) For 0 < I < n, if js: Is is the line in P with js = z:
si(x;))—1 ifs/(x)>0
0 if s'(x;)=0
sir1(xj) = s/ (x;) for j # i

Zit1 = Js+1

(2b) if Is is x; := x; — 1 then: s/, ;(x;) = {

and .... (continuation on next page)
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GOTO Programs: Semantics

Let P be a GOTO program of the form:

P=ji:h; jpihi oo gkl

Let ji,11 be an index which does not occur in P (program end).

such that the following hold:

(2) For 0 <[/ < n, if js: Is is the line in P with js = z:

(2c)  if Is is if x; = 0 goto jgoro then:  si,; =s7

Zi+1 = . .
Jjs+1  otherwise

& < el )
Definition (ctd.). A(P)(s1, s2) holds if and only if for every n > 0 there exist:
e statessy,...,s,
e indices zg, ..., z,
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GOTO Programs: Semantics

Remark
The number of line changes (iterations) is not fixed at the beginning.
Infinite loops are possible.
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GOTO Programs: Semantics

Remark

The number of line changes (iterations) is not fixed at the beginning.

Infinite loops are possible.

Notation
e GOTO = The set of all total GOTO computable functions

e GOTOP = The set of all GOTO computable functions
(including the partial ones)
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WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP2"t = GOTQvPart
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WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP2"t = GOTQvPart

Proof:
To show:

. WHILE C GOTO and WHILEP* C GOTOQP"*

Il. GOTO C WHILE and GOTOP"t C WHILEP?"t
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WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEP2"t = GOTQvPart

Proof:
. WHILE C GOTO and WHILEP2"t C GOTOP2"

It is sufficient to prove that while x; ## 0 do P end can be simulated with
GOTO instructions.

We can assume without loss of generality that P does not contain any while
(we can replace the occurrences of “while” from inside out).
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WHILE and GOTO

Proof (ctd.)
while x; # 0 do P end

Is replaced by:

Jj1: if x; =0 goto J3;
P/.
Jo o if xp =0 goto Jji; ** Since x, = 0 unconditional jump **

Jj3: Xn:i=xp—1
where:

® X, is a new register, which was not used before.

e P’ is obtained from P by assigning to all instructions without an index
an arbitrary new index.
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WHILE and GOTO

Proof (ctd.)
while x; = 0 do P end

Is replaced by:
Jj1: if x; =0 goto J3;
P/.
Jjo : if x, =0 goto Jji; ** Since x, = 0 unconditional jump **
Jj3: Xpi=xp—1
where:

® X, is a new register, which was not used before.

e P’ is obtained from P by assigning to all instructions without an index

an arbitrary new index.

Remark: Totality is preserved by this transformation. Semantics is the same.
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WHILE and GOTO

Proof (ctd.)

Using the fact that while x; # 0 do P end can be simulated by a GOTO
program we can show (by structural induction) that every WHILE program
can be simulated by a GOTO program.
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WHILE and GOTO

Theorem.
(1) WHILE = GOTO
(2) WHILEPt = GOTOP"

Proof:
II. GOTO C WHILE and GOTOP2't C WHILEP2"

It is sufficient to prove that every GOTO program can be simulated with
WHILE instructions.

20



WHILE and GOTO

Proof (ctd.)
Jiihsgo by gk Ik

is replaced by the following while program:

Xindex ‘= J1;

while Xndex 7Z 0 do
if Xindex = Jj1 then I] end;
if Xindex = J2 then I; end;

if Xindex :_jk then Ili end;

end
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WHILE and GOTO

Proof (ctd.)
Jr il i by I

is replaced by the following while program:

Xindex ::.il;

while Xindex 75 0 do
if Xindex = Jj1 then I end;
if Xindex = Jjo then I end;

if Xindex = Jk then I, end;
end

(For1§i<k:
If I;is x; := x; = 1:

I

I”is if x; =0

Jn addition, jx+1 =0

/7 - . . e g
I; 1s xj := X; £ 1; Xindex = Ji+1

then Xindex ::.igoto

else Xindex = Ji+1 end
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GOTO and WHILE are equally powerful

Consequences of the proof:

(Corollary 1
The instructions defined in the context of LOOP programs:

Xj = C Xj 1= Xj Xj 1= Xj * X Xj = Xj * X,
if x; =0 then P; else P; if x; < x; then P; else P;

can also be used in GOTO programs.
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GOTO and WHILE are equally powerful

Consequences of the proof:

7

Corollary 2
Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.
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GOTO and WHILE are equally powerful

Consequences of the proof:

Corollary 2
Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.

. v

Proof: We showed that:

(i) every WHILE program can be simulated by a GOTO program

(ii) every GOTO program can be simulated by a WHILE program with only
one loop, containing also some if instructions (WHILE-IF program).

Let P be a WHILE program. P can be simulated by a GOTO program P’.
P’ can be simulated by a WHILE-IF program with one WHILE loop only.
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GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a
WHILE+IF program with one while loop only.

Other consequences

e GOTO programming is not more powerful than WHILE programming
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GOTO and WHILE are equally powerful

Consequence of the proof:

Every WHILE computable function can be computed by a

WHILE+IF program with one while loop only.

Other consequences

e GOTO programming is not more powerful than WHILE programming

“Spaghetti-Code” (GOTO) ist not more powerful than “structured code” (WHILE)
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Register Machines: Overview

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines
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Register Machines: Overview

Register machines (Random access machines)
LOOP programs
WHILE programs
GOTO programs
Relationships between LOOP, WHILE, GOTO

Relationships between register machines and Turing machines
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Relationships

Already shown:

LOOP C WHILE = GOTO C WHILEP = GOTOP"
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Relationships

Already shown:

LOOP C WHILE = GOTO C WHILEP = GOTOP"

To be proved:
e LOOP #£ WHILE
e WHILE = TM and WHILEPat = TMpart
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GOTO C TM

Theorem GOTO C TM and GOTOP C TMPart
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GOTO C TM

Theorem. GOTO C TM and GOTQP® C TMPat

Proof (idea)

It is sufficient to prove that for every GOTO program
P= j:h;j2:hb . ijc:lk

we can construct an equivalent Turing machine.
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GOTO C TM

Proof (continued)
Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

=171
e Tape i contains as many |'s as the value of x; is.

e There is a state s, of M for every instruction j, : /5.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.
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GOTO C TM

Proof (continued)
Let r be the number of registers used in P.

We construct a Turing machine M with r half tapes over the alphabet

=171
e Tape i contains as many |'s as the value of x; is.

e There is a state s, of M for every instruction j, : /5.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

It is clear that we can construct a TM which does everything above.
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GOTO C TM

Proof (continued)
e Tape i contains as many |'s as the value of x; is.
e There is a state s, of M for every program P, = j, : I,.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register
— Evaluate jump condition

— Change its state to the corresponding next state.

In M,

xi=xi+1 | >|DR0

xi =xi—1 [ >L0 7, RU)
L1

#(i)




GOTO C TM

Proof (continued)
e Tape i contains as many |'s as the value of x; is.
e There is a state s, of M for every program P, = j, : I,.

e When M is in state s, it does what corresponds to instruction /j:
— Increment or decrement the register

— Evaluate jump condition

— Change its state to the corresponding next state.

l, M, P, M,
xi =xi+1 | >|DRY Pn,; Pn, > My, My,
xi:=xi—1 | > L0 #0 R if ; =0 gotoj | > L #0 RY) — M,
ll(i) l|(i)
#U) RV — Mo




GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equivalent standard TM
with only one tape.
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GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equovalent Standard TM

with only one tape.

Therefore there exists a Standard TM which simulates program P
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GOTO C TM

Proof (continued)
In “Theoretische Informatik I" it was proved:

For every TM with several tapes there exists an equivalent standard TM

with only one tape.

Therefore there exists a standard TM which simulates program P

Remark: We will prove later that
TM C GOTO and therefore TM = GOTO = WHILE.
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LOOP # TM

In what follows we consider only LOOP programs which have only one
input.

41



LOOP # TM

In what follows we consider only LOOP programs which have only one
input.

If there exists a total TM-computable function f : N — N which is not
LOOP computable then we showed that LOOP # TM
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LOOP # TM

In what follows we consider only LOOP programs which have only one
input.

If there exists a total TM-computable function f : N — N which is not
LOOP computable then we showed that LOOP # TM

Idea of the proof:

For every unary LOOP-computable function f : N — N there exists a LOOP program
Pr which computes it.

We show that:
e The set of all unary LOOP programs is recursively enumerable

o There exists a Turing machine M;ppop such that if Py, P>, Ps3,... is an
enumeration of all (unary) LOOP programs then if P; computes from input m
output o then M;ppop computes from input (i, m) the output o.

e We construct a TM-computable function which is not LOOP computable using
a ‘diagonalisation” argument.
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LOOP # TM

Lemma. The set of all LOOP programs is recursively enumerable.
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LOOP # TM

Lemma. The set of all LOOP programs is recursively enumerable.

Proof (ldea) Regard any LOOP program as a word over the alphabet:

Yoop=1{;, x, : =, +, —, 1, loop,do,end}

X; Is encoded as x'.

We can easily construct a grammar which generates all LOOP programs.

Proposition (T1 1): The recursively enumerable languages are exactly the
languages generated by arbitrary grammars (i.e. languages of type 0).

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines
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LOOP # TM

Lemma.
There exists a Turing machine M; pop which simulates all LOOP programs

More precisely:

Let Py, P>, P3,... be an enumeration of all LOOP programs.

If P; computes from input m output o then M;ppop computes from input
(i, m) the output o.
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LOOP # TM

-
Lemma.
There exists a Turing machine M; pop which simulates all LOOP programs
More precisely:
Let Py, P>, P3,... be an enumeration of all LOOP programs.
If P; computes from input m output o then M;ppop computes from input
(i, m) the output o.

-

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.
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LOOP # TM

&

Lemma.
There exists a Turing machine M;ppop which simulates all LOOP programs.

More precisely:

Let P, P>, P3,... be an enumeration of all LOOP programs.

If P; computes from input m output o then M;ppop computes from input
(i, m) the output o.

Proof: similar to the proof that there exists an universal TM, which

simulates all Turing machines.

Remark: The same holds also for WHILE programs, GOTO programs and

Turing machines




LOOP # TM

Theorem: LOOP # TM

Proof: Let W : N — N be defined by:
V(i) = P;(i)+1 Output of the i-th LOOP program P; on input i
to which 1 is added.

WV is clearly total. We will show that the following hold:
Claim 1: v € TM
Claim 2: ¥V ¢ LOOP
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LOOP # TM

Claml: v &€ TM

Proof: We have shown that:

e the set of all LOOP programs is r.e., i.e. there is a Turing machine M
which enumerates Py, ..., P,, ... (as Godel numbers)

e there exists a Turing machine M;ppop which simulates all LOOP
programs

In order to construct a Turing machine which computes W we proceed as
follows:

e We use My to compute from i the LOOP program P;
e We use M;ppop to compute P;(i)

e We add 1 to the result.
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LOOP # TM

Claim 2: ¥V ¢ LOOP

Proof: We assume, in order to derive a contradiction, that W € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of P;, on input iy is Pj,(ip).
® W(io) = Pio(iO) +1 75 Pio(iO)

Contradiction!
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LOOP # TM

Claim 2: W ¢ LOOP

Proof: We assume, in order to derive a contradiction, that W € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of P;, on input iy is Pj,(ip).
® W(io) = Pio(iO) +1 75 Pio(iO)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and
Turing machines.
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LOOP # TM

Claim 2: W ¢ LOOP

Proof: We assume, in order to derive a contradiction, that WV € LOORP, i.e.

there exists a LOOP program P;; which computes V.
Then:

e The output of P;, on input iy is P, (ip).

o W(ig) = Pj,(io) +1+# Pj,(io)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and

Turing machines.

Why?
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LOOP # TM

Claim 2: W ¢ LOOP

Proof: We assume, in order to derive a contradiction, that ¥V € LOORP, i.e.
there exists a LOOP program P;; which computes V.

Then:
e The output of P;, on input iy is Pj,(io).
® W(io) = Pio(iO) +1 75 Pio(iO)

Contradiction!

Remark: This does not hold for WHILE programs, GOTO programs and
Turing machines.

The proof relies on the fact that W is total (otherwise Pj (ip) + 1 could be
undefined).

54



Summary

We showed that:

7

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEPt = GOTOPat C TMPart
e LOOP #£ TM
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Summary

We showed that:

7

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEPt = GOTOPat C TMPart
e LOOP #£ TM

Still to show:

e TM C WHILE
o TMPt C WHILEP
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Summary

We showed that:

( A

e LOOP C WHILE = GOTO C TM
e WHILE = GOTO C WHILEP™ = GOTOPa"t C TMpart
e LOOP # TM

Still to show:
e TM C WHILE
e TMP2t C \WHILEP"

For proving this, another model of computation will be used:
recursive functions
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