Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inform. Markus Bender
January 31, 2014

Exercises for
 "Advances in Theoretical Computer Science"
 Exercise sheet

Complexity

Exercise $1(2+2+4+2=10 p)$

Let $G=(V, E)$ be an undirected graph. A set of vertices $V_{1} \subseteq V$ is an independent set if there are no edges between any two of these vertices, i.e. if

$$
\text { for all } \left.v_{1}, v_{2} \in V \text { (if } v_{1}, v_{2} \in V_{1} \text { then }\left(v_{1}, v_{2}\right) \notin E\right) \text {. }
$$

Let IND-SET be the language $\{(G, k) \mid G$ is a graph with an independent set of size $k\}$.
(1) Let G be the following graph. Does G have an independent set of size 3? Does G have an independent set of size 4? Does G have an independent set of size 5 ? In case your answer is positive give an example of an independent set (with 3, 4, or 5 elements).

Independent set of size 3 exists	yes	\square	Example:
	no	\square	
Independent set of size 4 exists	yes	\square	Example:
	no	\square	
Independent set of size 5 exists	yes	\square	Example:
	no	\square	

(2) Is IND-SET in NP? Justify your answer briefly (you do not need to construct a Turing machine).
(3) Let f be the map which associates with every pair (G, k), where $G=(V, E)$ is an undirected graph and $k \in \mathbb{N}$, the pair $f(G, k)=\left(G^{\prime}, k\right)$, where $G^{\prime}=\left(V, E^{\prime}\right)$ is the complement of G, i.e. $(x, y) \in E^{\prime}$ iff $(x, y) \notin E$.
Use f to prove that there is a polynomial reduction from Clique to IND-SET.
(4) Is IND-SET NP complete? Justify your answer.

Exercise 2

Consider the following problem: Given a set of courses, a list of conflicts between them, and a positive integer k; is there an exam schedule consisting of k dates such that there are no conflicts between courses which have examinations on the same date?

The language is

$$
\begin{array}{ll}
\text { SCHEDULE }=\left\{(S, C, k) \quad \left\lvert\, \begin{array}{l}
S \text { is a set of courses, } \\
\\
\\
\\
k \in \mathbb{N} \text { is set of conflicts between courses (a set of two-element subsets of } S \text {), } \\
\text { with no conflicts between courses which havisting of } k \text { examinations dates }
\end{array}\right.\right. \\
& \text { mations on the same day }\} .
\end{array}
$$

(1) Which of the tuples (S, C, k) below is an instance of SCHEDULE?

$(\{a, b, c, d\},\{\{a, b\},\{a, c\},\{b, c\},\{b, d\}\}, 2)$	\square
$(\{a, b, c, d\},\{\{a, b\},\{a, c\},\{b, c\},\{b, d\}\}, 3)$	\square

(2) Is SCHEDULE in NP? Justify your answer briefly (you do not need to construct a Turing machine).
(3) In the lecture we studied the k-colorability problem:
k-colorability $=\{G \mid G$ undirected graph which is colorable with at most k colors $\}$. It is known that for $k \geq 3, k$-colorability is NP complete.

Let f be the map which associates with every undirected graph $G=(V, E)$ (where the set of edges is regarded as a set of 2-element subsets of V) the tuple $(V, E, 3)$. Prove that f defines a polynomial reduction of 3 -colorability to SCHEDULE.
(4) Is SCHEDULE NP complete? Justify your answer.

