Universität Koblenz-Landau

** FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inform. Markus Bender

Exercises for
 "Advances in Theoretical Computer Science"
 Exercise sheet **

1 Recursive functions

In the next exercises we use the following notation:

- \circ is function composition.
- if $j \leq k, \pi_{j}^{k}$ is the projection function defined by $\pi_{j}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{j}$.
- $(+1): \mathbb{N} \rightarrow \mathbb{N}$ is defined by: $(+1)(n)=n+1$.
- $(-1): \mathbb{N} \rightarrow \mathbb{N}$ is defined by: $(-1)(n)=\left\{\begin{array}{cl}0 & \text { if } n=0 \\ n-1 & \text { otherwise }\end{array}\right.$.
- $*: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined for all $n_{1}, n_{2} \in \mathbb{N}$ by: $*\left(n_{1}, n_{2}\right)=n_{1} * n_{2}$.
- $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined for all $n_{1}, n_{2} \in \mathbb{N}$ by: $+\left(n_{1}, n_{2}\right)=n_{1}+n_{2}$.
- $-: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined for all $n_{1}, n_{2} \in \mathbb{N}$ by $-\left(n_{1}, n_{2}\right)=n_{1}-n_{2}=\left\{\begin{array}{cl}0 & \text { if } n_{1} \leq n_{2} \\ n_{1}-n_{2} & \text { otherwise }\end{array}\right.$.
- for all $s, k \in \mathbb{N}, c_{s}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined for all $\mathbf{n} \in \mathbb{N}^{k}$ by: $c_{s}^{k}(\mathbf{n})=s$.

In what follows we will assume known that all the functions above are primitive recursive. We also assume known that definitions by case distinction and definitions using the bounded μ operator (as defined in the lecture, in which only primitive functions are used) define primitive recursive functions.

Exercise $1.1((1+1+4)+2+(1+4)=13 p)$
(1) Consider the following primitive recursive function:

$$
f_{1}=\mathcal{P} \mathcal{R}\left[+\circ\left((-1) \circ c_{6}^{1}, \pi_{1}^{1}\right),(+1) \circ \pi_{3}^{3}\right]
$$

(a) Which is the arity of f_{1} ?
(b) What does f_{1} compute if all arguments are equal to 1 ?
(c) Which (concrete) function is computed by f_{1} ?
(2) Let $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$ be defined by $f_{2}(m)=\mu_{i<m} i(m-i=0)$. Which (concrete) function is computed by f_{2} ?
(3) Consider the following μ-recursive function:

$$
f_{3}=\mu g, \text { where } g(n, i)= \begin{cases}n & \text { if } i=0 \\ \mu j(j+3-n=0) & \text { if } i=1 \\ 0 & \text { if } i \geq 2\end{cases}
$$

(a) Which is the arity of f_{3} ?
(b) Which is the (concrete) function computed by f_{3} ?

Exercise 2.2 (5p)

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(n)= \begin{cases}1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ f(n-1)+2 * f(n-2)+3 * f(n-3) & \text { if } n \geq 3\end{cases}
$$

Prove that f is primitive recursive.
You can use any of the results proved in the lecture for this.

Exercise $2.1((1+1+4)+(2+2)+(1+4)=15 p)$
(1) Consider the following primitive recursive function:

$$
f_{1}=\mathcal{P} \mathcal{R}\left[* \circ\left((-1) \circ \pi_{1}^{1}, c_{5}^{1}\right), * \circ\left((+1) \circ \pi_{2}^{3}, \pi_{3}^{3}\right)\right]
$$

(a) Which is the arity of f_{1} ?
(b) What does f_{1} compute if all arguments are equal to 1 ?
(c) Which (concrete) function is computed by f_{1} ?
(2) Which (concrete) functions are computed by:
(a) $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f_{2}(n)=\mu i((i+2)-n=0)$?
(b) $f_{3}: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f_{3}(n)=\mu_{i<n} i((i+2)-n=0)$?
(3) Consider the following μ-recursive function:

$$
f_{4}=\mu g, \text { where } g(n, i)= \begin{cases}n & \text { if } i=0 \\ \mu j((j+2)-n=0) & \text { if } i=1 \\ \mu_{j<n} j((j+2)-n=0) & \text { if } i \geq 2\end{cases}
$$

(a) Which is the arity of f_{4} ?
(b) Which is the (concrete) function computed by f_{4} ?

Exercise 2.2 (5p)

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(n)= \begin{cases}1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ f(n-1) *(f(n-2)+1) *(f(n-3)+2) & \text { if } n \geq 3\end{cases}
$$

Prove that f is primitive recursive.
You can use any of the results proved in the lecture for this.

