Universität Koblenz-Landau

* FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inform. Markus Bender

Exercises for
"Advances in Theoretical Computer Science"
Exercise sheet *

1 Register machines

The following instructions are considered to be WHILE instructions in Exercises 1.1, 1.2, 2.1, 2.2:
$x_{i}:=c \quad x_{i}:=c$ op $x_{j} \quad P_{1} ; P_{2}$
Here: x_{i}, x_{j}, x_{k} are registers
$x_{i}:=x_{j} \quad x_{i}:=x_{j}$ op $c \quad$ while $x_{i} \neq 0$ do P_{1} end
c is a constant
$x_{i}:=x_{j}$ op $x_{k} \quad$ if $x_{i}=0$ then P_{1} end
op $\in\{+,-, *\}$
and P_{1}, P_{2} are WHILE programs.

The following instructions are considered to be GOTO instructions in Exercises 1.2 and 2.2:

$$
\begin{array}{lll}
x_{i}:=c & x_{i}:=c \text { op } x_{j} & \text { goto } l \\
x_{i}:=x_{j} & x_{i}:=x_{j} \text { op } c & \text { if } x_{i}=0 \text { goto } l \\
& x_{i}:=x_{j} \text { op } x_{k} &
\end{array}
$$

Here: x_{i}, x_{j}, x_{k} are registers
c is a constant
op $\in\{+,-, *\}$
and l is a label.
A GOTO program has the form $l_{1}: B_{1}, \ldots, l_{k}: B_{k} \quad(k \geq 1)$
where B_{1}, \ldots, B_{k} are GOTO instructions and l_{1}, \ldots, l_{k} are labels.

Exercise $1.1(4+4=8 p)$

Let $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(n, m, k)= \begin{cases}\left\lfloor\sqrt[n]{k^{m}}\right\rfloor & \text { if } n \neq 0 \text { and }(m \neq 0 \text { or } k \neq 0) \\ \text { undefined } & \text { if } n=0 \text { or }(m=0 \text { and } k=0)\end{cases}
$$

(1) Write a pseudocode program for f which contains only the arithmetical operations ,,$+- *$. The instructions used in this pseudocode program are not restricted to the ones above.
(2) Give a WHILE program which computes the function f.

Exercise $1.2(2+4+4=10 p)$

Let P be the following WHILE program:

```
x
x5:=1-\mp@subsup{x}{4}{}}\mathrm{ ;
while }\mp@subsup{x}{5}{}\not=0\mathrm{ do
    x}:=\mp@subsup{x}{5}{}+
end;
x
x
x
while }\mp@subsup{x}{4}{}\not=0\mathrm{ do
    x5:= x * * 10
    x
    x}:=\mp@subsup{x}{4}{}-
end;
x5:=0
```

(1) Which value does P compute on input $x_{1}=2, x_{2}=3$? Which value does P compute on input $x_{1}=3, x_{2}=0$?
(2) Which function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is computed by P ?
(3) Use the transformation presented in the lecture to construct a GOTO program which has the same semantics as P.

Exercise $2.1(4+4=8 p)$

Let $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(n, m, k)= \begin{cases}\left(\left\lfloor\log _{m}(k)\right\rfloor\right)^{n} & \text { if } n>1, m>1 \text { and } k>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

(1) Write a pseudocode program for f which contains only the arithmetical operations ,,$+- *$. The instructions used in this pseudocode program are not restricted to the ones above.
(2) Give a WHILE program which computes the function f.

Exercise $2.2(2+4+4=10 p)$

Let P be the following GOTO program:

$$
\begin{aligned}
1: & x_{4}:=10-x_{1} ; \\
2: & x_{5}:=1-x_{4} ; \\
3: & \text { if } x_{5}=0 \text { goto } 6 ; \\
4: & x_{5}:=x_{5}+1 ; \\
5: & \text { goto } 3 ; \\
6: & x_{6}:=x_{2} ; \\
7: & x_{5}:=x_{4} ; \\
8: & x_{3}:=x_{1} ; \\
9: & \text { if } x_{6}=0 \text { goto } 14 ; \\
10: & x_{3}:=x_{3} * 10 ; \\
11: & x_{3}:=x_{3}+x_{5} ; \\
12: & x_{6}:=x_{6}-1 ; \\
13: & \text { goto } 9 \\
14: & x_{4}:=0 ; \\
15: & x_{5}:=0 \\
16: & x_{6}:=0
\end{aligned}
$$

(1) Which value does P compute on input $x_{1}=2, x_{2}=3$?

Which value does P compute on input $x_{1}=3, x_{2}=0$?
Which value does P compute on input $x_{1}=15, x_{2}=2$?
(2) Which function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is computed by P ?
(3) Use the transformation presented in the lecture to construct a WHILE-IF program which has the same semantics as P.

