Universität Koblenz-Landau

** FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inform. Markus Bender
January 16, 2014

Exercises for

"Advances in Theoretical Computer Science"
Exercise sheet **

1 Computability and (un)decidability

Exercise $1.1(2+2+2=6 p)$
(1) State the theorem of Rice.
(2) Let $L_{1}=\left\{n \mid L\left(M_{n}\right)\right.$ is context-free $\}$ (where $L\left(M_{n}\right)$ is the language accepted by $\left.M_{n}\right)$. Prove that L_{1} is undecidable using the theorem of Rice.
(3) Let B be a language in $\mathcal{L}_{0, \Sigma}$. Is $L_{B}=\left\{n \mid L\left(M_{n}\right)=B\right\}$ decidable? Justify your answer.
(4) Let $L_{2}=\left\{n \mid L\left(M_{n}\right)\right.$ contains all palindromes (possibly together with other words) $\}$ (where $L\left(M_{n}\right)$ is the language accepted by M_{n}).
Prove that L_{2} is undecidable using the theorem of Rice.

Exercise $4.2(2+1+3=6 p)$

(1) State the Post Correspondence Problem.
(2) Let $G=(\Sigma, R)$ be a semi-Thue system with $\Sigma=\{a, b\}$ and $R=\{b a \rightarrow a\}$.
(a) Show that $b b b a \Rightarrow_{G}^{*} a$ by writing all the steps and underlining the occurrence of the left hand side of the rule in the current word at every step.
(b) Construct the correspondence system $P_{G, w^{\prime}, w^{\prime \prime}}$ as explained in the lecture, where $w^{\prime}=b b b a$ and $w^{\prime \prime}=a$. Assume that rule 2 is $\left(X, X w^{\prime} X\right)$ and rule 3 is $\left(w^{\prime \prime} X X, X\right)$. Construct a solution for $P_{G, w^{\prime}, w^{\prime \prime}}$ with start 2 using the derivation $b b b a \Rightarrow_{G}^{*} a$.
(3) Let $G=(\Sigma, R)$ be a semi-Thue system with $\Sigma=\{a, b\}$ and $R=\{b b a \rightarrow b a\}$.
(a) Show that $b b b a \Rightarrow_{G}^{*} b a$ by writing all the steps and underlining the occurrence of the left hand side of the rule in the current word at every step.
(b) Construct the correspondence system $P_{G, w^{\prime}, w^{\prime \prime}}$ as explained in the lecture, where $w^{\prime}=b b b a$ and $w^{\prime \prime}=b a$. Assume that rule 2 is $\left(X, X w^{\prime} X\right)$ and rule 3 is $\left(w^{\prime \prime} X X, X\right)$. Construct a solution for $P_{G, w^{\prime}, w^{\prime \prime}}$ with start 2 using the derivation $b b b a \Rightarrow_{G}^{*} b a$.

