Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inform. Markus Bender
January 30, 2014

Exercises for
 "Advances in Theoretical Computer Science"
 Exercise sheet 13

Exercise 13.1:

Give a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ which polynomially reduces L_{1} to L_{2}, or explain why this is not possible:
(1) $\Sigma=\{0,1,2\}$;
$L_{1}=\left\{w \in\{0,1\}^{*} \mid w\right.$ is the binary representation of a prime number $\} ;$
$L_{2}=\left\{w \in\{0,1,2\}^{*} \mid w\right.$ is the representation of a prime number in base 3$\}$.
(2) $\Sigma=\{0,1\}, L_{1}$ as in (1);
$L_{2}=\left\{w \in\{1\}^{*} \mid w\right.$ is the representation of a prime number in base 1$\}$.

Exercise 13.2:

We know that SAT is NP-complete. In the previous exercise (28.01.14) we saw that satisfiability of formulae in DNF can be checked in polynomial time, so DNF-SAT $=\{F \mid$ F is a satisfiable formula of propositional logic in disjunctive normal form $\}$ is in P .

If we could construct a polynomial reduction of SAT to DNF-SAT (i.e. if we could prove that SAT $\prec_{\text {pol }}$ DNF-SAT) then we could show that $\mathrm{P}=\mathrm{NP}$.

Formulae in propositional logic can be transformed to DNF using distributivity:

$$
A \wedge\left(B_{1} \vee \cdots \vee B_{k}\right) \equiv\left(A \wedge B_{1}\right) \vee \cdots \vee\left(A \wedge B_{k}\right)
$$

Why does this not lead to a polynomial reduction?

Exercise 13.3:

Consider the following propositional logic formula:

$$
F: \quad(P \vee \neg Q \vee \neg(R \vee \neg S)) \wedge(Q \vee \neg R \vee S)
$$

Apply Steps 1-4 on page 47-49 of the slides from 30.01.2014 to this formula for computing the formula in 3-CNF associated to F (formula which is satisfiable iff F is satisfiable).

Exercise 13.4:

(1) Draw the complete graphs with 3,4 and 5 vertices.
(2) Consider the undirected graph $G=(V, E)$, where $V=\{a, b, c, d, e, f\}$ and

$$
E=\{(a, b),(a, c),(a, e),(a, f),(b, c),(b, d),(b, e),(c, e),(c, f)\}
$$

(Note that in an undirected graph the edge (x, y) is identical to the edge (y, x), i.e. they are not ordered pairs but sets (or 2-multisets) of vertices.)
(a) Draw the graph G.
(b) Does G have a clique of size 3? Does G have a clique of size 4? Does G have a clique of size 5 ?
(3) Consider the following formula in 3-CNF:

$$
F: \quad\left(\neg P_{1} \vee P_{2} \vee P_{3}\right) \wedge\left(P_{1} \vee \neg P_{2} \vee P_{4}\right) \wedge\left(P_{2} \vee \neg P_{3} \vee \neg P_{4}\right)
$$

(a) Is the formula satisfiable? If yes then give a satisfying assignment.
(b) Starting from F construct the pair $\left(G_{F}, k_{F}\right)$ as explained on the slides from 30.01.2014.
(c) Has the graph G_{F} a clique of size k_{F} ? If so indicate such a clique and reconstruct from it an assignment which makes F true.

Exercise 13.5:

Consider the following problem:
SET PACKING $=\left\{(C, l) \mid C=\left\{S_{1}, \ldots, S_{n}\right\}\right.$, every S_{i} is a finite set and there exists $D \subseteq C$ with l elements such that the elements of D are pairwise disjoint \}
(1) Prove that SET PACKING \in NP.

For every pair (G, k), where $G=(V, E)$ is an undirected graph with vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ and edges in E we associate the pair (C, l), where $l=k$ and $C=\left\{S_{1}, \ldots, S_{m}\right\}$, with $S_{i}=$ $\left\{\left(v_{i}, v_{j}\right),\left(v_{j}, v_{i}\right) \mid\left(v_{i}, v_{j}\right) \notin E\right\}$.
(2) Estimate the time needed for constructing (C, l) from (G, k).

Prove:

(3) $S_{i} \cap S_{j} \neq \emptyset$ if and only if there is no edge between v_{i} and v_{j} in G.
(4) If G^{\prime} is a clique of G with size k, with vertices $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ then the sets in $D=\left\{S_{i_{1}}, \ldots, S_{i_{k}}\right\}$ are pairwise disjoint.
(5) G hat a clique of size k iff there exists a subset D of C with l elements such that the elements of D are pairwise disjoint.
(6) Infer that Clique (the problem whether a graph has a clique of size k) can be polynomially reduced to SET PACKING.
(7) Is SET PACKING NP-complete? Justify your answer.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until Tuesday, $4.2 .2014,10: 00$ s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222 .

