Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inform. Markus Bender
November 21, 2013

Exercises for
 "Advances in Theoretical Computer Science"
 Exercise sheet 5

Exercise 5.1:

Write a GOTO program which computes the function $q: \mathbb{N} \rightarrow \mathbb{N}$ defined for every $n \in \mathbb{N}$ by: $q(n)$ is the sum of the digits in n.

Remark: You are allowed to use the following instructions:

$$
\begin{array}{lll}
x_{i}:=c & x_{i}:=c \text { op } x_{j} & \text { goto } l \\
x_{i}:=x_{j} & x_{i}:=x_{j} \text { op } c & \text { if } x_{i}=0 \text { goto } l \\
& x_{i}:=x_{j} \text { op } x_{k} &
\end{array}
$$

Here: x_{i}, x_{j}, x_{k} are registers c is a constant $\mathrm{op} \in\{+,-, *\}$ and l is a label.

Exercise 5.2:

Let P be the following GOTO program:

```
1: x4 := x1;
2: if x4 = 0 goto 10;
3: x5 := x2;
4: if x5 = 0 goto 8;
5: x3 := x3 + 1;
6: x5 := x5 - 1;
7: if x6 = 0 goto 4;
8: x4 := x4 - 1;
9: if x6 = 0 goto 2;
10: x5 := x5 - 1
```

(1) Which value does P compute on the following inputs:
(a) $x_{1}=2, x_{2}=0$;
(b) $x_{1}=0, x_{2}=3$;
(c) $x_{1}=2, x_{2}=3$
(2) Which function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is computed by P ?
(3) Use the transformation presented in the lecture to construct a WHILE-IF program with the same semantics as P.

Exercise 5.3:

Let P be the following WHILE program:

```
\(x_{4}:=10-x_{1} ;\)
\(x_{5}:=1-x_{4}\);
while \(x_{5} \neq 0\) do
    \(x_{5}:=x_{5}+1\)
end;
\(x_{4}:=x_{2}-1 ;\)
\(x_{5}:=x_{1}\);
\(x_{3}:=x_{1}\);
while \(x_{4} \neq 0\) do
    \(x_{5}:=x_{5} * 10\)
    \(x_{3}:=x_{3}+x_{5}\)
    \(x_{4}:=x_{4}-1\)
end;
\(x_{5}:=0\)
```

(1) Which value does P compute on input $x_{1}=2, x_{2}=3$? Which value does P compute on input $x_{1}=3, x_{2}=0$?
(2) Which function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is computed by P ?
(3) Use the transformation presented in the lecture to construct a GOTO program which has the same semantics as P.

Exercise 5.4:

(1) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijective function which is WHILE computable. Show that its inverse, $f^{-1}: \mathbb{N} \rightarrow \mathbb{N}$, is WHILE computable as well.
Can we find any GOTO computable bijection $g: \mathbb{N} \rightarrow \mathbb{N}$ for which $g^{-1}: \mathbb{N} \rightarrow \mathbb{N}$ is not GOTO computable?
(2) Let $f: \mathbb{N} \times \mathbb{N}$ be a bijective function which is WHILE computable. Let P be the WHILE program which computes f. Write a WHILE program, which uses P, with the property that started with input n_{1} in register x_{1} it ends with value n_{2} in register x_{2} and value n_{3} in register x_{3}, where n_{2} and n_{3} are such that $f\left(n_{2}, n_{3}\right)=n_{1}$.
Remark: You are allowed to use the following WHILE programs and constructions:

$$
\begin{array}{lll}
x_{i}:=c & x_{i}:=c \text { op } x_{j} & P_{1} ; P_{2} \\
x_{i}:=x_{j} & x_{i}:=x_{j} \text { op } c & \text { while } x_{i} \neq 0 \text { do } P_{1} \text { end } \\
& x_{i}:=x_{j} \text { op } x_{k} & \text { if } x_{i}=0 \text { then } P_{1} \text { end }
\end{array}
$$

Here: x_{i}, x_{j}, x_{k} are registers c is a constant op $\in\{+,-, *\}$ and P_{1}, P_{2} are WHILE programs.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until Tuesday, 26.11.2013, 10:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222.

