Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inform. Markus Bender

Exercises for
"Advances in Theoretical Computer Science"
Exercise sheet 6

Exercise 6.1:

Let P be the following WHILE program:

```
\(x_{3}:=0 ; x_{4}:=x_{2} ;\)
while \(x_{1} \neq 0\) do
    \(x_{2}:=x_{4}\);
    while \(x_{2} \neq 0\) do
        \(x_{3}:=x_{3}+1 ; x_{2}:=x_{2}-1\)
    end; \(x_{1}:=x_{1}-1\)
end
```

Find a WHILE-IF program P^{\prime} with one WHILE loop only which has the same semantics as $P\left(\right.$ i.e. $\left.\Delta\left(P^{\prime}\right)=\Delta(P)\right)$. Use for this the results on the slides from 21.11.2013.

Exercise 6.2:

Prove that the following functions are primitive recursive:
(1) $c_{s}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$, where $s \in \mathbb{N}$, defined for every $\mathbf{n} \in \mathbb{N}^{k}$ by: $c_{s}^{k}(\mathbf{n})=s$.
(2) fac $: \mathbb{N} \rightarrow \mathbb{N}$, defined for every $n \in \mathbb{N}$ by: $\operatorname{fac}(n)=n$!.
(3) $\exp : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, defined for every $(n, m) \in \mathbb{N} \times \mathbb{N}$ by: $\exp (n, m)=n^{m}$.
(4) eq : $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, defined for every $(n, m) \in \mathbb{N} \times \mathbb{N}$ by: eq $(n, m)=\left\{\begin{array}{ll}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{array}\right.$.

Remark: You are allowed to use all primitive recursive functions introduced in the lecture.

Exercise 6.3:

Consider the following primitive recursive functions:

- $f_{1}=+\circ\left(-\circ\left(\pi_{1}^{2}, c_{5}^{2}\right), * \circ\left(\pi_{2}^{2}, \pi_{2}^{2}\right)\right)$
- $f_{2}=\mathcal{P} \mathcal{R}\left[(+1) \circ 0, * \circ\left((+1) \circ \pi_{1}^{2}, \pi_{2}^{2}\right)\right]$
- $f_{3}=\mathcal{P} \mathcal{R}\left[c_{1}^{1}, * \circ\left(\pi_{1}^{3}, \pi_{3}^{3}\right)\right] \circ\left((-1) \circ \pi_{1}^{2}, \pi_{2}^{2}\right)$
(a) Which is the arity of f_{1}, of f_{2} and of f_{3} ? (i.e. how many arguments does each of these function have?)
(b) What do these functions compute if all arguments are equal to 2 ?
(c) What do these functions compute in general?

Note: We used the following notation (cf. also slides from 28.11.2013):

- \circ (function composition) is defined as in the lecture: $\left(g \circ\left(h_{1}, \ldots, h_{r}\right)\right)(\mathbf{n})=g\left(h_{1}(\mathbf{n}), \ldots, h_{r}(\mathbf{n})\right)$.
- if $j \leq k, \pi_{j}^{k}$ is the projection function defined as in the lecture: $\pi_{j}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{j}$.
- $(+1): \mathbb{N} \rightarrow \mathbb{N}$ is defined as in the lecture, by: $(+1)(n)=n+1$.
- $(-1): \mathbb{N} \rightarrow \mathbb{N}$ is defined by: $(-1)(n)=\left\{\begin{array}{cl}0 & \text { if } n=0 \\ n-1 & \text { otherwise }\end{array}\right.$.
- $*: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined for all $n_{1}, n_{2} \in \mathbb{N}$ by: $*\left(n_{1}, n_{2}\right)=n_{1} * n_{2}$.
- $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined for all $n_{1}, n_{2} \in \mathbb{N}$ by: $+\left(n_{1}, n_{2}\right)=n_{1}+n_{2}$.
- $-: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined for all $n_{1}, n_{2} \in \mathbb{N}$ by: $-\left(n_{1}, n_{2}\right)=n_{1}-n_{2}$.
- for all $s, k \in \mathbb{N}, c_{s}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined for all $\mathbf{n} \in \mathbb{N}^{k}$ by: $c_{s}^{k}(\mathbf{n})=s$.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until Tuesday, $3.12 .2013,10: 00$ s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222 .

