Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
Dipl. Inform. Markus Bender
December 19, 2013

Exercises for
 "Advances in Theoretical Computer Science"
 Exercise sheet 9

Exercise 9.1:

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be defined by: $g(n)=f(n, n+1)-1$, and $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be defined by:

$$
\begin{aligned}
f(n, 0) & =0 \\
f(n, k+1) & =f(n, k)+\left(1-\left(k^{2}-n\right)\right)
\end{aligned}
$$

(1) Show that g is primitive recursive.
(2) Compute $g(5)$ and $g(10)$.
(3) Give a LOOP program which computes g.
(4) Can you describe what mathematical function is computed by g ?
(5) Give a primitive recursive function which computes $\left\lfloor\log _{2}(n)\right\rfloor$. (For $n=0$, the value of the function should be 0 , not $-\infty$.)

Hint: Modify the functions g and f in a suitable way.

Remark: You are allowed to use all functions that were proved to be primitive recursive in the lecture or in a previous exercise.

Exercise 9.2:

Prove that function $\log : \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $\log (n, m)=\left\lfloor\log _{n}(m)\right\rfloor$ is μ-recursive.
Remark: You are allowed to use all functions that were proved to be primitive and/or μ-recursive in the lecture or in a previous exercise.

Exercise 9.3:

Which functions are computed by:
(1) $f_{1}=\mu c_{1}^{2}$
(2) $f_{2}=\mu g$, where $g(n, i)= \begin{cases}n+1 & \text { if } i=0 \\ \mu j(j+1+n=0) & \text { if } i=1 \\ 0 & \text { if } i \geq 2\end{cases}$
(3) $f_{3}=\mu g$, where $g(n, i)= \begin{cases}n+1 & \text { if } i=0 \\ \mu j((j+1)-n=0) & \text { if } i=1 \\ 0 & \text { if } i \geq 2\end{cases}$

Exercise 9.4:

Consider the definition of the Ackermann function given in the lecture:

$$
\begin{aligned}
A(0, y) & =y+1 & \\
A(x+1,0) & =A(x, 1) & \operatorname{Ack}(x)=A(x, x) \\
A(x+1, y+1) & =A(x, A(x+1, y)) &
\end{aligned}
$$

We assume that the following properties of the function A are known (proving these facts is not part of this exercise).
(1) $A(1, y)=y+2$ for every $y \in \mathbb{N}$
(2) $A(2, y)>2 y$ for every $y \in \mathbb{N}$
(3) $A(3, y)>2^{y+1}$ for every $y \in \mathbb{N}$
(4) $y<A(x, y)$ for all $x, y \in \mathbb{N}$
(5) $A(x, y)<A(x, y+1)$ for all $x, y \in \mathbb{N}$
(6) $A(x, y+1) \leq A(x+1, y)$ for all $x, y \in \mathbb{N}$
(7) $A(x, y)<A(x+1, y)$ for all $x, y \in \mathbb{N}$.
(8) $A(x, 2 y)<A(x+3, y)$ for all $x, y \in \mathbb{N}$.

Prove (possibly using some of the inequalities above) that:
(9) $0<A(0,0)$ for all $n \in \mathbb{N}$
(10) $\pi_{i}^{r}\left(n_{1}, \ldots, n_{r}\right)<A\left(0, \sum_{i=1}^{r} n_{i}\right)$ for all $n_{1}, \ldots, n_{r} \in \mathbb{N}$
(11) $n+1<A(1, n)$ for all $n \in \mathbb{N}$

Remark: The results (1)-(11) are the easy part in the proof of the fact that the Ackermann function is not primitive recursive. The proof of the following facts (12) and (13) is a bit more difficult (and it is not part of this exercise).
For every $m \in \mathbb{N}$, let $B_{m}=\left\{f \mid f\right.$ primitive recursive and for all $n_{1}, \ldots, n_{r} \in \mathbb{N}$ where r is the arity of $f, f\left(n_{1}, \ldots, n_{r}\right)<A\left(m, \sum_{i=1}^{r} n_{i}\right)$
(12) If $f, g_{1}, \ldots, g_{r} \in B_{m}$ and $h=f \circ\left(g_{1}, \ldots, g_{m}\right)$ then there exists a natural number m^{\prime} (depending on m and r) such that $h \in B_{m^{\prime}}$.
(13) If $g, h \in B_{m}$ and f is defined by primitive recursion from g and h then $f \in B_{m+4}$.

Prove:
(14) For every primitive recursive function f there exists $m \in \mathbb{N}$ with $f \in B_{m}$.
(15) The Ackermann function Ack defined by $\operatorname{Ack}(n)=A(n, n)$ is not primitive recursive.

The submission of the solutions is not compulsory. If you want to submit your solutions, please do so until Tuesday, 14.1.2014, 10:00 s.t.. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution.
Submission possibilities:

- By e-mail to mbender@uni-koblenz.de with the keyword "Homework ACTCS" in the subject.
- Put it in the box in front of Room B 222.

