Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part 1)

23.01.2014

Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity

Assume you are employed as software designer.

One day, your boss calls you into his office and and tells you that the company is about to enter a very competitive market, for which it is essential to know how to solve (efficiently) problem X.

Your charge is to find an efficient algorithm for solving this problem.

Motivation (The pragmatical view)

What you certainly don't want:

"I can't find an efficient algorithm. I guess I'm just to dumb"

(Garey, Johnson, 1979)

Motivation (The pragmatical view)

Much better:

"I can't find an efficient algorithm, because no such algorithm is possible!"

(Garey, Johnson, 1979)

Motivation

In this lecture we showed how to prove that certain problems do not have a (terminating) algorithmic solution

 \mapsto undecidability results

In the next weeks we will show that even decidable problems are "intractable" in the sense that they have a high complexity.

Unfortunately, proving undecidability or inherent intractability can be just as hard as finding efficient algorithms.

The pragmatical view

However, we will see that you can often answer:

"I can't find an efficient algorithm, but neither can all these famous people."

(Garey, Johnson, 1979)

Motivation

Goals:

- Define formally time and space complexity
- Define a family of "complexity classes": P, NP, PSPACE, ...
- Study the links between complexity classes
- Learn how to show that a problem is in a certain complexity class Reductions to problems known to be in the complexity class
- Closure of complexity classes

We will give examples of problems from various areas and study their complexity.

Complexity

- Recall:
 - Big O notation
 - The structure of PSPACE
 - Complete problems; hard problems
 - Examples

Big O notation

Definition. Let $h, f : \mathbb{N} \to \mathbb{R}$ functions.

The function h is in the class O(f) iff there exists $c \in \mathbb{R}$, c > 0 and there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0 |h(n)| \le c|f(n)|$.

Notation: $f \in O(h)$, sometimes also $f(n) \in O(h(n))$; by abuse of notation denoted also by f = O(h)

Examples:

$$5n + 4 \in O(n)$$

$$5n + n^2 \notin O(n)$$

$$\binom{n}{2} = \frac{n(n-1)}{2} \in O(n)$$

Let p be a polynomial of degree m. Then $p(n) \in O(n^m)$

Big O notation

Computation rules for O

- $f \in O(f)$
- $c \cdot O(f) = O(f)$
- O(O(f)) = O(f)
- $O(f) \cdot O(g) = O(f \cdot g)$
- $O(f \cdot g) = |f|O(g)$
- If $|f| \leq |g|$ then $O(f) \subseteq O(g)$

Lemma. The following hold:

- $\forall d > 0$, $n^{d+1} \not\in O(n^d)$
- $\forall r > 1 \forall d(r^n \not\in O(n^d) \text{ and } n^d \in O(r^n))$

Complexity

Types of complexity

- Time complexity
- Space complexity

DTIME and NTIME

Basic model: *k*-DTM or *k*-NTM *M* (one tape for the input)

If M makes for every input word of length n at most T(n) steps, then M is T(n)-time bounded.

In this case, the language accepted by M has time complexity T(n); (more precisely max(n + 1, T(n))).

Definition (NTIME(T(n)), DTIME(T(n)))

- DTIME(T(n)) class of all languages accepted by T(n)-time bounded DTMs.
- NTIME(T(n)) class of all languages accepted by T(n)-time bounded NTMs.

Basic model: *k*-DTM or *k*-NTM *M* with special tape for the input (is read-only) + *k* storage tapes (offline DTM) \mapsto needed if *S*(*n*) sublinear

If M needs, for every input word of length n, at most

S(n) cells on the storage tapes then M is S(n)-space bounded.

The language accepted by M has space complexity S(n); (more precisely max(1, S(n))).

Definition (NSPACE(S(n)), DSPACE(S(n)))

- DSPACE(S(n)) class of all languages accepted by S(n)-space bounded DTMs.
- NSPACE(S(n)) class of all languages accepted by S(n)-space bounded NTMs.

Example

To which time/space complexity does the following language belong:

$$L_{\text{mirror}} = \{wcw^R \mid w \in \{0, 1\}^*\}$$

Example

To which time/space complexity does the following language belong:

$$L_{\text{mirror}} = \{wcw^R \mid w \in \{0,1\}^*\}$$

Time: DTIME(n + 1): copy input to the right of *c* in reverse order. When *c* is found, the rest is compared with the copy of *w* on the tape.

Space: *DSPACE*(*n*): previous DTM

To which time/space complexity does the following language belong:

$$L_{\text{mirror}} = \{wcw^R \mid w \in \{0,1\}^*\}$$

Time: DTIME(n + 1): copy input to the right of *c* in reverse order. When *c* is found, the rest is compared with the copy of *w* on the tape.

Space: *DSPACE*(*n*): previous DTM

Even better DSPACE(log(n)): use two tapes as binary counters (length of word before/after c). Remember: the definition of DSPACE does not count the space used on the input tape. **Time:** Is any language in DTIME(f(n)) decided by some DTM? **Space:** Is any language in DSPACE(f(n)) decided by some DTM?

The functions f are usually very simple functions; in particular they are all computable.

We will consider e.g. powers $f(n) = n^k$.

Time: Is any language in DTIME(f(n)) decided by some DTM? **Space:** Is any language in DSPACE(f(n)) decided by some DTM?

The functions f are usually are very simple functions; in particular they are all computable.

We will consider e.g. powers $f(n) = n^k$.

Time/Space:What about NTIME(f(n)), NSPACE(f(n))Time vs. Space:What are the links between DTIME(f(n)), DSPACE(f(n)),NTIME(f(n)), NSPACE(f(n))

Questions

- Time boundedWhat does it mean that a DTM makes at most n steps?Strictly speaking, after n steps it should halt or hang.
 - Halt? Input is accepted
 - Hang? DTM on band which is infinite on both sides cannot hang!

Questions

- Time boundedWhat does it mean that a DTM makes at most n steps?Strictly speaking, after n steps it should halt or hang.
 - Halt? Input is accepted
 - Hang? DTM on band which is infinite on both sides cannot hang!

Stop after *n* steps

- **Stop:** We understand the following under *M* makes at most *n* steps:
 - It halts (and accepts the input) within *n* steps
 - It hangs (and does not accept the input) within *n* steps
 - It halts after n steps, but not in halting mode, so it does not accept the input.

Answers (Informally)

- **Time:** Every language from DTIME(f(n)) is decidable: for an input of length *n* we wait as long as the value f(n). If until then no answer "YES" then the answer is "NO".
- **Space:** Every language from DSPACE(f(n)) is decidable: There are only finitely many configurations. We write all configurations. If the TM does not halt then there is a loop. This can be detected.

Answers

... to be continued next time