Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part III)

6.02.2014

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau
e-mail: sofronie@uni-koblenz.de

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity

Until now

- P, NP, PSPACE
$P \subseteq N P \subseteq P S P A C E$
- closure properties
- it is not known whether:

$$
P=N P, N P=c o-N P, P=P S P A C E, N P=P S P A C E
$$

- How to show that a certain problem is in a certain complexity class?

Reductions

Reduction

Definition (Polynomial time reducibility)

Let L_{1}, L_{2} be languages.
L_{2} is polynomial time reducible to L_{1} (notation: $L_{2} \preceq_{\text {pol }} L_{1}$)
if there exists a polynomial time bounded DTM, which for every input w computes an output $f(w)$ such that

$$
w \in L_{2} \text { if and only if } f(w) \in L_{1}
$$

Lemma (Polynomial time reduction)

- Let L_{2} be polynomial time reducible to $L_{1}\left(L_{2} \preceq_{\text {pol }} L_{1}\right)$. Then:
If $L_{1} \in N P$ then $L_{2} \in N P$.

If $\quad L_{1} \in P$ then $L_{2} \in P$.

- The composition of two polynomial time reductions is again a polynomial time reduction.

Complete and hard problems

Definition (NP-complete, NP-hard)

- A language L is NP-hard (NP-difficult) if every language L^{\prime} in NP is reducible in polynomial time to L.
- A language L is NP-complete if:
$-L \in N P$
- L is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

- A language L is PSPACE-hard (PSPACE-difficult) if every language L^{\prime} in PSPACE is reducible in polynomial time to L.
- A language L is PSPACE-complete if:
- $L \in$ PSPACE
- L is PSPACE-hard

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF)
2. Does a graph contain a clique of size k ? (Clique of size k)
3. Rucksack problem (knapsack)
4. Can a graph be colored with three colors? (3-colorability)
5. Is a (un)directed graph hamiltonian? (Hamiltonian circle)
6. Has a set of integers a subset with sum x ? (subset sum)
7. Multiprocessor scheduling

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
last time
3. Rucksack problem
4. Is a (un)directed graph hamiltonian?
5. Can a graph be colored with three colors?
6. Multiprocessor scheduling

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
today
4. Can a graph be colored with three colors?
5. Is a (un)directed graph hamiltonian?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (Rucksack problem)

A rucksack problem consists of:

- n objects with weights a_{1}, \ldots, a_{n}
- a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects with total weight b.

$$
\text { Rucksack }=\left\{\left(b, a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n+1} \mid \exists I \subseteq\{1, \ldots, n\} \text { s.t. } \sum_{i \in I} a_{i}=b\right\}
$$

Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess I and check whether $\sum_{i \in I} a_{i}=b$
(2) Rucksack is NP-hard: We show that 3-CNF-SAT $\prec_{\text {pol }}$ Rucksack.

Construct $f: 3-$ CNF $\rightarrow \mathbb{N}^{*}$ as follows.
Consider a 3-CNF formula $F=\left(L_{1}^{1} \vee L_{2}^{1} \vee L_{3}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{m} \vee L_{2}^{m} \vee L_{3}^{m}\right)$
$f(F)=\left(b, a_{1}, \ldots, a_{n}\right)$ where:
(i) a_{i} encodes which atom occurs in which clause as follows:
p_{i} positive occurrences; n_{i} negative occurrences (numbers with $n+m$ positions)

- first m digits of $p_{i}: p_{i j}$ how often i-th atom occurs positively in j-th clause
- first m digits of n_{i} : $n_{i j}$ how often i-th atom occurs negatively in j-th clause
- last n digits of $p_{i}, n_{i}: p_{i_{j}}, n_{i_{j}}$ which atom is referred by p_{i} p_{i}, n_{i} contain 1 at position $m+i$ and 0 otherwise.

Example

Let the set Prop of propositional variables consist of $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$.
$F:\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{2} \vee \neg x_{5}\right) \wedge\left(\neg x_{3} \vee \neg x_{1} \vee x_{4}\right)$

$$
\begin{array}{ll}
p_{1}=10010000 & n_{1}=00110000 \\
p_{2}=02001000 & n_{2}=10001000 \\
p_{3}=00000100 & n_{3}=00100100 \\
p_{4}=10100010 & n_{4}=00000010 \\
p_{5}=00000001 & n_{5}=01000001
\end{array}
$$

Satisfying assignment: $\mathcal{A}\left(x_{1}\right)=\mathcal{A}\left(x_{2}\right)=\mathcal{A}\left(x_{5}\right)$ and $\mathcal{A}\left(x_{3}\right)=\mathcal{A}\left(x_{4}\right)=0$.

$$
p_{1}+p_{2}+p_{5}+n_{3}+n_{4}=\underbrace{121}_{\begin{array}{c}
\text { all digits } \\
\text { because } 3 \text { lit./clause }
\end{array}} \underbrace{11111}_{\begin{array}{c}
\text { all } 1 \\
\text { all atoms considered }
\end{array}}
$$

Examples of NP-complete problems

Proof: (ctd.) If we have a satisfying assignment \mathcal{A}, we take for every propositional variable x_{i} mapped to 0 the number n_{i} and for every propositional variable x_{i} mapped to 1 the number p_{i}.

The sum of these numbers is $b_{1} \ldots b_{m} \underbrace{1 \ldots 1}_{n \text { times }}$ with $b_{i} \leq 3$,
so $b_{1} \ldots b_{m} \underbrace{1 \ldots 1}_{n}<\underbrace{4 \ldots 4}_{m} \underbrace{1 \ldots 1}_{n}$
Let $b:=\underbrace{4 \ldots 4}_{m} \underbrace{1 \ldots 1}_{n}$. We choose $\left\{a_{1}, \ldots, a_{k}\right\}=\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\} \cup C$.
The role of the numbers in $C=\left\{c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{m}\right\}$ is to make the sum of the $a_{i} \mathrm{~s}$ equal to b : $c_{i_{j}}=1$ iff $i=j ; d_{i_{j}}=2$ iff $i=j$ (they are zero otherwise).
$f(F) \in$ Rucksack iff a subset I of $\left\{a_{1}, \ldots, a_{k}\right\}$ adds up to b
iff a subset I of $\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\}$ adds up to $b_{1} \ldots b_{m} 1 \ldots 1$
iff for a subset I of $\left\{p_{1}, \ldots, p_{n}\right\} \cup\left\{n_{1}, \ldots, n_{n}\right\}$ there exists an assignment
iff \mathcal{A} with $\mathcal{A}\left(P_{i}\right)=1($ resp. 0$)$ iff $p_{i}\left(\right.$ resp. $\left.n_{i}\right)$ occurs in I iff F satisfiable

Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Can a graph be colored with three colors?
5. Is a (un)directed graph hamiltonian?
6. Multiprocessor scheduling

Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Can a graph be colored with three colors?
5. Is a (un)directed graph hamiltonian?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (k-colorability) A undirected graph is k-colorable if every node can be colored with one of k colors such that nodes connected by an edge have different colors.
$L_{\text {Color }_{k}}$: the language consisting of all undirected graphs which are colorable with at most k colors.

Examples of NP-complete problems

The k-colorability is NP complete

Proof: Exercise. Hint:
(1) Prove that the problen is in NP.
(2) Let $F=C_{1} \wedge \cdots \wedge C_{k}$ in 3-CNF containing propositional variables $\left\{x_{1}, \ldots, x_{m}\right\}$.

Let $G=(V, E)$ be an undirected graph, that is defined as follows:

$$
\begin{aligned}
V & =\left\{C_{1}, \ldots, C_{k}\right\} \cup\left\{x_{1}, \ldots, x_{m}\right\} \cup\left\{\overline{x_{1}}, \ldots, \overline{x_{m}}\right\} \cup\left\{y_{1}, \ldots, y_{m}\right\} \\
E= & \left\{\left(x_{i}, \overline{x_{i}}\right),\left(\overline{x_{i}}, x_{i}\right) \mid i \in\{1, \ldots, m\}\right\} \cup\left\{\left(y_{i}, y_{j}\right) \mid i \neq j\right\} \cup \\
& \left\{\left(y_{i}, x_{j}\right),\left(x_{j}, y_{i}\right) \mid i \neq j\right\} \cup\left\{\left(y_{i}, \overline{x_{j}}\right),\left(\overline{x_{j}}, y_{i}\right) \mid i \neq j\right\} \cup \\
& \left\{\left(C_{i}, x_{j}\right),\left(x_{j}, C_{i}\right) \mid x_{j} \text { not in } C_{i}\right\} \cup\left\{\left(C_{i}, \overline{x_{j}}\right),\left(\overline{x_{j}}, C_{i}\right) \mid \overline{x_{j}} \text { not in } C_{i}\right\}
\end{aligned}
$$

Use G to prove 3 -CNF-SAT $\preceq_{\text {pol }} k$-colorability.

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Can a graph be colored with three colors?
5. Is a (un)directed graph hamiltonian?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (Hamiltonian-cycle)
Path along the edges of a graph which visits every node exactly once.

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once and is a cycle.
$L_{\text {Ham,undir }}$: the language consisting of all undirected graphs which contain a Hamiltonian cycle

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once.
$L_{\text {Ham,undir }}$: the language consisting of all undirected graphs which contain a Hamiltonian cycle
$L_{\text {Ham,dir }}$: the language consisting of all directed graphs which contain a Hamiltonian cycle

NP-completeness: again reduction from 3-CNF-SAT.

Examples of NP-complete problems

Theorem. The problem whether a directed graph contains a Hamiltonian cycle is NP-complete.

Proof. (1) The problem is in NP: Guess a permutation of the nodes; check that they form a Hamiltonian cycle (in polynomial time).
(2) The problem is NP-hard. Reduction from 3-CNF-SAT.
$F=\left(L_{1}^{1} \vee L_{2}^{1} \vee L_{3}^{1}\right) \wedge \cdots \wedge\left(L_{1}^{k} \vee L_{2}^{k} \vee L_{3}^{k}\right)$
Construct $f(F)=G$ such that G contains a Hamiltonian cycle iff F satisfiable.

The details can be found in Erk \& Priese, "Theoretische Informatik", p.466-471.

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)
2. Does a graph contain a clique of size k ?
3. Rucksack problem
4. Can a graph be colored with three colors?
5. Is a (un)directed graph hamiltonian?
6. Multiprocessor scheduling

Examples of NP-complete problems

Definition (Multiprocessor scheduling problem)
A scheduling problem consists of:

- n processes with durations t_{1}, \ldots, t_{n}
- m processors
- a maximal duration (deadline) D

The scheduling problem has a solution if there exists an distribution of processes on the processors such that all processes end before the deadline D.
$L_{\text {schedule }}$: the language consisting of all solvable scheduling problems

Other complexity classes

Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

$L_{\text {tautologies }}=\{w \mid w$ is a tautology in propositional logic $\}$

Theorem. $L_{\text {tautologies }}$ is in co-NP.

Proof. The complement of $L_{\text {tautologies }}$ is the set of formulae whose negation is satisfiable, thus in NP.

PSPACE

Definition (PSPACE-complete, PSPACE-hard)

A language L is PSPACE-hard (PSPACE-difficult) if every language L^{\prime} in PSPACE is reducible in polynomial time to L.

A language L is PSPACE-complete if: $\quad-L \in P S P A C E$
$-L$ is PSPACE-hard

Quantified Boolean Formulae

Syntax: Extend the syntax of propositional logic by allowing quantification over propositional variables.

Semantics:
$(\forall P) F \mapsto F[P \mapsto 1] \wedge F[P \mapsto 0]$ $(\exists P) F \mapsto F[P \mapsto 1] \vee F[P \mapsto 0]$

PSPACE

A fundamental PSPACE problem was identified by Stockmeyer and Meyer in 1973.

Quantified Boolean Formulas (QBF)

Given: A well-formed quantified Boolean formula $F=\left(Q_{1} x_{1}\right) \ldots\left(Q_{n} x_{n}\right) E\left(x_{1}, \ldots, x_{n}\right)$ where E is a Boolean expression containing the variables x_{1}, \ldots, x_{n} and Q_{i} is \exists or \forall.

Question: Is F true?
(Does it evaluate to 1 if we use the evaluation rules above?)

PSPACE

Theorem QBF is PSPACE complete

Proof (Idea only)
(1) QBF is in PSPACE: we can try all possible assignments of truth values one at a time and reusing the space (2^{n} time but polynomial space).
(2) QBF is PSPACE complete. We can show that every language L^{\prime} in PSPACE can be polymomially reduced to QBF using an idea similar to that used in Cook's theorem (we simulate a polynomial space bounded computation and not a polynomial time bounded computation).

The structure of PSPACE

The structure of PSPACE

... Beyond NP

The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

- makes initial guess
- consult an oracle

Informally: NOTM for problem P : nondeterministic algorithm with a subroutine for P.

The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

- makes initial guess
- consult an oracle

Informally: NOTM for problem P : nondeterministic algorithm with a subroutine for P.
defines a so-called (polynomial time) nondeterministic Turing reduction

The structure of PSPACE

The polynomial hierarchy
$P^{Y}=\left\{L \mid\right.$ there exists a language $L^{\prime} \in Y$ such that $\left.L \preceq_{\text {pol }} L^{\prime}\right\}$
$N P^{Y}=\left\{L \mid\right.$ there exists a language $L^{\prime} \in Y$ such that there exists a nondeterministic Turing reduction from L to $\left.L^{\prime}\right\}$

$$
\begin{aligned}
& \Sigma_{0}^{p}=\Pi_{0}^{p}=\Delta_{0}^{p}=P . \\
& \Delta_{k+1}^{p}=P^{\Sigma_{k}^{p}} \\
& \Sigma_{k+1}^{p}=N P^{\Sigma_{k}^{p}} \\
& \Pi_{k+1}^{p}=\operatorname{co}-N P^{\Sigma_{k}^{p}}
\end{aligned}
$$

$$
\Pi_{1}^{p}=\mathrm{co}-N P^{P}=\operatorname{co}-N P ; \Sigma_{1}^{p}=N P^{P}=N P ; \Delta_{1}^{p}=P^{P}=P
$$

$$
\Delta_{2}^{p}=P^{N P} ; \Sigma_{2}^{p}=N P^{N P}
$$

The structure of PSPACE
PSPACE

The structure of PSPACE

A complete problem for Σ_{k}^{P} is satisfiability for quantified Boolean formulas with k alternations of quantifiers which start with an existential quantifier sequence (abbreviated $Q B F_{k}$ or $Q S A T_{k}$).
(The variant which starts with \forall is complete for Π_{k}^{P}).

Beyond PSPACE

EXPTIME, NEXPTIME
DEXPTIME, NDEXPTIME

EXPSPACE,

Discussion

- In practical applications, for having efficient algorithms polynomial solvability is very important; exponential complexity inacceptable.
- Better hardware is no solution for bad complexity

Question which have not been clarified yet:

- Does parallelism/non-determinism make problems tractable?
- Any relationship between space complexity and run time behaviour?

Other directions in complexity

Pseudopolynomial problems
Approximative and probabilistic algorithms

Motivation

Many important problems are difficult (undecidable; NP-complete; PSPACE complete)

- Undecidable: validity of formulae in FOL; termination, correctness of programs
- NP-complete: SAT, Scheduling
- PSPACE complete: games, market analyzers

Motivation

Possible approaches:

- Heuristic solutions:
- use knowledge about the structure of problems in a specific application area;
- renounce to general solution in favor of a good "average case" in the specific area of applications.
- Approximation: approximative solution
- Renounce to optimal solution in favor of shorter run times.
- Probabilistic approaches:
- Find correct solution with high probability.
- Renounce to sure correctness in favor of shorter run times.

Approximation

Many NP-hard problems have optimization variants

- Example: Clique: Find a possible greatest clique in a graph
... but not all NP-difficult problems can be solved approximatively in polynomial time:
- Example: Clique: Not possible to find a good polynomial approximation (unless $\mathrm{P}=\mathrm{NP}$)

Probabilistic algorithms

Idea

- Undeterministic, random computation
- Goal: false decision possible but not probable
- The probability of making a mistake reduced by repeating computations
- 2^{-100} below the probability of hardware errors.

Probabilistic algorithms

Example: probabilistic algorithm for 3-Clique
NB: 3-Clique is polynomially solvable (unlike Clique)

Given: Graph $G=(V, E)$
Repeat the following k times:

- Choose randomly $v_{1} \in V$ and $\left\{v_{2}, v_{3}\right\} \in E$
- Test if v_{1}, v_{2}, v_{3} build a clique.

Error probability:
$k=(|E| \cdot|V|) / 3:$ Error probability <0.5
$k=100(|E| \cdot|V|) / 3:$ Error probability $<2^{-100}$

Overview

- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models

Other computation models

- Variations of register machines (one register; two registers)
- Variations of TM; links with register machines
- Reversible computations: e.g. chemical reversibility or reversibility as in physics
- DNA Computing and Splicing

Computing machines consisting from enzymes and molecules

Other computation models

- Variations of register machines (one register; two registers)
- Variations of TM; links with register machines
- Reversible computations: chemical and psysichal reversibility
- DNA Computing and Splicing

Computing machines consisting from enzymes and molecules

Variants of automata

- Tree automata
- Automata over infinite words

Variants of automata

Tree automata
Like automata, but deal with tree structures, rather than the strings.
Tree automata are an important tool in computer science:

- compiler construction
- automatic verification of cryptographic protocols.
- processing of XML documents.

Variants of automata

Automata on infinite words (or more generally: infinite objects)
ω-Automata (Büchi automata, Rabin automata, Streett automata, parity automata and Muller automata)

- run on infinite, rather than finite, strings as input.
- Since ω-automata do not stop, they have a variety of acceptance conditions rather than simply a set of accepting states.

Applications: Verification, temporal logic

Look forward

Next semester:

- Seminar: Decision procedures and applications \mapsto emphasis on decidability and complexity results for various application areas.
- Lecture: Formal verification and specification

Various possibilities for $\mathrm{BSc} / \mathrm{MSc}$ thesis and Forschungspraktika.

