
Advanced Topics in Theoretical Computer Science

Part 5: Complexity (Part III)

6.02.2014

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1

Contents

• Recall: Turing machines and Turing computability

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

2

Until now

• P, NP, PSPACE

P ⊆ NP ⊆ PSPACE

• closure properties

• it is not known whether:

P = NP, NP = co-NP, P = PSPACE, NP = PSPACE

• How to show that a certain problem is in a certain complexity class?

Reductions

3

Reduction

Definition (Polynomial time reducibility)

Let L1, L2 be languages.

L2 is polynomial time reducible to L1 (notation: L2 �pol L1)

if there exists a polynomial time bounded DTM, which for every input w computes

an output f (w) such that

w ∈ L2 if and only if f (w) ∈ L1

Lemma (Polynomial time reduction)

• Let L2 be polynomial time reducible to L1 (L2 �pol L1). Then:

If L1 ∈ NP then L2 ∈ NP.

If L1 ∈ P then L2 ∈ P.

• The composition of two polynomial time reductions is again a polynomial time

reduction.

4

Complete and hard problems

Definition (NP-complete, NP-hard)

• A language L is NP-hard (NP-difficult) if every language L′ in NP is reducible

in polynomial time to L.

• A language L is NP-complete if:

– L ∈ NP

– L is NP-hard

Definition (PSPACE-complete, PSPACE-hard)

• A language L is PSPACE-hard (PSPACE-difficult) if every language L′ in

PSPACE is reducible in polynomial time to L.

• A language L is PSPACE-complete if:

– L ∈ PSPACE

– L is PSPACE-hard

5

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT, 3-CNF) last time

2. Does a graph contain a clique of size k? (Clique of size k)

3. Rucksack problem (knapsack)

4. Can a graph be colored with three colors? (3-colorability)

5. Is a (un)directed graph hamiltonian? (Hamiltonian circle)

6. Has a set of integers a subset with sum x? (subset sum)

7. Multiprocessor scheduling

6

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k? last time

3. Rucksack problem

4. Is a (un)directed graph hamiltonian?

5. Can a graph be colored with three colors?

6. Multiprocessor scheduling

7

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem today

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

8

Examples of NP-complete problems

Definition (Rucksack problem)

A rucksack problem consists of:

• n objects with weights a1, . . . , an

• a maximum weight b

The rucksack problem is solvable if there exists a subset of the given objects

with total weight b.

Rucksack = {(b, a1, . . . , an) ∈ Nn+1 |

E

I ⊆ {1, . . . , n} s.t.
∑

i∈I ai = b}

9

Examples of NP-complete problems

Theorem Rucksack is NP-complete.

Proof: (1) Rucksack is in NP: We guess I and check whether
∑

i∈I ai = b

(2) Rucksack is NP-hard: We show that 3-CNF-SAT ≺pol Rucksack.

Construct f : 3-CNF → N
∗ as follows.

Consider a 3-CNF formula F = (L1
1 ∨ L1

2 ∨ L1
3) ∧ · · · ∧ (Lm

1 ∨ Lm
2 ∨ Lm

3)

f (F) = (b, a1, . . . , an) where:

(i) ai encodes which atom occurs in which clause as follows:

pi positive occurrences; ni negative occurrences (numbers with n + m positions)

– first m digits of pi : pij how often i-th atom occurs positively in j-th clause

– first m digits of ni : nij how often i-th atom occurs negatively in j-th clause

– last n digits of pi , ni : pij , nij which atom is referred by pi

pi , ni contain 1 at position m + i and 0 otherwise.

10

Example

Let the set Prop of propositional variables consist of {x1, x2, x3, x4, x5}.

F : (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x2 ∨ ¬x5) ∧ (¬x3 ∨ ¬x1 ∨ x4)

p1 = 100 10000 n1 = 001 10000

p2 = 020 01000 n2 = 100 01000

p3 = 000 00100 n3 = 001 00100

p4 = 101 00010 n4 = 000 00010

p5 = 000 00001 n5 = 010 00001

Satisfying assignment: A(x1) = A(x2) = A(x5) and A(x3) = A(x4) = 0.

p1 + p2 + p5 + n3 + n4 = 121
︸︷︷︸

all digits ≤3
because 3 lit./clause

11111
︸ ︷︷ ︸

all 1
all atoms considered

11

Examples of NP-complete problems

Proof: (ctd.) If we have a satisfying assignment A, we take for every propositional

variable xi mapped to 0 the number ni and for every propositional variable xi mapped

to 1 the number pi .

The sum of these numbers is b1 . . . bm 1 . . . 1
︸ ︷︷ ︸

n times

with bi ≤ 3,

so b1 . . . bm 1 . . . 1
︸ ︷︷ ︸

n

< 4 . . . 4
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

Let b := 4 . . . 4
︸ ︷︷ ︸

m

1 . . . 1
︸ ︷︷ ︸

n

. We choose {a1, . . . , ak} = {p1, . . . , pn} ∪ {n1, . . . , nn} ∪ C .

The role of the numbers in C = {c1, . . . , cm, d1, . . . , dm} is to make the sum of the

ai s equal to b: cij = 1 iff i = j ; dij = 2 iff i = j (they are zero otherwise).

f (F) ∈ Rucksack iff a subset I of {a1, . . . , ak} adds up to b

iff a subset I of {p1, . . . , pn} ∪ {n1, . . . , nn} adds up to b1 . . . bm1 . . . 1

iff for a subset I of {p1, . . . , pn} ∪ {n1, . . . , nn} there exists an assignment

iff A with A(Pi) = 1(resp. 0) iff pi (resp. ni) occurs in I iff F satisfiable

12

Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

13

Summary

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

14

Examples of NP-complete problems

Definition (k-colorability) A undirected graph is k-colorable if every node

can be colored with one of k colors such that nodes connected by an edge

have different colors.

LColork : the language consisting of all undirected graphs

which are colorable with at most k colors.

15

Examples of NP-complete problems

The k-colorability is NP complete

Proof: Exercise. Hint:

(1) Prove that the problen is in NP.

(2) Let F = C1 ∧ · · · ∧ Ck in 3-CNF containing propositional variables {x1, . . . , xm}.

Let G = (V , E) be an undirected graph, that is defined as follows:

V ={C1, . . . ,Ck} ∪ {x1, . . . , xm} ∪ {x1, . . . , xm} ∪ {y1, . . . , ym}

E ={(xi , xi), (xi , xi) | i ∈ {1, ...,m}} ∪ {(yi , yj) | i 6= j}∪

{(yi , xj), (xj , yi) | i 6= j} ∪ {(yi , xj), (xj , yi) | i 6= j}∪

{(Ci , xj), (xj ,Ci) | xj not in Ci} ∪ {(Ci , xj), (xj ,Ci) | xj not in Ci}

Use G to prove 3-CNF-SAT �pol k-colorability.

16

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

17

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once.

18

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once and

is a cycle.

LHam,undir : the language consisting of all undirected graphs

which contain a Hamiltonian cycle

19

Examples of NP-complete problems

Definition (Hamiltonian-cycle)

Path along the edges of a graph which visits every node exactly once.

LHam,undir : the language consisting of all undirected graphs

which contain a Hamiltonian cycle

LHam,dir : the language consisting of all directed graphs

which contain a Hamiltonian cycle

NP-completeness: again reduction from 3-CNF-SAT.

20

Examples of NP-complete problems

Theorem. The problem whether a directed graph contains a Hamiltonian

cycle is NP-complete.

Proof. (1) The problem is in NP: Guess a permutation of the nodes; check

that they form a Hamiltonian cycle (in polynomial time).

(2) The problem is NP-hard. Reduction from 3-CNF-SAT.

F = (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lk1 ∨ Lk2 ∨ Lk3)

Construct f (F) = G such that G contains a Hamiltonian cycle iff F

satisfiable.

The details can be found in Erk & Priese, “Theoretische Informatik”,

p.466-471.

21

Examples of NP-complete problems

Examples of NP-complete problems:

1. Is a logical formula satisfiable? (SAT)

2. Does a graph contain a clique of size k?

3. Rucksack problem

4. Can a graph be colored with three colors?

5. Is a (un)directed graph hamiltonian?

6. Multiprocessor scheduling

22

Examples of NP-complete problems

Definition (Multiprocessor scheduling problem)

A scheduling problem consists of:

• n processes with durations t1, . . . , tn

• m processors

• a maximal duration (deadline) D

The scheduling problem has a solution if there exists an distribution of processes

on the processors such that all processes end before the deadline D.

Lschedule : the language consisting of all solvable

scheduling problems

23

Other complexity classes

24

Co-NP

co-NP is the class of all laguages for which the complement is in NP

Example:

Ltautologies = {w | w is a tautology in propositional logic}

Theorem. Ltautologies is in co-NP.

Proof. The complement of Ltautologies is the set of formulae whose negation

is satisfiable, thus in NP.

25

PSPACE

Definition (PSPACE-complete, PSPACE-hard)

A language L is PSPACE-hard (PSPACE-difficult) if every language L′ in

PSPACE is reducible in polynomial time to L.

A language L is PSPACE-complete if: – L ∈ PSPACE

– L is PSPACE-hard

26

Quantified Boolean Formulae

Syntax: Extend the syntax of propositional logic by allowing quantification

over propositional variables.

Semantics:

(

A

P)F 7→ F [P 7→ 1] ∧ F [P 7→ 0]

(
E

P)F 7→ F [P 7→ 1] ∨ F [P 7→ 0]

27

PSPACE

A fundamental PSPACE problem was identified by Stockmeyer and Meyer

in 1973.

Quantified Boolean Formulas (QBF)

Given: A well-formed quantified Boolean formula F = (Q1x1) . . . (Qnxn)E(x1, . . . , xn)

where E is a Boolean expression containing the variables x1, . . . , xn and Qi

is

E

or

A

.

Question: Is F true?

(Does it evaluate to 1 if we use the evaluation rules above?)

28

PSPACE

Theorem QBF is PSPACE complete

Proof (Idea only)

(1) QBF is in PSPACE: we can try all possible assignments of truth values

one at a time and reusing the space (2n time but polynomial space).

(2) QBF is PSPACE complete. We can show that every language L′ in

PSPACE can be polymomially reduced to QBF using an idea similar to

that used in Cook’s theorem (we simulate a polynomial space bounded

computation and not a polynomial time bounded computation).

29

The structure of PSPACE

30

The structure of PSPACE

... Beyond NP

31

The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

– makes initial guess

– consult an oracle

Informally: NOTM for problem P: nondeterministic algorithm with a

subroutine for P.

32

The structure of PSPACE

Extend the notion of polynomial reducibility:

Nondeterministic Turing Machine with an oracle: NTM + oracle tape

– makes initial guess

– consult an oracle

Informally: NOTM for problem P: nondeterministic algorithm with a

subroutine for P.

defines a so-called (polynomial time) nondeterministic Turing reduction

33

The structure of PSPACE

The polynomial hierarchy

PY = {L | there exists a language L′ ∈ Y such that L �pol L
′}

NPY = {L | there exists a language L′ ∈ Y such that there exists a

nondeterministic Turing reduction from L to L′}

Σp
0 = Πp

0 = ∆p
0 = P.

∆p
k+1 = PΣ

p
k

Σp
k+1 = NPΣ

p
k

Πp
k+1 = co-NPΣ

p
k

Πp
1 = co-NPP = co-NP; Σp

1 = NPP = NP; ∆p
1 = PP = P.

∆p
2 = PNP ; Σp

2 = NPNP

34

The structure of PSPACE

PSPACE

35

The structure of PSPACE

A complete problem for ΣP
k
is satisfiability for quantified Boolean formulas

with k alternations of quantifiers which start with an existential quantifier

sequence (abbreviated QBFk or QSATk).

(The variant which starts with

A

is complete for ΠP
k
).

36

Beyond PSPACE

EXPTIME, NEXPTIME

DEXPTIME, NDEXPTIME

EXPSPACE,

37

Discussion

• In practical applications, for having efficient algorithms polynomial

solvability is very important; exponential complexity inacceptable.

• Better hardware is no solution for bad complexity

Question which have not been clarified yet:

• Does parallelism/non-determinism make problems tractable?

• Any relationship between space complexity and run time behaviour?

38

Other directions in complexity

Pseudopolynomial problems

Approximative and probabilistic algorithms

39

Motivation

Many important problems are difficult (undecidable; NP-complete; PSPACE

complete)

• Undecidable: validity of formulae in FOL; termination, correctness of

programs

• NP-complete: SAT, Scheduling

• PSPACE complete: games, market analyzers

40

Motivation

Possible approaches:

• Heuristic solutions:

– use knowledge about the structure of problems in a specific

application area;

– renounce to general solution in favor of a good “average case” in

the specific area of applications.

• Approximation: approximative solution

– Renounce to optimal solution in favor of shorter run times.

• Probabilistic approaches:

– Find correct solution with high probability.

– Renounce to sure correctness in favor of shorter run times.

41

Approximation

Many NP-hard problems have optimization variants

• Example: Clique: Find a possible greatest clique in a graph

... but not all NP-difficult problems can be solved approximatively in

polynomial time:

• Example: Clique: Not possible to find a good polynomial approximation

(unless P = NP)

42

Probabilistic algorithms

Idea

• Undeterministic, random computation

• Goal: false decision possible but not probable

• The probability of making a mistake reduced by repeating computations

• 2−100 below the probability of hardware errors.

43

Probabilistic algorithms

Example: probabilistic algorithm for 3-Clique

NB: 3-Clique is polynomially solvable (unlike Clique)

Given: Graph G = (V ,E)

Repeat the following k times:

• Choose randomly v1 ∈ V and {v2, v3} ∈ E

• Test if v1, v2, v3 build a clique.

Error probability:

k = (|E | · |V |)/3: Error probability < 0.5

k = 100(|E | · |V |)/3: Error probability < 2−100

44

Overview

• Register machines (LOOP, WHILE, GOTO)

• Recursive functions

• The Church-Turing Thesis

• Computability and (Un-)decidability

• Complexity

• Other computation models

45

Other computation models

• Variations of register machines (one register; two registers)

• Variations of TM; links with register machines

• Reversible computations: e.g. chemical reversibility or reversibility as

in physics

• DNA Computing and Splicing

Computing machines consisting from enzymes and molecules

46

Other computation models

• Variations of register machines (one register; two registers)

• Variations of TM; links with register machines

• Reversible computations: chemical and psysichal reversibility

• DNA Computing and Splicing

Computing machines consisting from enzymes and molecules

Variants of automata

• Tree automata

• Automata over infinite words

47

Variants of automata

Tree automata

Like automata, but deal with tree structures, rather than the strings.

Tree automata are an important tool in computer science:

• compiler construction

• automatic verification of cryptographic protocols.

• processing of XML documents.

48

Variants of automata

Automata on infinite words (or more generally: infinite objects)

ω-Automata (Büchi automata, Rabin automata, Streett automata, parity

automata and Muller automata)

• run on infinite, rather than finite, strings as input.

• Since ω-automata do not stop, they have a variety of acceptance

conditions rather than simply a set of accepting states.

Applications: Verification, temporal logic

49

Look forward

Next semester:

• Seminar: Decision procedures and applications 7→ emphasis on

decidability and complexity results for various application areas.

• Lecture: Formal verification and specification

Various possibilities for BSc/MSc thesis and Forschungspraktika.

50

