Advanced Topics in Theoretical Computer Science

Part 4: Computability and (Un-)Decidability (II)

16.01.2014

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

Last time

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Other computation models: e.g. Büchi Automata

Computability and (Un-)decidability

Known undecidable problems (Theoretical Computer Science I)

- The halting problem for Turing machines
- The equivalence problem

Consequences:

- All problems about programs (TM) which are non-trivial (in a certain sense) are undecidable (Theorem of Rice)
- Identify undecidable problems outside the world of Turing machines
 - Validity/Satisfiability in First-Order Logic
 - The Post Correspondence Problem

Computability and (Un-)decidability

Known undecidable problems (Theoretical Computer Science I)

- The halting problem for Turing machines
- The equivalence problem

Consequences:

- All problems about programs (TM) which are non-trivial (in a certain sense) are undecidable (Theorem of Rice)
- Identify undecidable problems outside the world of Turing machines
 - Validity/Satisfiability in First-Order Logic
 - The Post Correspondence Problem

Decidability and Undecidability results

Formal languages

• The Post Correspondence Problem and its consequences

Post Correspondence Problem

Idea: We consider non-empty strings over the alphabet $\{a, b\}$.

For example "aaabba".

Assume that we have *n* pairs of strings $(x_1, y_1), \ldots, (x_n, y_n)$.

Post correspondence problem:

Determine whether there is a set of indices i_1, \ldots, i_m such that

$$x_{i_1}x_{i_2}\ldots x_{i_m}=y_{i_1}y_{i_2}\ldots y_{i_m}.$$

This can contain repeated indices, miss certain indices, ...

Definition

A correspondence system (CS) P is a finite rule set over an alphabet Σ .

 $P = \{(p_1, q_1), \ldots, (p_n, q_n)\}$ with $p_i, q_i \in \Sigma^*$

An index sequence $I = i_1 \dots i_m$ of P is a sequence with $1 \le i_k \le n$ for all k. For every index sequence I we denote $p_I = p_{i_1} \dots p_{i_m}$ and $q_I = q_{i_1} \dots q_{i_m}$.

A partial solution is an index set I such that

 p_l is a prefix of q_l or q_l is an prefix of p_l . A solution is an index set l such that $p_l = q_l$. A (partial) solution with given start is a (partial) solution in which the first index i_1 is given.

The Post correspondence problem (PCP) is the question whether a given correspondence system P has a solution.

Post Correspondence Problem

Example:

- Let $P = \{(a, ab), (b, ca), (ca, a), (abc, c)\}.$
 - *I* = 1, 2, 3, 1, 4 is a solution:

 $p_1 = p_1 p_2 p_3 p_1 p_4 = a b ca a abc = abcaaabc = ab ca a ab c = q_1 q_2 q_3 q_1 q_4 = q_1$

• J = 1, 2, 3 is a partial solution:

 $p_J = p_1 p_2 p_3 = abca$ is a prefix of $q_J = abcaa$

• There are no solutions with given start 2, 3 or 4.

We will show that the Post correspondence problem is undecidable.

The proof consists of the following steps:

- We identify two types of "rewrite" systems
 Semi-Thue systems (STS) and Post Normal Systems (PNS).
- We show that the TM computable functions are also STS/PNS computable.
- We define $Trans_G = \{(v, w) \mid v \Rightarrow^* w, v, w \in \Sigma^+\}$ and show that there exist STS/PNS G such that $Trans_G$ is undecidable.
- We assume (to derive a contradiction) that a version of the Post correspondence problem is decidable and show that then also *Trans_G* is decidable (which is clearly impossible).

Set of rules. A set of rules over an alphabet Σ is a finite subset $R \subseteq \Sigma^* \times \Sigma^*$. We also write $u \to_R v$ for $(u, v) \in R$.

R is ϵ -free if for all $(u, v) \in R$ we have $u \neq \epsilon$ and $v \neq \epsilon$.

Set of rules. A set of rules over an alphabet Σ is a finite subset $R \subseteq \Sigma^* \times \Sigma^*$. We also write $u \rightarrow_R v$ for $(u, v) \in R$.

R is ϵ -free if for all $(u, v) \in R$ we have $u \neq \epsilon$ and $v \neq \epsilon$.

Semi-Thue System. In a semi-Thue System, a word w is transformed in a word w' by applying one of the rules (u, v) in R.

Definition. A semi-Thue System (STS) is a pair $G = (\Sigma, R)$ consisting of an alphabet Σ and a set of rules R. G is ϵ -free if R is ϵ -free.

$$w \Rightarrow_G w'$$
 iff $\exists u \rightarrow_R v, \exists w_1, w_2 \in \Sigma^*(w = w_1 u w_2 \text{ and } w' = w_1 v w_2)$

Let *G* be the following semi-Thue system:

$$G = (\{a, b\}, \{ab \rightarrow bba, ba \rightarrow aba\})$$

 $\underline{ab}aba \Rightarrow bba\underline{ab}a \Rightarrow bbabbaa$ $\underline{aba}ba \Rightarrow aab\underline{ab}a \Rightarrow aabbbaa.$

The rule application in not deterministic.

Definition. A Post Normal System (PNS) is a pair $G = (\Sigma, R)$ where Σ is an alphabet and a set of rules R. G is ϵ -free if R is ϵ -free.

It differs from a semi-Thue system in the way \Rightarrow_G is defined:

$$w \Rightarrow_G w'$$
 iff $\exists u \rightarrow_R v, \exists w_1 \in \Sigma^* (w = uw_1 \text{ and } w' = w_1v)$

Definition. A computation in a STS or a PNS G is a sequence w_1, \ldots, w_n with $w_i \Rightarrow_G w_{i+1}$ for all $i \in \{1, \ldots, n-1\}$. The computation does not continue if there exists no w_{n+1} with $w_n \Rightarrow_G w_{n+1}$. If there exists $n \ge 1$ with $w_1 \Rightarrow_G \cdots \Rightarrow_G w_n$ we write: $w_1 \Rightarrow_G^* w_n$.

Let G be the following Post Normal System:

$$G = (\{a, b\}, \{ab
ightarrow bba, ba
ightarrow aba, a
ightarrow ba\})$$

Then:

 $\underline{ab}aba \Rightarrow \underline{a}babba \Rightarrow \underline{ba}bbaba \Rightarrow bbabaaba$

 $\underline{a}baba \Rightarrow \underline{ba}baba \Rightarrow \underline{ba}baaba \Rightarrow \underline{ba}abaaba \Rightarrow \underline{a}baabaaba \Rightarrow \dots$ (infinite computation)

Definition. A partial function $f : \Sigma_1^* \to \Sigma_2^*$ is STS computable (PNS-computable) iff there exists a STS (a PNS) G s.t. for all $w \in \Sigma_1^*$

- $\forall u \in \Sigma_2^*$, $[w] \Rightarrow_G^* [u\rangle$ iff f(w) = u• $\not\exists v \in \Sigma_2^*$, $[w] \Rightarrow_G^* [v\rangle$ iff f(w) undefined.

Note: $[,], \rangle$ are special symbols

- F_{STS}^{part} : the family of all (partial) STS computable functions
- F_{PNS}^{part} : the family of all (partial) PNS computable functions

Theorem
$$TM^{\text{part}} \subseteq F_{STS}^{\text{part}}; TM^{\text{part}} \subseteq F_{PNS}^{\text{part}}.$$

Proof:

Idea: show that we can simulate the way a TM works using a suitable STS. We then show that we can slightly change the STS and obtain a PNS which simulates the TM.

From the proof it can be seen that we can simulate any TM using a ϵ -free STS and ϵ -free PNS.

The full proof is rather long and is not presented here. It can be found on pages 309-311 in the book "Theoretische Informatik" (3. Auflage) by Erk and Priese.

$$Trans_G = \{(v, w) \mid v \Rightarrow^*_G w \land v, w \in \Sigma^+\}$$

Theorem.

There exists an ϵ -free STS G such that $Trans_G$ is undecidable.

There exists an ϵ -free PNS G such that $Trans_G$ is undecidable.

Proof.

We can reduce $K = \{n \mid M_n \text{ halts on input } n\}$ to $Trans_G$ for a certain STS (PNS) G.

Let G be an ϵ -free STS or PNS which computes the function of the TM

$$M = M_K M_{delete}$$

where M_K is the TM which accepts K and M_{delete} deletes the band after M_K halts (such a TM can easily be constructed because $M_K = M_{prep}U_0$; the halting configurations of the universal TM U_0 are of the form h_U , $\#|^n \#|^m \underline{\#}$).

Input v: M_K halts iff M_v halts on v. If M_K halts, M_{delete} deletes the tape.

Post Correspondence Problem

Proof. (ctd.)

Assume $Trans_G$ decidable. We show how to use G and the decision procedure for $Trans_G$ to decide K:

For v = [|...|] and $w = [\epsilon\rangle$ we have: *n* times

$$(v, w) \in Trans_G \quad \text{iff} \quad (v \Rightarrow_G^* w)$$

iff $M = M_K M_{\text{delete}} \text{ halts for input } |^n \text{ with } \#$
iff $M_K \text{ halts for input } |^n$
iff $n \in K$.

Theorem For every ϵ -free semi-Thue System G and every pair of words $w', w'' \in \Sigma^+$ there exists a Post Correspondence System $P_{G,w',w''}$ such that

 $P_{G,w',w''}$ has a solution with given start iff $w' \Rightarrow_G^* w''$.

Proof: Assume that we are given

- G an ϵ -free STS $G = (\Sigma, R)$ with $|\Sigma| = m$ and $R = \{u_1 \rightarrow v_1, \ldots, u_n \rightarrow v_n\}$ with $u_i, v_i \in \Sigma^+$
- w', $w'' \in \Sigma^+$

We construct the correspondence system $P_{G,w',w''} = \{(p_i, q_i) \mid 1 \le i \le k\}$ with k = n + m + 3 over the alphabet $\Sigma_X = \Sigma \cup X$ with:

- the first *n* rules are the rules in *R*
- the rule n + 1 is (X, Xw'X); the rule n + 2 is (w''XX, X)
- the rules $n + 2 + 1, \ldots, n + 2 + m$ are (a, a) for every $a \in \Sigma$
- the last rule is (X, X)
- the index for the given start is n + 1.

 $G = (\Sigma, R)$ with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$. For the word pair w' = caaba, w'' = abc we have

$$w' = ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{ca}c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X), (a, a), (b, b), (c, c), (X, X) \}$$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w' \Rightarrow^*_G w''$

$$p_4 \qquad X \qquad = X caabaX \qquad = q_4$$

 $G = (\Sigma, R)$ with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$. For the word pair w' = caaba, w'' = abc we have

$$w' = caaba \Rightarrow_2 caca \Rightarrow_1 caab \Rightarrow_2 cac \Rightarrow_1 abc = w''$$

$$\mathcal{P}_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X) (a, a), (b, b), (c, c), (X, X) \}$$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w' \Rightarrow^*_G w''$

$$p_{486} = Xca = XcaabaXca = q_{486}$$

 $G = (\Sigma, R)$ with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$. For the word pair w' = caaba, w'' = abc we have

$$w' = ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{ca}c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X) \\ (a, a), (b, b), (c, c), (X, X) \}$$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w' \Rightarrow^*_G w''$

 $p_{4862} = X caab = X caabaX cac = q_{4862}$

 $G = (\Sigma, R)$ with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$. For the word pair w' = caaba, w'' = abc we have

$$w' = ca \underline{ab} a \Rightarrow_2 ca \underline{ca} \Rightarrow_1 ca \underline{ab} \Rightarrow_2 \underline{ca} c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X), (a, a), (b, b), (c, c), (X, X) \}$$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w' \Rightarrow^*_G w''$

 $p_{486269} = X caabaX = X caabaX cacaX = q_{486269}$

 $G = (\Sigma, R)$ with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$. For the word pair w' = caaba, w'' = abc we have

$$w'={\sf ca}_{\underline{a}\underline{b}}{\sf a}\Rightarrow_2{\sf ca}_{\underline{c}\underline{a}}\Rightarrow_1{\sf ca}_{\underline{a}\underline{b}}\Rightarrow_2{\underline{c}\underline{a}}{\sf c}\Rightarrow_1{\sf abc}=w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X) \\ (a, a), (b, b), (c, c), (X, X) \}$$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w' \Rightarrow_G^* w''$

 $p_{48626986} = X caaba X ca = X caaba X caca X ca = q_{48626986}$

 $G = (\Sigma, R)$ with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$. For the word pair w' = caaba, w'' = abc we have

$$w'={\sf ca}_{\underline{a}\underline{b}}{\sf a}\Rightarrow_2{\sf ca}_{\underline{ca}}\Rightarrow_1{\sf ca}_{\underline{a}\underline{b}}\Rightarrow_2{\underline{ca}}{\sf c}\Rightarrow_1{\sf abc}=w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X) \\ (a, a), (b, b), (c, c), (X, X) \}$$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w' \Rightarrow_G^* w''$

 $p_{4862698619} = X caabaX cacaX = X caabaX cacaX caabX = q_{4862698619}$

 $G = (\Sigma, R)$ with $\Sigma = \{a, b, c\}$ and $R = \{ca \rightarrow ab, ab \rightarrow c, ba \rightarrow a\}$. For the word pair w' = caaba, w'' = abc we have

$$w' = ca\underline{ab}a \Rightarrow_2 ca\underline{ca} \Rightarrow_1 ca\underline{ab} \Rightarrow_2 \underline{ca}c \Rightarrow_1 abc = w''$$

$$P_{G,w',w''} = \{ (ca, ab), (ab, c), (ba, a), (X, XcaabaX), (abcXX, X) \\ (a, a), (b, b), (c, c), (X, X) \}$$

We can see that $P_{G,w',w''}$ has a solution with start n+1 iff $w' \Rightarrow^*_G w''$

 $p_{4862698619} = X caaba X caca X = X caaba X caca X caab X = q_{4862698619}$

The successive application of rules 2, 1, 2, 1 corresponds to the solution $I = \underline{4}, 8, 6, \underline{2}, 6, 9, 8, 6, \underline{1}, 9, 8, 6, \underline{2}, 9, \underline{1}, 8, 9, \underline{5}$

4,4: begin/end; Underlines: rule applications. Remaining numbers: copy symbols such that rule applications at the desired position. X separates the words in G-derivations.

$$p_I = X caaba X caca X caab X cac X abc X X = q_I$$

Theorem For every ϵ -free semi-Thue System G and every pair of words $w', w'' \in \Sigma^+$ there exists a Post Correspondence System $P_{G,w',w''}$ such that

 $P_{G,w',w''}$ has a solution with given start iff $w' \Rightarrow_G^* w''$.

Proof: Assume that we are given

- G an ϵ -free STS $G = (\Sigma, R)$ with $|\Sigma| = m$ and $R = \{u_1 \rightarrow v_1, \ldots, u_n \rightarrow v_n\}$ with $u_i, v_i \in \Sigma^+$
- w', $w'' \in \Sigma^+$

We construct the correspondence system $P_{G,w',w''} = \{(p_i, q_i) \mid 1 \le i \le k\}$ with k = n + m + 3 over the alphabet $\Sigma_X = \Sigma \cup X$ with:

- the first *n* rules are the rules in *R*
- the rule n + 1 is (X, Xw'X); the rule n + 2 is (w''XX, X)
- the rules $n + 2 + 1, \ldots, n + 2 + m$ are (a, a) for every $a \in \Sigma$
- the last rule is (X, X)
- the index for the given start is n + 1.

Proof (ctd.) We show that $P_{G,w',w''}$ has a solution iff $w \Rightarrow^*_G w''$.

Occurrences of $X \mapsto$ In the solution index n + 2 must occur.

Assume (n+1)I'(n+2)I'' is a solution in which I' does not contain n+1, nor n+2. By careful analysis of the equality $p_{(n+1)I'(n+2)I''} = q_{(n+1)I'(n+2)I''}$ we note the following:

(1) no XX in p_(n+1), q_(n+1), q_(n+1),
(2) p_(n+1), nd q_(n+1), and q_(n+1), q_(n+2) end on XX
(3) p_(n+1), q_(n+2), w'' XXp₁, w'' XXp₁, so:
- l' starts with l₁, (n + m + 3) with p_{l1}(n+m+3) = w'X.
- Then q_{l1,n+m+3} = w₂X for some w₂ ≠ ε.
- l₁ contains only indices in {1,...,n} ∪ {n+3,...,n+2+m}.

- Therefore,
$$w' \Rightarrow^*_G w_2$$
.

Post Correspondence Problem

Proof (ctd.)

From (1) and (2) it follows that $p_{(n+1)I'(n+2)} = q_{(n+1)I'(n+2)}$.

Thus, if $P_{G,w',w''}$ has a solution then it has a solution of the form (n+1)I'(n+2), such that I' does not contain (n+1) or (n+2).

From (3), by induction, we can show that

$$I' = I_1, (n + m + 3), I_2, (n + m + 3), \dots, I_k, (n + m + 3),$$

where I_j contains only indices in $\{1, \ldots, n\} \cup \{n+3, \ldots, n+2+m\}$. Then $p_{I'} = w' X w_2 X \ldots X w_{I-1} X$ and $q_{I'} = w_2 X \ldots X w_I X$ for words w_2, \ldots, w_I with

$$w' \Rightarrow^*_G w_2 \Rightarrow^*_G \cdots \Rightarrow^*_G w_l$$

Proof (ctd.)

Thus, for every solution I = (n+1)I'(n+2) we have:

$$p_{I} = Xw' Xw_{2} \dots Xw_{I-1} Xw'' XX = q_{I}$$

with $w' \Rightarrow^*_G w_2 \Rightarrow^*_G \cdots \Rightarrow^*_G w_l = w''$.

Conversely, one can prove by induction that if $w' = w_1 \Rightarrow_G^* w_2 \Rightarrow_G^* \cdots \Rightarrow_G^* w_I = w''$ is a computation in *G* then there exists a partial solution *I* of $P_{G,w',w''}$ with given start n+1 and

$$p_{I} = Xw' Xw_{2} \dots Xw_{l-1} X \qquad q_{I} = Xw' Xw_{2} \dots Xw_{l-1} Xw_{l} X$$

Then I, (n+2) is a solution if $w_l = w''$.

Post Correspondence Problem

Theorem. Assume $|\Sigma| \ge 2$. The Post Correspondence Problem is undecidable.

Proof:

1. We first show that PCP with given start is undecidable.

Assume that the PCP with given start is decidable. By the previous result it would follow that $Trans_G$ is decidable for every ϵ -free STS G. We showed that there exists at least one ϵ -free STS G for which $Trans_G$ is undecidable. Contradiction. Thus, the PCP with given start is undecidable.

2. We prove that PCP is undecidable.

For this, we show that for every PCP $P = \{(p_i, q_i) \mid 1 \le i \le n\}$ with given start j_0 we can construct a PCP P' such that P has a solution iff P' has a solution. Construction: New symbols X, Y; two types of encodings of words:

$$w = c_1 \dots c_n \mapsto \overline{w} = Xc_1 Xc_2 \dots Xc_n; \quad \overline{\overline{w}} = c_1 Xc_2 \dots Xc_n X$$
$$\mathsf{P'} = \{(\overline{p}_1, \overline{\overline{q_1}}), \dots, (\overline{p}_n, \overline{\overline{q_n}}), (\overline{p}_{j_0}, X\overline{\overline{q_{j_0}}}), (XY, Y)\}$$

A solution of P' can only start with rule (n + 1) (only rule where both sides start with same symbol). P has solution with start j_0 iff P' has a solution.

Theorem It is undecidable whether a context free grammar is ambiguous.

Proof. Assume that the problem is decidable. Construct algorithm for solving the PCP. Let $T = \{(u_1, v_1), \ldots, (u_n, v_n)\}$ a CS over Σ_1 ; $\Sigma' = \Sigma_1 \cup \{a_1, \ldots, a_n\}$. $L_{T,1} = \{a_{i_m} \ldots a_{i_1} u_{i_1} \ldots u_{i_m} | m \ge 1, 1 \le i_j \le n\}$ generated by c.f. grammar $G_{T,1}$. $G_{T,1} = (\{S_1\}, \Sigma', R_1, S_1), R_1 = \{S_1 \rightarrow a_i S_1 u_i \mid 1 \le i \le n\} \cup \{S_1 \rightarrow a_i u_i\}$ $L_{T,2} = \{a_{i_m} \ldots a_{i_1} v_{i_1} \ldots v_{i_m} | m \ge 1, 1 \le i_j \le n\}$ generated by c.f. grammar $G_{T,2}$. $G_{T,2} = (\{S_2\}, \Sigma', R_2, S_2), R_2 = \{S_2 \rightarrow a_i S_2 v_i \mid 1 \le i \le n\} \cup \{S_2 \rightarrow a_i v_i\}$ $G_{T,1}, G_{T,2}$ are unambigouus. Let $G_T = (\{S, S_1, S_2\}, \Sigma', R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}, S)$.

 $\begin{array}{lll} T \text{ has a solution} & \text{iff} & \exists w \in L_{T,1} \cap L_{T,2} \\ & \text{iff} & \exists w \in L(G) \text{ with two different derivations} & \text{iff} & G_T \text{ ambiguous.} \end{array}$

Undecidable problems in formal languages

Theorem It is undecidable whether the intersection of two

- deterministic context-free languages (DCFL)
- non-ambiguous context-free languages
- context-free languages

is empty.

Proof. Assume that one of the problems is decidable.

Let
$$T = \{(u_1, v_1), \dots, (u_n, v_n)\}$$
 a CS over $\Sigma; \quad \Sigma' = \Sigma \cup \{a_1, \dots, a_n\}, c \notin \Sigma'.$
 $L_1 = \{wcw^R \mid w \in (\Sigma')^*\}$: non-ambiguous, deterministic.
 $L_2 = \{u_{i_1} \dots u_{i_m} a_{i_m} \dots a_{i_1} ca_{j_1} \dots a_{j_l} v_{j_l}^R \dots v_{j_1}^R \mid m, l \ge 1, i_k, j_p \in \{1, \dots, n\}\}$
 L_2 non-ambigous, deterministic (see proof in the book by Erk and Priese)
 T has a solution iff $\exists k \ge 1 \exists i_1, \dots, i_k: u_{i_1} \dots u_{i_k} = v_{i_1} \dots v_{i_k}$
 $iff \quad \exists k \ge 1 \exists i_1, \dots, i_k: u_{i_1} \dots u_{i_k} a_{i_k} \dots a_{i_1} = (a_{i_1} \dots a_{i_k} v_{i_1}^R \dots v_{i_k}^R)^R$

iff
$$\exists x \in L_2$$
 such that $x = wcw^R$ iff $\exists x \in L_2 \cap L_1$

If we can always decide whether $L_1 \cap L_2 = \emptyset$ then PCP decidable!

Theorem It is undecidable whether for a context free language $L \subseteq \Sigma^*$ with $|\Sigma| > 1$ we have $L = \Sigma^*$.

Proof. Assume that is was decidable whether $L = \Sigma^*$. We show that then it would be decidable whether $L_1 \cap L_2 = \emptyset$ for DCFL.

Let L_1 , L_2 DCFL languages over Σ . Then $L_1 \cap L_2 = \emptyset$ iff $\overline{L_1 \cap L_2} = \Sigma^*$ iff $\overline{L_1} \cup \overline{L_2} = \Sigma^*$.

Note that DCFL's are closed under complement. Then $\overline{L_1}, \overline{L_2} \in \mathcal{L}_2$, so $\overline{L_1} \cup \overline{L_2} \in \mathcal{L}_2$.

Then we could use the decision procedure to check whether $\overline{L_1} \cup \overline{L_2} = \Sigma^*$, i.e. to check whether $L_1 \cap L_2 = \emptyset$. This is a contradiction, since we proved that it is undecidable whether the intersection of two DCFLs is empty.

Theorem The following problems are undecidable for context-free languages L_1 , L_2 and regular languages R over every alphabet Σ with at least two elements.

(1)
$$L_1 = L_2$$

(2) $L_2 \subseteq L_1$
(3) $L_1 = R$

(4)
$$R \subseteq L_1$$

Proof: Let L_1 be an arbitrary context-free language. Choose $L_2 = \Sigma_2^*$. Then L_2 is regular and:

- $L_1 = L_2$ iff $L_1 = \Sigma^*$ (1 and 3)
- $L_2 \subseteq L_1$ iff $L_1 = \Sigma^*$ (2 and 3)

Undecidable problems for \mathcal{L}_2

decidable	undecidable	
$w \in L(G)$	G ambiguous	
$L(G) = \emptyset$	$D_1\cap D_2=\emptyset$	
L(G) finite	$L_1 \cap L_2 = \emptyset$	for non-ambiguous languages $L_1.L_2$
$D_1 = \Sigma^*$	$L_1 = \Sigma^*$	$if \; \Sigma \geq 2$
$L_1\subseteq R$	$L_1 = L_2$	$if\; \Sigma \geq 2$
	$L_1 \subseteq L_2$	$if\; \Sigma \geq 2$
	$L_1 = R$	$if\; \Sigma \geq 2$
	$R\subseteq L_1$	$if\; \Sigma \geq 2$

where L_1 , L_2 are context-free languages; D_1 , D_2 are DCFL languages

R is a regular language; *G* is a context-free grammar, $w \in \Sigma^*$.

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Brief outlook: other computation models, e.g. Büchi Automata

Contents

- Recall: Turing machines and Turing computability
- Register machines (LOOP, WHILE, GOTO)
- Recursive functions
- The Church-Turing Thesis
- Computability and (Un-)decidability
- Complexity
- Brief outlook: other computation models, e.g. Büchi Automata