
Advanced Topics in Theoretical Computer Science

Part 1: Turing Machines and Turing Computability (2)

7.11.2013

Viorica Sofronie-Stokkermans

Universität Koblenz-Landau

e-mail: sofronie@uni-koblenz.de

1



Turing Machines

Overview: Turing Machines

• Accept languages of type 0.

• First memory: state (finite)

• Second memory: tape

unlimited size; access at arbitrary place.

• Have a read/write head which can move left/right over the tape.

• Input word: initially on the tape.

The machine can read it arbitrarily often.

2



Last time

• Deterministic Turing Machine (DTM)

• Configuration, transition between configurations, computation

To halt, to hang

• Representation of Turing machines

- as in definition

- diagram (flow-chart) representation

3



Last time

• Definitions: TM-computable function

• TMpart is the set of all partial TM-computable functions f : Nk → N

• TM is the set of all total TM-computable functions f : Nk → N

Remark: Restrictions when defining TM and TMpart:

• Only functions over N

• Only functions with values in N (not in Nm)

This is not a real restriction:

Words from other domains can be encoded as natural numbers.

4



Last time

Types of Turing machines:

– Standard deterministic Turing Machines (Standard DTM)

– Other types of Turing machines:

• Tape infinite on both sides

• Several tapes

• Non-deterministic Turing machines

• For every TM with both sides infinite tape which computes a function

f or accepts a language L, there exists a standard DTM M′ which also

computes f (resp. accepts L).

• For every k-DTM which computes a function f (or accepts a language L)

there exists a DTM M′ which computes f (resp. accepts L).

5



Last time

Universal Turing machines: TM which simulates other Turing machines

• Universal Turing machine U receives as input

(i) the rules of an arbitrary TM M and

(ii) a word w .

• U simulates M, by always changing the configurations (according to

the transition function δ) the way M would change them.

Problem: Turing machines take words (or numbers) as inputs. Can we

encode an arbitraty Turing machine as a number or as a word?

Solution: Gödelisation

Method for assigning with every Turing machine a number or a word (Gödel

number or Gödel word) such that the Turing machine can be effectively

reconstructed from that number (or word).

6



Last time

• Acceptable language

• Recursively enumerable language

• Enumerable language

• Decidable language

relationships between these notions.

7



Last time

A DTM M decides a language L if

• for every input word w ∈ L, M halts with band contents Y (yes)

• for every input word w 6∈ L, M halts with band contents N (no)

L is called decidable if there exists a DTM which decides L.

Let L be a language over Σ0 with #,Y ,N 6∈ Σ0.

Let M = (K , Σ, δ, s) be a DTM with Σ0 ⊆ Σ.

• M enumerates L if there exists a state qB ∈ K (the blink state)

such that: L = {w ∈ Σ∗
0 |

E

u ∈ Σ∗; s, # ⊢∗
M

qB , #w#u}

• L is called recursively enumerable if there exists a DTM M which

enumerates L.

8



Acceptable/Recursively enumerable/Decidable

Theorem (Acceptable = Recursively enumerable)

A language is recursively enumerable iff it is acceptable.

Proposition

Every decidable language is acceptable.

Proposition

The complement of any decidable language is decidable.

Proposition (Characterisation of decidability)

A language L is decidable iff L and its complement are acceptable.

9



Recursively enumerable = Type 0

Formal languages are of type 0 if they can be generated by arbitrary

grammars (no restrictions).

Proposition

The recursively enumerable languages (i.e. the languages acceptable by

DTMs) are exactly the languages generated by arbitrary grammars (i.e.

languages of type 0).

10



Today

• Undecidable problems

• Ways of proving undecidability

11



Undecidability of the halting problem

M Turing machine 7→ G(M) Gödelisation

HALT = {G(M)w | M halts on input w}

Is HALT decidable?

12



Undecidability of the halting problem

Proposition: HALT = {G(M)w | M halts on input w} is not decidable.

Proof: Assume, in order to derive a contradiction, that there exists a TM

MH which halts on every input and accepts only inputs in HALT .

We construct the following TM:

accept

reject

loops

reject

M
x xx

Copy MH Loop

1. Let x be the input.

2. Copy the input. Let xx be the result.

3. Decide using MH if xx ∈ HALT

4. If yes: write infinitely many 1s to the right.

5. If no: halt

13



Undecidability of the halting problem

Proposition: HALT = {G(M)w | M halts on input w} is not decidable.

Proof: Assume, in order to derive a contradiction, that there exists a TM

MH which halts on every input and accepts only inputs in HALT .

What happens when we start M with input G(M)?

accept

reject

loops

reject

M
x xx

Copy MH Loop

Case 1: M started with G(M) halts: Then G(M)G(M) 6∈ HALT Contradiction!

Fall 2: M started with G(M) does not halt: Then G(M)G(M) ∈ HALT Contradiction!

14



Undecidability proofs: Example

Theorem. K = {G(M) | M halts for input G(M)}

is acceptable but undecidable.

Proof: Similar to the undecidability proof for the halting problem.

Exercise

15



Undecidability proofs: Example

Theorem. K = {G(M) | M halts for input G(M)}

is acceptable but undecidable.

Proof: Similar to the undecidability proof for the halting problem.

Reformulation using numbers instead of words:

Gödelization 7→ Gödel numbers

Let M0,M1, . . . ,Mn, . . . be an enumeration of all Turing Machines

Mn is the TM with Gödel number n.

K = {n | Mn halts on input n}

16



Undecidability proofs

Proof via reduction

Given: L1, L2 languages

L1 known to be undecidable

To show: L2 undecidable

Idea:

Assume L2 decidable. Let M2 be a TM which decides L2. Show that then

we can construct a TM which decides L1.

For this, we have to find a computable function f which transforms an

instance of L1 into an instance of L2

A

w(w ∈ L1 iff f (w) ∈ L2)

Let Mf be the TM which computes f . Construct M1 = Mf M2. Then M1

decides L1.

17



Undecidability proofs: Example

Theorem. H0 = {n | Mn halts for input 0} is undecidable.

Proof: We show that K can be reduced to H0, i.e. that there exists a TM

computable function f : N → N such that

i ∈ K iff f (i) ∈ H0.

Only main idea here, we will come back to this example later

18



Undecidability proofs: Example

Theorem. H0 = {n | Mn halts for input 0} is undecidable.

Proof: We show that K can be reduced to H0, i.e. that there exists a TM

computable function f : N → N such that i ∈ K iff f (i) ∈ H0.

Want: f (i) = j iff (Mi halts for input i iff Mj halts for input 0).

For every i there exists a TM Ai s.t.: s, ## ⊢∗
Ai

h,#|i#.

Let MK be the TM which accepts K .

We define f (i) := j where j is the Gödel number of Mj = AiMK .

f is TM computable. We show that f has the desired property:

f (i) = j ∈ H0 iff Mj = AiMK halts for input 0 (##)

iff MK halts for input i iff i ∈ K .

19


